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ABSTRACT

Motivation: In microarray gene expression studies, the number of replicated microarrays is 
usually small because of cost and sample availability, resulting in unreliable variance 
estimation and thus unreliable statistical hypothesis tests. The unreliable variance estimation 
is further complicated by the fact that the technology-specific variance is intrinsically 
intensity-dependent. 
Results: The Rosetta error model captures the variance-intensity relationship for various 
types of microarray technologies, such as single-color arrays and two-color arrays. This 
error model conservatively estimates intensity error and uses this value to stabilize the 
variance estimation. 
We present two commonly used error models: the intensity error-model for single-color 
microarrays and the ratio error-model for two-color microarrays or ratios built from two 
single-color arrays. We present examples to demonstrate the strength of our error-models in 
improving statistical power of microarray data analysis, particularly, in increasing
expression detection sensitivity and specificity when the number of replicates is limited.
Availability: Rosetta error models are available in the Rosetta Resolver® system and 
Rosetta Luminator™ system for gene-expression analysis. These technology-specific error 
models are designed and optimized for different microarray technologies, such as 
Affymetrix® and Agilent Technologies.
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1 INTRODUCTION

DNA microarrays are widely used to study gene expressions (Hughes, et al., 2000).
Fluorescent intensities of hybridizations from microarray spots measured by optical
scanners provide indirect measurements of messenger-RNA abundances in biological 
samples of interest. It has been demonstrated that the hybridization intensity is 
approximately proportional to the RNA abundance (Lockhart, et al., 1996). Both single-
color and two-color microarrays are commonly used in hybridization experiments. A 
single-color microarray, such as that from Affymetrix, Inc. provides intensity 
measurements from one hybridized biological sample. A two-color microarray, such as 
that from Agilent Technologies, Inc. measures expression ratios between two hybridized 
samples that are labeled with two different fluorescent dyes, such as Cy5 and Cy3.

The primary application of microarrays is to study changes in gene expression under 
different conditions, such as different phenotypes or different treatment perturbations. 
Microarray measurements are subject to many sources of variation, ranging from array-
lot variability to washing conditions, and many different errors that can affect the 
measurement results. To improve the measurement precision, we typically hybridize 
several replicated microarrays in each condition group. Then we apply statistical 
hypothesis tests to analyze the change in measured intensities. When comparing two 
conditions, we may apply a t-test or Wilcoxon test. When comparing more conditions in a 
more complicated factorial design, we may use an ANOVA test. In these statistical tests, 
the underlying null-hypothesis is that intensity measurement has no change. A p-value is 
usually the result of the test, which indicates the probability of observing a discrepancy as 
large as, or larger than, the given observation under the null. When the p-value computed 
from a microarray measurement for a particular gene (or RNA sequence in general) is 
small, e.g., less than 0.01, we can reject the null and accept the alternative hypothesis that 
the gene expression is different in one or more conditions. One caution in interpreting test 
results is that intensity changes may not necessarily imply gene expression change. 
Because we cannot directly measure gene expression, the indirect measurement using 
hybridization intensities can have changes caused by factors other than gene expression.
Proper experiment designs can help reduce the biases in the result of hypothesis tests; 
however, we are detecting intensity changes instead of expression changes in microarray 
measurements. 

1.1 Variance Estimation

Most hypothesis tests explicitly or implicitly estimate the variance within the same 
condition group. For example, in a t-test, within-group variance comes from the standard 
deviation estimation. In an ANOVA test, variance is the within-group mean sum-of-
squares. If the between-group difference (in a t-test) or between-group variance (in an 
ANOVA) is significantly larger than the within-group variance, we reject the null 
hypothesis. A reliable estimation of the within-group variance is critical in hypothesis 
tests.

Unfortunately, reliable variance estimations are not always available in microarray gene-
expression studies. Limited by experimental material costs and biological sample costs, 
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we often cannot obtain a sufficient number of replicates in each group. Commonly, two 
or three replicates per group are all what we can expect. In a t-test example of two 
replicates of expression ratios, we only have 2-1=1 degree-of-freedom for the within-
group variance estimation, and the result is unreliable. To improve reliability, some 
permutation-based methods have been developed to stabilize the variance estimation 
(Tusher, et al., 2001). However, when the number of replicates is very small (two or 
three, for example), permutation methods do not work properly either.

1.2 Errors in Microarray Measurements

We can categorize measurement errors as systematic and random. Systematic errors bias 
the measurements in a direction we may be able to approximately estimate. If we 
estimate the size and the direction of the bias, we can correct or reduce the systematic 
error. Some systematic errors common to microarray measurements include non-zero 
background intensity levels, differences between two labeling dyes, positional bias due to 
array production process, hybridization, or scanning, etc. Many data preprocessing 
methods, such as background-subtraction, normalization, detrending, and fluorescent-
reversal combination have been developed to reduce the impact of the systematic errors 
on gene-expression analyses (Schadt, et al., 2002; Yang, et al., 2002; Quackenbush,
2002). Random errors are measurement fluctuations left after the systematic error 
correction. The exact value and direction of the random fluctuation is not predictable, but 
the variance of the random error may follow certain rules. Error models are built to 
capture the predictable behavior of the variance. Random error in microarray 
measurement is the focus of this paper.

The intensity variance of microarray measurement is intensity dependent. This 
phenomenon has been discussed in the literature (Tu, et al., 2002). Many different error 
models have also been developed to describe the microarray measurement variance 
(Chen, et al., 1997; Li and Wong 2001). Although error models may have different 
forms, the observation is that the absolute intensity-variances tend to be larger in higher 
intensities. In general, there are two types of approaches in modeling the intensity-
dependent measurement error. One approach is to build a regression curve to fit the 
intensity versus variance relationship (Jain, et al., 2003). The form of the regression 
equation, for example, LOWESS regression, is purely data-driven. The other approach 
(the explicit approach) is to model the errors from various sources or types, such as 
additive and multiplicative errors (Rocke and Durbin, 2001; Theilhaber, et al., 2001; 
Dror, et al., 2003). The Rosetta error model uses the latter approach. There are several 
advantages of the explicit approach. It is based on understanding the actual cause of error, 
so that it is less susceptible to over-fitting, such as the variance underestimation problem 
caused by intensity saturations.

2 SYSTEM AND METHODS

We developed the Rosetta error model to improve variance estimation using a small 
number of replicates (Stoughton and Dai, 2002). Specifically, we explicitly model main 
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error sources in microarray measurements and then apply the model-predicted 
measurement error as the error floor to help stabilize the variance estimation. This 
approach has been leveraged across multiple array technologies and sample types to 
improve the specificity and the sensitivity in differential gene-expression detections 
(Agy, et al., 2003; Falls, et al., 2003; Geiss, et al., 2002; Geiss, et al., 2003; Helfrich, et 
al., 2003; Hori, et al., 2003; Liu, et al., 2002; Marini, et al., 2003; Richards, et al., 2003; 
Schirra, et al., 2002; Smith, et al., 2003; Thimmapaya, et al., 2003; Tonouchi, 2002; 
Wout, et al., 2003).

2.1 Intensity Error Model

In general, the hybridization intensity measurement I is a function of the RNA transcript 
abundance θ in the sample plus errors:

),()(),( jifjiI ij εθ += (1)

where i is the index of the microarray to which the sample is hybridized, j is the targeted 
sequence (the spot) index in the microarray, and ε is the random measurement error. Here 
we assume systematic errors have been removed during data preprocessing using 
available methods (Yang, et al., 2002; Quackenbush, 2002). Often, a linear relationship 
between the abundance and the intensity is assumed:

ijijf θαθ ⋅≈)( (2)

where αj is the binding efficiency of the given sequence probe. This simplified 
relationship may not be valid at high abundance. In the Rosetta error model method
described in this paper, we do not model this intensity-abundance relationship and do not 
make an assumption of the linearity, which differs from some published intensity 
modeling approaches (Li and Wong, 2001). Here we are only interested in modeling the 
intensity error ε.



Rosetta Inpharmatics LLC Prepared for submission to publication

5

Fig.1. Demonstration of intensity-dependent measurement variations in microarrays. The 
data come from a same-versus-same two-color microarray where the same RNA sample 
is hybridized in both the red (Cy5) and the green (Cy3) channels. The horizontal axis is 
the mean of two measurements from the two channels. The vertical axis is the standard 

deviation of the two measurements. Each microarray spot is shown as one gray dot in the 
figure. For comparison, two overlapping black lines are modeled intensity errors in the 

red and the green channels computed from Equation (7), where POISSON=5 and 
FRACTION=0.2. The two lines become separated at low intensities because the red and 
the green channels have different levels of additive noise. In this example, the additive 

noise in the green channel is higher than in the red channel.

In replicated microarray experiments, we observe that the standard deviation of the 
repeated intensity measurement increases with the mean intensity (Fig. 1). We can model 
the intensity-dependent measurement error by breaking it into various error sources based 
on their different statistical characteristics and different causes:

),(),(),(),(),( jijijijiji spotfracPoissonadd εεεεε +++= . (4) 

 
The first term is the additive error, which is independent from the specific binding 
intensity. It may include two components, background and cross-hybridization (non-
specific binding):

),(),(),( jijiji xhybbkgadd εεε += . (5)

The background noise may come from array substrate contamination, fluorescent 
residuals on the microarray after washing, and electronic noise in the scanner amplifier. 
The background noise mean and variance are denoted by:
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The cross-hybridization noise has its mean and variance as well:
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where βj is the overall non-specific binding efficiency of the probe and φi is the overall 
non-specific hybridization concentration. Because it is often difficult to separately 
estimate the background noise and the cross-hybridization noise, we estimate them 
together as the total additive noise:
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For Affymetrix® GeneChip® arrays, mismatch probes provide information about the total 
additive noise including the cross-hybridization noise. The mean of the additive noise is 
estimated and removed during data preprocessing (Hubbell, et al., 2002; Liu, et al.,
2002). We need only focus on the variance of the noise. For other microarrays that do not 
have mismatch probes, we usually can estimate only the background noise but not the 
cross-hybridization noise. The mean of cross-hybridization noise often cannot be 
removed during background subtraction in data preprocessing. The resulting expression
signal intensity in Equation (8) is the combination of both specific and cross 
hybridizations.

The second term in Equation (4) is the Poisson error.  A Poisson process has its standard 
deviation proportional to the square root of its mean, and it is modeled as:

( )
( ) ),(),(

0),(

jiIPOISSONjiVar

jiE
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Poisson

⋅=

=

ε
ε

where POISSON is a fixed parameter in the current model for a given microarray 
technology. The Poisson error represents the randomness of the hybridization binding 
process, which is a stochastic Poisson process. The existence of Poisson noise in 
microarray measurements is reported in other publications as well (Tu, et al., 2002).

The third term in Equation (4) is the fractional (multiplicative) error. Fractional error is 
used to model the linear relationship at high intensities observed in microarray 
experiments, such as the one illustrated in Fig. 1. It has its mean and variance as

( )
( ) ( )2),(),(
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jiIFRACTIONjiVar
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where FRACTION is a fixed parameter in the current model for a given microarray 
technology. The standard deviation of the fractional error increases linearly with an 
increase in measured intensities. There are many factors that cause fractional errors in 
microarray measurements. The variation of array spotting or probe synthesis introduces 
multiplicative error in intensity measurements. Scanned images can suffer from laser 
speckle noise that has a Raleigh distribution, of which the standard deviation is 
proportional to the mean.

The last term εspot in Equation (4) is called the spot defect noise. It describes spot 
imperfections caused by dust, physical damage, and contaminations. It is array and spot 
specific, and it is usually not predictable. Most microarray feature extraction software 
provides QC flags that identify those spots failed in image analysis. However, spots that 
have passed QC are not necessarily of equal quality. The error model should consider the 
quality differences among different spots in different arrays. However, this term may be
less relevant to the two-color microarrays since the artifacts are usually shared by both 
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channels for a given spot. Their effects are usually canceled when computing expression 
ratios.

When data are analyzed from a probe sequence deposited multiple times on an array, the 
variation of these within-array replicates only comes from the intra-array error. When 
data from identical probe sequences are analyzed across multiple arrays hybridized with 
the same sample, the measurement suffers from both intra- and inter-array (or inter-
channel) variations. We may decompose each of the first three terms in Equation (4) into 
its intra-array/channel and inter-array/channel components. For example, the additive
error can be written as

)()(),( _int_int jiji addraadderadd εεε += . (6)

For intensities from two-color microarrays, there is an additional dye-related bias. The 
dye-bias is sequence dependent. It is usually difficult to predict. Rather than modeling it 
explicitly in Equation (4), we rely on the fluorescent-reversal (dye-swapping) method in 
experimental design to cancel out the dye-bias (Stoughton and Dai, 2002).

2.1.1 Model Development and Parameter Estimation
Our goal in error modeling is to estimate conservatively the measurement error for a 
particular microarray technology. We prefer a conservative error model to keep the false-
positive detection rate low. Depending on available measurement information from the 
feature extraction software, we typically construct two error estimates and then pick up 
the larger one as final intensity error. These two error estimates are the modeled error and 
the measured error.

2.1.1.1 Modeled Error
The variance of the modeled error is estimated as

),(),(),(),( 2222
mod jiIFRACTIONjiIPOISSONjiji addeled ⋅+⋅+= σσ . (7)

The variance can be viewed as the Taylor-series expansion of the intensity-dependent 
variance. The technology-dependent parameters POISSON and FRACTION are estimated 
for a given microarray technology type (array, labeling/amplification, hybridization 
protocol, scanning equipment, and feature extraction software) during error model 
development. They are fixed as long as the technology remains unchanged. Poisson and 
fraction noises can be slightly different in different microarray technologies, but they are 
usually stable over time for a given technology. The additive noise can change 
significantly from one array to another so that the additive component in Equation (7) is 
estimated on an array-by-array basis. 

There are many possible methods to model the additive component. Most feature 
extraction software provides some background estimations based on pixels that surround 
feature spots. For genome arrays, we may use features in the lowest percentiles of 
intensity distribution to estimate the background, and these estimates are carried out for a 
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region on the array or the entire array. Negative control features on the array can also 
provide information about the background and non-specific hybridization information.
Based on our observations, background measured from surrounding pixels is usually not 
very reliable. It often has weak correlation with intensity inside the feature when the 
sequence of the feature has no expression. Regardless of what background measurement 
method we use, for a given feature, it is more reliable to use the averaged information 
from a surrounding region much larger than one spot to model the additive term in 
Equation (7).

When developing an error model, we estimate the value for parameters POISSON and
FRACTION in Equation (7). For different microarrays, POISSON is typically in the range 
of 0-20 for data from a 16-bit scanner, and FRACTION is in the range of 0.1-0.25. We 
use the same-versus-same technical replicates to estimate proper values of these 
parameters. These replicated arrays come from the same RNA sample, and are processed 
(inverse-transcription, amplification, labeling, hybridization, and so forth) separately, so 
the data contain most of the technical variations in the microarray data acquisition 
process. One example is shown in Fig. 1. For two replicated intensity profiles, the x-axis 
plots their mean and the y-axis plots their standard deviation. Each gray dot represents a
feature spot. The modeled error, the square-root of Equation (7), is plotted as a black line. 
We establish these two parameters in a technology-specific fashion so that the modeled 
error curve fits to the top of the standard deviation distribution. Details of error model 
parameter estimation are provided in Appendix-B. Using this method, our modeled error 
is conservative and includes both intra-array/channel and inter-array/channel variations.
FRACTION controls the goodness-of-fit at the high-intensity range (the right side of the 
plot). POISSON controls the goodness-of-fit at the mid-level intensity range. After we 
find the proper value of these two parameters for a given microarray technology, we fix 
POISSON and FRACTION as constants in later applications. Table 1 lists some examples 
of the Rosetta error model parameters for several commonly used microarrays.

Table 1. Examples of the Rosetta error model parameters for some commonly used 
microarray technologies

Microarray Technology FRACTION POISSON RANDOM
Affymetrix® GeneChip® 18-micron 

arrays (e.g., HG-U133A)
0.1 5 0.35

Affymetrix GeneChip 20-micron arrays
(e.g., HG-U95A)

0.1 10 0.35

Affymetrix GeneChip 24-micron arrays
(e.g., RG-U34A)

0.15 20 0.3

Agilent SurePrint® microarrays 0.12 3 0.05
GE Healthcare (formerly Amersham 

Biosciences) CodeLink arrays
0.18 5 0.05

The modeled error in Equation (7) has important applications. It makes variance 
standardization possible when deriving the parameter xdev [see (13)] for differential 
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expression p-value calculations. The intensity transformation method for intensity 
variance stabilization can also be derived from the error model (Weng, 2003). 

2.1.1.2  Measured Error

Equation (7) does not include the spot defect term in Equation (4). Many feature 
extraction software applications provide summary statistics, such as standard deviations, 
of pixel variations within and surrounding each spot. Many spot defects, such as dust and 
scratches, can significantly increase the pixel standard deviations. Because we usually 
subtract the background from the signal intensity

),(),(),( jiIjiIjiI bkgsignal −= , (8)

we can model the variance of the intra-array measured error as
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where σbkg_pixel is the background pixel standard deviation, σsignal_pixel is the signal pixel 
standard deviation, Nbkg is the number of pixels used in the mean background calculation, 
and Nsignal is the number of pixels used in the mean signal calculation. Pixel standard 
deviations are provided from microarray feature extraction software. Here we want to 
convert the pixel standard deviation to the standard error of the spot mean. Limited by the 
scanner resolution and array spot non-uniformity, the pixel intensity measurements are 
usually highly correlated. When we convert the pixel standard deviation to the standard 
error of the spot (mean pixel intensity of multi-pixels), we need to discount the 
redundancy in pixel measurements. In Equation (9) RANDOM is an error model 
parameter that defines the statistically independent fraction of the number of pixel 
measurements. The RANDOM parameter has the interpretation that it is the fraction of 
pixels that is truly random. The typical range of RANDOM is about 0.05-0.35. During 
error model development, we usually need to adjust this parameter first. When the 
additive error in Equation (7) is estimated from the standard errors of the background 
pixels, this parameter RANDOM controls the error model fit at low intensities (the left 
side of the plot in Fig. 1). To determine the proper RANDOM, we examine the error 
model fit with data of technical replicates. More details of the parameter estimation are 
discussed in Appendix-B. After we find the proper value of this parameter for a given 
microarray technology during error model development, we fix RANDOM as a constant 
in later applications.

Pixel standard deviations also carry information about intra-array/channel additive, 
Poisson, and fractional variances. Measured errors are composed of

),()()()(),( 22
_int

2
_int

2
_int

2 jijjjji spotfracraPoissonraaddrameasured σσσσσ +++= . (10)
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Fig. 2 shows the comparison between the modeled error as a black line and the measured
error in gray dots. Because measured error includes only intra-array/channel variations 
and modeled error includes both intra- and inter-array/channel variations, the measured 
error is lower than the modeled error for most features. But for some small number of 
features, the measured error can be significantly higher than the modeled error. Those are 
the spots that have large spot-defect errors defined in the last term of Equation (4) and 
Equation (10). This term is not covered in the modeled error in Equation (7).

Fig.2. Comparison between the modeled error and the measured error (estimated from the 
pixel fluctuation as in Equation (9)). The data are the same as those in Fig. 1. The 

horizontal axis is the intensity measurements from the red and the green channel. The
vertical axis is the measured error from Equation (9) of the red and the green channel.
Each microarray spot is shown as two gray dots in the figure, one from the red channel 
and the other from the green channel. For comparison, the two overlapping black lines 

are modeled errors in the red and the green channels computed from Equation (7).

When combining the modeled error and the intra-array measured error together to cover 
all terms defined in the error model in Equation (4),  we conservatively select the larger 
one as the final error estimation of intensity I(i, j):

( )),(),,(max),( mod jijiji measuredeledI σσσ = (11)

2.2 Ratio Error Model

One of the most common microarray applications is to compare gene expression in two 
different conditions. For two-color arrays, samples of these two conditions can be labeled 
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with two different fluorescent dyes, then mixed and hybridized to one array. The two 
fluorescent measurements (red and green) provide two intensities for comparison. For 
single-color arrays, these two samples are hybridized independently to two arrays. Then 
two separate intensity measurements are compared. Here we name the baseline intensity 
measurement as I1(i,j) and the experimental (perturbed) intensity as I2(i,j). Their 
estimated intensity errors are σ1(i,j) and σ2(i,j). Log-ratio of these two intensities is 
commonly used to measure their differences. We often use 2 or 10 based logarithm in 
computing the log ratio. We define the log-ratio as the 10-based logarithm of I2 divided 
by I1 in this paper:









=
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),(
log),(

1

2
10 jiI

jiI
jilratio (12)

Often, one or both intensities can be zero or negative after background subtraction. To 
avoid the difficulty in computing log ratios with zero or negative intensities, we may set a 
positive floor to the intensity values in (12). Because the lowest positive scanner reading 
is one, we often set intensities below one equal to one before the log-ratio computation.

In differential expression analysis, besides the log-ratio, we are also interested in
knowing the error of the log-ratio propagated from intensity error. The log-ratio error 
estimation is particularly important in the p-value estimation for differential expression 
calls. We define a new parameter xdev as

),(),(

),(),(
),(

2
1

2
2

12

jiji

jiIjiI
jixdev

σσ +

−
= . (13) 

 
Xdev is the intensity difference divided by the error of the difference. It standardizes the 
variance of the intensity difference. At the null condition (same-versus-same experiment), 
the parameter xdev has its distribution very close to normal N(0,1) distribution 
(Stoughton and Dai, 2002). This property simplifies the p-value calculation in differential 
expression analysis. When the xdev is small, the log-ratio error can be approximated as

.
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It can be proved (see Appendix-A) that Equation (14) is the first-order approximation of 
Equation (15) in a Taylor expansion. Equation (15) is the approximation of log-ratio error
when intensity errors are relatively small:
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3 ERROR MODEL APPLICATIONS

The estimated error can be used in many applications together with measurements 
themselves to improve the analysis result. The possibility of leveraging the available 
error estimation from the error model is broad. Here we provide only a few examples.

3.1 Error-weighted Replication Combining

In microarray experiments, several replicated hybridizations for one treatment condition
are usually generated to improve measurement precision and accuracy. We need to 
combine them to one averaged result. We prefer the averaged result that has the smallest 
error possible (the minimum variance estimates). The solution is error-weighted 
averaging, where the weighting factor is inversely proportional to the variance of the 
measurement (Stoughton and Dai, 2002). Assuming the measurement is x(i) and the 
measurement error is σx(i), and there are N replicates and i=1:N, we compute the error-
weighted average as:

∑
∑ ⋅

=

i

i

iw

ixiw
x

)(

)()(
, where .

)(

1
)(

2 i
iw

xσ
= (16)

Error-weighted averaging requires that the measurement error is not a monotonic 
function of measurement itself to avoid possible biases by weighting. In general, the log-
ratio and log-ratio error defined in (12) and (15) meet this requirement. But intensity and 
intensity error in (8) and (11) do not, because intensity error is a function of intensity 
shown in Section 3. To apply error-weighted averaging to intensity data, we should 
transform the intensity to a new domain where the transformed intensity error is not 
related to the transformed intensity. We use an error-model based intensity 
transformation method (Weng, 2003). Some other published variance stabilization 
methods (Holder, et al., 2001; Durbin, et al.) can also be used.

The error of the averaged measurement in (16) is usually smaller than individual error 
σx(i). There are two possible estimations of error in this averaged measurement 
(Stoughton and Dai, 2002). The first is called the propagated error, which is the 

population error of  x derived from the individual measurement errors )(2 ixσ  by 

invoking the formula for )(xVar :
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i
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σ
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The second is called the scattered error, which is the empirical standard deviation of x
computed from the individual observations )(ix  using a weighted scheme:
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The propagated error depends only on the error estimation from the error model. It is 
always available even when N=1. However, the propagated error can be biased. The 
scattered error is an unbiased estimation, but when N is small the scattered error 
estimation is very unstable and the error estimation itself can have a very large error.

There is another important difference between the propagated error and the scattered 
error. Different genes often behave differently in their expressions. Some genes are 
“quiet” and their expression levels show little change. Some other genes are “jumpy” and 
their expression levels have relatively large variation even in same-versus-same 
experiments. The Rosetta error model in (7) is not gene-specific; therefore, the 
propagated error in (17) is not gene-specific. However, the scattered error in (18) is gene-
specific. When enough replicates are available, the quiet genes tend to have smaller 
scattered-error than the jumpy genes. Furthermore, if the repeated experiments are 
biological replicates, i.e., each individual measurement comes from an individual test 
subject (e.g., animal) under the same treatment, the scattered error carries information 
about both the technical measurement variation due to microarrays and the biological 
variation due to test subjects. But the propagated error only categorically carries 
information about the technical measurement variation (including the inter-array
variations coming from the error model).

To obtain reliable error estimation for the weighted-average in (16), we combine the 
propagated error and the scattered error to balance their strength and weakness. When the 
number of replicates N is small, the scattered error is very unreliable and has large 
variation in itself. In this case, we want to use the propagated error to help stabilize the 
error estimation, in other words, to reduce the variation in the error estimation. The 
propagated error sets a lower bound or floor to prevent the error estimation from being
smaller than the microarray technology can support. When N is large, we can trust the 
scattered error more because it is unbiased and also includes biological variations. One
method, proposed by Stoughton and Dai, 2002, provides an optimal solution to combine 
these two error estimations. The combined error estimate of the weighted-average is:

N

N sxpx
x

σσ
σ

⋅−+
=

)1(
. (19)

When N=1, the propagated error is the only estimate we have. When N increases, the 
scattered error estimate increasingly dominates the final error estimate and the 
contribution from the propagated error decreases, which is expected. This combination 
method has been verified extensively for the last a few years in many different 
microarray technologies. The results are satisfactory.

When applying error-weighted averaging to combine replicates, we penalize 
measurements with large estimated errors. Measurements that have much larger 
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measurement errors than most others, contribute minimally to the averaged results. The 
number of replicates contributing to average computation is effectively less than the total 
number of replicates available. The effective number of replicates can be computed as:

( ) ( )( ) ∑⋅=
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The number of replicates N in Equation (18) and (19) should be replaced with the 
effective number of replicates eN.

3.2 Present Expression Calls

In gene expression analysis, we often want to know whether a gene is present in 
transcripts. We can construct a hypothesis test to make the present call. The null 
hypothesis is expression absent. We may use negative-control sequences in a microarray 
to estimate the parameters of the null distribution. Negative-control sequences are 
typically selected that are dissimilar from the genome under study. Because negative 
controls should have very low intensity measurements and because the additive noise 
dominates at low intensities, we assume the null intensity has a Gaussian distribution 
with mean µneg and standard deviation σneg. For a particular sequence j in array i, its 
present call p-value can be computed as





























⋅+

−
−⋅=

2)(),(

)(),(
15.0),(

22 iji

ijiI
Erfjipvalue

negI

neg
pres

σσ

µ
(20)

where Erf is the error function of a standard Gaussian distribution. This calculation 
provides a one-sided p-value. When p-value is small, e.g., less than 0.05, we reject the 
null hypothesis and accept the alternative hypothesis that the sequence transcript is 
present. For those sequences having large p-values we cannot simply call them absent 
because data analysis does not verify the null for any given experiment. They may be 
indeed biologically absent. Or they may be present but the measurements in the 
experiment are too noisy to make a confident call.

There may be two arguments against Equation (20). First, the intensity distribution is not 
Gaussian. Second, unlike the t-test, the p-value computation in (20) does not take 
degrees-of-freedom into consideration (see Discussion and Conclusion section). Overall 
intensity measurements in microarrays indeed do not have a Gaussian distribution. But 
the present call threshold is at very low intensity levels where the additive Gaussian noise 
dominates. The p-values near the commonly used threshold (<0.01-0.05) are still valid. 
At high intensities the Gaussian assumption is violated and p-value becomes less 
accurate. But there is no harm to the hypothesis test because those high-intensity 
sequences already have small enough p-values and are clearly present in the transcripts.
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3.3 Differential Expression Calls

Traditionally, people use fold change (ratio) to make differential calls in detecting 
differential expressions. Often the call is made when the fold change is more than two.
The fold change method assumes no additive errors in microarray measurements. When 
additive error exists, the variation in fold change increases when measured intensity value 
decreases. We can see this clearly in log-ratio (log of fold change) plots of same-versus-
same experiments (Fig. 3). The fold change method can result in many false-positives at 
the low intensity end. At the same time, its sensitivity is low in detecting small fold 
changes at the high intensity end where the measurement variation in log-ratio is low.
Overall the fold change method suffers from both low sensitivity and low specificity.

(a)                                                                     (b)

Fig.3. Log-ratio versus average log-intensity plots of a same-versus-same experiment (a) 
of one two-color array and (b) of a combined pair of fluorescent-reversal arrays. The 

same RNA sample is hybridized to the two channels of an array. The horizontal axis is 
the averaged log-intensities of the two channels. The vertical axis is the log-ratio of 

intensities of the two channels. The differential expression detection threshold is set at p-
value<0.01 computed by Equation (21). Upregulated data, if any, are marked with a black 

“+.” Downregulated data are marked with a black “x.” Data that are not differentially 
expressed are shown as gray dots. In (a) each microarray spot is shown as one gray dot. 

In (b) two repeated spots in each array are error-weighted and combined and then the two 
fluor-reversal arrays are error-weighted and combined based on Equation (16). Any data 

called upregulated or downregulated are false positives in same-versus-same 
experiments. Two parallel dashed lines represent up and down two-fold change lines.

A statistical hypothesis test can be used in a differential expression study. The null 
hypothesis is that a gene is not differentially expressed. We can compute the p-value of 
the hypothesis test as
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where Erf is the error function of a standard Gaussian distribution. This is a two-sided p-
value including both up and down expressions. When the differential p-value of a 
sequence is small, e.g., less than 0.01, we call this sequence differentially expressed. It 
has been demonstrated that for same-versus-same experiments, xdev has a distribution 
close to Gaussian (Stoughton and Dai, 2002).

P-values provide us confidence information in making expression calls. P-values from 
error-model-based hypothesis tests set different fold change levels in differential calls for 
different measurement intensities. We can see in Fig 4 that for a given p-value threshold 
when intensities are low (the left side of the plot), only those having high log-ratios can 
be called differentially expressed. For the same p-value threshold, when intensities are 
high, sequences of low log-ratios can be confidently detected. In addition, we can see 
where some datapoints have similar intensities and similar log-ratios but some of them 
are called differentially expressed and some are not for the same given p-value threshold 
less than 0.01. Datapoints not detected have larger log-ratio errors from the error model 
estimations or from the replicates. These are improvements in sensitivity and specificity 
over the fixed fold change detection method.

(a)                                                                     (b)

Fig.4. Log-ratio versus average log-intensity plots of a different-versus-different
experiment (a) of one two-color array and (b) of a combined pair of fluorescent-reversal 
arrays. Two different RNA samples are hybridized to the two channels of an array. Any 
data called upregulated or downregulated in different-versus-different experiments are 

total positives for the given detection threshold, in this case, p-value<0.01.

Sometimes scientists use t-tests in differential expression detection. T-tests rely on 
replicates to estimate variance. P-value computed from the t-distribution is a proper 
gauge of the expected false-positive rate of the test under any given number of replicates. 
T-test does not assume any prior knowledge about the possible accuracy of the 
measurement technology itself. Sometimes, especially when the number of replicates is 
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small, for example two replicates, by chance some sequences may have differences 
between two repeated measurements close to zero. Estimated variances of these 
sequences are very small and much smaller than the inherent inaccuracy of the 
microarray technology. These small variances contribute partially to the overall false-
positive rate. Fig 5 demonstrates false-positives in a t-test example. Many of those false
positives have log-ratios very close to zero. In the error model method, the error model 
describes the intensity-dependent variation of the microarray technology. The error 
model helps to set a low limit in the variance estimation to avoid some of these false 
positives. This is similar to the penalized t-test (Tusher, et al., 2001) where a small 
constant is added to the variance estimation to set the lower bound. In stead of a constant, 
the lower bound in the error model varies according to the expected intensity-variance 
relationship of the microarray technology.

Fig.5. Average log-ratio versus average log-intensity plot of the same experiment shown 
in Fig. 3(b) but with t-test differential calls. The differential expression detection 
threshold is set at p-value<0.01. Upregulated data are marked with a black “+.” 
Downregulated data are marked with a black “x.” Data that are not differentially 

expressed are shown as gray dots. Any data called upregulated or downregulated are false 
positives in same-versus-same experiments.

Receiver Operation Characteristics (ROC) curves (He, et al., 2003) allow us to compare 
sensitivities (the total detection rate) and specificities (one minus the false-positive rate) 
from different analysis methods. In an ROC plot, the y-axis indicates the total positive 
rate, estimated by the number of datapoints (genes) in the different-vs-different 
experiments that passes a threshold divided by the total number of datapoints available. 
The x-axis indicates the false-positive rate, estimated by the number of datapoints in the 
same-versus-same experiments that passes the threshold divided by the total number of 
datapoints available. One datapoint in the ROC curve of the given analysis method is 
defined by these two rates, and the whole ROC curve is constructed by varying the 
detection threshold. An analysis method has higher statistical power if its ROC curve is 
closer to the upper-left corner. A higher ROC curve gives higher sensitivity for a given 
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false positive rate, or lower false positive rate for a given sensitivity. If the differential 
expression calls are made based on 50-50 chance, its ROC curve is the diagonal line.

In Fig 6 we plot ROC curves for our error model approach, the fold change approach, and 
t-test. Data are fluor-reversed two-color duplicates. The x-axis is the false-positive rate 
measured from same-versus-same experiments shown in Fig 3(b). The y-axis is the total
positive-rate from different-versus-different experiments in Fig 4(b). The number of 
replicates N=2, so that there is only one degree-of-freedom for the t-test. For comparison 
purposes, the same data preprocessing is applied to the data before applying all three 
methods so that they have the same log-ratio as input. In this example, the error model 
approach is clearly superior to the other two. 

Fig.6. ROC curves of the three differential expression detection methods using a small 
number of replicates: the error model approach, fold change method, and t-test. Two pairs 
of fluorescent-reversal technical replicated arrays are used in generating the curves. The 

horizontal axis is the false positive rate computed from one pair of same-versus-same 
replicates shown in Fig. 3(b). The vertical axis is the total positive rate computed from 

one pair of different-versus-different replicates shown in Fig. 4(b). ROC curves closer to 
the upper-left corner of the plot have higher statistical powers in terms of sensitivity and 

specificity.

Technical replicates of the same RNA are used in the ROC curve study shown in Figure 
6. To demonstrate the benefit of the error model in analyzing biological replicates, we 
design a study where the number of replicate increases from one to five. In this study 
samples from different animals (mice) are hybridized in both same-vs.-same and 
different-vs.-different experiments. In the same-vs.-same experiment, the animals are 
under the same drug vehicle treatment. In the different-vs.-different experiment, the 
comparison of differential expression are between vehicle-treated animals and drug 
compound treated animals. The ROC curves of the study are shown in Figure 7. In this 
particular study, when the number of replicates is small (n=1 and 2), the power of 
differential expression detection is not much better than the random chance of coin 
flipping. When the number of replicates increases, the detection power increases and the 
ROC curves rise in all three detection methods (error-model, t-test and fold-change). It is 
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noted that the discrimination among these three methods becomes more significant as the
number of replicates increases. The ROC curves of the error model is always the highest 
from the number of replicates n=3 to 5. It is general in our observations that the error 
model ROC curve has the similar height as the t-test ROC curve of one more replicates. 
For example, the error model ROC curve of n=3 (or n=4) is similar to the t-test ROC 
curve of n=4 (or n=5).

The error-model approach has also been compared to some other published methods 
(Rajagopalan, D., 2003) where its advantages in improving detection sensitivity and 
specificity are clearly demonstrated.

Figure 7. ROC curves of different number of biological replicates. Results of three 
differential detection methods (Rosetta error model (REM) , t-test, and fold change) are 

compared. The number of replicates n increases from 1 to 5. The REM method 
consistently provides higher detection power than the other two methods in this study. 

4 DISCUSSION AND CONCLUSION

Microarray measurement errors are inevitable. They are significantly intensity-dependent. 
Properly designed error models provide estimates of the measurement error. In addition 
to the measurement itself, the measurement error carries important information that can 
be incorporated in microarray data analysis. For a given analysis method, sensitivity and 
specificity cannot be increased simultaneously unless additional information becomes 
available. Traditionally the only way to increase information is to request more replicates. 
But when more replicates are practically not possible, the measurement error information 
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becomes very valuable. Including this error information in data analysis increases
statistical power (higher sensitivity and higher specificity) for a given small number of 
replicates, as indicated in the elevated ROC curves. This approach is the most significant 
contribution of the error model technology to microarray data analysis when the number 
of available replicates is limited.

Alternatively, to simplify the microarray error analysis, we can assume there are two 
main error sources, technical error of the measurement process and biological error of the 
subject variation (e.g., gene expression differences among animals under the same 
treatment):

222
biotechtotal σσσ += . (22)

When using the error information in hypothesis tests, we should clearly understand its 
implication on the test results. When the number of replicates is small, biological 
variation estimates σbio

2 are usually not separable from technological variations σtech
2 in 

microarray measurements. Technical variation can be a significant part of the uncertainty 
in the differential analysis particularly at low intensities. It defines the minimum amount 
of randomness we receive in the results. We provide a method to blend the predicted
technical variations (the propagated error) together with the scattered error into the 
variance estimation in (19). The blended variance is used in hypothesis tests to make 
present calls and differential calls. The propagated error from the error model is a 
conservative estimation of σtech

2, which is not gene-specific and non-zero. It can be 
biased. The scattered error is an unbiased estimation of σtotal

2 that includes σbio
2, which is 

gene-specific in general. It is important to understand the meaning of the null hypothesis 
under a different number of replicates. For example, in differential calls, when the 
number of replicates is large, the null hypothesis states “no change in expression 
measurements between the two conditions is more significant than the variation caused 
by the microarray technology and differences among replicated subjects (animals).” 
Rejecting this statement is ultimately what we are interested in doing. However, when 
there are no replicates, the null hypothesis becomes “no change in expression 
measurements between the two conditions is more significant than the expected variation 
caused by the microarray technology.” Often we are in between these two extremes when 
we have a few biological replicates. Biological variance cannot be reliably estimated 
unless we have enough biological replicates. However, using the conservatively predicted
technical variance from error models, we can at least avoid some of the overall false 
positives. The predicted technical variance prevents the overall variance estimation from 
being too small and smaller than the inherent technical uncertainty. For many biological 
research projects, an under-estimated variance is a big problem because it results in a 
high false-positive rate. False positive results consume labor and resources in the form of 
follow-up studies.

In the current error model approach, when blending the propagated error and the scattered 
error in (19), we set a lower bound in the total variance estimation. Although the error 
model is not gene-specific, the combination process in (19) makes the estimated total 
variance xσ gene-specific, as long as N>1. This phenomenon occurs because the scattered 
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error is gene-specific when biological replicates are used. In some of our early work 
(Hughes, 2000), we may be able to introduce a gene-specific correction factor to further 
adjust the lower bound based on large number of previously accumulated biological 
replicates. This factor is considered as a model of biological variance. But this biological 
model is often not available for most studies.

The Rosetta method described here has been validated (Rajagopalan, 2003) and 
successfully applied by users of the Rosetta Resolver system (Bassett, 2000). These 
customers conduct gene expression analysis with data ranging from different single-color 
and two-color microarray technologies, such as those from Affymetrix, Agilent 
Technologies, GE Healthcare (formerly Amersham Biosciences), and in-house cDNA 
arrays. Although there are critics (Dror, 2001), the benefit of the error model method in 
improving the detection power is clearly demonstrated in the ROC example, illustrated in 
the previous section. Compared with many other error model methods, the method 
described in this paper is simple. The reason such a simple method actually works well in 
real applications is that it captures the main error behavior in the microarray technology 
with minimum assumptions. It offers a solution to a practical problem of the variance 
estimation when the number of replicates is small.

The predicted measurement variance makes many novel microarray data analysis 
methods possible. For example, we provide error-weighted averaging to combine
replicated microarray measurements. The error-weighting method can also be applied to 
compute a similarity matrix during clustering analysis where measurements with larger 
errors contribute less to similarity computations, such as correlation coefficient or 
Euclidian distance. We have also successfully incorporated the use of the predicted 
technical variance in ANOVA analysis, microarray intensity transformations, and other 
applications. Results will be published separately.

In summary, the Rosetta error model described in this paper provides us prediction about 
microarray measurement errors. The additional information gained from using the error 
model opens many new opportunities for us to improve the quality of microarray data 
analysis.
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6.0 APPENDIX-A: DERIVATION OF PARAMETER XDEV

Assuming two intensity measurements are I1 and I2, the log-ratio of intensities is

( ) ( ) ( )1212 lnln/ln IIIIlratio −== . (A1)

When intensity error is small, the standard deviation of the log-ratio is

( ) ( )2
22

2
11 // IIlratio σσσ +≈ . (A2)

When differential expression is weak, i.e., I1 and I2 are similar, we assume

aII =≈ 21 . (A3)

In a Taylor expansion, (A1) can be written as

( ) ( ) ( ) ( ) ( ).../)()ln(.../)()ln(lnln/ln 121212 +−+−+−+=−= aaIaaaIaIIII .
(A4)

With the weak differential expression assumption, (A4) can be approximated as

( ) ( ) ( ) ( ) ( ) aIIaaIaaaIaIIII /)(/)()ln(/)()ln(lnln/ln 12121212 −=−+−−+=−=
(A5)

so that the log-ratio error in (A2) can be approximated as

( ) ( )
a

IIlratio

2
2

2
12

22
2

11 //
σσ

σσσ
+

≈+≈ . (A6)

Parameter xdev is defined as the ratio between log-ratio and log-ratio error in (15). From 
(A5) and (A6) we obtain

( ) ( )
2

1
2
2

1212 lnln

σσσσ +

−
≈

−
==

IIIIlratio
xdev

lratiolratio

. (A7)

This is the definition given in (14).

7.0 APPENDIX-B: ERROR MODEL PARAMETER ESTIMATION

There are different methods to estimate the error model parameters (RANDOM, 
POISSON and FRACTION) based on training data. One is to divide the intensity 
distribution percentile to three ranges, such as low (<2%), middle (>2% and <70%), and 
high (>70% and <99%). Based on Equation (21) we compute differential p-values of
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pairwise comparisons between technical replicates. By varying the error model 
parameters, we calibrate the p-value at the default threshold 0.01. We first vary the 
parameter RANDOM and measure the actual false positive rate at the low intensity range. 
The false positive rate is the number of microarray features that have p-value below the 
threshold in the range divided by the total number of features in the range. To be 
conservative, we usually calibrate the mean pairwise false positive rate to be 
approximately the half of the p-value threshold. After the parameter RANDOM is 
calibrated, we then vary the parameter FRACTION and measure the actual false positive 
rate at the high intensity range. The parameter FRACTION is set at the level where the 
mean false positive rate is about half of the p-value threshold. With the estimated
parameters RANDOM and FRACTION we calibrate the parameter POISSON at the last.
We vary the parameter POISSON to get the actual false positive rate in the middle
intensity range to about the half of the p-value threshold.

Error model parameters are estimated for a specific microarray technology, including 
sample preparation method, hybridization and scanning. For different microarray 
technologies, we usually have different sets of error model parameters. We keep the error 
model parameters as constants when processing the microarray data of the given 
technology.


