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Abstract

In recent years mass spectrometry-based covalent labeling techniques such as hydroxyl radical 

footprinting (HRF) have emerged as valuable structural biology techniques yielding information 

on protein tertiary structure. This data, however, is not sufficient to predict protein structure 

unambiguously, as it only provides information on the relative solvent exposure of certain 

residues. Despite some recent advances, no software currently exists that can utilize covalent 

labeling mass spectrometry data to predict protein tertiary structure. We have developed the first 

such tool, which incorporates mass spectrometry derived protection factors from HRF labeling as 

a new centroid score term for the Rosetta scoring function to improve the prediction of protein 

tertiary structure. We tested our method on a set of four soluble benchmark proteins with known 

crystal structures and either published HRF experimental results or internally acquired data. Using 

the HRF labeling data, we rescored large decoy sets of structures predicted with Rosetta for each 

of the four benchmark proteins. As a result, the model quality improved for all benchmark 

proteins, as compared to when scored with Rosetta alone. For two of the four proteins, we were 

even able to identify atomic resolution models with the addition of HRF data.

Graphical Abstract

*Corresponding Author: Steffen Lindert, Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & 
Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax), lindert.1@osu.edu. 

Supporting Information Available: Experimental methods, Bayesian derivation of hrf_ms_labeling, additional figures, and a tutorial 
for the use of the new score term in Rosetta.
This information is available free of charge via the Internet at http://pubs.acs.org

HHS Public Access
Author manuscript
Anal Chem. Author manuscript; available in PMC 2019 June 19.

Published in final edited form as:
Anal Chem. 2018 June 19; 90(12): 7721–7729. doi:10.1021/acs.analchem.8b01624.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org


Keywords

Rosetta; computational protein structure prediction; ab initio protein structure prediction; mass 
spectrometry covalent labeling; hydroxyl radical footprinting; FPOP

Introduction

Historically, mass spectrometry has been used as a tool to quantify the mass and oligomeric 

distribution of proteins and protein assemblies.1, 2 More recently, advances have been made 

that allow mass spectrometry experiments to yield three-dimensional structural information 

on proteins and their complexes. By itself, there is no one mass spectrometry technique that 

can unambiguously elucidate atomic-resolution tertiary structure of a protein or protein 

complex. Hence, a combination of multiple different techniques is generally required.3–5 

Several techniques have been particularly successful in probing the tertiary structure of 

proteins and their complexes. Hydrogen-deuterium exchange (HD/X) is based upon 

measuring the extent of isotopic exchange of backbone amide hydrogens.6, 7 Chemical 

cross-linking involves studying the structurally defined distances by covalently pairing 

functional groups within a protein.8, 9 Non-covalent interactions between lysine residues and 

18-crown-6 ether (a cyclic organic compound) can provide lysine solvent accessibility 

within proteins.10 Finally, covalent labeling (sometimes referred to as “protein footprinting”) 

involves exposing a protein in solution to a small labeling reagent that will covalently bond 

to select amino acid sidechains that are exposed to solvent, whereas sidechains buried within 

the core of the protein or occluded by interacting protein subunits will not get labeled.11–13 

This provides information about the relative location of certain amino acids with respect to 

the solvent (either on the surface and solvent exposed or buried within the protein or protein 

complex structure). A variety of different labeling reagents exist and some are highly 

specific as to which amino acid(s) can react with the reagent and others have a much broader 

range of potential target residues. These techniques have been successfully employed with 

mass spectrometry to analyze protein structures.14–22

One covalent labeling method which recently has been increasingly widely used is hydroxyl 

radical footprinting (HRF).23, 24 This method involves exposing a solvated protein of interest 

to hydroxyl radicals generated from one of a variety of sources. Initially, oxidative labeling 

was performed using a synchrotron that ionized water to form the hydroxyl radicals.25 With 

recent advancements, a new method of hydroxyl radical labeling, fast photochemical 

oxidation of proteins (FPOP), has been developed.26, 27 With FPOP, a pulsed laser is used to 

photolyze hydrogen peroxide on a microsecond timescale, which is faster than the unfolding 

of a protein. This ensures that the labeling process does not disrupt the native state of the 

protein. In conjunction with mass spectrometry, FPOP provides important insight into the 

structure of proteins. This labeling method is quite broad in that it can label 19 of the 20 

different amino acids, yielding extensive structural information. Despite the wealth of 

information provided by FPOP, the data itself is sparse, meaning that the solvent exposure 

information of a set of protein residues cannot provide unambiguous determination of 

protein structure. There remains a critical need for computational methods that can facilitate 

and compliment the structural interpretation of mass spectrometry FPOP labeling data.
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Over the years, numerous experimental techniques have been successfully combined with 

computational methods to predict protein structures. Some examples of this are sparse 

experimental data from site-directed spin labeling electron paramagnetic resonance (SDSL-

EPR) in conjunction with Rosetta to improve protein structure predictions,28, 29 nuclear 

magnetic resonance spectroscopy (NMR),30, 31 small-angle X-ray scattering (SAXS),32–35 

and cyro-electron microscopy (cryo-EM).36–43 Mass spectrometry techniques have also been 

utilized in conjunction with computational methods. Malmström and coworkers have made 

significant contributions by incorporating data from MS chemical cross-linking experiments 

as inputs into computational methods for protein structure prediction.15, 44–47 The work of 

Sali and coworkers has contributed greatly to the field with the development of the 

Integrative Modeling Platform (IMP), an open source platform that integrates experimental 

data into computational methods.19, 35, 48–52 IMP is designed as a set of self-contained 

modules that can be mixed and matched based upon a user’s preference. Models are 

generated and scored based upon spatial restraints that are derived from multiple sources of 

experimental data. Currently IMP supports the use of experimental data gathered from 

sources such as SAXS profiles, EM images and density maps, NMR, chemical cross linking, 

HD/X, and chromosome conformation capture. With IMP, both monomeric and multi-unit 

protein structures can be studied. Finally, Yang and coworkers have developed an integrative 

method, iSPOT, to determine protein-protein complexes that combines SAXS, hydroxyl 

radical footprinting, and computational docking of either rigid-body or molecular dynamics 

models.32

Computational modeling using FPOP data is still in its early stages. Recently, an integrated 

workflow was developed by Xie and coworkers that successfully demonstrated correlation 

between experimental high-resolution hydroxyl radical footprinting data and residue solvent 

exposure (as measured by absolute average solvent accessible surface area) as well as 

differentiated between low and high RMSD models for the soluble proteins myoglobin and 

lysozyme.53 This elegant work demonstrated that there is strong potential for successfully 

incorporating HRF or FPOP experimental data into computational methods in order to 

improve protein structure prediction. Despite the many advances and successes with using 

sparse data from various experimental methods for structure prediction, the use of covalent 

labeling mass spectrometry as the data source had yet to be accomplished.

In this work, we incorporated mass spectrometry derived protection factors from FPOP and 

synchrotron-based HRF labeling as a new score term for the Rosetta scoring function to 

improve the prediction of protein tertiary structure. Rosetta is one of the primary 

computational tools used for protein structure prediction.54 To accomplish our goal, we 

compiled a set of four soluble benchmark proteins with known crystal structures and either 

published HRF/FPOP experimental results or internally acquired data. We developed an 

efficient metric to quantify residue-specific burial that correlated linearly to the natural 

logarithm of experimental protection factors derived from the labeling rates. A new Rosetta 

centroid score term, that utilizes residue-resolved protection factors as inputs, was 

developed. This score term was used in conjunction with the standard Rosetta scoring 

function to rescore large decoy sets of predicted structures for each of the four benchmark 

proteins. In this process of rescoring, the quality of all models improved such that after 

rescoring the structures with the best score correlated more closely to the native structures. 
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For two of the four proteins, we were even able to identify atomic resolution models using 

the HRF/FPOP data.

Materials and Methods

Benchmark Dataset and Experimental Protection Factors

For this work, we used protection factor (PF) which was first described by Chance and 

coworkers and is derived from a labeling rate constant as a metric for residue labeling.55 PF 

is defined as the relative intrinsic reactivity of a given residue to hydroxyl radicals divided 

by the rate constant. The intrinsic reactivities of each amino acid type are well defined in the 

literature.24 The PF, as expressed on a natural logarithmic scale, has been shown to correlate 

with the solvent exposure of a given residue.16, 55, 56 Within the literature, the PF has been 

defined multiple ways, but for our purposes we have defined the protection factor for residue 

i, where Ri is the intrinsic reactivity for residue i and ki is the experimentally determined 

labeling rate constant, as defined by eq 1:

PFi =
Ri
ki

(1)

As a benchmark set, four different proteins with available FPOP or HRF labeling data were 

utilized. These proteins were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 1DWR), 

lysozyme (PDB ID: 1DPX), and cytochrome c (PDB ID: 2B4Z). The experimentally 

determined PFs for calmodulin were extracted from the published work of Kaur et al who 

generated radicals via a millisecond timescale synchrotron radiation method.16 For 

myoglobin, the PFs were calculated from the reported labeling rate constants by Xie et al.53 

using the reactivities reported in the literature.24 For this study, radicals were generated 

using sub-microsecond FPOP with a dosimeter to provide varying doses of radicals. Finally, 

the experimental PFs for both lysozyme and cytochrome c were oxidatively modified by 

FPOP at a single radical dose as described in the Supporting Information.

For incorporation of the data into the newly developed score term, input files were created 

for each protein consisting of a heading line followed by two columns comprising the 

residue number and the natural logarithm of the protection factor, with each labeled residue 

on a new line. FPOP/HRF can label 19 of the 20 amino acids, however data from the 

following residue types were omitted due to either too low/high reactivity or unclear 

products: M, C, D, N, Q, T, S, A, G, R, K, and V. Of this list of omitted residues, it has been 

previously suggested by Xie et al. that the sequence context plays a role in whether or not 

these amino acid types are labeled. This is a complex issue and has not been examined in 

this current work. As a result, only eight of the twenty amino acids were considered in the 

analysis: I, L, P, F, W, Y, E, and H. These residues have intermediate reactivities and 

correspond with the residue types utilized in similar studies.16, 53

Aprahamian et al. Page 4

Anal Chem. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rosetta ab initio Folding

In the absence of any experimental labeling data, decoy sets of 20,000 structures were 

generated for each of the four benchmark proteins using the AbinitioRelax application 

within Rosetta.57–59 The AbinitioRelax protocol consists of two main steps: 1) a coarse-

grained fragment-based search of conformational space that uses a low-resolution 

“centroid”-based (treating each residue with backbone atoms defined explicitly and the side-

chain represented as a single sphere) scoring function and 2) a high-resolution refinement 

using the full-atom Rosetta score function.

The generated decoy sets act as benchmarks to compare the structure prediction capabilities 

of Rosetta in the absence of FPOP/HRF labeling data. Specifics of the protocol have been 

detailed extensively in the literature.60 The fragment libraries for this work were generated 

using the Robetta online server.61 The required FASTA formatted sequences and native 

protein structures were extracted from each protein’s respective PDB file. The fragment 

libraries, FASTA sequences, and native PDB structures (used solely for determining the 

deviation of the generated models from the native) were used as inputs for Rosetta’s 

AbinitioRelax application. For lysozyme, disulfide bonds were present between the 

following residues: 6 and 127, 30 and 115, 64 and 80, and 76 and 94. An additional input 

file was provided to specify the residues that are a part of the disulfide bonds. The generated 

structures were scored using the Rosetta energy function (Ref15), where the score is an 

approximation of the energy of the protein or complex.62 The scores and respective root 

mean square deviation (RMSD) to the native crystal structure were extracted from the output 

score file. Structures were ranked based upon their scores with lower scores anticipated to 

correspond to models closer in structure to the native. Rosetta score versus RMSD to the 

native protein were generated to demonstrate this correlation.

For each of the benchmark proteins, two small sets of representative structures were 

generated. The first set represented ten native-like conformations of each protein which were 

obtained by relaxing each crystal PDB in the Rosetta force field using the relax application.
63, 64 We will refer to these structures as the ten native-like models or the native-like model 

set. The second set contained models that scored well with the Rosetta energy function, but 

had high RMSDs compared to the crystal native structures. These were obtained by 

extracting the top ten scoring models with RMSD > 10 Å for each protein from the initial ab 
initio calculations. We will refer to these structures as the good scoring/high RMSD model 

set. Together, these sets represented the two extremes of potential models that we desired to 

efficiently differentiate between using our new score term.

Residue Exposure Metric

To compare the protection factors extracted from the FPOP/HRF labeling data to residue 

exposure in protein models, a corresponding residue exposure measure was developed which 

enabled calculation of the level of exposure of every labeled residue in a protein model. The 

PF has been shown to correlate to a residue-level solvent accessible surface area (SASA).
16, 53, 56 Because residue-level SASAs are expensive to calculate,65, 66 we explored other 

metrics, aside from SASA, that were less computationally expensive and provided even 

stronger correlation to the natural logarithm of the experimental FPOP/HRF PFs. Assuming 
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solvent exposed residues are preferentially labeled, we sought to find a residue burial/

exposure metric that showed correlation to the natural logarithm of the PFs. Several 

methods, such as weighted neighbor count and SASA,65, 67 were investigated. For reference, 

the correlation between SASA and the natural logarithm of the PFs can be found in 

Supplemental Figure S-1. However the burial measure found to give the strongest correlation 

to the experimental data was a neighbor count determined for each labeled residue. A 

residue with a high neighbor count can be thought of as buried whereas a residue with a low 

neighbor count can be considered solvent exposed. For this analysis, a low-resolution model 

of the protein was used where all of the backbone atoms were represented explicitly and the 

side-chain was represented as a single sphere called a centroid. To calculate a residue’s 

neighbor count, the distances between the labeled residue’s centroid (residue i) and all other 

residues’ centroids (residues j ≠ i) were measured. The distance, rij, was then used in a 

sigmoid function that defined a value between 0 and 0.7, as shown in Supplemental Figure 

S-2, representing the amount of contribution of a neighboring residue j to the total neighbor 

count of the target residue i. The closer a residue j’s centroid is to labeled residue i’s 

centroid, the more it contributed to the overall neighbor count; conversely, the further away 

it is, the less it contributed. The total neighbor count for each labeled residue i was then 

defined as the sum of every residue’s contribution to the neighbor count:

neighbor counti = ∑
j ≠ i

total # residues 1.0
1.0 + e

0.1(r j − 9.0) (2)

We developed a new Rosetta application, burial_measure_centroid, which calculated the 

neighbor counts (as defined in eq 2) for arbitrary protein structures. For each of the eighty 

models comprising the native-like and good score/high RMSD model sets, the neighbor 

counts were calculated using the burial_measure_centroid Rosetta application. The neighbor 

counts for the ten native-like structures of calmodulin (1PRW) were used to perform a linear 

regression with the corresponding experimental lnPF values. The linear fit obtained was then 

used as a prediction function to predict the neighbor count for all 80 representative models 

with their respective experimental lnPF values as inputs.

hrf_ms_labeling Score Term

A new score term, hrf_ms_labeling, was developed to be incorporated into Rosetta to assess 

the agreement of Rosetta models with experimental FPOP/HRF labeling data. This score 

term was defined as a centroid score term that rewards protein conformations that show 

agreement with the experimental labeling data. By treating the score term in a Bayesian 

fashion, the total Rosetta score was derived (as shown explicitly in the Supporting 

Information) to be the sum of the weighed score term and the current Rosetta score:

Total Score = whrf ∗ hrf _ms_labeling + RosettaScore (3)

The score term, hrf_ms_labeling, was implemented using the linear prediction function 

obtained by correlating the observed neighbor counts and experimental lnPF for the 
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benchmark protein calmodulin (see the previous section, Residue Exposure Metric). A value 

for hrf_ms_labeling was calculated by summing the per-residue neighbor scores over the set 

of labeled residues and was defined as:

hrf _ms_labeling = ∑
i

# labeled residus −1.0
1.0 + e

2.0( ∣ diff ∣i − 7.5) (4)

where |diff|i is the absolute value of the difference between the observed neighbor count 

(calculated using eq 2 for the modeled protein) and the predicted neighbor count (calculated 

using the linear prediction function) for labeled residue i. Using the definition in eq 4, each 

labeled residue contributed a per-residue score ranging from −1 to 0 with a value of −1 in 

case of strong agreement with the experiment and a value of 0 in case of complete 

disagreement. If the value of |diff|i fell between 5 and 10 (which corresponded to the same 

cutoffs as the delta lines used in analyzing the prediction function), the residue received a 

logistically increasing value ranging from −1 to 0. The per-residue score (function found 

within the summation in eq 4) is depicted in Figure 1 with all relevant points highlighted.

Rescoring of Rosetta Structures

To test the capability of our new score term to improve Rosetta model quality, the 20,000 

Rosetta models initially generated as part of the ab initio folding for each benchmark protein 

were rescored with the hrf_ms_labeling score term. The calculated hrf_ms_labeling score 

was weighted by a value of 6.0 and added to the Rosetta score calculated using Rosetta’s 

Ref15 energy function:

Total Rosetta Score = Ref 15 Rosetta Score + 6.0 ∗ hef _ms_labeling (5)

A weight of 6.0 was the lowest possible value that showed the greatest improvement. We 

iterated through all integer values from 1–36 and determined the top scoring models’ 

RMSDs at each weight. The results of this analysis are shown in Supplemental Figure S-3. 

To calculate the hrf_ms_labeling contribution for each model, the score Rosetta application 

was run on each of the 80,000 models using the output structures from the initial ab initio 
model generation as input. For each of the 80,000 rescored models, the total Rosetta scores, 

the RMSD to the native structure, and the hrf_ms_labeling scores were extracted.

Model Evaluation

Several different metrics were used to evaluate the performance of both Rosetta and the 

score term. Those metrics were based upon the concept of an energy funnel, i.e. that within 

the overall energy landscape, low RMSD models can be distinguished from high RMSD 

models due to their lower energy (Rosetta score).68 The first metric used was a simple 

determination of the top scoring model’s RMSD to the native structure. In practice, the 

Rosetta model with the lowest (most favorable) Rosetta score is assumed to be closest in 

structure to the native. Because all the benchmark proteins chosen for this study had crystal 

PDB structures available, an RMSD for that model can be calculated.
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The second metric used was the goodness-of-energy-funnel metric Pnear, as defined by 

Bhardwaj et al.69 A value of Pnear was calculated for each Rosetta score versus RMSD 

distribution using the following equation:

Pnear =
∑m = 1

N exp −
rmsdm

2

λ2 exp −
Em
kBT

∑m = 1
N exp −

Em
kBT

(6)

where N is the total number of models and Em and rmsdm are the Rosetta score and RMSD 

of model m. The parameter λ was given a value of 2.0 and controlled how similar a model 

needed to be to the native to be considered native-like. The final parameter, kBT, was set to 

1.0 and governed the shallowness or depth of the funnel affects Pnear. Values of Pnear can 

range from 0 (very non-funnel like) to 1 (funnel-like).

The final metric used was a comparison of the number of top 100 scoring models with 

RMSD’s below a 10.0 Å. By comparing this metric between different Rosetta score versus 

RMSD distributions we were able to investigate how well (or poorly) the addition of 

hrf_ms_labeling was at improving model quality.

Results & Discussion

Generation of Control ab initio Model Set for Benchmark Proteins using Rosetta

To establish the baseline performance of Rosetta’s Ref15 scoring function at predicting 

protein structures without any additional experimental knowledge, decoy sets consisting of 

20,000 models were generated for each of four benchmark proteins. The four proteins 

selected for the benchmark were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 

1DWR), lysozyme (PDB ID: 1DPX), and cytochrome c (PDB ID: 2B4Z). Table 1 

summarizes the benchmark proteins. These proteins ranged in size from 104 to 153 amino 

acids in length. Contact orders (CO) were calculated for each of the proteins.70 The contact 

orders for all four proteins were low, ranging from 10.7 to 13.7. The secondary structure 

content for the four proteins were relatively high, ranging from 41% to 74%. Because these 

proteins were all relatively small (approx. fewer than 150 amino acids), had high secondary 

structure content and low contact orders, we concluded that they were amendable to Rosetta 

ab initio protein structure prediction.

Using Rosetta to generate 20,000 models for each of the four proteins resulted in the 

selection of best-scoring structures with RMSDs ranging from 5.0 Å to 15.2 Å, as 

summarized in Table 2 and indicated on the Rosetta score versus RMSD to native structure 

plots in panel A of Figure 2 by stars. The two proteins with top scoring structures that were 

closest to their respective native structures were myoglobin (RMSD = 5.0 Å) and 

cytochrome c (RMSD = 5.5 Å). The predictions for the remaining two proteins, calmodulin 

and lysozyme, were poor, yielding top scoring models with RMSD’s of 11.8 and 15.2 Å, 

respectively. Considering the size of the benchmark proteins, none of these best-scoring 
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models were high-quality, near-atomic resolution models. For two of the proteins, even an 

incorrect topology was identified. However, as can be seen in Figure 2A, models with 

significantly lower RMSDs to the native structure were built for all four proteins. For 

calmodulin, the RMSDs for the generated models ranged from 2.9 Å to 21.5 Å. Similar 

ranges were sampled for cytochrome c and myoglobin, with RMSDs ranging from 1.4 Å to 

21.3 Å and 1.5 Å to 27.3 Å, respectively. Lysozyme had the poorest sampling, where model 

RMSDs ranged from 6.0 Å to 18.7 Å. This indicated that better, and in some cases even 

near-atomic resolution models, were in fact generated for all proteins, but they were 

generally not identified by the lowest score.

The goodness-of-energy-funnel metric, Pnear, was used to evaluate the funnel quality of each 

of the distributions. As can be seen in Table 2, none of the distributions had Pnear values 

greater than 0.1, strongly suggesting that none of the ensembles of models exhibited funnel-

like score distributions. This lack of a funnel in the Rosetta score versus RMSD to native 

structure plots made structure prediction and particularly native structure identification 

challenging. Based upon these ab initio structure prediction results, we concluded that 

incorporation of experimental data, such as HRF/FPOP labeling data, had the potential to 

improve identification of low RMSD models by score.

Rescoring Model Sets using hrf_ms_labeling

The overall goal of this work was to utilize experimental HRF/FPOP labeling data in order 

to improve models predicted by Rosetta. To accomplish this, a new Rosetta score term, 

hrf_ms_labeling, was developed that incorporated experimental HRF/FPOP protection 

factors (PFs). After developing hrf_ms_labeling, we confirmed that incorporation of HRF/

FPOP labeling data did enable discrimination of near-native and high RMSD models and 

that combination of this score with the total Rosetta Ref15 score did improve the quality of 

the models selected from the structure ensembles.

The first step in this process was to demonstrate that a correlation existed between the 

experimental labeling data (the PFs) and a residue solvent exposure metric derived within 

Rosetta. The metric that demonstrated the best correlation was the per-residue neighbor 

count, as defined in the Methods section. The calculated neighbor count for every labeled 

residue within calmodulin (1PRW), one of our benchmark proteins, was plotted against the 

natural logarithm of the respective PF values. The positive correlation, as seen in Figure 3, 

had an R2 of 0.48 and p-value of 1.36E-36. The observed trend matched our expectation 

where residues with a low lnPF also showed a low neighbor count (suggesting a higher 

solvent exposure) and residues with a high lnPF showed a high neighbor count (suggesting a 

lower solvent exposure). The derived relationship between PFs and neighbor count was used 

to predict neighbor counts for all four benchmark proteins based on the experimental HRF/

FPOP protection factors. For comparison, observed neighbor counts for two small sets of 

representative structures (the native-like model sets and the good scoring/high RMSD model 

sets) were calculated from each pdb structure using burial_measure_centroid. The predicted 

neighbor counts have been plotted against the observed neighbor counts (calculated directly 

from representative structures of the four benchmark proteins) in Figure 4. In order to 

quantify the accuracy of the prediction, two delta lines were defined (d1 = 5.0 and d2 = 
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10.0). These delta lines represent how close the predicted neighbor counts were to the actual 

observed values. Using the native-like model sets for all four proteins, an average of 81% 

and 59% of the labeled residues fell within d2 and d1, respectively, whereas only 67% and 

38% of those belonging to the good scoring/high RMSD model sets did. This demonstrated 

that we predicted the majority of the labeled residues in native-like models within the delta 

lines and simultaneously excluded the majority of residues in the high RMSD models from 

within the delta lines. This suggested that agreement between a model’s residue exposure 

and the neighbor count metric derived from experimental FPOP/HRF mass spectrometry 

data can indeed distinguish between low and high RMSD models and can thus be used to 

rescore protein models built in the absence of experimental FPOP/HRF labeling data. To be 

able to rescore protein models, a hrf_ms_labeling score term was developed for 

incorporation into Rosetta.

We next demonstrated that the new score term was effective in improving model prediction. 

The 20,000 model decoy sets generated for each of the four benchmark proteins were 

rescored with the hrf_ms_labeling term added to the Ref15 Rosetta score. For each set of 

models, Rosetta score + hrf_ms_labeling versus RMSD plots were generated. Based upon 

the rescored structures, new top scoring models were selected. As shown in Table 3, the 

RMSDs of the top scoring models improved for all four proteins, while for two of the 

proteins near-atomic resolution models were identified. The biggest increases in top scoring 

model quality were observed for lysozyme. Addition of HRF/FPOP labeling data improved 

the RMSD of the top scoring lysozyme model from 15.2 Å to 7.2 Å, a significant 

improvement in the model’s quality. Although a model with an RMSD of 7.2 Å is not 

usually considered high quality, considering that the best lysozyme ab initio model had an 

RMSD of 6.0 Å, one of the best existing models was identified. Both myoglobin and 

cytochrome c showed decreases in their RMSDs to near-atomic resolution models (2.2 and 

1.8 Å respectively), also identifying models with RMSDs close to the best existing models 

within the 20,000 structures. Calmodulin had the least improvement with a change in RMSD 

from only 11.8 to 10.2 Å. When superimposing the top scoring models onto their respective 

native structures, as depicted in panels B and D of Figure 2, a significant increase in model 

quality could be observed as a result of the addition of hrf_ms_labeling. All top scoring 

models now identify the correct protein topology.

In addition to analyzing the RMSD of the top scoring models, the overall energy landscape 

of the structures was analyzed. Values of Pnear were calculated for each score versus RMSD 

distribution, identical to what was done without the addition of hrf_ms_labeling (see Table 

2). With the addition of the hrf_ms_labeling term to the scoring function, there was an 

increase in Pnear, i.e. an increase in funnel quality of the score vs RMSD plots, for all four 

proteins. As can be seen in panel C of Figure 2, the distributions appear more funnel like 

with lower RMSD models receiving lower scores. Interestingly, the Pnear values of the two 

proteins for which near-atomic resolution models were identified (myoglobin and 

cytochrome c) were several orders of magnitude higher than those of the other proteins. We 

thus speculated that Pnear might be used as a confidence measure to identify cases for which 

near-atomic resolution models were identified. To explore this idea we recalculated score vs 

RMSD plots with respect to the lowest scoring structure (to obviate the necessity for 

knowledge of the native structure) and measured Pnear values for these distributions as 
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shown in the last column of Table 2. While the trend was not as pronounced as before, this 

Pnear value still served as a confidence measure in that the Pnear values of the two proteins 

for myoglobin and cytochrome c were more than two orders of magnitude higher than those 

of the other proteins. Upon rescoring with hrf_ms_labeling, the overall distribution of 

structures did not shift to a lower RMSD, because hrf_ms_labeling was simply used to 

rescore previously generated models. Plots of hrf_ms_labeling versus RMSD are shown in 

Supplemental Figure S-4. For all four proteins, models with poor (i.e. high, closer to 0) 

hrf_ms_labeling scores also had a higher RMSD. Likewise, some of the models with a better 

hrf_ms_labeling score tended to have a lower RMSD. There were a fair number of models 

however that had good hrf_ms_labeling scores but a high RMSD. This trend is not 

concerning, because the information obtained from the HRF/FPOP labeling experiments are 

not all encompassing of a proteins structure. Individual score terms within Rosetta generally 

do not exhibit the exact trend of low score/low RMSD and high score/high RMSD. 

Combination of this score term with the Rosetta scoring function however generated the 

desired trend.

We finally investigated whether a larger set of top scoring models after the rescoring were of 

increased quality. Histograms were generated showing the RMSD frequency of the top 100 

scoring models for the distributions pre- and post-addition of hrf_ms_labeling. Based upon 

these histograms shown in Figure 5, there was a definite shift in the model quality for 

calmodulin and myoglobin, with more models scoring well with low RMSDs. The 

percentage of the top 100 scoring models that had a RMSD < 10 Å increased from 35% to 

68% for calmodulin with the addition of hrf_ms_labeling. This illustrates that despite not 

identifying a near-atomic resolution model for calmodulin, addition of the labeling 

information significantly improved the model quality. Myoglobin demonstrated an increase 

in the percentage of models in the top scoring 100 with RMSD < 5 Å from 47% to 70%. A 

shift in model quality of the top 100 scoring models was also seen with for lysozyme and 

cytochrome c, albeit much less significant.

The hrf_ms_labeling score term has shown great success in rescoring structures based on 

experimental HRF/FPOP labeling data and has been designed efficiently. A centroid form of 

the score term was chosen for two reasons. First, this implementation showed the highest 

correlation between the centroid based neighbor count and experimental lnPFs. Second, a 

centroid-based score function is crucial in predicting structures within Rosetta’s 

AbinitioRelax protocol. Within this protocol, the main sampling of conformational space 

occurs during the centroid scoring phase. Thus hrf_ms_labeling would have maximal impact 

on predicting structures ab initio if it was utilized during the centroid scoring phase. Future 

work will focus on developing these ab initio capabilities.

Conclusion

In this work, a new Rosetta score term, hrf_ms_labeling, was developed. This score term 

utilizes residue-resolved protection factors from hydroxyl radical labeling (HRF/FPOP) 

mass spectrometry data and assesses agreement of protein model with the experimental data. 

Four proteins (calmodulin, cytochrome c, myoglobin, and lysozyme) which had both 

available experimental data and known crystal structures were used to benchmark the 
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performance of the score term. Using the linear correlation between the natural logarithm of 

the experimental protection factors and calculated neighbor counts for one of the benchmark 

proteins, calmodulin, a prediction function was generated to predict the neighbor counts for 

the other proteins using their respective lnPFs. This prediction function was used as the basis 

of the new score term hrf_ms_labeling. The new score term was used to rescore sets of 

20,000 models for each protein generated using Rosetta’s AbinitioRelax application. As a 

result, the top scoring model increased in quality for all four proteins. The method used for 

radical generation did not adversely affect the modeling. For two of the four proteins, we 

were even able to identify atomic resolution models using the HRF/FPOP data. In addition, 

the overall distribution of models moved more towards a funnel-like energy landscape, 

indicating that good scoring models were closer in structure to their respective natives. 

Finally, we were able to identify a confidence measure that has the potential to identify 

successful models without having to know the native structure.

To our knowledge, we are reporting the first method to incorporate experimental HFR/FPOP 

labeling data in protein structure prediction. This marks an important first step in fully 

utilizing mass-spectrometry-based covalent labeling techniques in quantitative structure 

predictions, rather than just qualitative explanations. By demonstrating the potential of 

covalent labeling in conjunction with the protein structure prediction capabilities of Rosetta, 

these techniques will be elevated to be comparable in utility to other structural biology 

techniques such as EPR or FRET. The scoring term and applications discussed in this paper 

are freely available and easily accessible through Rosetta. We have added a tutorial, 

including a summary of necessary files and command lines to the supporting information.

Future work will focus on extending this methodology to other labeling techniques. While 

this particular scoring term is specific to HRF, we plan to implement the capability to use 

labeling data from other mass-spectrometry-based covalent labeling experiments in the 

future. A second direction of our future efforts will be to develop covalent labeling-guided 

ab initio structure prediction, where the labeling data is used as part of the actual structure 

generation as opposed to rescoring structures generated in the absence of the experimental 

data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of the per-residue neighbor score for labeled residue ias a function of the absolute 

difference between its observed and predicted neighbor counts (|diff|i). The score function 

fully rewarded (with a score of −1) residues that have an |diff|i < 5 and gave no reward (a 

score of 0) to residues that have an |diff|i > 10.
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Figure 2. 
(A) Rosetta score versus RMSD to the native structure plots for 20,000 models generated 

using Rosetta ab initio for each of the four benchmark proteins. The top scoring model is 

represented as a star on each plot. (B) The top scoring models from the Rosetta score versus 

RMSD distributions in A (color) superimposed upon the respective native model (grey). (C) 

Rosetta score + hrf_ms_labeling versus RMSD to the native structure plots for each of the 

four benchmark proteins after rescoring with the new score term. The top scoring model is 

represented as a star on each plot. (D) The top scoring models from the Rosetta score + 

hrf_ms_labeling rescoring distributions in C (color) superimposed upon the respective native 

model (grey).
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Figure 3. 
Linear regression between the neighbor count and the natural logarithm of the experimental 

protection factor (lnPF) for ten relaxed native models of calmodulin. The linear fit along 

with its coefficient of determination are indicated on the plot.
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Figure 4. 
(A) Plot of predicted and observed neighbor counts for ten relaxed native models for each of 

the four benchmark proteins. (B) Plot of predicted and observed neighbor counts for ten 

models with good Rosetta scores and high RMSD values (> 10 Å) as compared to their 

respective natives for each of the four benchmark proteins. For both plots, the dashed black 

line represents the theoretical perfect fit (the predicted matches the observed perfectly) and 

the yellow and cyan lines represent the inner (d1 = 5) and outer delta (d2 = 10) lines 

respectively.
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Figure 5. 
Histograms for each of the four benchmark proteins showing the RMSD frequency of the 

top 100 scoring models from both the ensembles generated using Rosetta and the ensembles 

obtained after rescoring with hrf_ms_labeling. The histograms are plotted ranging from 0 to 

20 Å with bin widths of 0.67 Å.
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