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Abstract. In this article we present RoSeS (Really Open Simple and Efficient

Syndication), a generic framework for content-based RSS feed querying and ag-

gregation. RoSeS is based on a data-centric approach, using a combination of

standard database concepts like declarative query languages, views and multi-

query optimization. Users create personalized feeds by defining and composing

content-based filtering and aggregation queries on collections of RSS feeds. Pub-

lishing these queries corresponds to defining views which can then be used for

building new queries / feeds. This naturally reflects the publish-subscribe nature

of RSS applications. The contributions presented in this article are a declara-

tive RSS feed aggregation language, an extensible stream algebra for building

efficient continuous multi-query execution plans for RSS aggregation views, a

multi-query optimization strategy for these plans and a running prototype based

on a multi-threaded asynchronous execution engine.

1 Introduction

In its origins the Web was a collection of semi-structured (HTML) documents con-

nected by hypertext links. This vision has been valid for many years and the main effort

for facilitating access to and publishing web information was invested in the develop-

ment of expressive and scalable search engines for retrieving pages relevant to user

queries. More recently, new web content publishing and sharing applications that com-

bine modern software infrastructures (AJAX, web services) and hardware technologies

(handheld mobile user devices) appeared on the scene. The web contents published by

these applications is generally evolving very rapidly in time and can best be charac-

terized by a stream of information entities. Google News, Facebook and Twitter are

among the most popular examples of such applications, but the list of web applications

generating many different kinds of information streams is increasing every day.

In our work we are interested in RSS and ATOM as standard formats for publish-

ing information streams. Both formats can be considered as the continuous counterpart

of static HTML documents for encoding semi-structured data streams in form of dy-

namically evolving documents called feeds. They both use very similar data models
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and follow the design principles of web standards (openness, simplicity, extensibility,

genericity) for generating advanced web applications.

Figure 1 illustrates the usage of RSS4 in the context of social networks. User Bob is

registered to various different social media sites like Facebook, Twitter, Flickr, YouTube

etc. as a publisher and a reader. All of these sites propose different kinds of services for

publishing and annotating any kind of web contents (web pages, images, videos). Bob

is also an active member of different groups publishing photos on Flickr. He rapidly

feels the need of a unique interface for observing the different information streams at

a glance. This kind of service can be provided by social web sites or other mashup

interfaces like NetVibes or iGoogle in form of widgets for building mashup pages (see

the upper left box of figure 1).

Fig. 1: Social network streams scenario Fig. 2: RSS aggregation infrastructure

A more flexible data-centric solution consists in aggregating RSS streams. As shown

in figure 1, Bob can use an RSS aggregator to subscribe to different kinds of RSS ser-

vices proposed by the various social networks and media sites. This aggregator provides

a uniform interface for creating new personalized information streams composing and

filtering items published by collections of source feeds. A more detailed description of

how RSS aggregation can be used for combining social information streams is described

in Section 3.1.

RSS is also widely used by professional information publishers like journals and

magazines for broadcasting news on the web. Combined with an adapted publish-

subscribe middle-ware, this offers an efficient way for the personalized delivery of

news. RSS aggregators like GoogleNews enable the personalization by defining and

publishing RSS views over collections of news feeds. Each such view is defined by

a declarative query which merges and filters news of a possibly important number of

source feeds (for example all major French journals). Following the publish-subscribe

principle, these views can be reused for building other streams and the final result is an

acyclic graph of union/filtering queries on all the sources. One of the issues tackled in

this article concerns the optimization of such plans.

4 In the following we will use the term RSS for both formats, RSS and ATOM.



In this article we present RoSeS (Really Open Simple and Efficient Syndication),

a generic framework for content-based RSS feed querying and aggregation. Our frame-

work is based on a data-centric approach, based on the combination of standard database

concepts like declarative query languages, views and multi-query optimization. Users

create personalized feeds by defining and composing content-based filtering and aggre-

gation queries on collections of RSS feeds.

RoSeS is based on a simple but expressive data model and query language for

defining continuous queries on RSS streams. Combined with efficient web crawling

strategies and multi-query optimization techniques, it can be used as a continuous RSS

stream middle-ware for dynamic information sources. This is illustrated in Figure 2.

The main contributions presented in this article are:

– A declarative RSS feed aggregation language for publishing large collections of

structured queries/views aggregating RSS feeds,
– An extensible stream algebra for building efficient continuous multi-query execu-

tion plans for RSS streams,
– A flexible and efficient cost-based multi-query optimization strategy for optimizing

large collections of publication queries,
– A running prototype based on multi-threaded asynchronous execution of query

plans.

The rest of the article is organized as follows. Section 2 describes the overall RoSeS

architecture. The RoSeS data model, language and algebra are presented in Section 3

and correspond to the first important contribution of our article. Section 4 is devoted

to the second important contribution about query processing and multi-query optimiza-

tion. Related work is presented in Section 5 and Section 6 discusses future work.

2 RoSeS Architecture

The RoSeS system is composed of five modules for processing RSS feeds and manag-

ing meta-data about users, publications and subscriptions. As shown in Figure 3, RSS

feeds are processed by a three layered architecture where the top layer (acquisition) is

in charge of crawling the collection of registered RSS feeds (in the following called

source feeds), the second layer (evaluation) is responsible for processing a continuous

query plan which comprises all publication queries and the third layer (diffusion) deals

with publishing the results according to the registered subscriptions (see Section 3). The

remaining two modules (catalog and system manager) provide meta-data management

services for storing, adding, updating and deleting source feeds, publication queries and

subscriptions.

Acquisition: The main task of this module is to transform evolving RSS documents into

a continuous stream of RoSeS items which can be processed by the evaluation module.

This transformation includes an efficient refresh strategy optimizing the bandwidth us-

age. In [HAA10], we propose a best-effort strategy for refreshing RSS documents under

limited bandwidth, which introduces the notion of saturation for reducing information

loss below a certain bandwidth threshold. The freshness efficiency is not in the scope

of this paper.



Fig. 3: RoSeS System architecture

Evaluation: The core of the RoSeS system is an algebraic multi-query plan which

encodes all registered publication queries. The evaluation of this query plan follows

an asynchronous pipe-lined execution model where the evaluation module (1) contin-

uously evaluates the set of algebraic operations according to the incoming stream of

RoSeS items, and (2) manages the addition, modification and deletion of publication

queries.

Diffusion: This module is responsible for transforming RoSeS items into different out-

put formats and notifying new items to corresponding user subscriptions. The goal of

this module is to define the way items are rewritten with annotations, in given formats

(SMS, email, RSS/Atom feed. . . ).

3 RoSeS Data Model and Language

3.1 The RoSeS language

The RoSeS language provides three main functionalities: registering new source feeds

(acquisition level), defining new publications (evaluation level) and creating subscrip-

tions (diffusion level). We focus here on the description of the main component, the

publication language, completed with few details about registering and subscriptions.

The publication language has been designed to respond to several desiderata: to be

expressive but simple to use, to facilitate most common operations and to be appropri-

ate for large scale multi-query optimization. In RSS syndication, the most commonly

used aggregation is based on large unions combined with filtering. RoSeS enforces the

simplicity in use of its declarative publication language, by favoring the expression of

large unions, combined with targeted filtering and joins.

A publication query contains three clauses:

– A mandatory from clause, which specifies the input feeds that produce output

items, called main feeds.



– Zero, one or several join clauses, each one specifying a join with a secondary feed.

Secondary feeds only produce annotations (no output) to main feed elements.
– An optional where clause for filtering conditions on main or secondary feeds.

For instance, suppose Bob organizes with his friends an outing to a rock con-

cert. He defines a publication RockConcertStream, including items about concerts from

his friends messages (feeds FriendsFacebookStream and FollowedTwitterStream), and

rock concert announces from feed EventAnnounces. Notice that the from clause al-

lows defining groups (unions) of feeds, identified by variables and used then to express

conditions on the group in the where clause. Here filtering conditions are expressed

on EventAnnounces (title contains ’rock’) and on grouped feeds (description contains

’concert’):

create feed RockConcertStream

from (FriendsFacebookStream | EventAnnounces as $ca | FollowedTwitterStream) as $r

where $ca[title contains ’rock’] and $r[description contains ’concert’];

Then Bob, who is a fan of the Muse rock group, creates feed MusePhotoStream with

items about Muse, annotated with photos. Items come from feeds RockConcertStream

(those talking about Muse) and MuseNews, while photos come from two secondary

feeds: FriendsPhotos with photos published by his friends and MusicPhotos (only for

category ’rock’). Annotation is realized by join, each item from the main feed ($main)

is annotated with photos in the last 3 months from secondary feed items having similar

titles. Notice that a join specifies a window on a group of secondary feeds, a main feed

(through a variable) and a join predicate.

create feed MusePhotoStream

from (RockConcertStream as $r | MuseNews) as $main

join last 3 months on (MusicPhotos as $m | FriendsPhotos)

with $main[title similar window.title]

where $r[description contains ’Muse’] and $m[category = ’rock’];

The registering language allows defining new source feeds coming either from ex-

ternal RSS/Atom feeds, or from internal materialized publications. Note that RoSeS

does not allow item transformation in publications (virtual feeds). However, transfor-

mations are possible if the resulting feed is materialized and registered as a new source

feed at the acquisition level. Transformations are expressed through XSLT stylesheets

that transform a RoSeS item structure into an other. Transformations may use annota-

tions produced by joins, e.g. include corresponding links to photos of feed MusePhoto-

Stream at materialization time.

The examples below illustrate the registering of an external RSS feed and of a ma-

terialized publication.

register feed http://muse.mu/rss/news as MuseNews;

register feed MusePhotoStream apply ’IncludePhotos.xsl’ as MuseWithPhotos;

The subscription language allows defining subscriptions to existing publication /

source feeds. A subscription specifies a feed, a notification mode (RSS, mail, etc.), a

periodicity and possibly a transformation. Subscription transformations are expressed

by XSLT stylesheets, but unlike registering transformations, the output format is free.



The following example shows two subscriptions to the RockConcertStream publica-

tion: the first one extracts item titles (’Title.xsl’ transformation) and sends them by mail

every 3 hours, the second one simply outputs an RSS feed refreshed every 10 minutes.

subscribe to RockConcertStream apply ’Title.xsl’ output mail ’me@mail.org’ every 3 hours;

subscribe to RockConcertStream output file ’RockConcertStream.rss’ every 10 minutes;

3.2 Data model and algebra

The RoSeS data model borrows from state-of-the art data stream models, while propos-

ing specific modeling choices adapted to RSS/Atom syndication and aggregation.

A RoSeS feed corresponds to either a registered external RSS/Atom (source) feed,

or to a publication (virtual) feed. A feed is a couple f = (d, s), where d is the feed de-

scription and s is a RoSeS stream. Description is a tuple, representing usual RSS/Atom

feed properties: title, description, URL, etc.

A RoSeS stream is a data stream of annotated RoSeS items. More precisely, a

RoSeS stream is a (possibly infinite) set of elements e = (t, i, a), where t is a times-

tamp, i a RoSeS item, and a an annotation, the set of elements for a given timestamp

being finite. Annotation links joined items to an element. An annotation is a set of cou-

ples (j, A), where j is a join identifier and A is a set of items - the annotation is further

detailed in the join operator below.

RoSeS items represent data content conveyed by RSS/Atom items. Despite the

adoption of an XML syntax, RSS and Atom express rather flat text-oriented content

structure. Extensions and deeper XML structures are very rarely used, therefore we

made the choice of a flat structure, as a set of typed attribute-value couples, including

common RSS/Atom properties: title, description, link, author, publication date, etc. Ex-

tensibility may be handled by including new, specific attributes to RoSeS items - this

enables both querying any feed through the common attributes and addressing specific

attributes (when known) of extended feeds.

A RoSeS window expresses subsets of a stream’s items valid at various moments.

More precisely, a window w on a stream s is a set of couples (t, I), where t is a times-

tamp and I is the set of items of s valid at t. Note that (i) a timestamp may occur

only once in w, and (ii) I contains only items that occur in s before (or at) timestamp

t. We note w(t) the set of items in w for timestamp t. Window are used in RoSeS

only for computing joins between streams. RoSeS uses sliding windows of two types:

time-based (last n units of time) and count-based (last n items).

Publication definition is based on five main operators for composing RoSeS streams.

We distinguish conservative operators (filtering, union, windowing, join), that do not

change the content of the input items, i.e. they output only already existing items, from

altering operators (transformation), that produce new items.

Subscribed publications are translated into algebraic expressions as shown in the

following example for RockConcertStream and MusePhotoStream (for space reasons

abbreviated feed names and a simplified syntax are used).



RConcert = σ′concert′∈desc(FFacebook ∪ σ′rock′∈title(EAnnounces) ∪ FTwitter)

MPhoto = (σ′Muse′∈desc(RConcert) ∪MNews) ⋊⋉title∼w.title

ωlast 3m(σcat=′rock′(MPhotos) ∪ FPhotos)

The algebra is defined in the rest of this section and the evaluation of algebraic

expressions is detailed in section 4.

A central design choice for the RoSeS language is to express only conservative

operators in the publication language. The advantage is that conservative operators

have good query rewriting properties (commutativity, distributivity, etc.), which favor

both query optimization and language declarativeness (any algebraic expression can

be rewritten in a normalized form corresponding to the declarative clauses of the lan-

guage). Expressiveness is preserved first by allowing join, the most powerful operator,

filtering, union and windowing in the publication language. Next, transformation can

be used in defining new materialized source feeds. Notice that transformations may use

join annotations, and consequently improve (indirectly) the expressive power of joins.

Filtering outputs only the stream elements that satisfy a given item predicate, i.e.

σP (s) = {(t, i, a) ∈ s|P (i)}. Item predicates are boolean expressions (using conjunc-

tions, disjunctions, negation) of atomic item predicates that express a condition on an

item attribute; depending on the attribute type, atomic predicates may be:

– for simple types: comparison with value (equality, inequality).

– for date/time: comparison with date/time values (or year, month, day, etc.).

– for text: operators contains (word(s) contained into a text attribute), similar (text

similar to another text).

– for links: operators references/extends (link references/extends an URL or host),

shareslink (attribute contains a link to one of the URLs in a list).

Note that RoSeS allows applying text and link predicates to the whole item - in this

case the predicate considers the whole text or all the links in the item’s attributes.

Union outputs all the elements in the input streams, i.e.
⋃
(s1, ..., sn) = s1∪ ...∪sn.

Union may be expressed explicitly, by enumerating input streams, or implicitly, through

a query over the existing feeds.

Windowing produces a window on the input stream conforming to the window spec-

ification, i.e. ωt,spec(s) and ωc,spec(s) define a time-based, respectively a count-based

sliding window, where spec expresses a duration, respectively a number of items.

Join takes a (main) stream and a window on a (secondary) stream. RoSeS uses a

conservative variant of the join operation, called annotation join, that acts like a semi-

join (main stream filtering based on the window contents), but keeps a trace of the

joining items by adding an annotation entry. A join ⋊⋉P (s, w) of identifier j outputs

the elements of s for which the join predicate P is satisfied by a non-empty set I of

items in the window, and adds to them the annotation entry (j, I). More precisely, ⋊⋉P

(s, w) = {(t, i, a′)| (t, i, a) ∈ s, I = {i′ ∈ w(t)| P (i, i′)}, |I| > 0, a′ = a ∪ {(j, I)}}.

Transformation modifies each input element following a given transformation func-

tion, i.e. τT (s) = {T (t, i, a)| (t, i, a) ∈ s}. It is the only altering operator, whose use is

limited to produce subscription results or new source feeds, as explained above.



4 Query Processing

4.1 Query graphs

Query processing consists in continuously evaluating a collection of publication queries.

This collection is presented by a multi-query plan composed of different physical oper-

ators reflecting the algebraic operators presented in Section 3.2 (union, selection, join

and window). Query execution is based on a pipe-lined execution model where a query

plan is transformed into a graph connecting sources, operators and publications by inter-

operator queues or by window buffers (for blocking operators like join). A query plan

for a set of queries Q can then be represented as a directed acyclic graph G(Q) as

shown in Figure 4. Graph in Figure 4 represents one possible physical query plan for

the following set of publications: p1 = σ1(s1 ∪ s2), p2 = (s3 ∪ s4) ⊲⊳1 ω1(s5),
p3 = σ2(p1 ∪ s6). As we can see, window operators produce a different kind of output,

window buffers, which are consumed by join operators. View composition is illustrated

by an arc connecting a publication operator to an algebraic operator (p1 is connected to

union ∪3). Observe also that transform operators are applied after publication operators.

Fig. 4: Evaluation module architecture

The next section presents query graph processing and the underlying cost-model.

Section 4.3 introduces our optimization techniques to improve processing performances.

4.2 Query evaluation and cost-model

As explained in the previous section, a set of publication queries is translated into a

multi-query plan composed of operators connected by read/write queues or by window



buffers. New items are continuously arriving to this graph and have to be consumed by

the different operators. We have adopted a multi-threaded pipe-lining execution model

which is a standard approach in continuous query processing architectures. Query exe-

cution is done as follows. The query graph is observed by a scheduler that continuously

decides which operators (tasks) must be executed (see Figure 4). The scheduler has at

his disposal a pool of threads for executing in parallel a fixed number of threads (the

naive solution of attaching one thread to each operator rapidly becomes inefficient /

impossible due to thread management overhead or system limitations). The choice of

an inactive operator to be evaluated is influenced by different factors depending on the

input buffer of each operator (the number and/or age of the items in the input queue).

Based on this execution model, we define a cost model for estimating the resources

(memory, processor) necessary for the execution of a query plan. Compared to the cost

estimation of a traditional query plan which is based on the size of the input data, the

estimation parameters of a continuous plan must reflect the streaming nature of the data.

We adapt a simplified version of the model presented in [CKSV08] and define the cost

of each operator op as a function of the publishing rate R(b) of its input buffer(s) b (and

the size S(w) of input windows w, for join operators).

Operator Output rate Memory Processing cost

σp(b) sel(p) ∗R(b) const const ∗R(b)
∪(b1, ..., bn)

∑
1≤i≤n

R(bi) 0 0

⋊⋉p (b, w) sel(p) ∗R(b) const R(b) ∗ S(w)
ωd(b) 0 S = const or S = d ∗R(b) const

Table 1: Cost model

As we can see in table 1, the cost of each operator strongly depends on the pub-

lishing rate of its input buffer(s). The selection operator assumes a constant execution

cost for each item (a more precise model could take account of the size of each item,

but since items are in general small text fragments we ignore this detail in our model).

Memory cost of selection is also constant (the size of the operator plus the size of one

item). The publishing rate of the selection operator reduces the rate of its input buffer

by the selectivity factor sel(p) ∈ [0, 1] depending on the selection predicate p. Union

generates an output buffer with a publishing rate corresponding to the sum of its in-

put buffer rates. We assume zero memory and processing cost since each union can be

implemented by a set of buffer iterators, one for each input buffer. The join operator

generates an output buffer with a publishing rate of sel(p) ∗ R(b) where R(b) is the

publishing rate of the primary input stream and sel(p) ∈ [0, 1] corresponds to the prob-

ability that an item in b joins with an item in window s using join predicate p. This

is due to the behavior of the annotation join: one item is produced by the join opera-

tor when a new item arrives on the main stream and matches at least one item in the

window. Then the item is annotated with all matching window items. So the processing

cost of the join operator corresponds to the product R(b) ∗ S(w), where S(w) is the

size of the join window w. The window operator transforms the stream into a window



buffer where the size depends on the size of the window (count-based window) or on

the time-interval d and the input buffer rate R(b) (time-based window). It is easy to see

that the input buffer rate of each operator strongly influences the global cost of the exe-

cution plan (the sum of the cost of all operators) and we will describe in the following

section how we can reduce this rate by pushing selections and joins towards the source

feeds of the query plan.

4.3 Query graph optimization

The main originality of our framework with respect to other multi-query optimization

solutions lies in the explicit integration of a cost model. This makes it more expres-

sive than other approaches without cost model. As mentioned before, our optimization

strategy is based on the heuristic that selections and joins should be applied as early as

possible in order to reduce the global cost of the plan. We use traditional rewriting rule

for algebraic expressions (distributivity of selection over union, commutativity of se-

lection with join and transforming selections into a cascade of selections). Observe that

commutativity with join is possible because of the particular nature of our annotation

joins which do not modify the input items and guarantee that all subsequent selections

only apply to these items. We will describe the whole process in the following.

The optimization process can be decomposed into two phases: (a) a normalization

phase which applies all rewriting rules for pushing selections towards their source feeds

and for distributing joins over union and (b) a factorization phase of the selection pred-

icates of each source based on a new cost-based factorization technique.

Query normalization: The goal of the first phase is to obtain a normalized query plan

where all filtering selections are applied first to each source before applying joins and

unions. This is possible by iteratively applying distributivity of selections on unions

and commutativity between selection and join. It is easy to show that we can obtain an

equivalent plan which is a four level tree where the leaves of the tree are the sources in-

volved in the query (first level), the second level nodes are the selection operators which

can be applied to each source (leaf), the third level are window/join operators operators

applied to the results of the selections and the final (fourth) level are unions applied

to the results of the selections/windowed-joins to build the final results. Normalization

also flattens all cascading selection paths into a single conjunctive selection. This mod-

ification might increase the cost of the resulting normalized graph with respect to the

original graph. However, as we will show at the end of this section this increase is only

temporary and compensated by the following factorization phase.

We will explain our approach by a simple example without join operations. Sup-

pose the three publication queries shown in Figure 5, publication p3 (p3 = σd(p2∪ s5))
is defined over another publication p2, with a filtering operation (σa∧c). Here, the nor-

malization process consists to push all the selection operations through the publica-

tion tree until the sources. This lets us obtain the normal form shown in Figure 6:

p3 = σa∧c∧d(s2) ∪ σa∧c∧d(s3) ∪ σa∧c∧d(s4) ∪ σd(s5)

Query factorization: Normalization generates a global query plan where each source

s is connected to a set of selection predicates P (s). Factorization consists in build-

ing a minimal filtering plan for each source. To find to best operator factorization



Fig. 5: A query plan for publications p1, p2 and p3

Fig. 6: Normalized query graph

we proceed in two steps: we first generate for each source a predicate subsumption

graph which contains all predicates subsuming the set of predicates in P (s). Each

subsumption link in this graph is labeled by a weight corresponding to the output rate

of the source node (source or filtering operation). It is easy to show that any sub-tree

of this graph covering the source s (root) and all predicates in P (s) corresponds to

a filtering plan which is equivalent to the original plan where the cost is obtained by

the sum of all arc weights in the tree. Based on this observation we then try to find a

Steiner tree [CCC+98], which corresponds to a sub-tree of minimal cost covering all

initial predicates. The idea of this procedure is illustrated in Figure 7 showing a sub-

sumption graph for the source s2 and a minimal Steiner tree of this graph (in bold).

The selection operators corresponding to s2 are (fig. 6) σa∧b, σa∧c, σa∧c∧d. The sub-

sumption graph is composed of these three operators, the operators corresponding to

the sub-expressions of the three initial operators: σa, σb, σc, σd, σa∧d and σc∧d, and the

subsumption arcs between all these operators (σa → σa∧b, σb → σa∧b, ...). Subsump-

tion graph arcs are populated with weights, which represent the estimated evaluation

cost of using that arc. They correspond to the product between the involved source’s

publishing rate and the estimated selectivity of the operator predicate at the tail of the

arc (e.g., cost(σa → σa∧b) = rate(s2) · selectivity(a)). Then a Steiner tree algorithm

can be run over the subsumption graph to find the best factorization tree. In our example

with selection operators for source s2, the resulting tree can be seen in Figure 7.

The Steiner tree problem [CCC+98] is known to be NP-complete and we have de-

veloped an approximate algorithm which exploits the particular properties of a filtering

plan (all outgoing arcs of a node have the same weight and the weight is monotoni-

cally decreasing with the depth of the node in the graph). This algorithm is based on a



Fig. 7: Subsumption Graph for s2 and Steiner Tree

local heuristic for dynamically building the subsumption graph by choosing the most

selective subsuming predicates. Whereas it will find only an approximate solution, it

can incrementally add new predicates generated by new publication queries. A detailed

description of the whole process is outside the scope of this paper.

It is easy to show that the final filtering plan has less cost than the initial filtering

plan. Normalization can increase the cost of the filtering plan by replacing cascading

selection paths by a conjunction of all predicates on the path. However, it is easy to show

that the subsumption graph regenerates all these paths and the original plan is a sub-tree

of this graph. Since the Steiner tree is a minimal sub-tree for evaluating the initial set

of predicates, its cost will be at most be the cost of the initial graph. For example, the

cost for source s2 in the original plan (Figure 5) roughly is twice the publishing rate of

s2 (both selectios a ∧ b and a ∧ c are applied to all items generted by s2). This cost is

reduced to its half in the final Steiner tree by introducing the additional filter a.

5 Related Work

There is a large amount of previous work on processing data streams and providing new

continuous algebras and query languages [CDTW00,GÖ03,LMT+05,LTWZ05,ABW06]

[WDR06,KLG07]. Most of these languages are based on a snapshot semantics (the re-

sult of a continuous query at some time instant t correspond to the result of a traditional

one-shot query on a snapshot of its argument) and redesign relational operators with a

pipe-lining execution model using inter-operator queues. They also introduce different

kinds of time-based and count-based window operators (sliding, tumbling, landmark)

for computing aggregates and joins [GÖ03]. The semantic of our data stream model and

algebra is strongly influenced by this work. The main originality of our algebra with re-

spect to existing algebra concerns our definition of annotation join which facilitates the

rewriting and optimization of the algebraic query plans.

Since RSS and Atom are encoded with XML, and we also explored existing ap-

proaches for querying XML streams. XML streaming systems are concerned with the

continuous evaluation of XPath [BCG+03,GS03,PC03] and XQuery [KSSS04,BFF+07]



expressions. The rich semi-structured semantics of XML increases the complexity of

the underlying query languages and their implementation. RSS feeds are simple streams

of flat XML fragments which do not need highly expressive XML path expressions and

we decided to follow a simple attribute/value approach which is more efficient and suf-

ficiently expressive for encoding RSS data.

Multi-query optimization (MQO) has first been studied in the context of DBMS

where different users could request complex (one-shot) queries simultaneously to the

system [Sel88]. Most MQO techniques exploit the fact that multiple queries can be eval-

uated more efficiently together than independently, because it is often possible to share

state and computation [DGH+06]. Solutions using this observations are based on pred-

icate indexing [WGMB+09], sharing states in global NFA [DFFT02,DGH+06]), join

graphs [HDG+07] and sub-query factorization [SG90,CDTW00,ABW06,CCD+03].

We followed the latter approach which appeared to be the most promising for a cost-

based multi-query optimization solution.

Publish/subscribe systems aim to solve the problem of filtering an incoming stream

of items (generally generated by a large collection of source streams) according to topic-

based or content-based subscriptions. Different techniques propose efficient topic-clustering

algorithms [LYD+07] [MZV07], appropriate subscription index structures [KCM09]

[FJL+01] [CPY07], and distributed stream processing [RMP+07] [JA06]). These tech-

niques mainly focus on the parallel processing and efficient indexing of conjunctive

keyword queries, which are of less expressive power than our aggregation queries. How-

ever, they share certain issues and solutions which are conceptually similar to the MQO

problem mentioned before.

Finally, we also must relate YahooPipes![Yah] which is very similar to our approach

of feed aggregation. YahooPipes! is a web application for building so-called pipes gen-

erating mashups from several RSS feeds and other external web sources/services. A

pipe is a visual representation of the Yahoo! Query Language (YQL [YQL][Kol09])

which is an SQL-like language for building tables aggregating information from exter-

nal web sources (and in particular RSS feeds). To our knowledge, pipes are relational

expressions querying a database of storing the items of each feeds. Whereas YQL is

more expressive than our algebra, all queries are evaluated independently on demand

which excludes MQO techniques as proposed by our solution.

6 Conclusion and future work

In this article we have presented RoSeS, a large-scale RSS feed aggregation system

based on a continuous multi-query processing and optimization. Our main contributions

are a simple but expressive aggregation language and algebra for RSS feeds combined

with an efficient cost-based multi-query optimization technique. The whole RoSeS ar-

chitecture, feed aggregation language and continuous query algebra have been imple-

mented [CATV10]. This prototype also includes a first Steiner tree-based multi-query

optimization strategy as described in Section 4.3.

The most important issue we are addressing now concerns two intrinsic dimensions

of dynamicity in continuous query processing systems like RoSeS. Users who contin-

uously modify the query plan by adding, deleting and updating publication queries in-



troduce the first dimension of dynamicity. The second one is brought by sources, which

generally have a time-varying publishing behavior in terms of publishing rate and con-

tents. Both dimensions strongly influence the evaluation cost of a query plan and need

a continuous re-optimization strategy in order to compensate performance loss.

A standard approach [ZSA09,YKPS07] to this problem consists in periodically re-

placing a query plan P by a new optimized plan O (query plan migration). In order

to control the trade-off between optimization cost and execution cost, the optimization

of a plan only occurs when the difference of cost between P and O exceeds a certain

threshold. The problem here is to estimate this difference efficiently without rebuild-

ing the complete optimal plan. We are currently studying such a cost-based threshold

re-optimization approach adapted to our context. The basic idea is to keep the subsump-

tion graphs generated for each source during optimization. These subsumption graphs

can be maintained at run-time by adding and deleting source predicates and updating

the statistics concerning each source (selectivity, publishing rate). Using an appropriate

threshold measure, it is then possible to recompute the optimal Steiner trees and update

the corresponding query plan fragments. A particular sub-problem here is to define an

incremental approximate Steiner tree algorithm for reducing optimization cost.
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[CKSV08] M. Cammert, J. Krämer, B. Seeger, and S. Vaupel. A cost-based approach to adap-

tive resource management in data stream systems. In TKDE, volume 20, pages

230–245, 2008.

[CPY07] B. Chandramouli, J. M. Phillips, and J. Yang. Value-based notification conditions

in large-scale publish/subscribe systems? In VLDB, pages 878–889, 2007.

[DFFT02] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and Scalable

Filtering of XML Documents. In ICDE, pages 341–344, 2002.

[DGH+06] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White. Towards ex-

pressive publish/subscribe systems. In EDBT, pages 627–644, 2006.



[FJL+01] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering al-

gorithms and implementation for very fast publish/subscribe systems. In SIGMOD

Record, pages 115–126, 2001.
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