
ROSEFW-RF: The winner algorithm for the ECBDL’14

Big Data Competition: An extremely imbalanced big

data bioinformatics problem

Isaac Trigueroa,b,, Sara del Rı́oc, Victoria Lópezc, Jaume Bacarditd, José M.
Beńıtezc, Francisco Herrerac

aDepartment of Respiratory Medicine, Ghent University, 9000 Gent, Belgium
bVIB Inflammation Research Center, 9052 Zwijnaarde, Belgium

cDepartment of Computer Science and Artificial Intelligence, CITIC-UGR
(Research Center on Information and Communications Technology). University of

Granada, 18071 Granada, Spain
dInterdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School
of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, United

Kingdom

Abstract

The application of data mining and machine learning techniques to bio-
logical and biomedicine data continues to be an ubiquitous research theme
in current bioinformatics. The rapid advances in biotechnology are allowing
us to obtain and store large quantities of data about cells, proteins, genes,
etc, that should be processed. Moreover, in many of these problems such as
contact map prediction, the problem tackled in this paper, it is difficult to
collect representative positive examples. Learning under these circumstances,
known as imbalanced big data classification, may not be straightforward for
most of the standard machine learning methods.

In this work we describe the methodology that won the ECBDL’14 big
data challenge for a bioinformatics big data problem. This algorithm, named
as ROSEFW-RF, is based on several MapReduce approaches to (1) balance
the classes distribution through random oversampling, (2) detect the most
relevant features via an evolutionary feature weighting process and a thresh-

Email addresses: Isaac.Triguero@irc.vib-UGent.be (Isaac Triguero),
srio@decsai.ugr.es (Sara del Rı́o), vlopez@decsai.ugr.es (Victoria López),
jaume.bacardit@newcastle.ac.uk (Jaume Bacardit), J.M.Benitez@decsai.ugr.es
(José M. Beńıtez), herrera@decsai.ugr.es (Francisco Herrera)

Preprint submitted to Knowledge-Based Systems September 4, 2017



old to choose them, (3) build an appropriate Random Forest model from the
pre-processed data and finally (4) classify the test data. Across the paper,
we detail and analyze the decisions made during the competition showing
an extensive experimental study that characterize the way of working of our
methodology. From this analysis we can conclude that this approach is very
suitable to tackle large-scale bioinformatics classifications problems.

Keywords:

Bioinformatics, Big data, Hadoop, MapReduce, Imbalance classification,
Evolutionary feature selection

1. Introduction

Data mining and machine learning techniques [1] have become a need in
many Bioinformatics applications [2, 3, 4]. The application of these methods
has shown to be very helpful for the extraction of useful information from
data in a wide variety of biological problems such as genomics, proteomics,
microarrays, etc [5]. The complexity and gigantic amount of biological data
relate to several major issues that data mining tools have to address:

• High dimensional nature: Most biological problems, going from
sequence analysis over microarray analysis to spectral analyses, natu-
rally present a great number of characteristics. Hence, the application
of data mining methods to such kind of data is generally affected by
the curse of dimensionality. For this reason, the use of preprocess-
ing techniques has been widely extended in bioinformatics. Two main
alternatives have been applied in the literature: dimensionality reduc-
tion [6] or feature selection [7]. The former is based on projection (for
instance, principal component analysis) or compression (by using in-
formation theory). The latter aims at preserving the original semantics
of the variable by choosing a subset of the original set of features.

• Imbalanced class distribution: In such kind of problems, it is fre-
quent that the positive data samples (typically the class of interest)
are highly outnumbered by the negative data examples that are eas-
ily found in the nature. Class imbalance bioinformatics classification
[8] has gained lots of attention in the last years [9, 10] in order to
make correct identification of the underrepresented examples.The ex-
isting approaches fall mostly in two groups: data sampling solutions

2



[11], which transform somehow the original training set, and algorith-
mic modifications which modify current algorithm implementations in
order to benefit the classification of the minority class.

• Large-scale: The unstoppable advance of the technologies has im-
proved the collection process of new biological data. Dealing with very
large amounts of data efficiently is not straightforward for machine
learning methods. The interest of developing really scalable machine
learning models for big data problems are growing up in the recent years
by proposing distributed-based models [12, 13]. Examples of parallel
classification techniques are [14, 15, 16]. They have shown that the
distribution of the data and the processing under a cloud computing
infrastructure is very useful for speeding up the knowledge extraction
process.

When the first two issues are raised together with a high number of ex-
amples, current approaches become non effective and non efficient due to the
big dimension of the problem. Therefore, the design of new algorithms will
be necessary to overtake the mentioned limitations in the big data framework
(see the three recent reviews focusing the big data analytics an technologies
[12, 17, 18]).

Ensemble-based classifiers are a popular choice in the area of bioinformat-
ics due to their unique advantages in dealing with high-dimensionality and
complex data structures and their flexibility to be adapted to different kind
of problems. New developments are continuously being published for a wide
variety of classification purposes [19, 20]. Among the different ensemble-
based techniques, the Random Forest (RF) algorithm [21] is a well-known
decision tree ensemble method that has highlighted in bioinformatics [22]
because of its robustness and good performance. Some efforts to accelerate
the execution of this method for large scale problems have been very recently
proposed [23, 24].

The ECDBL’14 Data mining competition [25] brought up a data set re-
lated to the bioinformatics task of contact map prediction. It has become
one of the most challenging bioinformatic tasks within the field of protein
structure prediction because of the sparseness of the contacts (i.e. few posi-
tive examples) and the great amount of data extracted from a few thousand
of proteins [26]. Different machine learning methods have been previously
applied to this problem through the years [27, 28]. The training data set

3



considered in this competition was formed by 32 million instances, 631 at-
tributes, 2 classes, 98% of negative examples. Thus, it will require methods
that can cope with high-dimensional imbalanced big data problems.

In this work we describe step-by-step the methodology with which we
have participated, under the name ’Efdamis’, in the ECBDL’14 competition,
ranking as the winner algorithm. We focused on MapReduce [29] paradigm in
order to manage this voluminous data set. Thus, we extended the applicabil-
ity of some pre-processing and classification models to deal with large-scale
problems. We will detail the decisions made during the competition that
leaded us to develop the final method we present here. This is composed of
four main parts:

1. An oversampling approach: The goal of this phase is to balance the
highly imbalanced class distribution of the given problem by replicating
randomly the instances of the minority class. To do so, we follow a
data-level approach presented in our previous work [23] for imbalanced
big data classification.

2. An evolutionary feature weighting method: Due the relative high
number of features of the given problem we needed to develop a feature
selection scheme for large-scale problems that improves the classifica-
tion performance by detecting the most significant features. To do this,
we were based on a differential evolution feature weighting scheme pro-
posed in [30] coupled with a threshold parameter to choose the most
confident ones.

3. Building a learning model: As classifier, we focused on the RF
algorithm. Concretely, we utilized the Random Forest implementation
of Mahout [31] for big data.

4. Testing the model: Even the test data can be considered big data
(2.9 millions of instances), so that, it was necessary to deploy the test-
ing phase within a parallel approach that allow us to obtain a rapid
response of our algorithm.

We have denoted this final algorithm as “Random OverSampling and
Evolutionary Feature Weighting for Random Forest” (ROSEFW-RF). To
construct this method we assessed its different components in order to un-
derstand the influence of the number of maps, the oversampling rate and the
number of features used. Additionally, we also investigated the parameters
of the Random Forest algorithm to further calibrate the performance of our
algorithm.

4



The rest of the paper is organized as follows. In Section 2, we provide
background information about the problem of contact map prediction. Sec-
tion 3 describes the MapReduce framework for big data. In Section 4, we
will describe step by step the design decisions we took during the compe-
tition, arising into the final algorithm. Finally, Section 5 summarizes the
conclusions of the paper.

2. Contact map prediction

Contact Map (CM) prediction is a bioinformatics (and specifically a pro-
tein structure prediction) classification task that is an ideal test case for a big
data challenge for several reasons. As the next paragraphs will detail, CM
data sets easily reach tens of millions of instances, hundreds (if not thou-
sands) of attributes and have an extremely high class imbalance. In this
section we describe in detail the steps for the creation of the data set used
to train the CM prediction method of [26].

2.1. Protein Structure Prediction and Contact Map

Proteins are crucial molecules for the function of all aspects of life. Pro-
teins are constructed as a sequence of amino acids. This sequence folds to
create very complex 3D shapes, and the function of a protein is a conse-
quence of its final 3D structure. Hence, knowing the structure of a protein
is a crucial step for understanding its function, but also opens the door to
many biotechnologies (protein engineering, intelligent drug design, etc.). It is
very difficult and extremely costly to experimentally determine the structure
of a protein. Protein structure prediction (PSP) methods have the aim of
estimating complete 3D models (that is, the 3D coordinates of all atoms in
a protein) of a protein’s structure from the amino acid composition of its se-
quence. PSP is generally decomposed, using a divide-and-conquer strategy,
into a set of smaller yet very challenging optimization and machine learn-
ing tasks. Among the machine learning sub-problems of PSP, contact map
(CM) prediction is possibly the hardest of them. Two amino acids of a pro-
tein sequence are said to be in contact if their euclidean distance in the 3D
structure of the protein is less than a certain threshold (typically 8Å). A CM
is a binary matrix where rows and columns are the elements of a protein
sequence and each cell indicates whether that pair of sequence elements are
in contact or not. The pairs of amino acids in a protein that are in contact
are generally around 2% of all possible pairs. The goal of a CM predictor is

5



to estimate, using classification techniques, the whole CM matrix from the
amino acid composition of a protein sequence.

2.2. Selection of proteins for the data set

In order to generate the training set for the CM prediction method we
need proteins with known structure. These are taken from the Protein Data
Bank (PDB) public repository that currently holds the structures of 80K
proteins. A subset of 2682 proteins from PDB was selected with the follow-
ing criteria: (1) Selecting structures that were experimentally known with
good resolution (less than 2Å), (2) that no proteins in the set had a pair-
wise amino-acid composition similarity of +30% and (3) that no protein
had breaks in the sequence or non-standard amino acids. From all proteins
matching three criteria we kept all proteins with less than 250 amino acids
and a randomly selected 20% of proteins of larger size (in order to limit the
number of pairs of amino acids in the data set). The set of proteins was
split 90%-10% into training and test sets. The training set had 32M pairs of
amino acids and the test set had 2.9M.

2.3. Representation

The representation used to characterise pairs of amino acids for CM pre-
diction is composed of 631 attributes, split in three main parts that are
represented in Figure 1:

1. Very detailed information about specific elements of a protein sequence.
The amino acids in the two sequence segments around the pair of amino
acids to be tested for contact will be characterised in detail, as it is as-
sumed that the segments contain most of the information determining
the contact. Moreover, a third segment is placed at the middle point
in the protein sequence between the pair. The two segments around
the target pair of amino acids will include nine amino acids and the
middle-point segment will have size 5. For each position in the segment
we include five types of information: (1) an evolutionary profile of the
sequence position: 20 continuous attributes and (2) the predictions of
four structural aspects tied to individual sequence positions: secondary
structure [32], contact number [33], solvent accessibility [33] and recur-
sive convex hull [34]: four discrete attributes. Each segment position
has 24 attributes and in total the three segments of 9+9+5 positions
have 552 attributes.

6



Figure 1: Representation of the contact map prediction data set. 1: Detail information
of selected positions in the protein sequence. 2: Statistics of the segment connecting the
target pair of amino acids. 3: Global protein information

2. Statistics about the sequence segment connecting the target pair of
amino acids. The whole segment between the two amino acids to be
tested for contact is characterised as the frequency of the 20 amino
acids types in the segment, frequency of the three secondary structure
states, five contact number states, five solvent accessibility states and
five recursive convex hull states: 38 attributes in total.

3. Global protein sequence information. The overall sequence is also char-
acterised exactly in the same way as the connecting segment above (38
attributes) plus three extra individual attributes: the length of the
protein sequence, the number of amino acids apart that the target pair
are and finally a statistical contact propensity between the amino acid
types of the pair of amino acids to be tested for contact. 41 attributes
in total.

2.4. Scoring of predictions for the ECBDL’14 big data challenge

In the ECBDL’14 big data challenge three metrics were used to asses
the prediction results: true positive rate (TPR: TP/P), true negative rate
(TNR: TN/N), accuracy, and the final score of TPR · TNR1. The final score
was chosen because of the huge class imbalance of the data set in order to
reward methods that try to predict well the minority class of the problem.
These evaluation criteria are quite different from the standard criteria used
by the PSP community to evaluate CM prediction methods [35], in which
predictors are asked to submit a confidence interval [0,1] for each predicted

1In this paper we will focus on three of these metrics: TPR, TNR and the final score

7



contact, and performance is evaluated separately for each protein by sort-
ing predictions by confident and then selecting a subset of predictions for
each protein proportional to the protein’s size. The precision of the predic-
tor (TP/(TP+FP)) for a protein is computed from this subset of predicted
contacts. Hence, the results of the ECBDL’14 competition are not directly
comparable to standard CM prediction methods, but nonetheless it is still a
very challenging big data task.

3. MapReduce

MapReduce [29, 36] is one of the most popular frameworks to deal with
Big Data. This programming paradigm was proposed by Google in 2004 and
designed for processing huge amounts of data over a cluster of machines. The
MapReduce model is composed of two main phases: Map and Reduce. In
general terms, the Map phase processes the input data set, producing some
intermediate results. Then, the Reduce phase combines these intermediate
results in some way to form the final output.

The MapReduce model is based on a basic data structure known as <

key, value > pairs. In terms of the < key, value > pairs, in the first phase,
the Map function receives a single < key, value > pair as input and generates
a list of intermediate < key, value > pairs as output. This is represented by
the form:

map(key1, value1) −→ list(key2, value2) (1)

Between the Map and Reduce functions, the MapReduce library groups
by key all intermediate < key, value > pairs. Finally, the Reduce function
takes the intermediate < key, value > pairs previously aggregated by key
and generates a new < key, value > pair as output. This is depicted by the
form:

reduce(key2, list(value2)) −→ (key2, value3) (2)

Figure 2 depicts a flowchart of the MapReduce framework.
A typical example about the way of working of MapReduce could be

count how often words occur in a big list of word records. Each record
may be composed by several words. The map function extracts from each
record the pairs < word, 1 >, which means that this word has appeared
one time, and transmits them as its output. The shuffle stage groups the

8



Figure 2: Flowchart of the MapReduce framework

< word, 1 > pairs by its corresponding word, creating a list of 1’s per word
< word, list(1′s) >. Finally, the reduce phase performs the sum of all the
1’s contained in the list of each word, providing the final count of repetition
per word.

Apache Hadoop [37, 38] is the most popular implementation of the MapRe-
duce programming model. It is an open-source framework written in Java
supported by the Apache Software Foundation that allows the processing and
management of large data sets in a distributed computing environment. In
addition, Hadoop provides a distributed file system (HDFS) that replicates
the data files in many storage nodes, facilitates rapid data transfer rates
among those nodes and allows the system to continue operating without
interruption when one node fails.

The Apache Foundation is developing the Hadoop Ecosystem with more
than 150 projects. Among them, we must highlight the scalable machine
learning library that runs over Hadoop, called Mahout [31]. It contains a
set of distributed and scalable machine learning algorithms for clustering,
recommendation systems and classification problems such as Logistic Re-
gression, Bayesian models, Support Vector Machines, and Random Forest,

9



Figure 3: Flowchart of the procedure followed during the competition

among others.

4. The ROSEFW-RF algorithm to tackle an extremely imbalanced

big data bioinformatics problem

In this section we explain in detail our ROSEFW-RF method as well as
the partial experimental results that led us to select the specific algorithms
(and adjust them) for each stage in the method. The description of the
method is chronological: we describe the timeline of the method building
process and what design decision were taken at each point of the process
based on our successive experiments.

We have divided this section in five different steps that correspond to the
main milestones (Section 4.1 to Section 4.5). Finally, Section 4.6 compares
our performance to the results achieved by the rest of participants in the
ECBDL’14 big data challenge.

Figure 3 summarizes the procedure we followed in the competition. In
Appendix A we describe the hardware and software support used in all of
our experiments.

10



4.1. Step 1: Balancing the data and Random Forest runs

This section is devoted to show the initial approach that we followed to
deal with the proposed problem. Section 4.1.1 defines the models used and
Section 4.1.2 is focused on the experimental results.

4.1.1. Description of the model

In [23], we conducted an extensive study to evaluate the performance of
diverse approaches such as oversampling, undersampling and cost-sensitive
learning for imbalance big data classification.

One of the outcomes of this extensive experimental evaluation was the
observation that oversampling is more robust than undersampling or cost-
sensitive approaches when increasing the number of maps. Therefore, despite
the necessary increment on the data size produced by oversampling approach
its use is preferred in large scale problems given that the additional cost it
introduces can be compensated by the use of a larger number of maps. The
dataset of the ECBDL’14 challenge is much larger than any of the datasets
used in [23], hence we expected oversampling to perform better than under-
sampling and cost-sensitive approaches, and indeed that was confirmed by
our preliminary experiments comparing Random Oversampling (ROS) [11]
to undersampling and cost-sensitive learning. Therefore, we will focus only
on this class imbalance strategy for the rest of the paper.

ROS randomly replicates minority class instances from the original data
set until the number of instances from the minority and majority classes is
the same or a certain replication factor is reached.

We adapted this model to tackle big data using the MapReduce paral-
lelization approach. Algorithms 1 and 2 present the pseudo-code of map and
reduce phases, respectively. Specifically, each Map process is responsible for
adjusting the class distribution in a mapper’s partition through the random
replication of minority class instances. The Reduce process is responsible
for collecting the outputs generated by each mapper to form a new balanced
data set.

To ensure that the resulting data set is appropriately shuffled, we perform
an slightly modification to the algorithm described in [23]. The main differ-
ence regarding our previous development is on the Map function. It now
emits < key, value > pairs in which the key is corresponded to a random
number that ranges in the interval [0, replication factor − 1] and the value
is the instance (Instructions 5-8 in Algorithm 1). In this way, we have scat-

11



tered the replicated minority instances through the different reducers that
will write the final data set on disk.

The number of replicas of each instance is referred as the replication factor.
For example, a replication factor of 1 means that there is only one copy of
each instance in a mappers partition, a replication factor of 2 means two
copies of each instance and so on. This replication factor is calculated with
the total majority class instances and the total instances of the class of the
instance that we want to replicate.

We would like to remark that the class distribution of the resulting dataset
is not influenced by the number of maps used, and that in all cases the more
mappers, the faster this stage will be.

Algorithm 1 Map phase for the ROS algorithm
MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the
content of an instance.

Output: <key’,value’> pair, where key’ is any Long value and value’ is the
content of an instance.

1: instance← INSTANCE REPRESENTATION(value)
2: class← instance.getClass()
3: replication factor ← COMPUTE REPLICATION FACTOR(class)
4: random← newRandom()
5: if class == majorityClass then

6: random value← random.nexInt(replication factor)
7: key ← random value

8: EMIT (key, instance)
9: else

10: for i = 0 to replication factor − 1 do

11: key ← i

12: EMIT (key, instance)
13: end for

14: end if

Initially, we focused on generating a data set with a balanced class dis-
tribution, i.e. an oversampling rate of 100%. Note that when the data set
is balanced we have increased the size of the original data. Given the high
imbalance distribution of the ECBDL’14 data set, it implies that the prepro-
cessed data set is almost double-size of the original training data set.

12



Algorithm 2 Reduce phase for the ROS algorithm
REDUCE(key, values):

Input: <key,values> pair, where key is any Long value and values is the
content of the instances.

Output: <key’,value’> pair, where key’ is a null value and value’ is the
content of an instance.

1: while values.hasNext() do
2: instance← values.getV alue()
3: EMIT (null, instance)
4: end while

Afterwards, we apply the RF algorithm to this data. To deal with big
data experiments the original RF algorithm needs to be modified so it can
effectively process all the data available. The Mahout Partial implementation
(RF-BigData) [31] is an algorithm that builds multiple trees for different
portions of the data. This algorithm is divided into two different phases: the
first phase is based on the creation of the model (See Algorithm 3) and the
second phase will estimate the classes associated with the data set using the
previous learned model (See Algorithm 4).

Algorithm 3 Map phase for the RF-BigData algorithm for the building of
the model phase MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the
content of a instance.

Output: <key’,value’> pair, where key’ indicates both the tree id and the
data partition id used to grow the tree and value’ contains a tree.

1: instance ← INSTANCE REPRESENTATION(value) {instances
will contain all instances in this mapper’s split}

2: instances← instances.add(instance)
{ CLEANUP phase: }

3: bagging ← BAGGING(instances)
4: for i = 0 to number of trees to be built by this mapper − 1 do

5: tree← bagging.build()
6: key ← key.set(partitionId, treeId)
7: EMIT (key, tree)
8: end for

13



In the first stage, each Map task builds a subset of the forest with the
data chunk of its partition and generates a file containing the built trees.
Instructions 3-7 in Algorithm 3 detail how the bagging approach is applied on
the data chunk corresponding to this map to build a set of trees. As a result
of this phase, each tree is emitted together with its identifier (partitionId),
as key-value pairs. Finally, all the solutions from the Map phase are stored.

The second stage consists of the classification of the test set. The map
phase will divide the test set in different subsets in which each mapper esti-
mates the class for the examples available in it using a majority vote of the
predicted class by the trees in the RF model built in the previous phase. As
shown by Instructions 1-5 in Algorithm 4, the actual and predicted classes
of all the instances are returned as key-value pairs. Finally, the predictions
generated by each mapper are concatenated to form the final predictions file.

Algorithm 4 Map phase for the RF-BigData algorithm for classifying phase
MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the
content of a instance.

Output: <key’,value’> pair, where key’ indicates the class of a instance and
value’ contains its prediction.

1: instance← INSTANCE REPRESENTATION(value)
2: prediction← CLASSIFY (instance)
3: lkey ← lkey.set(instance.getClass())
4: lvalue← lvalue.set(prediction)
5: EMIT (lkey, lvalue)

Please note that neither stage has an explicit Reduce function, just Map-
pers. More details about this algorithm can be found in [23].

4.1.2. Experiments

Since the application of the RF-BigData algorithm over the original data
(without preprocessing) provided us totally biased results to the negative
class, our initial aim was to check if the random oversampling approach
allowed us to obtain similar TPR and TNR. We also wanted to analyze
the influence of the number of mappers over the precision and the runtime
needed.

To evaluate the performance of our proposal we used the following pa-
rameters:

14



Figure 4: Runtime vs. TPR · TNR

• Number of mappers: 64, 192 and 256.

• Number of used features per tree: log #Features + 1.

• Number of trees: 100.

Table 1 collects the results of this initial experiment that uses a 100% of
oversampling ratio and RF as classifier, showing the TPR, TNR and TPR ·
TNR. Figure 4 plots a comparison between the precision (in terms of TPR ·
TNR) and the runtime needed (in seconds) depending on the the number of
Maps used.

Table 1: Results obtained by ROS (100%) + RF-BigData

Number of Maps TPR TNR TPR · TNR

64 0.564097 0.839304 0.473449

192 0.580217 0.821987 0.476931

256 0.579620 0.820509 0.475584

Our conclusions from this initial experiment are:

• Although we previously balanced the class distribution, we can observe
a very low TPR compared to the TNR in all the experiments. We also
appreciated that with a lower number of mappers this difference tends
to be even higher.

15



• Within the proposed parallel framework, the RF algorithm does not
dispose of the full information about the whole addressed problem.
Hence, it is expected that the precision obtained decreases according
as the number of instances in the training set is reduced, that is, the
number of maps is incremented. The variability of the TPR and TNR
rates avoid to obtain higher TPR · TNR rates with a lesser number of
mappers.

• In terms of runtime, as expected, we can observe a clear reduction as
the number of mappers is increased. Note that due to the fact that we
only disposed of 192 cores for our experiments, we could not expect an
linear speed up when using more than 192 mappers.

In conclusion, the classifier kept biased to the negative class. Hence, the
objective of our experiments is clear: to increase the TPR rate.

4.2. Step 2: Increasing the oversampling rates to increment the True Positive

Rate

In order to bias our method towards the positive examples to further bal-
ance TPR and TNR, we decided to augment the ratio of positive instances
in the resulting preprocessed data set. To do this, we increment the over-
sampling percentage in small steps from 100% to 130%. At this stage, we
only focused on 64 and 192 mappers, and the parameters for RF-BigData
were kept the same of the previous study.

Table 2 presents the results obtained with the idea of increasing the over-
sampling ratio. Figure 5 shows how the TPR and TNR rates vary depending
on the oversampling rate and the number of mappers.

The conclusions of this second round of experiments were:

• The increment of the oversampling rate has played an important role
to find out a balance between the TPR and TNR rates that results
in a higher precision (TPR · TNR). This behavior has been produced
independently on the number of mappers used. Nevertheless, with a
reduced number of mappers (64) we still obtained greater differences
between the TPR and the TNR in comparison to the results obtained
with 192 mappers.

• We were able to almost find a balance in the performance of both classes
when an oversampling ratio of 130% and 192 mappers were used. As

16



Table 2: Results obtained with different ROS oversampling rates

Oversampling Ratio Number of Maps TPR TNR TPR · TNR

100% 64 0.564097 0.839304 0.473449

192 0.580217 0.821987 0.476931

105% 64 0.585336 0.824809 0.482791

192 0.603388 0.803819 0.485015

115% 64 0.626581 0.796581 0.499122

192 0.650081 0.768483 0.499576

130% 64 0.670189 0.758622 0.508420

192 0.704772 0.716172 0.504738

Figure 5: TPR and TNR through different oversampling ratios

17



summary, the higher ROS percentage, the higher TPR and the lower
TNR.

4.3. Step 3: Detecting relevant features via evolutionary featuring weighting

This section presents the second preprocessing component we decided to
use in order to improve the overall precision. Section 4.3.1 describes the
proposed preprocessing techniques and Section 4.3.2 shows the experimental
results.

4.3.1. Description of the model

Since the ECBDL’14 data set contains a fairly large number of features
(631), we decided to include a new preprocessing component to our model
that allowed us to consider the relevance of the features. We aimed at elimi-
nating redundant, irrelevant or noisy features by computing the importance
of them in terms of weights.

To do so, we focused on the evolutionary approach for Feature Weighting
(FW) proposed in [30] called “Differential Evolution for Feature Weighting”
(DEFW). FW can be viewed as a continuous space search problem in which
we want to determine the most appropriate weights for each feature. The
DEFW method is based on a self-adaptive differential evolution algorithm
[39] to obtain the best weights.

DEFW starts with a population of individuals. Each one encodes a weight
vector Weights[1..D] = (W1,W2, ...,WD), where D is the number of features,
which is a weight for each feature of the problem, that are initialized ran-
domly within the range [0,1]. DEFW enters in a loop in which mutation and
crossover operators generate new potential solutions. Finally, the selection
operator must decide which generated trial vectors should survive in the pop-
ulation of the next generation. The Nearest Neighbor rule [40] was used to
guide this operator. To implement a self-adaptive DE scheme, independent
of configuration parameters, DEFW uses the ideas established in [41].

As such, this method is unable to deal with big data problems. To the best
of our knowledge, there is no any proposed approach to enable evolutionary
FW algorithms to address these volumes of data. Therefore, we developed
a MapReduce Approach for FW. Algorithms 5 and 6 detail the map and
reduce operations, respectively.

• As usual, the Map phase divides the training set in several subsets
that we denote as Mapj , where j ranges in [0, m]. Each Map task

18



will perform a whole evolutionary FW cycle. That is, a complete loop
of mutation, crossover and selection operators for a given number of
iterations. To do so, we use the DEFW method over the given subset of
examples (Instruction 3 in Algorithm 5). The configuration parameters
used are: iterations = 500, iterSFGSS = 8, iterSFHC =20, Fl=0.1 and
Fu=0.9. Please note that the different mapper instances, although they
are applied with data partitions of similar volume, may have varying
runtimes. The MapReduce framework starts the reduce phase as the
first mapper has finished its computation. It will emit a resulting vector
of weights Weightsj [1..D], measuring the importance of each feature
regarding this subset of the whole training set.

• The reduce phase will consist of the iterative aggregation of all the
Weightsj[1..D], provided by the maps, as a single one Weights. Ini-
tially the Weights of every feature are established to 0,Weights[1..D] =
{0, 0, ..., 0}. As the maps finish their computation, the Weights[1..D]
variable will sum the feature importance obtained in each map with the
current Weights (Instruction 6 in Algorithm 6). The proposed scheme
only uses one single reducer that is run every time that a mapper is
completed. With the adopted strategy, the use of a single reducer is
computationally less expensive than use more than one. It decreases
the Mapreduce overhead (especially network overhead) [42, 43].

• At the end of the reduce phase, the resulting Weights will be used
together with a threshold Tf to select those characteristics that have
been ranked as the most important ones.

Figure 6 illustrates the MapReduce process for FW, differentiating be-
tween the map and reduce phases. It puts emphasis on how the single reducer
works and it forms the final Weights vector.

4.3.2. Experiments

We applied the DEFW method to the balanced training data set gener-
ated with the ROS technique. It was necessary because the DEFW method
may be also affected by the class imbalanced distribution. Moreover, due to
the wrapper nature of the DEFW method, we were obliged to use a high
number of maps (32768) that resulted in less than 1000 original instances
per map. Otherwise, the runtime of the mappers is excessively high. Due to

19



Algorithm 5 Map phase for the DEFW algorithm
MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the
content of a instance.

Output: <key’,value’> pair, where key’ indicates the data partition id
(partitionId) used to perform the DEFW and value’ contains the pre-
dicted Weightsj [1..D].

1: instance← INSTANCE REPRESENTATION(value)
2: instances← instances.add(instance)
{ CLEANUP phase: }

3: Weightsj[1..D]= DEFW (instances)
4: lkey ← lkey.set(partitionId)
5: lvalue← lvalue.set(Weightsj [1..D])
6: EMIT (lkey, lvalue)

Algorithm 6 Reduce phase for the DEFW algorithm
MAP(key, value):

Input: <key,value> pair, where key is the data partition id used in the Map
Phase and value is the content of a Weightj [1..D] vector.

Output: <key’,value’> pair, where where key’ is a null value and value’ is
the resulting feature Weights[1..D] vector.

1: instance← INSTANCE REPRESENTATION(value)
2: {Initially Weights[1..D] = 0, 0, ..., 0}
3: while values.hasNext() do
4: Weightsj[1..D] = values.getV alue()
5: for i= 1 to D do

6: Weights[i] = Weights[i] +Weightsj[i]
7: end for

8: end while

9: EMIT (null, Weights[1..D])

20



Figure 6: MapReduce Feature Weighting scheme

time restrictions, we did not investigate further the influence of the number
of maps in the quality of the selected features.

After the FW process we ranked the features by weight and selected a
feature subset of highly ranked features. We performed preliminary experi-
ments (not reported) to choose the most suitable selection threshold. From
the original 631 features we only kept the subset of 90 features with the
highest weights.

With the selected features, we repeated the experiment using the over-
sampling+RF approach with an oversampling ratio ranging from 100% to
130%. Table 3 shows the results obtained. Figure 7 compares the runtime
needed to perform the building of the RF classifier by using the original set
of features and using the 90 selected characteristics.

From this third stage of experiments we concluded that:

• The use of DEFW showed to provide a greater precision compared to
the previous results. Using a smaller set of features than before, the
RF-BigData model has been able to increase its performance.

• Comparing Tables 2 and 3, we can observe that the selection of features

21



Table 3: Results obtained with the subset of 90 features provided by the FW method

Oversampling Ratio Number of Maps TPR TNR TPR · TNR

100% 64 0.593334 0.837520 0.496929

192 0.610626 0.818666 0.499899

115% 64 0.641734 0.804351 0.516179

192 0.661616 0.778206 0.514873

130% 64 0.674754 0.777440 0.524580

192 0.698542 0.746241 0.521281

Best result from the previous stages 0.670189 0.758622 0.508420

Figure 7: Runtime obtained with/without FW (64 mappers)

22



has mainly increased the performance in the TPR, but also we improve
the classification done in the negative class. However, we observed
differences between the TPR and the TNR rates even using 130% of
oversampling percentage. Should we increment more the oversampling
rate to balance the precision obtained in both classes? (see Section
4.5).

• In terms of runtime, the reduction of the number of features has shown
a notable reduction of the time requirements due to the reduction of
the size of the problem.

Hence, the introduction of feature selection has resulting in a large leap
forward in the performance of our algorithm.

4.4. Step 4: Investigating RF parameters

Due to the lack of balance between the TPR and TNR of our method,
even in the best performing variants, we decided to investigate the influence
of internal number of features used by RF. We focused on the best two
oversampling ratios from the previous section and we increment the number
of features used. Instead of using the log #Features + 1, that resulted in 8
features, we incremented to 15 and 25. Table 4 presents the results of this
experiment.

Table 4: Results obtained varying the number of internal feature used by RF

Number of Maps Number of Used Features TPR TNR TPR · TNR

115% 15 0.640253 0.807126 0.516765

115% 25 0.639390 0.808483 0.516936

130% 15 0.671731 0.781033 0.524644

130% 25 0.669531 0.784856 0.525486

Best result from the previous stages 0.674754 0.777440 0.524580

As result of this experiment, we realized that the increment of the internal
number of features of RF tended to go further in the final precision (TPR
· TNR). However, if we compare Tables 3 and 4, most of the improvements
have been done in the negative class. Therefore, once again, the question
“how can we balance the TPR and TNR results?” needed to be addressed.

23



4.5. Step 5: Combining ROS with very large oversampling rates and feature

weighting

Our previous steps produced successful improvements in the precision
of the model. However, we again get high differences among the precision
obtained in the positive and the negative classes. In order to mitigate this
issue, we came back to the solution adopted in the Step 2 (Section 4.2),
increasing the ROS rate.

In this last stage of experiments we focused on the specific configuration
that had obtained the best performance up to that point: 64 mappers, 90 fea-
tures selected by the FW model and 25 internal feature for RF. Afterwards,
we increased the ROS ratio until the TPR was larger than the TNR. Table
5 collects the results of this experiment and Figure 8 plots the evolution of
TPR and TNR when the oversampling ratio is augmented.

Table 5: Result obtained with huge ROS oversampling rates: 64 mappers, 90 features,
and 25 internal features for RF

Oversampling Ratio TPR TNR TPR · TNR

130% 0.671279 0.783911 0.526223

140% 0.695109 0.763951 0.531029

150% 0.705882 0.753625 0.531971

160% 0.718692 0.741976 0.533252

170% 0.730432 0.730183 0.533349

180% 0.737381 0.722583 0.532819

Best result from the previous stages 0.669531 0.784856 0.525486

In conclusion, we observe that we needed a huge oversampling rate of
170% to balance the TPR and TNR rates. This increment in conjunc-
tion with all the previous steps generated the best overall submission of
the ECBDL’14 big data challenge.

4.6. Comparison with the rest of the methods

In this section we collect the best results achieved from the Top 5 partic-
ipants of the competition to merely compare the precision obtained. Table
6 presents these final results. A brief description of each method as well as
a qualitative runtime comparison between them, based on participant’s self-
reported information, is available at http://cruncher.ncl.ac.uk/bdcomp/
BDCOMP-final.pdf. Moreover, the timeline and ranking of the prediction
submissions made by the participants throughout the competition are avail-
able at http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=ranking.

24



Figure 8: TPR vs. TNR varying the ROS percentage

Table 6: Comparison with the rest of the participants

Team TPR TNR TPR · TNR

Efdamis 0.730432 0.730183 0.533349

ICOS 0.703210 0.730155 0.513452

UNSW 0.699159 0.727631 0.508730

HyperEns 0.640027 0.763378 0.488583

PUC-Rio ICA 0.657092 0.714599 0.469558

25



This table reflects the difficulties that this bioinformatics problem has
brought to most of the contestants. We can observe that find a balance
between the TPR and TNR rates has been the main barrier for all of the
participants of the competition.

5. Conclusions

In this work we have presented the winner algorithm of the ECBDL’14
data mining competition, called ROSEFW-RF. We have dealt with an im-
balance bioinformatics big data application with different learning strategies.
We have combined several preprocessing stages such as random oversampling
and evolutionary feature weighting before building a learning model. All of
our approaches have been based on MapReduce as parallelization strategy.

In this particular problem, the necessity of balancing the TPR and TNR
ratios emerged as a difficult challenge for most of the participants of the
competition. In this sense, the results of the competition have shown the
goodness of the proposed MapReduce methodology. Particularly, our modu-
lar ROSEFW-RF methodology composed of several, highly scalable, prepro-
cessing and mining methods has shown to be very successful in this challenge
and outperform the other participants.

As future work, we would like to further investigate the proposed evolu-
tionary feature selection approach, by analyzing the influence of the number
of maps and other base classifiers. Moreover, the development of mixed
strategies between undersampling and oversampling approaches or instance
reduction techniques (such as [43]) may also boost the classification perfor-
mance in imbalanced big data problems.

Acknowledgment

Supported by the Research Projects TIN2011-28488, P10-TIC-6858 and
P11-TIC-7765. I. Triguero holds a BOF postdoctoral fellowship from the
Ghent University.

Appendix A. Hardware and Software tools

The experiments have been carried out on sixteen nodes in a cluster: The
master node and eleven compute nodes. Each one of these compute nodes
has the following features:

26



• Processors: 2 x Intel Xeon CPU E5-2620

• Cores: 6 per processor (12 threads)

• Clock Speed: 2.00 GHz

• Cache: 15 MB

• Network: Gigabit Ethernet (1 Gbps)

• Hard drive: 2 TB

• RAM: 64 GB

The master node works as the user interface and hosts both Hadoop mas-
ter processes: the NameNode and the JobTracker. The NameNode handles
the HDFS, coordinating the slave machines by the means of their respective
DataNode processes, keeping track of the files and the replications of each
HDFS block. The JobTracker is the MapReduce framework master process
that manages the TaskTrackers of each compute node. Its responsibilities are
maintaining the load-balance and the fault-tolerance in the system, ensuring
that all nodes get their part of the input data chunk and reassigning the
parts that could not be executed.

The specific details of the software used are the following:

• MapReduce implementation: Hadoop 2.0.0-cdh4.4.0. MapReduce
1 runtime(Classic). Cloudera’s open-source Apache Hadoop distribu-
tion [44].

• Maximum maps tasks: 192.

• Maximum reducer tasks: 1.

• Machine learning library: Mahout 0.8.

• Operating system: Cent OS 6.4.

Note that the total number of cores of the cluster is 192.

27



References

[1] E. Alpaydin, Introduction to Machine Learning, 2nd Edition, MIT Press,
Cambridge, MA, 2010.

[2] F. Zhang, J. Y. Chen, Data mining methods in omics-based biomarker
discovery, in: Bioinformatics for Omics Data, Springer, 2011, pp. 511–
526.

[3] H. Mamitsuka, M. Kanehisa, Data Mining for Systems Biology, Springer,
2013.

[4] J. Bacardit, P. Widera, N. Lazzarini, N. Krasnogor, Hard data analytics
problems make for better data analysis algorithms: Bioinformatics as
an example, Big data 2 (3) (2014) 164–176.

[5] P. Larraaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A.
Lozano, R. Armaanzas, G. Santaf, A. Prez, V. Robles, Machine learning
in bioinformatics, Briefings in Bioinformatics 7 (1) (2006) 86–112.

[6] I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, Berlin;
New York, 1986.

[7] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques
in bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[8] V. López, A. Fernández, S. Garćıa, V. Palade, F. Herrera, An insight
into classification with imbalanced data: Empirical results and cur-
rent trends on using data intrinsic characteristics, Information Sciences
250 (0) (2013) 113 – 141.

[9] R. Blagus, L. Lusa, Class prediction for high-dimensional class-
imbalanced data, BMC Bioinformatics 11 (1) (2010) 523.

[10] R. Blagus, L. Lusa, Smote for high-dimensional class-imbalanced data,
BMC Bioinformatics 14 (1) (2013) 106.

[11] G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, A study of the
behaviour of several methods for balancing machine learning training
data, SIGKDD Explorations 6 (1) (2004) 20–29.

28



[12] A. Fernández, S. Rı́o, V. López, A. Bawakid, M. del Jesus, J. Beńıtez,
F. Herrera, Big data with cloud computing: An insight on the computing
environment, mapreduce and programming frameworks, WIREs Data
Mining and Knowledge Discovery 4 (5) (2014) 380–409.

[13] X. Wu, X. Zhu, G. Wu, W. Ding, Data mining with big data, IEEE
Transactions on Knowledge and Data Engineering 26 (1) (2014) 97–107.

[14] I. Palit, C. Reddy, Scalable and parallel boosting with mapreduce, IEEE
Transactions on Knowledge and Data Engineering 24 (10) (2012) 1904–
1916.

[15] G. Caruana, M. Li, Y. Liu, An ontology enhanced parallel SVM for
scalable spam filter training, Neurocomputing 108 (0) (2013) 45 – 57.

[16] A. Haque, B. Parker, L. Khan, B. Thuraisingham, Evolving big
data stream classification with mapreduce, in: Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, 2014, pp. 570–
577. doi:10.1109/CLOUD.2014.82.

[17] C. P. Chen, C. Zhang, Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data, Information Sciences
275 (2014) 314–347.

[18] K. Kambatla, G. Kollias, V. Kumar, A. Grama, Trends in big data an-
alytics, Journal of Parallel and Distributed Computing 74 (2014) 2561–
2573.

[19] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, A re-
view on ensembles for the class imbalance problem: Bagging-, boosting-,
and hybrid-based approaches, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 42 (4) (2012) 463–484.

[20] B. Krawczyk, M. Wozniak, B. Cyganek, Clustering-based ensembles for
one-class classification, Information Sciences 264 (0) (2014) 182 – 195.
doi:http://dx.doi.org/10.1016/j.ins.2013.12.019.

[21] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.

[22] Y. Qi, Random forest for bioinformatics, in: C. Zhang, Y. Ma (Eds.),
Ensemble Machine Learning, Springer US, 2012, pp. 307–323.

29



[23] S. del Rı́o, V. López, J. M. Beńıtez, F. Herrera, On the use of mapre-
duce for imbalanced big data using random forest, Information Sciences
285 (0) (2014) 112–137.

[24] G. D. F. Morales, A. Bifet, D. Marron, Random forests of very fast deci-
sion trees on gpu for mining evolving big data streams, in: Proceedings
of ECAI 2014, 2014, pp. 615–620.

[25] Evolutionary computation for big data and big learning workshop. data
mining competition 2014: Self-deployment track (2014).
URL http://cruncher.ncl.ac.uk/bdcomp/

[26] J. Bacardit, P. Widera, A. Marquez-Chamorro, F. Divina, J. S. Aguilar-
Ruiz, N. Krasnogor, Contact map prediction using a large-scale ensem-
ble of rule sets and the fusion of multiple predicted structural features,
Bioinformatics 28 (19) (2012) 2441–2448.

[27] M. Punta, B. Rost, Profcon: novel prediction of long-range contacts,
Bioinformatics 21 (13) (2005) 2960–2968.

[28] J. Cheng, P. Baldi, Improved residue contact prediction using support
vector machines and a large feature set, BMC Bioinformatics 8 (1).

[29] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[30] I. Triguero, J. Derrac, S. Garćıa, F. Herrera, Integrating a differential
evolution feature weighting scheme into prototype generation, Neuro-
computing 97 (0) (2012) 332 – 343.

[31] A. M. Project, Apache mahout (2013).
URL http://mahout.apache.org/

[32] D. Jones, Protein secondary structure prediction based on position-
specific scoring matrices, J Mol Biol 292 (1999) 195–202.

[33] J. Bacardit, M. Stout, J. D. Hirst, A. Valencia, R. E. Smith, N. Krasno-
gor, Automated alphabet reduction for protein datasets, BMC Bioinfor-
matics 10 (2009) 6.

30



[34] M. Stout, J. Bacardit, J. D. Hirst, N. Krasnogor, Prediction of recursive
convex hull class assignments for protein residues, Bioinformatics 24 (7)
(2008) 916–923.

[35] B. Monastyrskyy, K. Fidelis, A. Tramontano, A. Kryshtafovych, Evalu-
ation of residue-residue contact predictions in CASP9, Proteins: Struc-
ture, Function, and Bioinformatics 79 (S10) (2011) 119–125.

[36] J. Dean, S. Ghemawat, Map reduce: A flexible data processing tool,
Communications of the ACM 53 (1) (2010) 72–77.

[37] T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly Media,
Inc., 2012.

[38] A. H. Project, Apache hadoop (2013).
URL http://hadoop.apache.org/

[39] S. Das, P. Suganthan, Differential evolution: A survey of the state-of-
the-art, IEEE Transactions on Evolutionary Computation 15 (1) (2011)
4–31.

[40] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21–27.

[41] F. Neri, V. Tirronen, Scale factor local search in differential evolution,
Memetic Computing 1 (2) (2009) 153–171.

[42] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun,
Map-reduce for machine learning on multicore, in: Advances in Neural
Information Processing Systems, 2007, pp. 281–288.

[43] I. Triguero, D. Peralta, J. Bacardit, S. Garćıa, F. Herrera, MRPR: A
mapreduce solution for prototype reduction in big data classification,
Neurocomputing 150 (20) (2015) 331–345.

[44] Cloudera, Cloudera distribution including apache hadoop (2013).
URL http://www.cloudera.com

31


