
Received June 28, 2020, accepted July 8, 2020, date of publication July 29, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012824

RoSA: A Framework for Modeling Self-Awareness
in Cyber-Physical Systems

MAXIMILIAN GÖTZINGER 1,2, (Member, IEEE), DÁVID JUHÁSZ 2,5,
NIMA TAHERINEJAD 2, (Member, IEEE), EDWIN WILLEGGER2,
BENEDIKT TUTZER2, PASI LILJEBERG 1, (Member, IEEE),
AXEL JANTSCH 2, (Senior Member, IEEE), AND
AMIR M. RAHMANI3,4, (Senior Member, IEEE)
1Department of Future Technologies, University of Turku, 20014 Turku, Finland
2Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
3Department of Computer Science, University of California at Irvine, Irvine, CA 92697, USA
4School of Nursing, University of California at Irvine, Irvine, CA 92697, USA
5Imsys AB, 194 61 Stockholm, Sweden

Corresponding authors: Maximilian Götzinger (maxgot@utu.fi) and Dávid Juhász (david.juhasz@tuwien.ac.at)

*The first two authors contributed equally to the paper.

This work was supported in part by Federal Ministry Republic of Austria for Climate Action, Environment, Energy, Mobility, Innovation

and Technology (BMVIT)/Austrian Research Promotion Agency (FFG) under the program Production of the Future in the project SAVE

under Grant FFG 864883; in part by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under

Grant 674875 (oCPS Marie Curie Network); and in part by the Tekniikan Edistämissäätiö (Finnish Foundation for Technology Promotion).

ABSTRACT The role of smart and autonomous systems is becoming vital in many areas of industry and

society. Expectations from such systems continuously rise and become more ambitious: long lifetime, high

reliability, high performance, energy efficiency, and adaptability, particularly in the presence of changing

environments. Computational self-awareness promises a comprehensive assessment of the system state

for sensible and well-informed actions and resource management. Computational self-awareness concepts

can be used in many applications such as automated manufacturing plants, telecommunication systems,

autonomous driving, traffic control, smart grids, and wearable health monitoring systems. Developing

self-aware systems from scratch for each application is the most common practice currently, but this is

highly redundant, inefficient, and uneconomic. Hence, we propose a framework that supports modeling

and evaluation of various self-aware concepts in hierarchical agent systems, where agents are made up of

self-aware functionalities. This paper presents the Research on Self-Awareness (RoSA) framework and its

design principles. In addition, self-aware functionalities abstraction, data reliability, and confidence, which

are currently provided by RoSA, are described. Potential use cases of RoSA are discussed. Capabilities of the

proposed framework are showcased by case studies from the fields of healthcare and industrial monitoring.

We believe that RoSA is capable of serving as a common framework for self-awaremodeling and applications

and thus helps researchers and engineers in exploring the vast design space of hierarchical agent-based

systems with computational self-awareness.

INDEX TERMS Computational self-awareness, framework, agent-based, hierarchical, modeling, develop-

ment, monitoring, observe-decide-act.

I. INTRODUCTION

The number of Cyber-Physical Systems (CPSs) with embed-

ded sensors and actuators is growing exponentially [1], [2].

These systems enable a wide range of applications like

automated manufacturing plants [3], telecommunication sys-

tems [4], [5], autonomous driving [6], traffic control [7],

smart grids [8], and mobile health monitoring systems [9] —

just to name a few examples. Nomatter the actual application,

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

CPSs connect their physical environment (the real world)

with the digital (i.e., cyber) space under ever-increasing

expectations and requirements [10]. Some system properties

that are needed for meeting application requirements are

adaptivity, autonomy, reliability, robustness, long lifetime,

high performance, and energy efficiency. A controlled bal-

ance among those sometimes contradictory properties is a

must as well [11].

Because of these requirements, a complex interaction

between a CPS and its environment is necessary. The system

needs to know how its environment behaves and how its

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 141373

https://orcid.org/0000-0002-1112-141X
https://orcid.org/0000-0003-1166-1130
https://orcid.org/0000-0002-1295-0332
https://orcid.org/0000-0002-9392-3589
https://orcid.org/0000-0003-2251-0004
https://orcid.org/0000-0003-1465-0592


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

own actions may affect the environment. Besides, a CPS may

have limited resources and need to consider system properties

like the growing process variability, thermal limitations, and

wear-out effects of System on Chip (SoC) solutions. These

could lead to an unbalanced lifetime, overheating, hotspots,

rapid aging, and under-utilization [12]–[14], which requires

sophisticated resource management. Thus, a comprehensive

assessment of the system’s state and that of its environment is

needed and allows prediction of future events, better planning

of actions, and hence optimized operation [15].

Computational Self-Awareness (CSA) has been studied in

a wide range of applications [16]–[18], and proved to be

a key enabler of efficient resource management in differ-

ent domains (e.g., sensor networks [19] and health moni-

toring systems [20]). It has also been proposed to tackle

the challenges of comprehensive assessment in different

CPSs [18], [21]–[24]. However, the community research-

ing on self-awareness is fractioned, and research proceeds

rather slow. To the best of our knowledge, so far, there is

no satisfactory common tool to speed up research on self-

awareness. We propose a software framework, Research on

Self-Awareness (RoSA),1 for modeling self-awareness con-

cepts and applications. RoSA is based on a hierarchical

agent-based model and provides facilities to implement,

adapt, customize, and evaluate self-aware applications. The

framework itself is a three-fold software engineering exem-

plar [25]: it can be used in the engineering process to

model applications as well as it serves as a testbed and

library (i.e. infrastructure for conducting research and a set of

reusable models or code, respectively). We hope that RoSA

can serve as a common framework for the community to

explore uncharted aspects of self-awareness and speed up

development in the field.

This paper provides an overview of the framework, how it

works and how it can be used. The applicability and flexibility

of RoSA are demonstrated by two case studies from the fields

of human health monitoring [26]–[28] and industrial machine

monitoring [29]–[31]. The main contributions of the paper

are:

1) we propose a framework, RoSA, which facilitates the

modeling and evaluation of self-awareness concepts by

means of modeling self-aware applications as hierar-

chical agent systems and modeling agents based on

self-aware functionalities;

2) we provide an initial set of self-aware functionalities,

namely abstraction, data reliability, and confidence,

implemented in RoSA; and

3) we describe use cases for RoSA-based modeling, whose

utility has been proven by our case studies.

The rest of the paper is organized as follows. Section II

highlights the motivation and research challenges of this

study. Section III then summarizes the state of the art in the

1Open-source implementation is available at https://

phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.

git.

field of CSA with interest in modeling and implementation

frameworks. Section IV introduces terminology as well as the

architecture and implementation of RoSA. Possible use cases

of the framework are discussed in SectionV. Self-aware func-

tionalities that are currently available in RoSA are described

in Section VI, whereas Section VII presents case studies,

which use those functionalities and general RoSA facilities.

Section VIII discusses which lessons have been learned while

developing this framework, and finally, Section IX concludes

the paper. We include a list of abbreviations at the end of the

paper for the reader’s reference.

II. MOTIVATION AND RESEARCH CHALLENGES

CSA is a hot topic, and some approaches that make CPSs

intelligent exist [32], [33]. Still, the field is widely unex-

plored, and many aspects of self-awareness are yet to be

researched.

While studying open questions of self-awareness (case

studies in Section VII), we made an effort to implement

experiments in a sustainable modular fashion. It was possible

to separate a runtime system from application code and iden-

tify reusable components by systematizing our experimen-

tal codebases. A retrospective realization showed that much

work could have been saved if it were for a framework that

provided the application-agnostic parts of our custom code.

We also realized that lacking a reusable framework is not a

specific issue for us but must be a general one. Despite being a

hot topic, techniques and methods around self-awareness are

developed at a moderate pace and lack convergence. A major

obstacle that is to be overcome is the high cost (mostly devel-

opment time) of implementing self-aware systems. Lacking a

common frameworkmakes each system to be developed from

scratch. This results in a considerable amount of work being

done redundantly, inefficiently, and uneconomically. Using a

common framework would enable cooperation and synergy

among researchers and practitioners from a diverse spectrum

of expertise.

So we set off to make a framework based on our experience

and considering the following goals:

• use a compositional application model,

• provide reusable features and facilitate customization,

• support both simulation and deployment of applications,

• have a low-footprint realization to enable the framework

in resource-constrained Embedded Systems (ESs),

• make a future-proof and sustainable framework (e.g.,

standard and stable technology, platform independence,

low overhead, open architecture).

Selecting a proper architecture and implementation fitting

our goals was a fundamental question. We concluded with a

hierarchical agent-based architecture, whose details are dis-

cussed in Section IV-B. As none of the available agent-based

frameworks can fully cover our goals (detailed evaluation in

Section III-F), we implemented RoSA as a new framework.

Identifying and implementing self-aware functionalities

so that they can be reused in different applications is a

141374 VOLUME 8, 2020

https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git
https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git
https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

storehouse of challenges. We spent the most time with func-

tionalities abstraction, data reliability, and confidence, whose

reusable implementations are featured in RoSA.

III. BACKGROUND AND RELATED WORK

Our work is motivated by the ever-growing importance and

relevance of self-awareness in CPSs and SoCs. In Section III-

A, we give a short inside of Autonomic Computing (AC),

while we throw a bridge to Self-Awareness in Section III-B.

Since we propose a modeling framework for self-aware sys-

tems to facilitate collaboration in the field and go beyond

the state of the art, we discuss existing self-aware architec-

tures in Section III-C and review frameworks implement-

ing self-aware systems in Section III-D. For the technical

background of our proposed implementation, decentralized

architectures are reviewed in Section III-E and available

implementations of our choice of architecture, agent-based

frameworks, in Section III-F.

A. AUTONOMIC COMPUTING

Smart systems require high degrees of automation and auton-

omy [34]. The word autonomy originates from ancient

Greece and means to be self-governing, in other words,

to have own laws [35]. In the context of computer sys-

tems, the concept of autonomy came up in the 1990s and

was inspired by biological systems [36]. Both academia and

industry started some initiatives at that time [35].

As often, very early attempts were made in the mil-

itary field. Defense Advanced Research Projects Agency

(DARPA) had a project in which they developed a commu-

nication and location device for soldiers [37], [38]. Soldiers

could give information about the situation of themselves

and their environment. Together with locating and sensing

abilities of the device, relevant details on the battlefield were

spread between the soldiers.

Besides, in the 1990s, the National Aeronautics and Space

Administration (NASA) started projects such as Mars Path

Finder and Deep Space 1. The goal of these projects was

that space crafts should become more autonomous to operate,

navigate, and manage deep-space probes with less interven-

tion of humans [39]. The fact of becoming more autonomous

was important because remote control of these space crafts is

associated with a clearly noticeable delay and therefore was

highly impractical.

The complexity and dynamic changing environments call

for autonomic systems [35]. In 2001, the International Busi-

ness Machines Corporation (IBM) declared that the com-

plexity of Information Technology (IT) systems would be

one of the biggest challenges for the progress of the indus-

try in the coming decades [40]. To make computer systems

autonomous and having less need for human interventions,

IBM started the AC initiative and introduced five levels

of maturity: basic, managed, predictive, adaptive, and auto-

nomic [41]–[44]. The lowest level (basic) describes a system

that is managed by highly skilled staff which monitor these

systems and manually modify them based on the gathered

information [37]. In contrast, the highest level describes

fully autonomic systems (or applications) that totally manage

themselves in order to fulfill high-level goals which could

be given by humans [36]. In other words, an AC system

manages itself according to high-level objectives given by

humans [45].

Furthermore, IBM introduced in [42] the four self-* prop-

erties of AC (often referred to as ‘‘self-chop’’ [10], [37]):

• self-configuration (autonomous configuration, such as

adjusting parameters or changing software, in order to

fulfill high-level goals),

• self-healing (autonomous detection and diagnostic

for discovering problems and trying to fix them

autonomously),

• self-optimization (autonomous resource usage opti-

mization), and

• self-protection (autonomous protection against mali-

cious attacks and unintentional misapplication by the

system’s user).

These self-* properties (in details described in [44], [46])

are the most cited ones in the AC domain, but the number

of them has continuously grown; for the most prominent

examples, we refer to [35], [36].

B. SELF-AWARENESS

Self-awareness, which is one of the self-* properties, was pro-

posed originally in the IBM initiative on autonomic comput-

ing [44], [47]. Computational reflection and self-awareness

are very close to each other. Computational Reflection is the

ability of a system to reason about its capabilities, limitations

and resources [45]. A self-aware system observes itself as

well as its environment and changes its behaviour accord-

ing to the observations it has made. Thus, self-awareness

could also be called computational reflection [48], [49].

A self-aware computer system needs sensors to sense the

internal as well as the external environment and actuators

to self-adapt to the changing environment [36]. In an effort

to improve flexibility and adaptivity of systems, the self-*

properties are organized into a hierarchy with self-awareness

and context-awareness at the base (Figure 1). In other

words, a system has to be self-aware to be self-adaptive

(or autonomous). A correlation between the usage of self-*

properties and the quality of complex software systems has

been shown in [50].

FIGURE 1. Pyramid of self-* properties.

VOLUME 8, 2020 141375



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

Self-awareness has recently moved up in prominence. Ini-

tially, it was at the bottom of the self-* pyramid (Figure 1)

as a supporting feature for more advanced adaptive behavior.

Recently, self-awareness is used quite often to encompass

all relevant self-* properties, including self-adaptiveness. The

pyramid has been turned upside down because of the realiza-

tion: self-awareness is not just a collection of state variables.

It must include the goals of the system and properly reflect

the effects of actions on itself and the environment. However,

in contrast to other self-* solutions or AC, a fully self-aware

system operates not only reactively but proactively. This

means that such a system needs to be able to learn, make

conclusions, and act accordingly [51].

For example, in the recent past, self-awareness showed

to be a key enabler to tackle many challenges SoCs face

such as growing process variability, thermal limitations,

and wear-out effects [17], [18], [21]–[24]. CSA has been

applied to both software [44] and hardware [52]. Fol-

lowing applications have benefited from CSA concepts

(some of them under other terms such as adaptivity,

autonomy, and goal-oriented systems): mobile applica-

tions [53], object tracking with smart cameras [24], [54],

artificial intelligence [55], cloud computing [56], net-

works [57], operating systems [58], web [59], adaptive

and dynamic compilation environment [60], Multi-Processor

System-on-Chip (MPSoC) resource management [61], [62],

(cyber-physical) SoC [52], mobile robots [63], industrial sys-

tems [64], [65], health monitoring [22] as well as single and

multi-user active music environments [66].

The different aspects of self-awareness — like self-

monitoring, situation-awareness, and attention— have been

shown to be essential for efficient embedded CPSs [15], [52],

[67]–[71]. Self-monitoring is the activity of sampling system

properties (e.g., chip temperature [71]) as well as transform-

ing and filtering sampled data in a system-specific way (see

the self-aware functionality abstraction in Section VI-A).

Situation-awareness assesses the observations and gives sig-

nificance to data. On the other side, attention balances the

competing tasks of data collection, processing, and responses

under tight resource constraints by dynamically prioritizing

goals and tasks. The overall system performance is moni-

tored in a dynamically changing environment by means of

self-awareness.

It has already been shown that self-awareness can help

solve many problems of CPSs and SoCs. Furthermore, dif-

ferent aspects of self-awareness are used to make CPSs

smarter [32], [33], [72]. However, the development of

self-aware systems and related methods is still a diffi-

cult and tedious process. Moreover, efforts are fragmented

among different communities because of the lack of a com-

mon framework to explore self-awareness and its properties.

We propose a framework, RoSA, to overcome that obstacle.

RoSA is based on principles and methods that have been pub-

lished in literature but have not been combined before. The

next few paragraphs overview various works that are related

to RoSA.

C. REFERENCE ARCHITECTURES FOR SELF-AWARENESS

There exist several reference architectures which concern

systems related to CSA [51]. One of them is the MAPE-K

loop (an autonomic control loop coming from the AC

field [42], [44])), which stands for Monitor, Analyze, Plan,

Execute, and Knowledge. Information is collected from sen-

sors in the monitor phase, and the gathered information is

analyzed in the analyze phase. Subsequently, the plan- and

execute phases are about planning and executing actions

in order to fulfill goals or solve problems [51]. All these

four phases share one common aspect: knowledge about

the context, the execution environment and the hardware

infrastructure. The MAPE-K loop is very similar to the

Observe-Decide-Act (ODA) loop we have implemented

(Section IV-B3).

The Learn, Reason, Act architecture is a model-based

learning and reasoning loop (LRA-M loop) [73]. The archi-

tecture describes a self-aware computing system that is driven

by its goals and its observations collected as empirical data.

The collected data are used in an ongoing learning process

that abstracts observations into models. The learned models

provide a basis for the reasoning process, which might trigger

actions affecting the system itself and possibly its environ-

ment. The LRA-M loop is a model-based formulation of the

ODA loop.

FIGURE 2. The reference architecture for self-managed systems from [74].

Another related architecture is the Reference Architecture

for Self-managed Systems from Kramer and Magee [74].

Figure 2 shows this architecture which consists of three dif-

ferent layers with different tasks. The Goal management (the

top layer of the architecture) is there for the planning. This

is where plans are initiated to meet the requirements of the

applications and to achieve their goals. Such plans may be

required by new goals from the user or by requirements of

the layer below. The Goal management layer usually has

some awareness models to be able to reflect on the layer

below and address it properly [51]. This underlying layer

contains Change management. This is where the various

plans are stored, which shall be processed. The best plan

for the respective current situation is selected in order to

adapt the layer below. The Change management layer is also

reflective and has typically an awareness model of the layer

below; the lowest layer [51]. This layer, the layer on the

bottom of the architecture, is calledComponent control. Here,

the actual functionalities of the application are implemented

141376 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

and accordingly adjusted by the instructions (based on vari-

ous plans) from the layer above (Change management layer).

The Component control layer is pre-reflective, and it sends

up status reports to the layer above. If the Component con-

trol layer reports an inability to meet the given application

goals, the Change management layer adapts it in a way

it can achieve them in the current (environmental) situa-

tion [51]. Besides the usage of various awareness models,

the hierarchical structure of this approach matches the RoSA

architecture IV-B2.

The Reference Architecture for Models@run.time Sys-

tems is proposed in [75], and its main characteristic is that

there is an explicit distinction between two systems often

called managing system and managed system, where the

first one manages the second one [51]. The managed sys-

tem can be divided again into the (actual) managed sys-

tem and its environment. The managing system often has

three layers accordingly to the above-mentioned Reference

Architecture for Self-managed Systems, where the lowest

layer has an interface to the managed system. While the top

layer is very similar to the previous architecture, the bot-

tom two layers are formulated much more precisely. The

bottom layer contains configuration models (reflecting the

current state of the managed system), plan models (control-

ling the managed system), capability models (covering the

managed system’s capabilities) and context models (focus-

ing on the managed system’s environment). The middle

layer consists of a learner synchronizing all models of the

lowest level with the managed system, a reasoner mak-

ing decisions based on the models of the lowest level, and

an analyzer abstracts the information provided by mod-

els of the base layer in order to enable a hierarchical

decomposition.

The ‘‘reference architecture for self-awareness’’ from

Lewis et al. [24] describes a psychology-inspired concep-

tual framework of self-awareness. The architecture defines

a number of different units that can be used to describe a

system with self-aware and self-expressive capabilities. The

components are sensor and actuator units, self-expression

unit, self-awareness unit, and meta-self-awareness unit.

The meta-self-awareness unit assesses the desirability of

maintaining a level of awareness. The self-awareness

unit consists of several subsystems for certain types of

awareness:

• stimulus awareness is the knowledge about stimuli

that act on the system and the ability to respond to

them;

• interaction awareness is the knowledge about the inter-

action between the system and its environment;

• time awareness is the knowledge about past states and

future phenomena;

• goal awareness is the knowledge about objectives, pref-

erences, and constraints as well as the ability to reason

about them or manipulate them;

• meta-self-awareness is the knowledge about possible

levels of awareness and the way they are executed.

The recommended use of the reference architecture is

described in a handbook [22]. A case study about implement-

ing a service selection application in the reference architec-

ture is available in [24].

Besides these reference architectures, a suitable modeling

method, which is similar to our work, is proposed in [76].

However, that model uses a vague definition of agents as

design abstraction, while RoSA provides facilities for the

definition of agents based on self-aware functionalities.

D. FRAMEWORKS FOR SELF-AWARENESS

There are frameworks that focus on particular self-* prop-

erties. SAPERE [77] and ACOSO [78] are middlewares

that support self-organization of autonomic nodes in dis-

tributed environments. Though they build on an agent-based

model like RoSA, they are focused on self-organization

(a self-awareness property that is not covered in RoSA yet)

and so provide complementary features to the current set of

self-aware functionalities of RoSA. The following examples

provide complementary features as well. BIONETS [79] is

based on similar concepts and supports self-adaptation of

autonomic nodes in distributed environments. The Collec-

tive Adaptive Systems approach of the ALLOW Ensembles

project [80] supports collaborative self-adaptation of agents

within groups called ensembles. SEEC [61] is a framework

for self-aware resource allocation based on the concept of

application heartbeats, which allows monitoring and adjust-

ing program performance. We did not base our work on any

of these frameworks because (i) SAPERE and ACOSO are

implemented on top of JADE, which does not fit most ESs

(Section III-F); (ii) the BIONETS concepts are implemented

only in simulation models, which limits its deployability

in real systems; (iii) the ALLOW Ensembles approach is

demonstrated by a case study in DeMOCAS [81], which

is a simulation framework implemented in Java and hence

has limited deployability; and (iv) the implementation of

SEEC does not match the agent-based architecture, which we

selected for flexibility and scalability (Section III-F).

Although these works offer more or less specific design

proposals for various self-aware systems, they do not consti-

tute a complete modeling framework.

E. DECENTRALIZED ARCHITECTURES

Decentralized architectures have already been proposed in the

early days of Artificial Intelligence (AI) [51]. A decentralized

system in this context consists of several agents (independent

modules) whichmay interact with each other andwork in par-

allel on their different tasks. According to [82], designing and

building rational agents is fundamental for AI. Russell et al.

further state that agents are rational entities that take the best

possible action according to the information and capabilities

they have at their disposal [82].

In [83], Wooldridge et al. define agents as software pieces

that are autonomous (can autonomously operate without

human intervention), social (can communicate with other

agents or humans), reactive (can respond to changes in

VOLUME 8, 2020 141377



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

TABLE 1. Multi-Agent modeling Systems.

the environment), and pro-active (can take the initiative

instead of just reacting). AMulti-agent System (MAS), in fur-

ther consequence, is a system consisting of multiple agents

that work together to fulfill one or more common goals [45].

An agent-based architecture (e.g., a MAS) implements the

actor model [84], which is a programming paradigm known

for scalable parallel and distributed computing. To better

handle complex applications, it is usually advantageous to

divide them into different tasks. Often these can be divided

into different levels to cover the big picture as well as small

details in particular. Accordingly, it can be helpful to have the

possibility of a hierarchical structure. This is similar to the

nature-inspired hierarchical system of the AC initiative from

IBM [85]. Applying a hierarchical agent-based approach to

self-aware systems has been studied in the literature [86].

An agent-based framework that facilitates self-awareness,

however, has been an open issue.

F. AGENT-BASED FRAMEWORKS

Some existing self-aware frameworks are built on agents (see

Section III-D). There are general agent-based frameworks,

which are ignorant of the internal workings of agents. These

are summarized in Table 1 and discussed in this section.

The two main use cases of the agent-based frameworks

are multi-agent simulation and deployable actor system.

Java-based frameworks have a high resource require-

ment beyond the typical capacity of ESs. The large-scale

multi-agent simulation systems are not suitable for ESs for

similar reasons, and they have limited capabilities for inter-

facing real hardware. Deployable actor systems with native

implementation (Mobile-C and CAF) can support execution

on ES hardware and are detailed as follows. Mobile-C is

a small-footprint distributed actor system. However, it has

a proprietary dependency and a custom native API, which

limits its applicability.

CAF is an open-source distributed actor system with stan-

dard C++ implementation and with the aim of working

on a wide spectrum of hardware platforms. Its extensive

non-configurable feature set, however, makes it less suitable

for ESs. A stripped-down version for resource-constrained

systems remains a promise to date.

IV. THE RoSA FRAMEWORK

RoSA combines the agent-based actor model with self-aware

properties in an ES-compatible fashion and is fully open-

source. In this section, we discuss the general facilities of

the RoSA framework, which are the agent-based architecture

and details of its implementation. Actual functionalities are

presented in SectionVI, and the implementation of self-aware

applications is showcased in Section VII by case studies.

A. TERMINOLOGY

Here, we define the following terms with the meaning we use

in the context of RoSA and the rest of this paper.

1) Agents are design abstractions that help decompose a

system into independent components. A classic defini-

tion of agents comes from the field of artificial intelli-

gence [82]: ‘‘an agent is anything that can be viewed as

perceiving its environment through sensors and acting

upon that environment through actuators.’’ RoSA agents

141378 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

comply with that definition. Section IV-B describes their

inner workings and interactions.

2) Data manipulation is the processing activity that is

done by any agent: observing its environment via input,

maintaining its internal state, and optionally generating

output to affect its environment. Individual RoSA agents

may realize different ways of data manipulation, which

is described in terms of functionalities.

3) Functionalities encapsulate self-awareness concepts in

reusable components. They are the basic tools that can

be put together to realize desired ways of data manipula-

tion in agents. An agent is designed by a careful selection

of functionalities for the required datamanipulation. The

self-aware functionalities that we have already imple-

mented are elaborated in Section VI.

B. RoSA ARCHITECTURE

The architecture of the RoSA framework is outlined in this

subsection, accompanied with a discussion on some design

decisions.

1) SCOPE

The RoSA architecture supports modeling self-aware appli-

cations, whose relevance is motivated in Section I and

Section II. The framework is intended to be a tool for mod-

eling and evaluating novel ideas in self-aware applications.

The applicationmodel (i.e., a hierarchical agent-based system

with functionalities within agents) is flexible enough to incor-

porate variations in different aspects of design and implemen-

tation. Those aspects are mostly related to the functionalities:

(i) what functionalities are there, (ii) how they are imple-

mented and interconnected, and (iii) how applications are

decomposed. The architecture provides a structured andmod-

ular way for defining self-aware applications: applications are

decomposed into agents, which are defined by functionalities.

Agents and functionalities are reusable components in RoSA.

2) HIERARCHICAL AGENT-BASED MODEL

An agent communicates with its environment (i.e., other

agents of the application) by message passing via input and

output channels. Semantics can be informally given as: the

agent receives messages on its input channels; manipulates

data (i.e., the received messages and its internal state), and

may send messages on its output channels.

Agents are organized into a hierarchical structure

(e.g., Figure 3). Agents on different levels of the hierarchy

process data on different levels of abstraction: the system

obtains fine- and coarse-grained knowledge according to

hierarchy levels. Such a detailed representation of knowledge

helps self-adaptive systems to operate more efficiently and

meet their goals [32].

Connected agents are in a master-slave relation. An agent

(e.g., Agent 2 in Figure 3) receives messages from its

slaves (Agents 5 and 6) and sends messages to its master

(Agent 1). That is, an agent acts as slave towards its only

master and as master towards its potentially multiple slaves.

FIGURE 3. A hierarchical agent-based model.

A slave sends messages to its master regularly according to

its configuration. A master may control the configuration of

its slaves by sending control messages to them whenever

appropriate.

A real-world application interacts with its environment

via sensors and actuators, which are modeled as agents in

RoSA. An agent that wraps a sensor is a data source (i.e., has

no slaves) and sends sensor input to its master. Dually,

an agent that wraps an actuator is a data sink (i.e., has no

master). An actuator is activated (‘‘controlled’’) by slave-

to-master data messages — rather than master-to-slave con-

trol messages.

3) OBSERVE-DECIDE-ACT LOOPS

AC systems consist of autonomic elements implementing

a control loop [36]. Thus, self-aware applications in RoSA

operate in an iterative manner implementing ODA loops [52].

ODA is our architecture of choice, however, other architec-

tures could be chosen and implemented as well. AnODA loop

(Figure 4) represents the way reactive systems operate: the

systemmonitors the behavior of itself and/or its environment,

decides about certain actions, and acts accordingly.

FIGURE 4. An agent implements an Observe-Decide-Act loop.

As shown in Figure 5, each RoSA agent operates in an

ODA loop: receives input messages, does data manipula-

tion, and optionally sends output messages. The composition

of individual ODA loops results in a behavior that can be

described as a compound ODA loop on the application level.

VOLUME 8, 2020 141379



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 5. An agent system based on individual Observe-Decide-Act
loops.

The RoSA architecture provides a way to implement

ODA-loop-based applications that are decomposed into inter-

acting ODA loops of lower complexity.

FIGURE 6. The behavior of an agent is defined by self-aware
functionalities.

4) FUNCTIONALITIES

An agent is defined by functionalities (Figure 6). What func-

tionalities an agent utilizes depends on its role in the applica-

tion. RoSA provides a library of pre-defined functionalities

(Section VI) and allows developers to implement new ones

either based on existing ones or from scratch.

As shown earlier, RoSA agents conceptually operate in

ODA loops. The functionalities that constitute an agent con-

tribute to different characteristics of observation and decision

making in the loop. For example, abstraction (Section VI-A)

improves the outcome of observation, and data reliability

(Section VI-B) helps decision making by providing meta-

information. Our approach is inspired by the hierarchical

agent-based model of Guang et al. [76]. While their model

uses a vague definition of agents as design abstraction,

RoSA agents are described as ODA loops that are based on

functionalities.

C. SOFTWARE IMPLEMENTATION

We have implemented the RoSA architecture as a software

framework. RoSA has a fully open implementation in stan-

dard C++ and can readily interface existing native soft-

ware components. The main characteristics of the software

implementation are (i) providing a high-level but safe mod-

eling interface for application developers, (ii) allowing the

same application code to be used for simulation and deploy-

ment, and (iii) realizing small-footprint software that can be

deployed in resource-constrained ESs.We have done our case

studies (Section VII) in simulation on a desktop computer.

That is, input and output of sensor and actuator agents are

fed to the system via stored files, and RoSA allows for

other input-output interfaces as well. Runtime support for

deploying on embedded devices requires further development

to complete.

V. USE CASES OF THE FRAMEWORK

The section discusses how RoSA, the framework as a whole

and its features separately, can be used in different scenarios.

A. MODELING A NEW APPLICATION IN RoSA

Modeling an application using the RoSA Architecture fol-

lows a general flow shown in Figure 7. That is,

Specify requirements: The most abstract description of an

application defines input and output (sensors and actua-

tors, respectively) and the data manipulation to be done.

It can be seen as an extreme agent systemwith all sensors

and actuators connected to the only agent that represents

the entire application.

Model agent system: The monolithic application-agent is

decomposed into a set of agents organized in a hierarchy.

Agents enclose specific kinds of data manipulation and

serve as a unit of reusability — within and between

applications. Identifying agent patterns can help effi-

cient decomposition.

Model agents: Each agent is modeled, i.e., prescribed data

manipulation is realized by available functionalities and

custom code (Figure 8). Functionalities provide a level

of reusability below agents. RoSA provides a set of

functionalities, which is expected to grow over time.

Validate agents in simulation: Unit testing of agents is

done by validating their input-output behavior in sim-

ulation mode: a single-agent system is evaluated with

predefined input and expected output.

Validate application in simulation: Agents are put together

according to the system model. Integration testing of

the application is done by validating the input-output

behavior of the system in simulation mode.

Deploy application: The application is deployed in an

embedded device.

Though the RoSA methodology is presented as a sequen-

tial flow, the model of an application (i.e., the system model

with corresponding agent models) may be refined in an

iterative manner.

141380 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 7. Scenarios of using the RoSA framework.

FIGURE 8. An agent is modeled based on available functionalities and
custom code; reusable pieces of custom code are gradually promoted to
functionalities in a generalized form.

B. MIGRATING AN APPLICATION TO RoSA

RoSA can also be used to add self-awareness to existing

applications. An entire legacy application can be migrated to

RoSA in a few steps shown in Figure 7(b). That is,

Wrap legacy components into agents: Each component,

whose input-output behavior fits message-passing

semantics, is wrapped into a RoSA agent. Legacy com-

ponents may be grouped, if necessary. Existing legacy

code implements data manipulation within agents.

Build application from agents: Agents are put together

in an agent system according to the connections

between corresponding components in the legacy

system.

Refine model: The system and agent models may be refined

iteratively, as in the general case.

Deploy application: The agent system is deployed as a

RoSA application.

This approach turns a legacy system into a RoSA appli-

cation and enables utilizing all RoSA features for further

development.

C. ADDING RoSA AS A SELF-AWARE COMPONENT

It is also possible to add a RoSA agent system to an existing

application as a self-aware component (Figure 7(c)). This

scenario might be applied as a gradual migration path.

Identify self-aware component: The requirements are

specified either as a new component of the application

or based on an existing component to be replaced.

Realize component in RoSA: The component is realized

as a RoSA agent system following the general RoSA

methodology (Figure 7).

Integrate component into the application: The compo-

nent is integrated into the existing application via input

and output streams that are associated with its sensor and

actuator agents, respectively.

Deploy application: The application is deployed with the

RoSA system as one of its components.

This approach limits the development effort to one compo-

nent of the application — in contrast to migrating the whole

application. However, additional development and runtime

complexity is posed by the need to integrate RoSA as a

component of the existing application. Whether to take the

full migration or the component approach depends on the

size of the application and how much the application needs

self-awareness and can benefit from RoSA.

D. USING SELF-AWARE FUNCTIONALITIES FROM RoSA

RoSA supports reusability on two levels: agents in the system

model and functionalities in the agent model. The realizations

VOLUME 8, 2020 141381



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

of these two levels are independent, and functionalities

may be used without using agents. Should working with

a RoSA agent system be uneconomic, functionalities that

are defined in RoSA (Section VI) may be used in custom

codes directly — without involving other parts of the RoSA

framework.

E. IMPLEMENTING A GENERAL AGENT-BASED

APPLICATION WITH RoSA

While the main aim of RoSA is to facilitate developing

applications and concepts related to self-awareness, the appli-

cability of the framework is not limited to that. The agent

system that constitutes the base of the architecture can be

used for any other application that may benefit from such an

architecture (e.g., component-based systems). One can ignore

self-aware functionalities and implement an agent-based

application with all data processing in agents defined by

custom application-specific code only.

VI. SELF-AWARE FUNCTIONALITIES

Each RoSA agent receives messages from its input channels

and may send messages on its output channels. The data

processing that the agent does to maintain its state based

on input messages and generate output messages can be

defined with full flexibility (i.e., custom application code).

Nevertheless, RoSA provides predefined functionalities to

be used as components when defining agents, with min-

imal glue code that connects them. It is also possible to

mix functionalities and custom code freely within agents.

The modularity enables application developers to define

self-aware agents fast and efficiently by reusing existing

functionalities and also customize data processing whenever

needed.

The functionalities are based on self-aware proper-

ties [94], [95]. RoSA provides reference implementations of

the functionalities that have been used in our case studies

(Section VII): abstraction, data reliability, confidence, and

history. We expect the set of self-aware properties and cor-

responding functionalities to grow as well as their implemen-

tation to improve — contributions from the community are

welcome.

A. ABSTRACTION

Abstraction is ‘‘an appropriate selection of the representation

of the information in order to obtain compact knowledge

relevant to a particular purpose’’ [94]. It is a transformation

of data from one domain to another. Raw input data may

be abstracted into a semantic domain that the self-aware

system understands [52], and the abstraction may be done

at any level of a hierarchical system. It could also be done

top-down instead of bottom-up [94]. An abstraction needs to

be meaningful and efficient in the system’s context and to

have a well-defined structure.

1) ABSTRACTION FUNCTIONALITIES AVAILABLE IN ROSA

The broad definition of abstraction allows for a wide vari-

ety of approaches. RoSA currently provides the following

abstraction functionalities:

1) Lookup table maps an input datum to a symbol

(e.g., number, character, string).

2) Overlapping lookup table maps an input datum to

potentially multiple symbols; in case the boundaries

between symbols cannot be clearly defined (e.g., insuf-

ficient knowledge about the environment). Selecting

one symbol in a later processing step may be a

confidence-based decision (Section VI-C). In contrast,

a standard lookup table maps an input value directly to

one symbol.

3) Threshold-based signal state detector abstracts steady

states from a signal waveform, that is a sequence of input

values. In other words, it recognizes stable phases in

a signal. These steady states of a signal are identified

concerning a threshold of distance among the signal’s

sample values. A signal state is stored as an average

value of all input samples belonging to it. A simple

learning algorithm is utilized internally for state detec-

tion. Detailed discussion is available in [29], [30].

4) Confidence-based signal state detector also abstracts

steady states from a signal waveform, that is a

sequence of input values. These steady states of

an input signal are identified concerning the rela-

tive distance among the signal’s sample values. That

is, in contrast to the Threshold-based signal state

detector, the Confidence-based signal state detector

makes all decisions based on a confidence assessment

(Section VI-C). This assessment is not only based on a

simple average, but on the most recent signal samples

stored in a sliding window history. A detailed discussion

of the learning algorithm behind this functionality is

available in [31].

5) System state detector abstracts a system state from sig-

nals of an observed system. The current implementation

works with stateless systems only (i.e., identifying states

of a system whose output can be expressed as a function

of its input).

B. DATA RELIABILITY

Data reliability is ‘‘the extent to which a measuring proce-

dure yields the same results on repeated trials’’ [94]. The

trustworthiness of data is determined by accuracy, precision,

and truthfulness. The accuracy and precision are given by

systematic and random error of measurement, respectively.

Data can be accurate and precise but still not truthful [28],

for instance, if a sensor is working outside of its operating

conditions (e.g., a temperature sensor detached from the test

object).

Data reliability is a piece of meta-data about the trustwor-

thiness of the input data stream. Further actions may be taken

141382 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

according to the reliability of data. The following measures

may be used to assess trustworthiness:

1) Plausibility tells whether data is within its expected

domain (i.e., range). If a variable exceeds the realistic

limits of its represented quantity (e.g., human body tem-

perature over 100◦C), data might be unreliable.

2) Consistency tells whether data varies according to its

expected variability (i.e., maximum difference between

samples). If a variable changes too fast (e.g., position of

a robotic arm), data might be not reliable. Checking con-

sistency requires historical information (Section VI-D)

about the input signal.

3) Cross-validity tells whether one piece of data correlates

with other pieces as expected. If two dependent variables

(e.g., two interdependent vital signs) do not follow each

other, data might be not reliable.

1) DATA RELIABILITY FUNCTIONALITIES AVAILABLE IN ROSA

RoSA provides functionalities for assessing each of these

three measures of trustworthiness either in a binary or in a

fuzzy way (a total of 6 variants). Binary assessment makes

a binary decision about reliability according to a threshold.

Fuzzy assessment determines the level of data reliability in

the [0, 1] range and can be configured with a custom function.

The individual assessments may be combined (e.g., con-

sidering both plausibility and consistency of a variable at the

same time). RoSAprovides a set of predefinedmethods (aver-

age and multiplication of fuzzy assessments; conjunction and

disjunction for both binary and fuzzy assessments) for the

combination, which may be done as custom application code

as well.

C. CONFIDENCE

Confidence is ‘‘the extent to which a procedure may yield the

same results on repeated trials’’ and has significant similari-

ties to data reliability [94]. Confidence is a piece of meta-data

about the trustworthiness of the data processing performed by

a (sub-)system or function. It tells howwell a calculated result

corresponds to the expected output. Assessing confidence

assumes error-free input — which may be assessed by data

reliability (Section VI-B).

1) CONFIDENCE FUNCTIONALITIES AVAILABLE IN ROSA

RoSA defines an interface for assessing confidence, but the

actual assessment logic needs to be provided as a custom

function. The lack of predefined assessment functions is

because no general confidence measures have been identified

yet. The assessment of confidence varies much on a case-

by-case basis in our experience.

Besides this interface, RoSA offers a confidence-based

abstraction method, which is an overlapping lookup table

(Section VI-A). This method is based on fuzzy membership

functions [96], and Figure 9 shows an example of it. The

input data is mapped to three symbols (A, B, and C) so

that two symbols are associated for the overlapping ranges

FIGURE 9. A confidence-based abstraction method to abstract data into
one or more symbols with a corresponding confidence.

(i.e., (A,B) and (B,C) for [p1, p2] and [p3, p4], respectively).

The abstracted symbols are assigned with a confidence value

according to their corresponding fuzzymembership functions

(i.e., full confidence outside of the overlapping ranges and

lower confidences inside them). The membership functions

can be adjusted dynamically via control feedback in the

agent hierarchy whenever a higher level agent recognizes a

systematic error.

Cross-validity confidence tells whether one piece of data

correlates with other pieces. It is similar to cross-validity

reliability in that respect. However, it calculates historical

correlation information based on active monitoring, unlike

the a priori expectations of cross-validity reliability. This

assessment can be used to tune confidence-based abstraction

in lower levels of the hierarchy.

Individual confidence assessments may be combined, sim-

ilar to combining individual reliability assessments. RoSA

provides predefined combination methods and the possibil-

ity of handling combination by custom application code.

The reliability of the output of an agent can be assessed

by combining the reliability assessment of its input and the

confidence assessment of its data processing.

D. HISTORY

History is ‘‘recording and studying a series of past events con-

nected to an entity’’ and enables extracting knowledge from

the recorded time series [94]. Identifying trends in the past,

understanding time-dependent aspects of the current state,

and predicting future conditions [28] may all be supported

by utilizing history.

1) HISTORY FUNCTIONALITIES AVAILABLE IN ROSA

RoSA includes limited support for history (only the features

that we needed to implement other functionalities). A short

description is still included because the history functionality

can be used in the application code directly.

History functionality enables storing a sequence of data

values. Its capacity can be configured for a balanced memory

usage. History supports two strategies for redeemingmemory

once its capacity is reached: (i) stop strategy, when a full

history does not accept further data values, and (ii) FIFO

strategy, when history behaves like a sliding window. History

functionality allows access to the individual stored values and

also provides statistical properties (e.g., average) about the

stored sequence.

VOLUME 8, 2020 141383



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

VII. CASE STUDIES

Applications with different levels of self-awareness have

been implemented in RoSA. We present two case studies in

this section, which demonstrates how RoSA can be used for

quick application development.

A. SELF-AWARE EARLY WARNING SCORE SYSTEM

The first case study is presented in detail for a smooth intro-

duction of implementation details. The application — whose

different variants are developed over the case study — is a

health status assessment system.

1) BACKGROUND AND PROBLEM STATEMENT

Here, both, the calculation of the EarlyWarning Score (EWS)

and the traditional EWS system are briefly described, before

the next subsections deal with its extensions with various

self-awareness properties.

A patient’s health status can be assessed based on their

vital signs. Research on cardiac arrests shows that certain

symptoms can be observed long before the situation turns into

a case of emergency; symptoms may appear even 24 hours

before actual health deterioration [97]. EWS is a standard

manual tool for assessing patients’ health status and pre-

dicting health deterioration. Healthcare professionals peri-

odically monitor patients’ vital signs (heart rate, respiratory

rate, body temperature, blood pressure, and blood’s oxygen

saturation) and assess their health status by a criticality level

defined as EWS [98]. For this reason, each vital value is

assessed in the form of a score. A score of 0 indicates an ideal

health condition of a vital sign, while score 3 corresponds

to the worst. The EWS is the aggregate value of all the

individual vital sign scores. The higher the score, the higher

the criticality.

This manual procedure has been applied to hospitalized

patients. A portable device that automates the procedure

would allow high-risk patients to pursue their daily lives with

a much higher chance of survival. Robustness and fault toler-

ance is of major importance for such a device. Autonomous

monitoring of patients in a non-hospital environment needs

to deal with faulty measurements: sensors can be attached

incorrectly, become detached, or break down. Incorrect mea-

surements result in incorrect EWS, which might lead to false

positive or — even worse — false negative assessments.

We developed several self-aware variants of the EWS

application, which are able to deal with different kinds of

faults [26]–[28]. Those variants and their results are dis-

cussed in detail in the referred papers. Here we motivate their

high-level design and present their implementation in RoSA.

2) THE CONVENTIONAL EWS SYSTEM

For starters, we implement an application that calculates the

EWS in the conventional way (Figure 10). Five agents consti-

tute the low level of the hierarchy, each connected to a sensor

(modeled as a special agent) and assessing the corresponding

vital sign. One agent in the higher level is connected to the

FIGURE 10. The conventional EWS system.

low-level agents to make the aggregate assessment, whose

result is recorded by a monitoring agent. The actual imple-

mentation is outlined in Listing 1. Even though RoSA and the

applications are implemented in C++, the included listings

use a C++-based pseudo-code for brevity. The sometimes

verbose syntax of C++ is hidden, but the complexity of the

application code is presented truly.

The implementation (Listing 1) starts with creating a RoSA

Application (Line 1). Agents can be created and managed in

the context of the Application.

For each vital sign (demonstrated by heart rate), a sensor

(Line 2) and a low-level agent (Lines 4 to 21) are created. The

low-level agent (Figure 10(b)) performs the EWS assessment

by applying a lookup table abstraction (Section VI-A). The

connection between the sensor and the low-level agent is

established in a separate step (Line 23).

The high-level agent ((Figure 10(c)) aggregates vital

sign assessments by summing them into a final EWS

(Lines 26 to 31). Each low-level agent is connected to the

high-level agent (Line 33).

The final EWS is logged to the console by a dedicated

agent (Lines 36 to 40), which is connected to the high-level

EWS agent (Line 42).

3) A SELF-AWARE EWS SYSTEM WITH

RELIABILITY FUNCTIONALITIES

The conventional EWS system does not tolerate faults. Thus

we make the system more robust by utilizing additional

141384 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

LISTING 1. RoSA implementation of a conventional EWS system.

self-aware functionalities within the agents (Figure 11). The

agent hierarchy remains unchanged (Figure 10). Setting up

the RoSA application and agent hierarchy is done similarly

to the conventional EWS system (Listing 1).

The low-level agents (Figure 11(a)) assess the reliability

of the abstracted vital signs by checking plausibility and

consistency in combination (Section VI-B). The agent imple-

mentation is adapted by specifying the output as a pair of

values (i.e., abstracted value and reliability assessment) rather

than a single value and by utilizing reliability functionality in

data processing (Listing 2 Lines 3 to 7).

The high-level agent (Figure 11(b)) assesses cross-validity

reliability ((Section VI-B)) of the vital signs and combines

all reliability assessments for the final EWS. The agent imple-

mentation is adapted similarly to low-level agents (i.e., adjust

input and output types and utilize reliability functionality).

The reliability functionalities may be configured in differ-

ent ways for the agents. Experiments have been performed

both with binary [26] and with fuzzy [27] assessments.

Consider an experiment with the chest strap, which mea-

sures heartbeat, being loosely fastened. The measurement is

FIGURE 11. Agent descriptions for the EWS system with reliability
assessment.

LISTING 2. RoSA implementation of the self-aware heart rate agent.

not stable and provides unreliable readings during some time

(e.g., 350s – 670s in Figure 12), while other sensors provide

reliable data. Though the EWS is calculated according to the

standard rules (i.e., results in false positives), the assessed

reliability drops to 0 during measurement errors. The low

reliability indicates an issue with the system’s input(s).

4) A SELF-AWARE EWS SYSTEM WITH CONFIDENCE

FUNCTIONALITY

While the previous version calculated the EWS without any

modifications, the final version adjusts the EWS in case of a

low reliability [28].

The master agent (Figure 13(b)) additionally assesses

cross-validity confidence of the vital signs (Section VI-C).

The confidence assessment is based on personalized data

and is — combined with the cross-validity reliability —

used as control feedback for the low-level agents to adjust

their score abstraction process. The implementation, using

predefined functionalities, is still only a few lines (Listing 3).

VOLUME 8, 2020 141385



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 12. Results of an experiment in which the heartbeat sensor was
not attached properly and therefore incorrect measurements were made.

LISTING 3. RoSA implementation of the self-aware EWS master agent.

The agent generates its output as (i) a pair of calculated EWS

and assessed reliability (Line 6) and (ii) a list of confidence

feedback for each low-level agent (Line 8).

Low-level agents (Figure 13(a)) perform confidence-based

abstraction (Section VI-C and Figure 14), which takes his-

torical information into account (Section VI-D) about feed-

back from the high-level EWS agent. The calculated EWS is

FIGURE 13. Agent descriptions in the EWS system equipped with
reliability, confidence, and history.

FIGURE 14. A confidence-based abstraction method to abstract a vital
sign in one of four different scores (0 to 1).

adjusted in that way. The actual implementation (Listing 2)

is divided into two functions: (i) one for processing input,

like before, and (ii) one for processing control feedback.

Sensory input is processed like before (Lines 3 to 7)

except for abstraction being configured to operate based

on confidence (Section VI-C). Processing control feedback

(Lines 11 to 14) passes data from the high-level agent to the

local confidence-based abstraction. The feedback is stored

by the abstraction functionality internally with a history

functionality and is utilized when processing future sensory

input.

Consider an experiment when participants are monitored

with both working and faulty sensors (upper and lower

part of Figure 15(a), respectively). The experiment results

(Figure 15(b)) show that our self-aware EWS application

performs much better (even if not perfectly) than the con-

ventional system in the presence of sensory errors. The

self-aware EWS system has almost 80 times less false alarms

than the conventional system in our experiments [28].

141386 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 15. Results of an experiment when participants were monitored
with both working and faulty sets of sensors.

5) SUMMARY

The detailed case study followed the development of our

EWS application through four versions. That process demon-

strates that implementing an agent-based application with

self-aware properties takes only a few steps in RoSA. Defin-

ing the agent system at the beginning was a lightweight task

by using the existing agent interfaces of RoSA. Additionally,

thanks to the modular design and reusable functionalities of

RoSA, moving from one version to the next (i.e., including

more sophisticated self-aware properties) needed only local

modifications of agents and functionality configurations.

We were, of course, experimenting with different imple-

mentation alternatives during development. In the end, how-

ever, we packed the various functional components of data

processing into functionalities, which are reusable mod-

ules. New applications can use those functionalities while

they might also need to implement novel data processing

approaches in custom application code. Those pieces of cus-

tom code, once matured, should be turned into functionalities

for modularity and reusability. That is a way for sustainable

development in the long run, and it is facilitated by RoSA.

B. CONTEXT-AWARE CONDITION MONITORING

This case study presents amonitoring system that assesses the

working state and the health condition of another system or

device; hereafter System under Observation (SuO). We limit

the discussion to the modeling level (i.e., source-level imple-

mentation is ignored); the first case study provides insight

into implementation.

1) BACKGROUND AND PROBLEM STATEMENT

Industry, particularly automated production plants, has an

interest in reliable monitoring systems that are able to raise

an alarm in case of malfunctions of the SuO [99]. Such

a monitoring and warning system enables optimization of

maintenance work and minimizes downtimes.

Implementing tailor-made monitoring systems for each

SuO is an expensive endeavor. A reliable self-adaptive mon-

itoring system can reduce cost and time. We present such

a system, which is able to assess the health status of any

SuO without detailed a priori knowledge but by observing

its input and output. The system assumes that the SuO meets

two requirements: (i) the SuO works as a bijective function

between its input and output, and (ii) the SuO operates in

steady states. Requirement (i) allows the monitoring system

to uniquely identify input-output pairs of normal operation.

Dissociation of input and output signals is then considered

a symptom of fault. Requirement (ii) is a consequence of

the fact that the monitoring system discards unstable and

transient signals.

The monitoring system adapts to any SuO based on con-

textual information only (see context-awareness). We have

performed experiments with two variants of the system:

(i) Context-aware Health Monitoring (CAH) [29], [30]

applies a threshold-based decision-making process and

(ii) Confidence-based Context-Aware condition Monitoring

(CCAM) [31] makes decisions based on confidence.

Compared to similarmonitoring solutions (e.g., deep learn-

ing and data mining), our system has a considerably smaller

runtime footprint and can be applied to resource-constrained

applications.

2) MODELING THE MONITORING SYSTEM

The application has a hierarchical structure (Figure 16). The

low-level agents are connected to the sensors and can perform

pre-processing of sensory input if necessary as well as incor-

porate a signal state detector (Section VI-A).

The detected signal states are combined into a system state

by a system state detector (Section VI-A) in the high-level

agent. Its output (i.e., system state and health condition) is

processed (e.g., logging or trigging a warning in case of

malfunction) by a dedicated agent.

VOLUME 8, 2020 141387



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 16. Architecture of CAH/CCAM for monitoring an AC motor.

The signal and system state detector functionalities keep

historical information about their input to identify steady

states as well as recognize state changes and drifting signals

(see [29]–[31]). Each new signal sample is compared with

historical information to detect if the signal changed state.

The historical information consists of an average value in

CAH and a sliding window history in CCAM. If the new

sample is in close proximity to the saved data of a recorded

state, it belongs to that state. Whether a signal is stable or

drifting is extracted from the course of the historical data. The

state of the system is then the composition of the individual

signal states. For further details, we refer to our corresponding

works.

The state and health condition of the observed signal/sys-

tem are outputs of the functionalities. The difference between

CAH and CCAM is in the configuration of signal and sys-

tem state detection: they make binary threshold-based and

confidence-based decisions, respectively. CCAM provides

better results than CAH.

Adjusting CAH/CCAM for a different SuO takes only two

simple steps: (i) defining a low-level agent with a signal

state detector for each input and output signal of the SuO

and (ii) connecting each low-level agent to the high-level one

and associating each signal to the system state detector either

as input signal or output signal. The system is easily scalable,

but the system state detector could become a bottleneck in

case of an extremely high number of signals. This potential

scalability issue is not caused by RoSA but by the architecture

of the implemented application. In the case of such a complex

SuO with a massive number of signals, the problem could

be scaled out by replacing the central system state detector

with a corresponding hierarchy of those. In other words,

the SuO would be split up in various subsystems that have

their own system state detectors, which may be combined in

a hierarchical structure. This approach shows the powerful

implementation of RoSA and its self-aware functionalities.

Furthermore, this approach would overcome not only the

issue of a bottleneck but also enables highly systematic mon-

itoring of the SuO.

3) SUMMARY

Context-aware detection of different signal and system states

is now enabled in RoSA by corresponding functionali-

ties. However, no state detector was implemented when we

started to develop the application. In the experimental phase,

we implemented state detection as custom code in combi-

nation with existing RoSA functionalities (abstraction, con-

fidence, and history). Reusing functionalities in a modular

way, facilitated our efforts to implement complex data pro-

cessing for context-aware state detection. We turned the val-

idated implementations of signal and system state detectors

into functionalities, which can be reused and configured by

application-specific rules.

VIII. DISCUSSION

Before concluding, we enumerate the lessons learned from

developing RoSA and the open issues already identified.

We organize the discussion in three themes: modeling

self-awareness in Section VIII-A, the software implementa-

tion in Section VIII-B, and implementing on ES hardware in

Section VIII-C.

A. MODELING SELF-AWARENESS

An important lesson was realizing how much application-

dependent self-aware functionalities are. While a self-

awareness property has some fundamental characteristic,

a corresponding functionality may be implemented in dif-

ferent ways. For example, while confidence is a measure

of how trustworthy the work of a task, part of the system,

or the entire system is (Section VI-C), it may be calculated in

many different ways [100] (see for example [31], [55], [101]).

What interface to use for a self-awareness property depends

on the actual usage. Therefore, each functionality must have

a sophisticated interface to support modularity. This allows

using functionalities directly or in combination with other

functionalities to express more complex concepts. Whenever

a new concept that cannot be built from the existing function-

alities is to be developed, devising a modular interface for the

new functionality is challenging but essential for reusability.

While the interfaces of functionalities are instrumental

for reusability, details of their internal implementations can

affect performance significantly. We provide a set of func-

tionalities in RoSA; however, there might be better-working

implementations. Hence, users of RoSA are not discouraged

from adjusting and optimizing the implementations to their

specific end-use. The modular design makes it possible to

experiment with alternative implementations at will. In addi-

tion, users are encouraged to develop other functionalities

whenever they have new ideas or specific needs.

We realize there is room for improving the modeling capa-

bilities of RoSA. One limiting factor is the small set of

implemented self-aware functionalities. Our research effort in

self-awareness properties and functionality implementations

will continue. We foresee exciting challenges in the area

141388 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

TABLE 2. Static and dynamic characteristics of the case studies (Section VII) executed on different ES platforms with different ARM cores (Cortex-A7 and
Cortex-A15 implement the 32-bit ARMv7-A architecture, Cortex-A53 implements the 64-bit ARMv8-A architecture) shows that each application can work
in real-time on ES hardware; note that numbers of different applications are not to be compared as they implement independent algorithms.

and hope for the community’s contribution in tackling them

together to make RoSA a powerful common framework.

FIGURE 17. Ratio of non-comment codelines of RoSA-based application
code (Application) and that of the RoSA framework itself (Framework)
relative to the number of non-comment codelines of corresponding
custom-written applications in our case studies. The base-line (actual
number of codelines) for each application is indicated below the
application names.

B. SOFTWARE IMPLEMENTATION

We made RoSA to accelerate and simplify research on

self-awareness through a reusable software framework. Com-

paring the number of non-comment codelines (as an indi-

cator of development effort) of our original custom-written

applications and that of the RoSA-based implementation pro-

vides a quantitative measure of how much the development

effort is simplified by using RoSA. This comparison for

the presented case studies is shown in Figure 17, where the

custom code of the corresponding application is the reference,

meaning 100%. The RoSA-based Application sizes relative

to the corresponding custom code show that RoSA-based

implementations stay relatively small (3.46%–6.24%), inde-

pendently from the size of the custom-written applications.

Those implementations are small because they depend on

the framework. The RoSA Framework size relative to the

custom applications (the 100% references) shows that the

overhead posed by the framework reduces (from an overhead

of 120.4% for EWS to −40.72% for CAH/CCAM) as the

size of the application increases (from 5481 to 20378 lines of

custom application code for EWS and CAH/CCAM, respec-

tively). The negative framework overhead indicates that even

a custom implementation might be sub-optimal in case of

complex applications. The quality of maintained framework

code improves over time, while that does not typically happen

with custom implementations developed in one go.

Averaging the sizes of all cases, we observe that on

average, a RoSA-based implementation consists of only

5.18% lines of code relative to the custom implementation.

The framework code has on average 20.75% more codelines

than a custom application. The framework is, however, to be

implemented only once and reused any number of times.

Implementing a framework pays off when used for several

applications. Particularly, implementing the framework and

the four presented case studies in RoSA needed in total only

29.01% of the total number of codelines of our four original

custom-written applications together; in other words, in total

we needed 70.99% less codelines for implementing all four

applications with RoSA. These figures confirm our initial

hypothesis: an appropriate framework reduces the modeling

and development efforts in self-aware systems.

Lastly, we realize that the capabilities and usability of

RoSA as a software framework can be enhanced. For exam-

ple, a graphical interface could help non-programmers to

interact with models. Studying typical model patterns on both

the agent system and the agent levels could help application

developers in making better designs and utilizing available

features efficiently.

C. IMPLEMENTING ON EMBEDDED SYSTEM HARDWARE

RoSA is a standalone actor framework with an open-source

standard native implementation, to which CAF is the most

similar from the existing agent-based frameworks (discussed

VOLUME 8, 2020 141389



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

in Section III-F). For deploying RoSA in ESs, we limited the

implemented features to the essentials for our case studies

without limiting the generality of the agent system. The

binary size of the RoSA libraries on a x86-64 linux machine

is 300 kB, while that of the CAF core library (version 0.17.5)

is 7248 kB. This significant (24 times) difference in favor of

RoSA indicates that our framework is applicable to consider-

ably smaller systems than CAF.

As a preliminary confirmation of this hypothesis (suit-

ability for ESs), we ran our case studies on the ODROID

XU4 [102] and Raspberry Pi 3 [103] systems. The for-

mer has an eight-core big.LITTLE [104] configuration with

Cortex-A7 and Cortex-A15 cores and the latter has a

quad-core configuration with Cortex-A53 cores. The applica-

tions posed a moderate memory footprint well below 4 MB,

which fits typical ESs, and processed samples several times

faster than required for real-time execution. In Table 2,

we have summarized the characteristics of each application

implemented on each platform, where the real-time require-

ments and actual average processing times can be found.

It has to be noted that the real-time sampling period depends

on the nature of the corresponding application and that the

table is not meant to compare the different applications. We

plan to extend the evaluation of our software implementation

by performing further extensive and vigorous tests by deploy-

ing RoSA on other real ES hardware in the future.

IX. CONCLUSION

Self-awareness is a hot topic, but related research and devel-

opment efforts are fragmented among different fields and

communities. Self-aware systems are developed from scratch

in many cases. Such method of development, on long term,

is redundant, inefficient and uneconomic. A major reason

behind this fragmentation is the lack of a common framework

that would facilitate development, cooperation, and reuse of

existing results.

In this paper, we presented RoSA, a framework that

aims to help researchers and engineers to explore the novel

design space of self-awareness. RoSA supports modeling of

self-aware applications as agent systems and modeling of

agents based on self-aware functionalities. We presented the

design principles of the RoSA architecture as well as use

cases of RoSA-based modeling for different scenarios. The

description of self-aware functionalities offered by RoSA

and detailed case studies about applications implemented in

RoSA demonstrate the modeling power and applicability of

the framework.

Using RoSA relieves application developers from taking

care of handling agents and message passing. Predefined

functionalities serve as reusable components for defining

individual agents. Data processing within agents can be

defined as an arbitrary combination of custom application

code and existing functionalities. Application code can thus

be limited to the important aspects: (i) data processing within

agents and (ii) the agent hierarchy of the application.

We promote RoSA as a vehicle for researchers to study

various concepts that are related to self-awareness and the

relation among them; and also for engineers to prototype and

evaluate self-aware features in their designs with ease.

ABBREVIATIONS

AC Autonomic Computing.

AI Artificial Intelligence.

CAF C++ Actor Framework.

CAH Context-aware Health Monitoring.

CCAM Confidence-based Context-Aware

condition Monitoring.

CPS Cyber-Physical System.

CSA Computational Self-Awareness.

DARPA Defense Advanced Research Projects

Agency.

ES Embedded System.

EWS Early Warning Score.

IBM International Business Machines Cor-

poration.

IT Information Technology.

MAS Multi-agent System.

MPSoC Multi-Processor System-on-Chip.

NASA National Aeronautics and Space

Administration.

ODA Observe-Decide-Act.

RoSA Research on Self-Awareness.

SoC System on Chip.

SuO System under Observation.

ACKNOWLEDGMENT

(Maximilian Götzinger and Dávid Juhász contributed equally

to this work.) The authors acknowledge TU Wien Bibliothek

for financial support through its Open Access Funding

Programme.

REFERENCES

[1] J. Rivera and R. van der Meulen. (Nov. 2014). Gartner Says 4.9 Bil-

lion Connected ‘Things’ Will be in use in 2015. [Online]. Available:

http://www.gartner.com/newsroom/id/2905717

[2] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things:

A survey,’’ Comput. Netw., vol. 54, no. 15, pp. 2787–2805,

Oct. 2010. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1389128610001568

[3] M. Yaqoob, S. R. Qaisrani, M. Waqas, Y. Ayaz, S. Iqbal, and S. Nisar,

‘‘Control of robotic arm manipulator with haptic feedback using pro-

grammable system on chip,’’ in Proc. Int. Conf. Robot. Emerg. Allied

Technol. Eng. (iCREATE), Apr. 2014, pp. 300–305.

[4] D. Genius, E. Faure, and N. Pouillon, ‘‘Mapping a telecommunica-

tion application on a multiprocessor system-on-chip,’’ in Algorithm-

Architecture Matching for Signal and Image Processing. Dordrecht,

The Netherlands: Springer, 2011, pp. 53–77.

[5] S. Mukhopadhyay, M. Heddes, M. Ravasi, and M. S. Yeo, ‘‘System-on-

a-chip and multi-chip systems supporting advanced telecommunication

functions,’’ U.S. Patent 12 342 625, Jun. 24, 2010.

[6] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, ‘‘Computer architectures for

autonomous driving,’’ Computer, vol. 50, no. 8, pp. 18–25, 2017.

[7] X. Chen, X. Jiang, and L. Wang, ‘‘Development on ARM9 System-on-

chip embedded sensor node for urban intelligent transportation system,’’

in Proc. IEEE Int. Symp. Ind. Electron., vol. 4, Jul. 2006, pp. 3270–3275.

[8] N. Moreira, J. Lazaro, U. Bidarte, J. Jimenez, and A. Astarloa, ‘‘On

the utilization of system-on-chip platforms to achieve nanosecond syn-

chronization accuracies in substation automation systems,’’ IEEE Trans.

Smart Grid, vol. 8, no. 4, pp. 1932–1942, Jul. 2017.

141390 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[9] B. Massot, C. Gehin, R. Nocua, A. Dittmar, and E. McAdams,

‘‘A wearable, low-power, health-monitoring instrumentation based on a

programmable system-on-chipTM,’’ in Proc. Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc., Sep. 2009, pp. 4852–4855.

[10] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Galissot, ‘‘Self-aware

cyber-physical systems and applications in smart buildings and cities,’’

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2013,

pp. 1149–1154.

[11] A. Jantsch, A. Anzanpour, H. Kholerdi, I. Azimi, L. C. Siafara,

A. M. Rahmani, N. TaheriNejad, P. Liljeberg, and N. Dutt, ‘‘Hierarchical

dynamic goal management for IoT systems,’’ in Proc. 19th Int. Symp.

Qual. Electron. Design (ISQED), Mar. 2018, pp. 370–375.

[12] M. Shafique, D. Gnad, S. Garg, and J. Henkel, ‘‘Variability-aware dark

silicon management in on-chip many-core systems,’’ in Proc. Design,

Autom. Test Eur. Conf. Exhib. San Jose, CA, USA: EDA Consortium,

Mar. 2015, pp. 387–392.

[13] W. Huang, M. R. Stant, K. Sankaranarayanan, R. J. Ribando, and

K. Skadron, ‘‘Many-core design from a thermal perspective,’’

in Proc. 45th Annu. Conf. Design Autom. (DAC), Jun. 2008,

pp. 746–749.

[14] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Mapping on

multi/many-core systems: Survey of current and emerging trends,’’ in

Proc. 50th Annu. Design Autom. Conf. (DAC). New York, NY, USA:

ACM, 2013, pp. 1:1–1:10

[15] N. Dutt, A. Jantsch, and S. Sarma, ‘‘Self-aware cyber-physical systems-

on-chip,’’ inProc. IEEE/ACM Int. Conf. Comput.-AidedDesign (ICCAD),

Austin, TX, USA, Nov. 2015, pp. 46–50.

[16] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and X. Yao, Self-

Aware Computing Systems: An Engineering Approach (Natural Comput-

ing Series), 1st ed. Cham, Switzerland: Springer, 2016, doi: 10.1007/978-

3-319-39675-0.

[17] N. Dutt and N. TaheriNejad, ‘‘Self-awareness in cyber-physical systems,’’

in Proc. 29th Int. Conf. VLSI Design 15th Int. Conf. Embedded Syst.

(VLSID), Jan. 2016, pp. 5–6.

[18] K. Bellman, N. Dutt, L. Esterle, A. Herkersdorf, A. Jantsch, C. Landauer,

P. R. Lewis,M. Platzner, N. TaheriNejad, andK. Tammemäe, ‘‘Self-aware

cyber-physical systems,’’ ACM Trans. Cyber-Phys. Syst., vol. 4, no. 4,

pp. 1–24, 2020.

[19] J.-S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis,

‘‘The benefits of self-awareness and attention in fog andmist computing,’’

Computer, vol. 48, no. 7, pp. 37–45, Jul. 2015.

[20] F. Forooghifar, A. Aminifar, and D. Atienza, ‘‘Resource-aware dis-

tributed epilepsy monitoring using self-awareness from edge to cloud,’’

IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1338–1350,

Dec. 2019.

[21] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, ‘‘Model-

driven algorithms and architectures for self-aware computing systems

(Dagstuhl seminar 15041),’’ Dagstuhl Rep., vol. 5, no. 1, pp. 164–196,

2015.

[22] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, and

L. Esterle, ‘‘The handbook of engineering self-aware and self-expressive

systems,’’ CoRR, vol. abs/1409.1793, pp. 1–81, Sep. 2014. [Online].

Available: http://arxiv.org/abs/1409.1793

[23] H. Psaier and S. Dustdar, ‘‘A survey on self-healing systems:

Approaches and systems,’’ Computing, vol. 91, no. 1, pp. 43–73,

Jan. 2011.

[24] P. R. Lewis, A. Chandra, F. Faniyi, K. Glette, T. Chen, R. Bahsoon,

J. Torresen, and X. Yao, ‘‘Architectural aspects of self-aware and self-

expressive computing systems: From psychology to engineering,’’ Com-

puter, vol. 48, no. 8, pp. 62–70, Aug. 2015.

[25] T. Bures, D. Weyns, B. Schmerl, J. Fitzgerald, A. Aniculaesei, C. Berger,

J. Cambeiro, J. Carlson, S. A. Chowdhury,M. Daun, and N. Li, ‘‘Software

engineering for smart cyber-physical systems (SEsCPS 2018)-workshop

report,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 44, no. 4, pp. 11–13,

2019.

[26] M. Götzinger, N. Taherinejad, A. M. Rahmani, P. Liljeberg, A. Jantsch,

and H. Tenhunen, ‘‘Enhancing the early warning score system using data

confidence,’’ in Proc. Int. Conf. Wireless Mobile Commun. Healthcare.

Cham, Switzerland: Springer, 2016, pp. 91–99.

[27] M. Götzinger, A. Anzanpour, I. Azimi, N. Taherinejad,

and A. M. Rahmani, ‘‘Enhancing the self-aware early warning score

system through fuzzified data reliability assessment,’’ in Proc. Int. Conf.

Wireless Mobile Commun. Healthcare. Cham, Switzerland: Springer,

2017, pp. 3–11.

[28] M. Götzinger, A. Anzanpour, I. Azimi, N. TaheriNejad, A. Jantsch,

A. M. Rahmani, and P. Liljeberg, ‘‘Confidence-enhanced early warn-

ing score based on fuzzy logic,’’ Mobile Netw. Appl., vol. 8, pp. 1–18,

Aug. 2019.

[29] M. Gotzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch, ‘‘On the

design of context-aware health monitoring without a priori knowledge;

an AC-motor case-study,’’ in Proc. IEEE 30th Can. Conf. Electr. Comput.

Eng. (CCECE), Apr. 2017, pp. 1–5.

[30] M. Gotzinger, E. Willegger, N. TaheriNejad, A. Jantsch, T. Sauter,

T. Glatzl, and P. Lilieberg, ‘‘Applicability of context-aware health moni-

toring to hydraulic circuits,’’ in Proc. IECON-44th Annu. Conf. IEEE Ind.

Electron. Soc., Oct. 2018, pp. 4712–4719.

[31] M. Götzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,

T. Glatzl, A. M. Rahmani, T. Sauter, and P. Liljeberg, ‘‘Model-free

condition monitoring with confidence,’’ Int. J. Comput. Integr. Manuf.,

vol. 32, nos. 4–5, pp. 466–481, May 2019.

[32] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, ‘‘Architecting self-aware

software systems,’’ in Proc. IEEE/IFIP Conf. Softw. Archit., Apr. 2014,

pp. 91–94.

[33] L. Guang, E. Nigussie, J. Plosila, J. Isoaho, and H. Tenhunen, ‘‘Survey

of self-adaptive NoCs with energy-efficiency and dependability,’’ Int.

J. Embedded Real-Time Commun. Syst., vol. 3, no. 2, pp. 1–22,

Apr. 2012.

[34] J. Schlingensiepen, F. Nemtanu, R.Mehmood, and L.McCluskey, ‘‘Auto-

nomic transport management systems—Enabler for smart cities, per-

sonalized medicine, participation and industry grid/industry 4.0,’’ in

Intelligent Transportation Systems–Problems and Perspectives. Cham,

Switzerland: Springer, 2016, pp. 3–35.

[35] D. B. Abeywickrama and E. Ovaska, ‘‘A survey of autonomic computing

methods in digital service ecosystems,’’ Service Oriented Comput. Appl.,

vol. 11, no. 1, pp. 1–31, Mar. 2017.

[36] M. Parashar and S. Hariri, ‘‘Autonomic computing: An overview,’’

in Unconventional Programming Paradigms, J.-P. Banâtre, P. Fradet,

J.-L. Giavitto, and O. Michel, Eds. Berlin, Germany: Springer, 2005,

pp. 257–269.

[37] M. C. Huebscher and J. A. McCann, ‘‘A survey of autonomic

computing—Degrees, models, and applications,’’ ACM Comput.

Surv., vol. 40, no. 3, pp. 1–28, Aug. 2008, doi: 10.1145/1380584.

1380585.

[38] A. L. Randall and R. C. Walter, ‘‘Overview of the small unit operations

situational awareness system,’’ in Proc. IEEE Mil. Commun. Conf. (MIL-

COM), vol. 1, Oct. 2003, pp. 169–173.

[39] M. Rahman, R. Ranjan, R. Buyya, and B. Benatallah, ‘‘A taxonomy

and survey on autonomic management of applications in grid comput-

ing environments,’’ Concurrency Comput., Pract. Exp., vol. 23, no. 16,

pp. 1990–2019, Nov. 2011. [Online]. Available: https://onlinelibrary.

wiley.com/doi/abs/10.1002/cpe.1734

[40] J. O. Kephart, ‘‘Research challenges of autonomic computing,’’ in Proc.

27th Int. Conf. Softw. Eng. (ICSE), 2005, pp. 15–22.

[41] A. G. Ganek and T. A. Corbi, ‘‘The dawning of the autonomic computing

era,’’ IBM Syst. J., vol. 42, no. 1, pp. 5–18, 2003.

[42] D. Sinreich, ‘‘An architectural blueprint for autonomic computing,’’

IBM Corp., Armonk, NY, USA, White paper, 2006. [Online].

Available: https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%

20White%20Paper%20V7.pdf

[43] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic Computing:

Principles, Design and Implementation. London, U.K.: Springer, 2013.

[44] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’

Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[45] J. Cámara, K. L. Bellman, J. O. Kephart, M. Autili, N. Bencomo,

A. Diaconescu, H. Giese, S. Götz, P. Inverardi, S. Kounev, and M. Tivoli,

Self-aware Computing Systems: Related Concepts and Research Areas.

Cham, Switzerland: Springer, 2017, pp. 17–49, doi: 10.1007/978-3-319-

47474-8_2.

[46] D. F. Bantz, C. Bisdikian, D. Challener, J. P. Karidis, S. Mastrianni,

A. Mohindra, D. G. Shea, and M. Vanover, ‘‘Autonomic personal com-

puting,’’ IBM Syst. J., vol. 42, no. 1, pp. 165–176, 2003.

[47] M. Salehie and L. Tahvildari, ‘‘Self-adaptive software: Landscape and

research challenges,’’ ACM Trans. Auto. Adapt. Syst., vol. 4, no. 2, p. 14,

2009.

[48] C. Landauer and K. L. Bellman, ‘‘An architecture for self-awareness

experiments,’’ in Proc. IEEE Int. Conf. Autonomic Comput. (ICAC),

Jul. 2017, pp. 255–262.

VOLUME 8, 2020 141391

http://dx.doi.org/10.1007/978-3-319-39675-0
http://dx.doi.org/10.1007/978-3-319-39675-0
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1007/978-3-319-47474-8_2
http://dx.doi.org/10.1007/978-3-319-47474-8_2


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[49] K. L. Bellman, ‘‘An approach to integrating and creating flexible software

environments supporting the design of complex systems,’’ in Proc. Winter

Simul. Conf., 1991, pp. 1101–1105.

[50] M. Salehie and L. Tahvildari, ‘‘Autonomic computing: Emerging trends

and open problems,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4,

pp. 1–7, 2005.

[51] H. Giese, T. Vogel, A. Diaconescu, S. Götz, N. Bencomo, K. Geihs,

S. Kounev, and K. L. Bellman, State of the Art in Architectures for

Self-Aware Computing Systems. Cham, Switzerland: Springer, 2017,

pp. 237–275, doi: 10.1007/978-3-319-47474-8_8.

[52] N. Dutt, A. Jantsch, and S. Sarma, ‘‘Toward smart embedded systems:

A self-aware system-on-chip (SOC) perspective,’’ ACM Trans. Embed.

Comput. Syst., vol. 15, no. 2, pp. 22:1–22:27, Feb. 2016.

[53] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, ‘‘A linux-

governor based dynamic reliabilitymanager for Androidmobile devices,’’

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–4.

[54] B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder,

G. F. Dominguez, and P. R. Lewis, ‘‘Self-aware and self-expressive

camera networks,’’ Computer, vol. 48, no. 7, pp. 21–28, Jul. 2015.

[55] F. Forooghifar, A. Aminifar, and D. A. Alonso, ‘‘Self-aware wearable

systems in epileptic seizure detection,’’ in Proc. 21st Euromicro Conf.

Digit. Syst. Design (DSD), Aug. 2018, pp. 426–432.

[56] B. Jennings and R. Stadler, ‘‘Resource management in clouds: Survey and

research challenges,’’ J. Netw. Syst. Manage., vol. 23, no. 3, pp. 567–619,

Jul. 2015, doi: 10.1007/s10922-014-9307-7.

[57] P. Spathis andM. D. D. Bicudo, ‘‘Ana: Autonomic network architecture,’’

in Autonomic Network Management Principles: From Concepts to Appli-

cations. Oxford, U.K.: Academic, 2011, p. 49.

[58] L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava, ‘‘VarEMU:

An emulation testbed for variability-aware software,’’ in Proc. Int.

Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2013,

pp. 1–10.

[59] J. Strassner, S.-S. Kim, and J. W.-K. Hong, ‘‘The design of an autonomic

communication element to manage future Internet services,’’ in Man-

agement Enabling the Future Internet for Changing Business and New

Computing Services. Berlin, Germany: Springer, 2009, pp. 122–132.

[60] W. Baek and T. M. Chilimbi, ‘‘Green: A framework for sup-

porting energy-conscious programming using controlled approxima-

tion,’’ in Proc. ACM SIGPLAN Notices, vol. 45, no. 6, 2010,

pp. 198–209.

[61] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and

A. Agarwal, ‘‘SEEC: A framework for self-aware computing,’’

MIT, Cambrige, MA, USA, Tech. Rep. MIT-CSAIL-TR-2010-049,

Oct. 2010.

[62] E. Shamsa, A. Kanduri, N. TaheriNejad, A. Probstl, S. Chakraborty,

A. M. Rahmani, and P. Liljeberg, ‘‘User-centric resource management for

embedded multi-core processors,’’ in Proc. 33rd Int. Conf. VLSI Design

19th Int. Conf. Embedded Syst. (VLSID), Jan. 2020, pp. 1–6.

[63] A. Akbar and P. R. Lewis, ‘‘Self-adaptive and self-aware mobile-cloud

hybrid robotics,’’ in Proc. 5th Int. Conf. Internet Things, Syst., Manage.

Secur., Oct. 2018, pp. 262–267.

[64] L. C. Siafara, H. A. Kholerdi, A. Bratukhin, N. TaheriNejad, A. Wendt,

A. Jantsch, A. Treytl, and T. Sauter, ‘‘SAMBA: A self-aware health

monitoring architecture for distributed industrial systems,’’ in Proc.

IECON-43rd Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2017,

pp. 3512–3517.

[65] L. C. Siafara, H. Kholerdi, A. Bratukhin, N. Taherinejad, and A. Jantsch,

‘‘SAMBA–an architecture for adaptive cognitive control of distributed

cyber-physical production systems based on its self-awareness,’’ e i

Elektrotechnik und Informationstechnik, vol. 135, no. 3, pp. 270–277,

Jun. 2018, doi: 10.1007/s00502-018-0614-7.

[66] K. Nymoen, A. Chandra, and J. Torresen, ‘‘Self-awareness in activemusic

systems,’’ Self-Aware Computing Systems. Cham, Switzerland: Springer,

2016, pp. 279–296, doi: 10.1007/978-3-319-39675-0_14.

[67] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,

W. Schröder-Preikschat, and G. Snelting, ‘‘Invasive computing:

An overview,’’ in Multiprocessor System-on-Chip: Hardware Design

and Tool Integration, M. Hübner and J. Becker, Eds. Berlin, Germany:

Springer, 2011, pp. 241–268.

[68] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Bernauer, O. Bringmann,

W. Rosenstiel, and A. Herkersdorf, ‘‘Autonomic system on chip plat-

form,’’ in Organic Computing—A Paradigm Shift for Complex Systems

(Autonomic Systems), C. Müller-Schloer, H. Schmeck, and T. Ungerer,

Eds. Basel, Switzerland: Birkhäuser, 2011, ch. 4.7, pp. 413–425.

[69] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,

O. Bringmann, and W. Rosenstiel, ‘‘Organic computing at the system on

chip level,’’ in Proc. IFIP Int. Conf. Very Large Scale Integr., Oct. 2006,

pp. 338–341.

[70] G. Kornaros and D. Pnevmatikatos, ‘‘A survey and taxonomy of on-chip

monitoring of multicore systems-on-chip,’’ ACM Trans. Design Autom.

Electron. Syst., vol. 18, no. 2, pp. 1–38, Mar. 2013.

[71] N. T. Nejad, M. A. Shami, and P. D. S. Manoj, ‘‘Self-aware sensing and

attention-based data collection in multi-processor system-on-chips,’’ in

Proc. 15th IEEE Int. New Circuits Syst. Conf. (NEWCAS), Jun. 2017,

pp. 81–84.

[72] S. M. Jafri, L. Guang, A. Jantsch, K. Paul, A. Hemani, and

H. Tenhunen, ‘‘Self-adaptive NoC power management with dual-

level agents-architecture and implementation,’’ in Proc. PECCS, 2012,

pp. 450–458.

[73] S. Kounev, P. Lewis, K. Bellman, N. Bencomo, J. Camara, A. Diaconescu,

L. Esterle, K. Geihs, H. Giese, S. Götz, P. Inverardi, J. Kephart, and

A. Zisman, ‘‘The notion of self-aware computing,’’ in Self-Aware Com-

puting Systems, S. Kounev, J. O. Kephart, A. Milenkoski, and X. Zhu,

Eds. Cham, Switzerland: Springer, 2017, pp. 3–16.

[74] J. Kramer and J. Magee, ‘‘Self-managed systems: An architec-

tural challenge,’’ in Proc. Future Softw. Eng. (FOSE), May 2007,

pp. 259–268.

[75] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp, A Refer-

ence Architecture and Roadmap for Models Run.Time Systems. Cham,

Switzerland: Springer, 2014, pp. 1–18, doi: 10.1007/978-3-319-08915-

7_1.

[76] L. Guang, E. Nigussie, J. Isoaho, P. Rantala, and H. Tenhunen, ‘‘Inter-

connection alternatives for hierarchical monitoring communication in

parallel SoCs,’’ Microprocessors Microsyst., vol. 34, no. 5, pp. 118–128,

Aug. 2010.

[77] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson, ‘‘Pervasive ecosys-

tems: A coordination model based on semantic chemistry,’’ in Proc. 27th

Annu. ACM Symp. Appl. Comput. New York, NY, USA: ACM, 2012,

pp. 295–302.

[78] C. Savaglio, G. Fortino, and M. Zhou, ‘‘Towards interoperable, cog-

nitive and autonomic IoT systems: An agent-based approach,’’ in

Proc. IEEE 3rd World Forum Internet Things (WF-IoT), Dec. 2016,

pp. 58–63.

[79] I. Carreras, I. Chlamtac, F. De Pellegrini, and D. Miorandi,

‘‘BIONETS: Bio-inspired networking for pervasive communication

environments,’’ IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 218–229,

Jan. 2007.

[80] A. Bucchiarone, ‘‘Collective adaptation through multi-agents ensembles:

The case of smart urbanmobility,’’ACMTrans. Auto. Adapt. Syst., vol. 14,

no. 2, pp. 1–28, Dec. 2019.

[81] A. Bucchiarone, M. De Sanctis, A. Marconi, and A. Martinelli,

‘‘DeMOCAS: Domain objects for service-based collective adaptive

systems,’’ in Service-Oriented Computing—ICSOC 2016 Workshops.

Cham, Switzerland: Springer, 2017, pp. 174–178. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-68136-8_19

[82] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. London, U.K.: Pearson, 2010.

[83] M. Wooldridge and N. R. Jennings, ‘‘Intelligent agents: Theory and

practice,’’ Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, Jun. 1995.

[84] C. Hewitt, ‘‘Actor model of computation for scalable robust informa-

tion systems,’’ in Proc. Symp. Logic Collaboration Intell. Appl., 2017,

pp. 1–91.

[85] A. Sadighi, B. Donyanavard, T. Kadeed, K. Moazzemi, T. Muck,

A. Nassar, A. M. Rahmani, T. Wild, N. Dutt, R. Ernst, A. Herkersdorf,

and F. Kurdahi, ‘‘Design methodologies for enabling self-awareness in

autonomous systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.

(DATE), Mar. 2018, pp. 1532–1537.

[86] L. Guang, ‘‘Hierarchical agent-based adaptation for self-aware embedded

computing systems,’’ Ph.D. dissertation, Dept. Inf. Technol., Univ. Turku,

Turku, Finland, 2012.

[87] J. Hunt, Introduction to Akka Actors. Springer, 2014, pp. 383–398.

[88] D. Charousset, R. Hiesgen, and T. C. Schmidt, ‘‘Revisiting actor pro-

gramming in C++,’’ Comput. Lang., Syst. Struct., vol. 45, pp. 105–131,

Apr. 2016.

[89] P. Taillandier, B. Gaudou, A. Grignard, Q.-N. Huynh, N. Marilleau,

P. Caillou, D. Philippon, and A. Drogoul, ‘‘Building, composing and

experimenting complex spatial models with the GAMA platform,’’

GeoInformatica, vol. 23, no. 2, pp. 299–322, Apr. 2019.

141392 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-47474-8_8
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s00502-018-0614-7
http://dx.doi.org/10.1007/978-3-319-39675-0_14
http://dx.doi.org/10.1007/978-3-319-08915-7_1
http://dx.doi.org/10.1007/978-3-319-08915-7_1


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[90] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, Jade—A Java

Agent Development Framework. Boston, MA, USA: Springer, 2005,

pp. 125–147.

[91] B. Chen, H. H. Cheng, and J. Palen, ‘‘Mobile-C: A mobile agent plat-

form for mobile C/C++ agents,’’ Softw. Pract. Exper., vol. 36, no. 15,

pp. 1711–1733, 2006.

[92] N. Collier and M. North, ‘‘Parallel agent-based simulation with

repast for high performance computing,’’ Simulation, vol. 89, no. 10,

pp. 1215–1235, Oct. 2013.

[93] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal,

M. Bragen, and P. Sydelko, ‘‘Complex adaptive systems modeling with

repast simphony,’’ Complex Adapt. Syst. Model., vol. 1, no. 1, p. 3,

Dec. 2013.

[94] N. TaheriNejad, A. Jantsch, and D. Pollreisz, ‘‘Comprehensive obser-

vation and its role in self-awareness; an emotion recognition system

example,’’ in Proc. Position Papers Federated Conf. Comput. Sci. Inf.

Syst., Gdansk, Poland, Oct. 2016, pp. 117–124.

[95] A. Jantsch and K. Tammemäe, ‘‘A framework of awareness for artificial

subjects,’’ in Proc. 2014 Int. Conf. Hardw./Softw. Codesign Syst. Synth.

New York, NY, USA: ACM, 2014, pp. 20:1–20:3.

[96] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,

Jun. 1965.

[97] J. McGaughey, F. Alderdice, R. Fowler, A. Kapila, A. Mayhew, and

M. Moutray, ‘‘Outreach and early warning systems (EWS) for the pre-

vention of intensive care admission and death of critically ill adult

patients on general hospital wards,’’ Cochrane Library, vol. 2007, no. 3,

pp. CD005529:1–CD005529:24, Jul. 2007.

[98] R. J. Morgan, F. Williams, and M. M. Wright, ‘‘An early warning scoring

system for detecting developing critical illness,’’ Clin. Intensive Care,

vol. 8, no. 2, p. 100, 1997.

[99] W. Thomson and R. Gilmore, ‘‘Motor current signature analysis to

detect faults in induction motor drives–fundamentals, data interpretation,

and industrial case histories,’’ in Proc. 32nd Turbomachinery Symp.,

Sep. 2003, pp. 145–156.

[100] N. TaheriNejad and A. Jantsch, ‘‘Improved machine learning using con-

fidence,’’ in Proc. IEEE Can. Conf. Electr. Comput. Eng. (CCECE),

May 2019, pp. 1–5.

[101] H. A. Kholerdi, N. TaheriNejad, and A. Jantsch, ‘‘Enhancement of clas-

sification of small data sets using self-awareness—An iris flower case-

study,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018,

pp. 1–5.

[102] HADRKERNEL. (2017). ODROID-XU4 Manual. [Online]. Avail-

able: https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-

manual.pdf

[103] Raspberry Pi (Trading) Ltd. (2019). Raspberry Pi Compute

Module 3+ Datasheet. [Online]. Available: https://www.raspberrypi.

org/documentation/hardware/computemodule/datasheets/rpi_DATA_

CM3plus_1p0.pdf

[104] LITTLE Technology. (2013). The Future of Mobile. [Online]. Available:

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_

of_Mobile.pdf

MAXIMILIAN GÖTZINGER (Member, IEEE)

received the B.Sc. and M.Sc. degrees in electrical

engineering and information technology from TU

Wien (formerly known as the Vienna University of

Technology as well), Vienna, Austria, in 2012 and

2015, respectively. He is currently pursuing the

Ph.D. degree in computer science with the Depart-

ment of Future Technologies, University of Turku.

He is also with the Institute of Computer Tech-

nology, TU Wien, as a Project Assistant and a

Teacher. He has a keen and serious interest in computer science and engi-

neering, as well as teaching. His research interest includes computational

self-awareness, for which he is conducting many case studies, such as health

and system monitoring. He has published ten peer-reviewed papers, for one

of which he received the Best Paper Award. In 2019, he received the one

Best Teacher Award and the one Best Lecturer Award for the course digital

systems.

DÁVID JUHÁSZ received the B.Sc. and M.Sc.

degrees in computer science from Eötvös Loránd

University, Budapest, Hungary, in 2010 and 2012,

respectively. He is currently pursuing the Ph.D.

degree with the Institute of Computer Technology,

TU Wien, Vienna, Austria.

He is an Early Stage Researcher of the oCPS

Marie Curie ITN Project at TU Wien. He is also a

Lead Software Architect at Imsys AB, Stockholm,

Sweden. His research interests include develop-

ment methodologies and runtime systems that enable efficient utilization

of complex hardware solutions via a high-level software environment. His

current research interests include self-aware systems and execution issues of

the state-of-the-art hardware platforms focusing on non-functional require-

ments. He had contributed to software development on different levels of

abstraction as well as design and implementation questions of programming

languages, runtime systems, and instruction set architectures.

NIMA TAHERINEJAD (Member, IEEE) received

the Ph.D. degree in electrical and computer engi-

neering from The University of British Columbia,

Vancouver, Canada, in 2015.

He is currently a ‘‘Universitätsassistant’’ at

TU Wien (formerly known also as the Vienna

University of Technology), Vienna, Austria,

where his areas of work include self-awareness

in resource-constrained cyber-physical systems,

embedded systems, systems on chip, health-care,

memristor-based circuit and systems, and robotics. He has published two

books and more than 45 peer-reviewed articles. He received several awards

and scholarships from universities, conferences, and workshops he has

attended. He has also served as a reviewer, an editor, an organizer, and the

chair for various journals, conferences, and workshops.

EDWIN WILLEGGER received the B.Sc. degree

in electrical engineering from TU Wien, Vienna,

Austria, in 2018, where he is currently pursu-

ing the master’s degree in microelectronics and

photonics.

From 2014 to 2015, he was with Siemens

Austria and was doing research on preventive

maintenance of complex mechanical systems.

Since 2015, he has been a Research Assistant at

TUWien. His research interest includes the devel-

opment of self-aware hardware and software systems.

BENEDIKT TUTZER received the B.S. degree

in computer engineering from TU Wien, Vienna,

Austria, in 2018, where he is currently pursuing

the master’s degree in embedded systems.

In 2017 and 2018, he was with the Interactive

Media Systems Group, TU Wien, researching the

applications of virtual-reality headsets as a seeing

aid for visually impaired patients at the Vienna

General Hospital. Since 2018, he has been with

the Institute of Computer Technology, TU Wien,

focusing on electronic design automation.

VOLUME 8, 2020 141393



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

PASI LILJEBERG (Member, IEEE) received the

M.Sc. and Ph.D. degrees in information and com-

munication technology from the University of

Turku, Turku, Finland, in 1999 and 2005, respec-

tively. He received an Adjunct Professorship in

embedded computing architectures, in 2010. He is

currently a Full Professor with the Digital Health

Technology, University of Turku. He has authored

more than 300 peer-reviewed publications. His

current research interests include biomedical engi-

neering, the Internet of Things, fog computing, approximate and adaptive

computing, wearable sensor, e-health technology, and health data analytics.

In that context, he has established and leading the Internet-of-Things for

Healthcare (IoT4Health) Research Group.

AXEL JANTSCH (Senior Member, IEEE) received

the Dipl.Ing. and Ph.D. degrees in computer sci-

ence from TU Wien, Vienna, Austria, in 1987 and

1992, respectively.

From 1997 to 2002, he was an Associate Pro-

fessor at the KTH Royal Institute of Technology,

Stockholm, where he was a full Professor in elec-

tronic systems design, from 2002 to 2014. Since

2014, he has been a Professor of systems on chips

at the Institute of Computer Technology, TUWien.

He has published five books as an Editor and one as an Author, over

300 peer-reviewed contributions in journals, books, and conference proceed-

ings. He has given over 100 invited presentations at conferences, universities,

and companies. His current research interests include systems on chips,

self-aware cyber-physical systems, and embedded machine learning.

AMIR M. RAHMANI (Senior Member, IEEE) is

currently an Assistant Professor of computer sci-

ence and nursing (joint appointment) at UCI and is

also a Life-Time Adjunct Professor (Docent) at the

Department of Future Technologies, University of

Turku, Turku, Finland. He is the Founder of the

Health SciTech Group, University of California at

Irvine (UCI), and the Co-Founder of the Internet-

of-Things for Healthcare Group (IoT4Health),

University of Turku (UTU). He has coauthored

more than 200 peer-reviewed publications. His research interests include

the Internet of Things (IoT), e-health, wearable sensor design, bio-signal

processing, health informatics, and big health data analytics. He is espe-

cially excited about novel sensing, computation/analytics, communication,

and networking paradigms, applied to healthcare/medical and well-being

applications. He is the Associate Editor-in-Chief of the ACM Transactions

on Computing for Healthcare.

141394 VOLUME 8, 2020


