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Rosetta Predictions in CASP5: Successes, Failures, and
Prospects for Complete Automation

Philip Bradley†, Dylan Chivian†, Jens Meiler†, Kira M.S. Misura†, Carol A. Rohl†, William R. Schief†,
William J. Wedemeyer†, Ora Schueler-Furman, Paul Murphy, Jack Schonbrun, Charles E.M. Strauss, and
David Baker*

Department of Biochemistry, University of Washington, Seattle, Washington

ABSTRACT We describe predictions of the

structures of CASP5 targets using Rosetta. The Ro-

setta fragment insertion protocol was used to gener-

ate models for entire target domains without detect-

able sequence similarity to a protein of known

structure and to build long loop insertions (and

N-and C-terminal extensions) in cases where a struc-

tural template was available. Encouraging results

were obtained both for the de novo predictions and

for the long loop insertions; we describe here the

successes as well as the failures in the context of

current efforts to improve the Rosetta method. In

particular, de novo predictions failed for large pro-

teins that were incorrectly parsed into domains and

for topologically complex (high contact order) pro-

teins with swapping of segments between domains.

However, for the remaining targets, at least one of

the five submitted models had a long fragment with

significant similarity to the native structure. A fully

automated version of the CASP5 protocol produced

results that were comparable to the human-assisted

predictions for most of the targets, suggesting that

automated genomic-scale, de novo protein structure

prediction may soon be worthwhile. For the three

targets where the human-assisted predictions were

significantly closer to the native structure, we iden-

tify the steps that remain to be automated. Proteins

2003;53:457–468. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Rosetta was developed originally as an approach to the

problem of de novo protein structure prediction, which

sought to incorporate insights from experimental studies

of protein folding.1,2 After promising results in CASP33

and in light of the rapid rate of experimental structure

determination, Rosetta was extended to model evolutionar-

ily variable regions (such as long loops, domain insertions,

and N- and C-terminal extensions) in the context of a

template built by classical comparative modeling methods.

In CASP4, Rosetta-built models (both with and without

templates) were good in many cases.4

For CASP5, we followed the CASP4 approach of attempt-

ing to build complete models using Rosetta for every target

sequence. To generate template-based models, we used

homologous structure information; insertions, loops, and

extensions with low-sequence similarity to the homologue

were modeled by using the fragment insertion method in

the context of the template. When convincing homology

information was not detected, we modeled the entire

sequence with our de novo fragment insertion method.

Here we describe the methods used to generate the de

novo domain and long insertion predictions, with an

emphasis on improvements made since CASP4 and the

factors most likely to have contributed to both our success-

ful and unsuccessful predictions. With the long-term goal

of developing an accurate, completely automated proce-

dure, we identify the contributions of human expertise to

our predictions by comparing with results from a com-

pletely automated version of our protocol.

MATERIALS AND METHODS

Improvements in Rosetta Since CASP4

The Rosetta method of de novo protein structure predic-

tion is based on the assumption that the distribution of

conformations available to each three-and nine-residue

segment of the chain is reasonably well approximated by

the distribution of structures adopted by the sequence of

the segment (and closely related sequences) in known

protein structures. Fragment libraries for each three-and

nine-residue segment of the chain are extracted from the

protein structure database using a sequence and second-

ary structure profile–profile comparison method. The con-

formational space spanned by these fragments is then
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searched using a Monte Carlo procedure with an energy

function that favors hydrophobic burial and strand pairing

and disfavors steric clashes. For each target sequence,

large numbers of decoy structures are generated with this

protocol and then clustered; the five largest clusters are

generally chosen as our predictions. Further details may

be found in the Supplemental Materials.

Between CASP4 and CASP5, advances were made in

several aspects of the Rosetta method. The first improve-

ment was the incorporation of two filters that remove

conformations with non-protein-like properties. The first

filter removes overly local, low contact order conforma-

tions,5 whereas the second removes conformations with

�-strands not properly assembled into �-sheets.6 These

filters were applied to large populations of decoy conforma-

tions and were very useful during CASP4 and have since

been incorporated into the standard Rosetta procedure.

The numbers of conformations generated for each CASP5

target given below refer to conformations that pass both

filters.

The second area of improvement is in the energy func-

tion used during the search of conformational space. The

atomic radii for backbone atoms and distances of closest

approach between centroids used in the original Rosetta

force field1,2 were obtained from the distances of closest

approach of atom pairs in a large set of protein structures.

During the subsequent development of full-atom refine-

ment methods, we noted that many of the decoys produced

by the initial low resolution search contained significant

backbone clashes. This resulted from artificially small

atomic radii that derived from unrealistically short dis-

tances of closest approach in low-resolution crystal struc-

tures and NMR solution structures in the protein data set

used to obtain the radii. Recomputation of these parame-

ters using a set of high-resolution crystal structures

resulted in more physically realistic larger values, and

incorporation of this information into Rosetta reduced the

number of backbone-atom clashes significantly and (most

likely) the frequency of overly compact (but low scoring)

conformations. The environment-dependent pair term in

the original centroid mode-scoring function2 was replaced

by an environment-independent term to eliminate binning

artifacts. Defects in the r-sigma term2 that gave rise to

incorrect �-strand register were fixed, as well as mistakes

in the logic associated with restricting the backbone

hydrogen bonding of a given segment of a �-strand to

backbone atoms of not more than two other strands.

Numerous other small bugs were corrected and speedups

were implemented, along with the incorporation of mod-

ules for loop modeling, backbone refinement, domain as-

sembly, and protein design, which were useful in some of

the special cases described below.

The methodology for picking fragments from the protein

structure database (the program NNMAKE) was also

improved by ensuring that an appropriate diversity of

secondary structures is present in the fragment library for

regions with weak propensity to adopt a single secondary

structure. In the Rosetta picture of folding, the secondary

structure ultimately adopted by such regions will reflect

the nonlocal interactions in the low-energy tertiary struc-

tures; hence, it is important that a diversity of conforma-

tions be present in the fragment libraries for these regions.

Diversity is ensured by using three secondary structure

predictions independently to supplement the sequence

profile score used by NNMAKE. Between CASP4 and

CASP5, a quota system was introduced to ensure that the

percentages of sheet, helix, and coil in the fragments

matched those of the input secondary structure predic-

tions, and a new prediction method, JUFO,7,8 was added.

Numerous other methods currently in development in

our group were tested on subsets of the targets. Increased

production of complex topologies was achieved in part

through development of methods for detecting diverging

turns and penalizing the formation of hairpins in such

regions as well as for promoting nonlocal sheet contacts

(J.M., in preparation). A method was used for recognizing

evolutionarily conserved functional patches.9 We also used

cluster centers from our decoy population to search the

PDB for structurally similar regions using the structure

comparison method MAMMOTH.10 Finally, significantly

larger numbers of decoys were made for the targets in

CASP5 compared to those in CASP4, resulting in a greater

likelihood of producing native-like (and possibly topologi-

cally complex) decoys.

In the following subsections, we describe our standard

prediction protocol; deviations from this standard protocol

will be noted in the description of the individual targets.

Target Classification

A sequence was classified as a de novo or template-based

target with use of PSI-BLAST11 and Pcons212 (also de-

scribed in this volume). If the E-value of the top PSI-

BLAST hit was worse than 0.001 and the score of the top

Pcons2 hit was worse than 1.5, the sequence was predicted

to be a new fold/difficult fold recognition target and was

modeled with Rosetta’s de novo method. Otherwise, the

target was classified as comparative modeling/easy fold

recognition target and was modeled using Rosetta’s tem-

plate-based by approach. Sequences that received border-

line Pcons2 scores were modeled separately using both

methods and the most plausible models were submitted.

Domain Parsing

Target sequences were parsed into domains using mul-

tiple-sequence information and matches to known struc-

tures as described in the accompanying article on the

Robetta server in this issue. For large targets, we at-

tempted to use regions of low-sequence conservation to

determine segment boundaries; however, in cases in which

multiple-sequence information was uninformative, we split

the sequence into roughly equal lengths. Models were

generated for each predicted domain independently.

De novo (Fragment-Insertion) Modeling: Fragment

Selection and Model Generation

See supplemental materials.
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Clustering and Model Selection

For each target, fragment libraries and sets of decoy

structures were generated both for the target sequence

and for up to three homologous sequences identified with

PSI-BLAST. Twice as many models were generated for the

target sequence as for the homologues; the resulting

models from the target and homologous sequences were

pooled and then clustered as described previously.13 Mod-

els of the target sequence were selected from the largest

resulting clusters.

For clustering to succeed, a sufficient number of native-

like decoys must be present among the models generated.

Unfortunately, formation of native-like structures can be a

low-probability event for larger, more complicated pro-

teins; in such cases, the population is generally dominated

by non-native conformations. To improve model selection

for proteins with at least three predicted �-strands, we

used a test set of mixed �/� proteins of �130 residues to

develop a filter that enriched for native-like structures in

our model populations. With the requirement that the

three most native-like models (assessed by C� RMSD)

remain in the final population, we experimented with

iterative filtering methods using individual terms of the

total energy function as selection criteria. The most success-

ful protocol was to select the top third of the population

based on the �-strand pairing score and the third of those

models with the smallest radius of gyration.

All-Atom Refinement of Models

For targets under 100 residues, the submitted predic-

tions were chosen without clustering, as follows. The top

15% lowest-energy models were refined by using an im-

proved version of the full-atom refinement protocol de-

scribed previously,14 which couples Monte Carlo minimiza-

tion of the backbone and side-chain conformations. The

full-atom energy function is dominated by Lennard-Jones

interactions, an orientation-dependent hydrogen-bonding

potential, and an implicit solvation model. Typically, 5,000–

20,000 decoys were refined, and the five decoys with the

lowest energies that belonged to different clusters were

submitted.

Template-Based Modeling: Sequence Alignment

Our alignment method “K*Sync” (D.C., in preparation)

produces large sets of candidate alignments (via a modified

Smith-Waterman alignment algorithm15) by systemati-

cally varying the weights on score terms representing

multiple-sequence information for both the query and the

parent, the predicted and observed secondary structure,

and the obligateness of a region to the fold (see the

accompanying article on the Robetta server for more

details).

The ensemble of sequence alignments was converted to

an ensemble of three-dimensional template structures,

and short-to-medium unaligned regions (�17 residues)

were modeled in the context of these templates using an

abbreviated insertion-modeling procedure (described in

the next subsection). Alignments containing insertions

that failed to produce conformations in agreement with the

geometry of the template stems were discarded from the

ensemble. The remaining alignments were ranked by

evaluation of the structural models by several energy

criteria. Human intervention was used to either select one

of the high ranking alignments or to produce a new

alignment by recombining the preferred features of mul-

tiple high ranking alignments.

Template-Based Modeling: Insertion Modeling

Unaligned regions corresponding to gaps in the se-

quence alignment as well as regions judged likely to show

significant structural divergence from the parent struc-

ture were modeled by the Rosetta fragment insertion

protocol in the context of the fixed template.20 For regions

of �17 residues, roughly 300 initial conformations were

selected from a database of known structures using similar-

ity of sequence, secondary structure, and stem geometry.

Initial conformations for longer regions were built from

3-mer and 9-mer fragments. The conformations of all

variable regions were then optimized by using fragment

insertion and random dihedral angle perturbations. A gap

closure term in the potential in combination with conju-

gate gradient minimization was used to ensure continuity

of the peptide backbone. Optimization of variable regions

was accomplished by using the standard Rosetta potential

with centroid representation of side-chains, followed by

optimization with explicit side-chains. All variable regions

were optimized simultaneously, starting from a random

selection of initial conformations. Generally, �1000 inde-

pendent optimizations were conducted. Variable regions

were ranked independently by energy, and low-energy

conformations for each variable region were combined into

a final model.

Domain Assembly and Side-Chain Packing

For targets containing more than one domain, the

separate domain models were combined into one full-

length model. This was accomplished by splicing each

domain together into a single chain, followed by fragment

insertion into the linker region surrounding the splice site.

The last step consisted of packing the side-chains using a

backbone-dependent rotamer library16 with a Monte Carlo

conformational search procedure similar to that used in

the all-atom refinement procedure described above.17

RESULTS AND DISCUSSION

Table I summarizes the results for the Rosetta CASP5

predictions, which used the fragment insertion de novo

modeling procedure to build either the entire model or long

insertions in the context of a fixed template. Targets for

which Rosetta predictions were successful are addressed

individually below. We compare our predictions to the

native structure and discuss the specific methods used for

each target in relation to the standard protocol described

in Materials and Methods (Fig. 1). We address the useful-

ness of these alterations by comparing our submitted

models to those generated with a fully automated version

of the standard protocol. Targets for which the predictions

were unsuccessful are then discussed together in an effort
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to highlight the main sources of problems for the method

at its present stage of development.

The similarity of the true native structure to the best of

the five CASP5 Rosetta predictions, the best of the five

models selected by the fully automated protocol, and the

best prediction in a large set of Rosetta-generated struc-

tures is indicated in Table I. The table includes proteins in

the fold recognition category for which reliable parents

were not identified by PSI-BLAST or Pcons2, as well as all

targets modeled exclusively using the fragment insertion

protocol. T172 and T186 are template-based predictions

and are included in Table I because they provided a

context for a de novo modeled domain insertion. T130 was

also modeled using a template and is included in Table I

because the submissions contained significant regions

modeled by fragment insertion. Figure 2 shows Global

Distance Test (GDT18) plots for select de novo targets of

the five submitted models and the five models generated

by the completely automated standard protocol. Figures 3

and 4 show ribbon diagrams of the best submitted model

and the native structure for selected targets.

T129–170 Residues, All-�-Protein With Two

Subdomains

Straightforward application of the standard Rosetta

protocol yielded excellent results for this all-�-helical

protein. Although most decoys were generally non-native

by C� RMSD (median: 16.1 Å), the density of decoy

clustering correlated well with RMSD, as shown in Figure

5; the near-native decoys are more densely clustered than

TABLE I. Summary of Results for CASP5 Targets Predicted With Fragment Insertion by
the Rosetta Algorithm

Namea classb coc

�/�d

Length

Number of amino acids with an RMSD
below 4 Å/6Åe

[%] Humanf Standardg Besth

129 nf 30.1 64/0 170 108/153 87/116 111/159
149_2 nf 34.6 23/35 116 52/71 44/62 76/92
161 nf 33.7 53/11 154 45/83 57/79 55/95
162_3 nf 24.6 36/38 168 58/79 — 68/95
181 nf 25.1 30/18 111 35/59 52/65 65/103
146_1 fr/nf 31.4 28/25 107 28/51 — 42/54
146_2 fr/nf 29.2 23/26 89 45/60 — 70/76
146_3 fr/nf 21.9 0/10 56 27/31 — 26/39
146_4 fr/nf 9.2 19/0 47 23/30 — 33/40
170 fr/nf 16.3 60/0 69 64/67 60/64 66/68
172_2 fr/nf 24.7 54/0 101 52/62 — 90/101
173 fr/nf 55.1 35/15 287 127/149 60/84 127/149
186_3 fr/nf 5.2 0/33 36 28/32 — —
187_1 fr/nf 42.7 42/19 187 57/85i — 76/114
135 fr/a 31.7 34/30 106 83/98 54/64 94/105
148_1 fr/a 23 38/32 71 62/64 57/62 65/66
148_2 fr/a 23.1 41/27 91 73/74 75/77 80/90
162_1 fr/a 13.1 76/0 56 56/56 — 56/56
162_2 fr/a 16.3 0/25 51 33/43 — 38/40
187_2 fr/a 38 38/14 227 51/85 — 85/120
191_1 fr/a 28.1 45/21 139 80/100 85/98 102/105
174_1 fr/h 47.2 38/26 197 54/64 — 52/67
174_2 fr/h 34.6 36/25 155 44/47 — 47/62
156 fr/h 46.4 18/32 156 59/88j 71/88 81/107
130k fr/cm — 39/20 100 79/90 — —
172_1k cm — 43/23 192 129/159 — —
186_2k cm — 40/18 250 142/186 — —

aCASP identification number.
bAssessor classification (nf, new fold; fr/nf, fold recognition/new fold; fr/a, fold recognition analog; fr/h, fold

recognition homologue).
cContact order.
dFraction of amino acids in �-helix or �-strand conformation.
eThe number of residues (C� atoms) of the model superimposable (using a variant of MaxSub19 which uses

RMSD as the threshold) on the native structure within a 4 Å RMSD cutoff (left) and within a 6 Å cutoff (right).
fBest Rosetta model submitted for CASP5.
gBest fully automated prediction using standard CASP5 protocol.
hBest ROSETTA model in decoy population before filtering.
iThe best submission for T187 was a comparative model based on template 1 vpe with 57 and 116 residues

aligned within 4 Å and 6 Å, respectively.
jThe best submission for T156 was a comparative model based on template 1 dik with 78 and 107 residues

aligned within 4 Å and 6 Å, respectively.
kModeled with a template (130, 1f5aA; 172_1, 1ej0A; 186_2, 1gkpA) and fragment insertion (see text).
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the general population. As a result, the cluster centers

represented the best decoys generated; for example, model

4 ranked second out of 11,075 decoys by C� RMSD to

native. Long-range contacts between the second and fifth

helices were predicted correctly in these models, corre-

sponding to approximately correct assembly of the two

subdomains. Automated predictions for this target are of

comparable quality to the manual submissions (Fig. 2,

Table I), which is not surprising because the manual

submissions were chosen with minimal deviations from

the standard protocol.

T130-H10073 From H. influenzae, Four-Stranded

Sheet Flanked by Three Helices

The parent structure 1fa0B (Yeast Poly-A Polymer-

ase) used by Robetta was detected by Pcons2. For our

human group predictions, we chose instead to use

1fa0B’s close structural relative 1f5aA (Bovine Poly-A

Polymerase) because of what appeared to be slightly

closer sequence homology to the target. The default

K*Sync alignment indicated the loss of a hairpin but

retention of a helix (labeled “liberated helix” in Fig. 4)

that packed against the hairpin in 1f5aA. We elected not

to model this helix as part of the template and, instead,

allowed the fragment-based loop-modeling protocol to

build the helix and connecting turns (residues I52–R77).

This permitted the adjustment of the helix that we

supposed must occur in the absence of the hairpin. In

addition, the parent 1f5aA possessed a much longer

C-terminal helix than T130 appeared to have; therefore,

we allowed the loop-modeling protocol to build the entire

C-terminal portion of the model (residues D82–L114),

unfortunately failing to capture the C-terminal strand.

However, both of the de novo modeled helices were quite

accurate (Fig. 4).

Fig. 1. Flowchart of general Rosetta protocol. Starting with obtaining the target sequence, steps for target
identification, decoy generation, and selection are outlined for both the template-based approach (used for
targets with homologous structures available in the PDB) and for the fragment insertion approach (used for new
fold and difficult fold recognition targets).

ROSETTA PREDICTIONS IN CASP5 461



T135-�/� Ferredoxin Fold

Because of substantial variations in the secondary struc-

ture predictions for this target and the failure of conforma-

tions generated with the standard protocol to cluster well

(which can indicate that the true structure has a high

contact order5), as well as weak Pcons2 matches to ferro-

doxin folds, we deviated from the standard protocol. As

suggested by secondary structure predictions for most

homologues, but not the prediction for T135 itself, �-strand

fragments were favored in the region corresponding to the

second strand. During the simulations, nonlocal �-strand

contacts were favored to try to produce higher contact

order structures (J.M., in preparation). The first submitted

model has the correct topology and agrees with the native

structure below 4 Å C� RMSD over 80 amino acids.

However, the fourth �-strand is shifted relative to the

native structure, which prevents the sequence-dependent

superimposition of this part of the model.

T148–162-Residue, Domain-Swapped, Double

Ferredoxin Fold

T148 is a long sequence for Rosetta, but it has a deep

multiple-sequence alignment and confident secondary

structure predictions. Because the predicted ������ signa-

ture indicates the ferredoxin fold, we hypothesized that

T148 was a tandem ferredoxin fold. We parsed the se-

quence and folded the halves separately, generating tight

ferredoxin-fold clusters for the C-terminal domain (retro-

spective analysis shows that some decoys in the ensemble

aligned to the native structure within 2 Å C� RMSD over

70 residues) but dispersed clusters with predominately

local topologies for the the N-terminal domain. We aban-

doned this approach because of the incorporation of signifi-

cant human bias. The domain swap of strand 1 made this a

difficult target and caused difficulties in determining

domain structure.

None of the models submitted for T148 were parsed into

domains, and the standard protocol was followed with the

addition of the strand score/gyration radius filters de-

scribed in Clustering and Model Selection. When assessed

by a variant of MaxSub,19 which uses RMSD as the

threshold, the five submitted models were similar to those

picked by the standard protocol alone (Table I). However,

the filters led to the selection of a model with the correct

fold in the C-terminal domain (but not the correct topology,

due to the strand swap) as our first model. It is of interest

that Rosetta predictions of full-length T148 produced

many models with secondary structure elements segre-

gated into two domains; some models (including the best

decoy generated, Fig. 3) even had the correct segregation,

including the domain swap.

Fig. 2. Global distance test (GDT18) plots for selected targets comparing the CASP5 Rosetta submissions
with predictions made with a fully automated version of the same protocol. Cyan (models 2–5) and dark blue
(model 1) represent the CASP5 submissions, orange (models 2–5) and red (model 1) represent models made
with a fully automated version of the CASP5 protocol (see Materials and Methods). The y axis represents a C�

RMSD cutoff under which to fit the model to the native structure, and the x axis represents the percentage of the
model that will fit below that cutoff value.
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Fig. 3. Ribbon diagrams of predictions made by using the fragment insertion approach. The native
structure and best submitted model are shown colored from the N-terminus (blue) to C-terminus (red). For
T148, the best generated model is also shown, and for T156, both template-based and fragment insertion-
based models are shown. For targets T173, T135, T156, and T191, colored regions deviate from the native
structure by �4 Å, and gray regions deviate by �4 Å. For targets T129 and T156, colored regions deviate from
the native structure by � 6 Å C� RMSD, whereas the gray regions deviate by �6 Å.
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T149_2–116-Residue Quasi-Ferredoxin Fold

The C-terminal domain of T149 was a challenging target

due to the number of nonlocal contacts and the weak

secondary structure prediction for strand 4. In our submit-

ted model 4, strand 4 is not well formed and the C-terminal

helix is on the wrong side of the sheet; nevertheless, the

overall topology is similar to the native protein.

T156–158-Residue Methyltransferase

This target has a contact order of �46 and Rosetta

rarely generates decoys with such high contact orders. The

five models generated by the fully automated protocol

exhibited contact orders between 22 and 30. Because of the

suspected complexity of the fold (a weak Pcons hit was to

the methyltransferase 1dik; one submission was modeled

Fig. 4. Ribbon diagrams of targets predicted by using a combination of template-based and fragment insertion approaches. a: The native structure
and the best model for T130, built by following our template-based protocol. The different shades of blue indicate regions that were modeled as template
using coordinates from the homologue parent structure 1f5aA, whereas red, yellow, and white indicate regions that were modeled as loops with our
modified de novo protocol that takes into account the context of the template. Dark blue and red show those residues that are within 4 Å, light blue and
yellow deviate �8 Å, and ice-blue and white are �8 Å away from one another in the fit. b: T186 domain 2 native-model pair illustrates the good quality of
the alignment for this TIM barrel domain, following the color scheme in (a). The success in the alignment for T186_2, particularly in the stem regions
indicated by (I) and (II), provided the opportunity to build a good model for the minidomain insertion (c), accomplished with our long loop-modeling
protocol. d: T172 possessed a domain insertion between strand 4 and the helix that precedes strand 5 [the stems are indicated by (I) and (II)], which was
long enough to justify modeling following our full de novo domain-modeling protocol. e: The best model for the inserted domain T172_2 captures the
helical elements well and is in quite good agreement with the native over the second half (the green, yellow, orange, and red helices).
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by using this template), we deviated from the standard

protocol during decoy generation by adding a term that

promotes nonlocal strand pairing (as in T135); during

clustering, we also used a contact order filter to enrich the

population for high contact order models. These alter-

ations shifted the range of contact orders to 25–38. Our

first submitted model has 59 amino acids below 4 Å C�

RMSD and has an overall topology similar to the native

structure. However, the best submitted model (model 3)

was built by comparative modeling using 1 dik as template

(Table I).

T161–154 Residues, Novel Fold, Helical Motif

Capped by �-Sheet

T161 is an elongated protein consisting of a helical motif

capped by a three-stranded �-sheet, through which the

protein dimerizes. We were unable to find sequences with

convincing homology to T161, and the secondary structure

predictions were weak over several regions. All of the

submitted models were folded as a single chain, and the

standard protocol was used with the strand score/gyration

radius filters. Models 1–4 correctly predict a helical motif

and a capping sheet, whereas none of the models would

have contained the �-sheet had we not used these filters.

Although our submitted models are generally of low qual-

ity, as assessed by GDT18 and a MaxSub19 variant, the

overall fold of model 2 is in reasonable agreement with the

experimental structure and was perhaps the best model

produced for this protein in CASP5. In general, the models

were more globular and the �-strands less exposed than in

the native structure. These strands form the dimerization

interface in the native structure and are shielded from

solvent in the dimer. Dimerization is clearly difficult to

model during the de novo folding protocol.

T162_1–Domain 1(56 Residues) of F-Actin Capping

Protein a-1 Subunit From Chicken

Owing to uncertainties in the domain parsing for T162,

three variations of the de novo protocol were used to produce

decoys for T162_1. T162_1 was parsed and folded as residues

1–60, as part of a larger segment of the protein (residues

1–109), and as an N-terminal extension of de novo decoys

previously produced for a central segment of the protein

(residues 61–219). The first protocol most frequently pro-

duced decoys with a broken third helix, in disagreement with

consensus secondary structure prediction and probably

caused by our filter on the radius of gyration. Because decoys

from the second and third protocols were in better agreement

with the secondary structure predictions, only those decoys

were submitted. Both the second and third protocols pro-

duced good models (submitted models 2 and 1, respectively).

Model 1 had a C� RMSD of 2.8 Å over the entire 56-residue

Fig. 5. Correlation between clustering density and model accuracy for T129. The 11,075 decoys produced for target T129 (a 182-residue,
all-�-protein) are plotted on the basis of their global C� RMSD to the native structure (y axis) and the density of nearby structures in the population (x
axis). The density is calculated by comparing each decoy to all the others and recording the C� RMSD to the 100th nearest neighbor. This distance is
termed the cluster radius; smaller values indicate a higher density of neighbors. The five submitted models are shown as filled circles.
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domain, and model 2 had a C� RMSD of 2.7 Å over 53

residues (4.0 Å over 56 residues).

T170–69-Residue �-Helical FF Domain

Given the small size of this target, we applied the

full-atom refinement protocol to the initial models gener-

ated by the standard fragment insertion protocol. The five

submitted models were selected by lowest full-atom en-

ergy, after clustering to determine that the models were

not too similar. Model 4 was the best prediction with a C�

RMSD of 4.2 Å. Only 40 models of the 15,000 refined were

significantly better than model 4 (the best generated is 2.9

Å C� RMSD to native), indicating that the energy function

was fairly effective at selecting the best models produced.

T172-Conserved Hypothetical Protein From T.

maritima, Two Domains

Predictions for this target were made by using a hybrid

template-based and de novo modeling approach. The par-

ent, 1ej0 chain A (Ftsj methyltransferase from E. coli), did

not contain coordinates for residues R116–N216, and this

was assumed to be a domain insertion. Because of the

length of the insertion, it was modeled as an independent

domain using the de novo protocol. The models for the

second domain were filtered for the ability of the N-and

C-termini to span the gap in the template-based models for

domain 1 (labeled I and II in Fig. 4).

T173–303 Residue �/� Protein

T173 is difficult because of its length, and we made

several attempts at domain parsing. The MSA over the

first half (roughly 1–165) of the sequence was deep and

showed regions of strong conservation, allowing us to

identify several homologues that had shorter loops and

were more tractable than the target sequence. We gener-

ated models for the target and a nonredundant set of the

10 shortest proteins in this region of the MSA. One of the

homologue sequences folded more successfully than the

others (i.e., produced a greater fraction of decoys that

passed the contact order, gyration radius, and strand score

filters) and gave rise to decoys with a reasonably well-

formed four-stranded sheet surrounded by helices. The

centers of the top clusters were selected, and models of the

target protein were built by using the loop-modeling

protocol (described in Materials and Methods) to map on

the original sequence and fill gaps. These models were

manually inspected, at which point it became clear that

the fourth cluster center brought together two highly

conserved segments at the ends of the first and fourth

strands, via a 3214 strand topology. Based in part on the

extent of clustering of conserved residues,9 this model was

selected as our top submission for the N-terminal half of

the protein. The C-terminal segment, with longer regions

of weak secondary structure prediction, proved more diffi-

cult to fold; however, a domain parse beginning at residue

223 folded consistently to a subdomain in the native

structure consisting of an �-helix and �-meander (42

residues under 4 Å C� RMSD).

T186–N-Acetylglucosamine-6-Phosphate

Deacetylase From T. maritima

Target 186 was modeled by using our template-based

protocol using the parent structure 1gkp chain A (D-

Hydantoinase from Thermus sp.), a parent detected by

PSI-BLAST. T186 possesses a minidomain insertion (resi-

dues I257–T292), classified as domain 3, within the TIM

barrel domain 2. Our alignment for T186 to the TIM barrel

portion of 1gkp was quite good overall and possessed the

correct alignment at the stem portions of the template

adjoining domain 3 (in our model residues S256 and F294,

labeled I and II in Fig. 4) to allow for long loop modeling

using our fragment insertion protocol in the context of the

template. As can be seen in Figure 4, the insertion was

modeled quite well. We believe this is the first example of a

successful long loop modeling in the CASP experiments

and, hence, particularly exciting. In addition, in the TIM

barrel domain, flexible modeling of a helix not fixed to the

starting template resulted in the correct packing register

of the helix against the �-sheet template.

T191_1–Domain 1 of Shikimate 5-Dehydrogenase

From M. Jannaschii

T191 was parsed into two domains (residues 1–105 and

106–282) based on homology to the protein 1gpjA. Because

the sequence alignment between target and parent was

rather poor in the first domain, three of the models

submitted for the first domain were produced by using the

standard de novo protocol (two comparative modeling

models were also submitted). A large number of de novo

decoys were initially produced (76,000). Before clustering,

the decoy population was reduced to 4600 decoys by using

the strand score and radius of gyration filters discussed in

Clustering and Model Selection in Materials and Methods.

Many of the largest cluster centers had one of two defects:

either the third and fourth helices were merged into one, in

disagreement with the consensus secondary structure

prediction or a hairpin was disconnected and packed

poorly with the rest of the protein, a relatively common

Rosetta pathology. The decoys chosen for submission were

the centers of the largest clusters that did not possess

these defects. The best of our five submitted models was de

novo; it has 100 amino acids below 4 Å and an overall C�

RMSD of 5.9 Å. Of all the initial decoys generated, only

1.2% were better by C� RMSD, and only 0.5% had more

aligned residues under 4 Å.

What Went Wrong?

In the new fold and fold recognition categories, our least

accurate predictions were for targets T146, T162, T174,

T181, and T187. Domain parsing was a problem for T146,

T162, T174, and T187. All of these proteins are large (325,

286, 417, and 417 residues, respectively) and contain two

or more domains that were (for the most part) not identi-

fied correctly during CASP5.

T162, T174, and T187 also had complex topologies.

Rosetta produced a single four-stranded sheet for the

second domain of T162, rather than the more complex

native topology of a sandwich of two hairpins, but rela-
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tively long fragments were correctly predicted for domains

1 and 3 (Table I). A feature of T174 and T187 that presents

a serious challenge for Rosetta is the swapping of second-

ary structural elements between large domains. In T174,

the first domain includes the 176 C-terminal residues

along with a single N-terminal strand, whereas the second

domain is composed of the intervening I60 residues. In

T187, the first domain includes a single N-terminal helix

with 168 residues from the C-terminal, whereas the 227

intervening residues comprise the second domain.

Of the targets for which complex topology and domain

parsing were not issues, the most obvious failure is T181,

which contains a strand that was almost always modeled

as a helix in the Rosetta predictions. This was due to a bias

toward helix in this region in the secondary structure

predictions contributing to fragment selection. It is of

interest that a new 3D structure-based secondary struc-

ture prediction method (JUFO-3D) predicts this region as

a strand because it is spatially close to a �-hairpin and in

the correct position to form hydrogen bonds with an

adjacent strand. Potentially, a second round of Rosetta

models made by using this improved secondary structure

prediction could have been much more accurate. The

JUFO-3D neural network uses the three-dimensional struc-

ture of Rosetta decoys in addition to the sequence informa-

tion. It leads to a 4% increase in the Q3 measure of

secondary structure prediction accuracy with respect to

the sequence-only analog for the CASP targets we modeled

de novo.21

What We Learned

First, the CASP5 results show that Rosetta can produce

models of increasingly complex topologies (i.e., of higher

contact order) that are often roughly correct. Because of

the relatively small number of new fold targets, progress

from CASP4 to CASP5 is difficult to evaluate quantita-

tively; however, several successfully predicted proteins in

CASP5 had higher contact orders than any successful

CASP4 de novo predictions.

Second, the plausible model of the long insertion in T186

using de novo methods suggests that the coupled de

novo/template-based method could be useful for modeling

evolutionary novelties in protein families with a represen-

tative of known structure.

Third, the fully automated standard protocol produced

models for many targets comparable in quality to the

human-assisted Rosetta predictions (Table 1). (As noted

elsewhere in this issue, the implementation errors in the

Robetta server make the Robetta predictions a worse

standard for comparison). This finding suggests that hu-

man intervention did not significantly improve model

quality, at least at the level of the numerical assessment.

However, the human-assisted predictions were clearly

better in three cases: T135, T170, and T173.

What was the critical departure from the automated

protocol for these three targets, and could it be incorpo-

rated into future automated protocols? For T135 and T173,

the key was a more extensive use of the sequences of

homologous proteins. The automated protocol does make

use of homologous sequence information by generating

models for two homologous sequences as well as the native

sequence and subsequently clustering the models for the

sequences together simultaneously. This automatically

imposes distance constraints in regions of large deletions

in one or both homologues (the residues flanking the

deletion must be close in space) and introduces variation in

secondary structure prediction in homologues. However,

for T135 and T173, we made additional use of homologue

information. For T135, it was recognized that the second-

ary structure prediction for the query sequence was likely

to be incorrect because it differed from those of most

homologue. For T173, modeling efforts were focused on a

homologous sequence lacking several large insertions, and

the model for the query was then built from these models.

Both are potentially automatable–for large domains, an

automated procedure could focus on building a good model

of the smallest member of the family, whereas alternative

secondary structure predictions found for most members of

a family could be given more precedence in modeling a

query sequence. The recognition that a model for T135 was

plausible because it resembled a ferrodoxin fold could be

readily automated by using MAMMOTH.10 For T170, the

human-assisted protocol used the full-atom refinement

procedure, which has not yet been incorporated into the

automated protocol. As the refinement protocol matures, it

should be straightforward to incorporate it into a future

automated protocol.

Finally, CASP5 highlights the primary challenges fac-

ing de novo structure prediction. For large proteins, do-

main parsing is a formidable problem. Promising results

for � and �/� proteins suggest that Rosetta itself may be

useful as a domain-parsing tool (David E. Kim, unpub-

lished, and results from T148); however, there is clearly

much still to be done in this area. For single-domain

proteins, two key areas need work: assembling complete

structures for complex domains and full-atom refinement

to improve the accuracy and ranking of models for proteins

below 100 amino acids. A long-term goal of de novo

structure prediction is clearly to produce models of atomic-

level accuracy for small proteins.
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SUPPLEMENTAL INFORMATION

Fragment Selection

For each sequence, two sets of fragments are generated.

The first has 25 fragments of length 9 for every residue

(except for the last 8 residues), and the second contains

200 fragments of length 3. Fragments are selected on the

basis of the agreement of their sequence with the MSA

profile of the target, as well as the agreement between the

predicted secondary structure with the DSSP secondary

structure assigned to the fragment in its PDB file. Chemi-

cal shifts were available for the fold recognition target

T0138 and were used to produce the fragment files for loop

modeling, as has been described previously.

Decoy Generation

The fragment files were used to build models by the

Rosetta protocol,1–4 which has not changed significantly

since CASP4. Briefly, Rosetta is a five-stage, fragment

insertion Metropolis Monte Carlo method. Backbone at-

oms are represented explicitly and their connectivity is

maintained, whereas side-chains are approximated by

centroids. 1) The first stage begins with a fully extended

chain and inserts 9-mer fragments at random positions for

at least 2000 steps, until every backbone dihedral angle

has been altered at least once. The only component of the

potential function considered at this stage is a steric-clash

term that prevents close approaches of backbone atoms

and centroids.1,2 2) The second stage also consists of 2000

9-mer fragment insertions, but the scoring function in-

cludes residue-environment and residue–residue scores

favoring hydrophobic burial and specific pair interactions,

as well as secondary structure-packing scores.1,2 3) The

third stage consists of 10 iterations of 2000 9-mer frag-

ment insertions during which the local strand-pairing

score is cycled on and off to promote formation of nonlocal

�-strand pairing over local strand kinetic traps, whereas

the local atom density is pushed toward that of native

protein structures. 4) In the final stage, three iterations of

4000 3-mer fragment insertions are conducted out; a term

linear in the radius of gyration is added to help condense

the model and a higher resolution model of strand pairing

is used. 5) The final decoy is stored only if it passes several

filters designed to eliminate common Rosetta pathologies,

such as decoys with an overly high radius of gyration or

unpaired �-strands. Between 10,000 and 400,000 indepen-

dent simulations were conducted for each target sequence,

starting from different random number seeds.
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