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Abstract

Malaria remains a major cause of mortality in African children, with no adjunctive treatments
currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhe-
sion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly
associated with severe malaria, and hence is a potential therapeutic target. However, the
molecular mechanisms of rosetting are complex and involve multiple distinct receptor–ligand
interactions, with some similarities to the diverse pathways involved in P. falciparum erythro-
cyte invasion. This review summarizes the current understanding of the molecular interac-
tions that lead to rosette formation, with a particular focus on host uninfected erythrocyte
receptors including the A and B blood group trisaccharides, complement receptor one,
heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting
blood group A trisaccharides as rosetting receptors, but evidence for other molecules is
incomplete and requires further study. It is likely that additional host erythrocyte rosetting
receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative
is being investigated as an adjunctive therapy for severe malaria, and further research into the
receptor–ligand interactions underlying rosetting may reveal additional therapeutic
approaches to reduce the unacceptably high mortality rate of severe malaria.

Introduction

Rosetting is a Plasmodium falciparum infected erythrocyte (IE) adhesion phenotype that is
associated with severe malaria in sub-Saharan Africa (summarized in Doumbo et al., 2009).
It is a form of cell adhesion in which erythrocytes infected with mature, asexual parasites
bind to uninfected erythrocytes to form clusters of cells (Fig. 1). Rosetting is a phenotypically
variable property, which is common in parasite isolates collected from severe malaria patients,
but infrequent in parasites from uncomplicated malaria cases. For culture-adapted P. falcip-
arum isolates, only a subset of parasite lines can be selected in vitro for the rosetting pheno-
type, and many of the commonly used laboratory strains such as 3D7, rosette poorly or not at
all. The relative rarity of rosetting in culture-adapted parasite lines may explain why rosetting
is studied infrequently, despite being a virulence-associated phenotype in clinical isolates.

Rosetting can contribute to IE sequestration and microvascular congestion, leading to
obstruction to blood flow (Kaul et al., 1991), one of the major pathological events in severe
falciparum malaria contributing to inflammation, tissue damage and organ failure (Miller
et al., 2002; White et al., 2013). Rosetting also causes membrane changes in uninfected ery-
throcytes that may contribute to phagocytic removal and anaemia (Uyoga et al., 2012). In
Africa, high levels of rosetting occur in parasites sampled from severe malaria patients with
all clinical types of disease including cerebral malaria (Carlson et al., 1990; Treutiger et al.,
1992; Ringwald et al., 1993; Rowe et al., 1995; Kun et al., 1998; Doumbo et al., 2009), severe
malarial anaemia (Newbold et al., 1997; Doumbo et al., 2009) and respiratory distress
(Warimwe et al., 2012). Rosette-like clusters of cells have been seen in the microvasculature
in histological studies of fatal malaria cases (Dondorp et al., 2004; Barrera et al., 2018). The
major Plasmodium species that infect humans are all able to form rosettes (Udomsanpetch
et al., 1995; Angus et al., 1996; Chotivanich et al., 1998; Lowe et al., 1998). However, the
link between severity of disease and rosetting is confined to P. falciparum, possibly due to
the unique ability to bind both endothelial cells and uninfected erythrocytes simultaneously
(Udomsangpetch et al., 1992; Adams et al., 2014), such that P. falciparum rosetting IEs are
sequestered and are not seen in peripheral blood. Recently it has been suggested that rosetting
may contribute to anaemia in Plasmodium vivax infections (Marín-Menéndez et al., 2013).

The biological function of rosetting in vivo remains unknown. Rosettes may shield IEs from
host immune attack, or close contact with uninfected erythrocytes in rosettes might enhance
merozoite invasion (Wahlgren et al., 1989; Deans and Rowe, 2006). However, firm evidence to
support either of these hypotheses is lacking. Most rosetting parasite isolates form larger,
stronger rosettes with blood group A erythrocytes compared to other blood groups
(Carlson and Wahlgren, 1992), and these group A rosettes may shield IEs to reduce antibody
binding to parasite variant surface antigens (VSAs) (Moll et al., 2015). Whether this translates
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into the reduced clearance of IEs and subsequent higher parasite
burdens in vivo is unclear, although some studies have noted a
positive correlation between rosetting and parasitaemia (Rowe
et al., 2002). Another study showed that rosetting does not pre-
vent IgG-mediated phagocytosis of IEs (Stevenson et al., 2015a),
although experiments were only performed in group O cells.
Parasite invasion of erythrocytes is not increased in vitro in roset-
ting compared to isogenic non-rosetting parasites (Clough et al.,
1998; Deans and Rowe, 2006; Ribacke et al., 2013), nor in the
presence of larger rosettes (Moll et al., 2015). However, in vivo
studies using splenectomized Saimiri sciureus monkeys demon-
strated a 1.5 times higher parasite multiplication rate with roset-
ting compared to isogenic non-rosetting parasites (Le Scanf
et al., 2008). This suggests either increased invasion or decreased
clearance of rosetting parasites in vivo, which requires further
investigation.

This review will discuss the molecular mechanisms of rosetting
and describe recent advances exploring the potential of rosetting
as a therapeutic target in severe P. falciparum malaria. Rosetting is
a complex cell adhesion phenotype involving parasite adhesion
molecules on the IE surface and host receptors on uninfected ery-
throcytes (Fig. 2). Current evidence suggests that there are multiple
distinct pathways of rosette formation, similar to the diverse path-
ways involved in merozoite invasion of erythrocytes (Cowman
et al., 2017). Interestingly, although the parasitemolecules thatmedi-
ate rosetting are different from those involved inmerozoite invasion,
both sets of proteins have ‘Duffy-Binding-Like’ adhesion domains
and many of the same host erythrocyte receptors are used (e.g.
glycophorin A, glycophorin C and complement receptor one). The
diversity in P. falciparum merozoite invasion pathways is thought
to have evolved to allow parasites to successfully establish infections
despite host genetic variation and/or development of host antibodies
blocking single pathways. The same arguments can be applied to
rosetting, and the existence of multiple rosetting pathways suggests
that there has been significant selection pressure in favour of the
phenotype, and that rosetting somehow improves parasite fitness.

Several recent reviews have discussed the parasite adhesion
molecules involved in rosetting (Hviid and Jensen, 2015; Wang
and Hviid, 2015; Yam et al., 2017), so these will not be described
in detail here. Briefly, multiple studies have identified members of
the VSA family P. falciparum erythrocyte membrane protein one
(PfEMP1) as rosette-mediating adhesion molecules (Rowe et al.,
1997; Vigan-Womas et al., 2008, 2011; Albrecht et al., 2011;

Ghumra et al., 2012), and recent reports suggest that other
VSAs such as RIFIN (Goel et al., 2015) and STEVOR (Niang
et al., 2014) may also contribute to rosette formation. Further
work is needed to determine the relative contributions of the dif-
ferent VSAs to rosetting, especially in clinical isolates.

Host serum proteins such as IgM, α2macroglobulin, albumin
and fibrinogen also contribute to rosetting, either by binding dir-
ectly to parasite adhesion molecules or by non-specific erythro-
cyte aggregating effects (Scholander et al., 1996; Treutiger et al.,
1999; Luginbuhl et al., 2007; Ghumra et al., 2008, 2012;
Semblat et al., 2015; Stevenson et al., 2015a, 2015b). The extent
to which host serum proteins influence rosetting, sequestration
and microvascular obstruction in vivo is unknown, and would
be a valuable area of future study.

Rosetting receptors on host erythrocytes

A number of different molecules on uninfected erythrocytes have
been proposed as receptors for P. falciparum rosetting (Fig. 2 and
Table 1), and multiple receptor–ligand interactions may contrib-
ute to rosetting in any given parasite isolate. Some of the proposed
rosetting receptor molecules, including blood group A and B
sugars, heparan sulphate (HS)-like molecules and complement
receptor one (CR1) are widely accepted as having a role in roset-
ting, whereas other recent candidates such glycophorin A (GYPA)
and glycophorin C (GYPC) are less well-authenticated. However,
a close examination of the underlying data shows that in most
cases, the evidence is incomplete, as discussed in detail below.

Evidence needed to establish a role for a specific host receptor
in rosetting

In order to prove that a particular molecule acts as a host receptor
for P. falciparum rosetting, a variety of different types of evidence
have been provided. Essential data include proof that the molecule
in question is found on normal human erythrocytes and that ery-
throcytes lacking the molecule show reduced/absent rosetting.
Direct binding between IEs and/or recombinant parasite adhesion
proteins and the receptor molecule should be demonstrated.
Ideally, a crystal structure of the parasite adhesion molecule–
host receptor complex should show the precise binding inter-
action site. Supportive evidence includes the ability of antibodies
against the receptor or soluble receptor proteins to inhibit roset-
ting, and biochemical approaches to remove or alter the receptor
on erythrocytes. Human genetic evidence can also provide indir-
ect supportive evidence that particular molecules are important in
life-threatening malaria. Several putative rosetting receptors have
high-frequency polymorphisms in populations from malaria
endemic regions that reduce rosetting and are associated with pro-
tection against severe malaria and death [reviewed in Rowe et al.
(2009a, 2009b)]. These various lines of evidence are summarized
below for each potential host rosetting receptor.

Blood group A and B trisaccharides

The most well-validated rosetting receptors are the blood group A
and B trisaccharides (Fig. 3). In vitro experiments have shown that
rosetting parasites have a ‘preference’ for blood groups A, B or AB
rather than O (Carlson and Wahlgren, 1992; Udomsangpetch
et al., 1993; Barragan et al., 2000b; Pipitaporn et al., 2000;
Vigan-Womas et al., 2012; Moll et al., 2015). This varies by para-
site genotype, with A-preference being the commonest. Clinical
isolates from non-O (i.e. A, B or AB) patients show higher levels
of rosetting than isolates from group O patients in studies from
sub-Saharan Africa (Rowe et al., 1995, 2007) and India (Rout
et al., 2012), although the same result was not seen in one Thai

Fig. 1. Plasmodium falciparum rosetting in an in vitro culture. Rosettes consisting of

clusters of infected and uninfected erythrocytes are shown. Inset image shows a sin-

gle infected erythrocyte (centre) and three adherent uninfected erythrocytes. Images

were taken using a Yenway microscope camera on a Leica DM LB2 fluorescent micro-

scope using the ×40 and ×100 (inset) objectives.
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study (Lee et al., 2014). When parasites are cultured in their ‘pre-
ferred’ blood group, they form larger, stronger rosettes that are
more resistant to disruption by antibodies or chemical agents
than in group O cells (Carlson and Wahlgren, 1992; Barragan
et al., 2000b; Ch’ng et al., 2016). Enzymatic removal of the ter-
minal sugars (N-acetyl-D-galactosamine for A and D-galactose
for B) results in smaller, weaker rosettes, equivalent to those
seen in group O erythrocytes (Barragan et al., 2000b). Rosettes
do, however, still occur with blood group O erythrocytes (that
express the H antigen), and also in Bombay phenotype red cells
that lack the ABO blood group core fucose residue (Fig. 3)
(Carlson and Wahlgren, 1992; Rowe et al., 1997). This indicates
that other red cell surface molecules in addition to the A and B
antigens can act as host receptors for rosette formation.

For the blood group A-preferring parasite line, Palo Alto 89F5,
direct binding between the VarO PfEMP1 adhesion molecule and
the blood group A trisaccharide was shown by Surface Plasmon
Resonance (Vigan-Womas et al., 2012). The VarO PfEMP1 vari-
ant also binds to the B trisaccharide, but with lower affinity
(Vigan-Womas et al., 2012). A crystal structure of the PfEMP1
N-terminal region was obtained and the A-trisaccharide binding
site mapped (Vigan-Womas et al., 2012). A recent study suggests
that P. falciparum RIFIN molecules may also be able to interact
with blood group A sugars to contribute to rosette formation
(Goel et al., 2015), although direct RIFIN-A trisaccharide inter-
action was not shown.

The importance of the A and B antigens in rosetting is empha-
sized by the fact that the non-O blood groups are associated with
increased risk of severe malaria and death compared to O (Rowe
et al., 2007; Fry et al., 2008; Tekeste and Petros, 2010; Rout et al.,
2012; Malaria Genomic Epidemiology Network, 2014; Ndila et al.,
2018; Degarege et al., 2019). Reduced rosetting in blood group O,
and therefore reduced microvascular obstruction and reduced
downstream pathological effects, is the proposed mechanism for

the protective association with group O (Udomsangpetch et al.,
1993; Rowe et al., 2007). ABO blood group does not influence
parasite burden (Rowe et al., 2007; Degarege et al., 2019), and evi-
dence for an effect of ABO on P. falciparum invasion or other
host–parasite interactions is conflicting and requires further
study (Chung et al., 2005; Wolofsky et al., 2012; Pathak et al.,
2016; Theron et al., 2018). The ABH antigens are known to be
present on endothelial cells (Ito et al., 1990) and it is likely, but
has not been shown experimentally, that cytoadhesion and overall
levels of sequestration of rosetting parasites are enhanced in group
A/B/AB patients compared to O.

Despite the progress in identifying the A and B trisaccharides
as rosetting receptors and key genetic determinants of host sus-
ceptibility to severe malaria, there have been no attempts to
develop specific therapies to block P. falciparum interaction
with A/B antigens. The PfEMP1-blood group A trisaccharide
binding pair described above (Vigan-Womas et al., 2012) remains
the most clearly defined molecular interaction between parasite
ligand and host receptor in rosetting, and could be used as a start-
ing point to develop rosette-blocking therapeutics. Vigan-Womas
et al. did report that the interaction between PfEMP1 and the A
and B trisaccharides is indirectly inhibited by heparin
(Vigan-Womas et al., 2012), and the development of a heparin-
derivative as a potential adjunctive therapy for severe malaria is
described below (Leitgeb et al., 2017).

Complement receptor one (CR1, CD35)

CR1 is a red cell membrane glycoprotein that regulates comple-
ment activation on cell surfaces (Thielen et al., 2018) and carries
the Knops Blood Group antigens (Moulds, 2010). In malaria, CR1
plays a role in both rosetting and parasite invasion of erythrocytes
(Schmidt et al., 2015). CR1 was first identified as a rosetting
receptor from a screen of 23 naturally occurring erythrocyte

Fig. 2. Parasite-derived adhesion ligands and host receptors that interact to form rosettes. UE, uninfected erythrocyte; IE, infected erythrocyte; GAGs, glycosami-

noglycans; HS, heparan sulphate; CS, chondroitin sulphate; CR1, complement receptor 1; GYPA, glycophorin A; GYPC, glycophorin C. Dotted lines represent pro-

posed host receptors for each parasite ligand.
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Table 1. Summary of host erythrocyte receptors for Plasmodium falciparum rosetting

Name Characteristics Studiesa Comments

ABO blood

group antigens

Differ based on terminal sugar:

A = N-acetyl-D-galactosamine,
B = D-galactose,

O (H-antigen) = L-Fucose

O is a predominant blood group in sub-Saharan

Africa
Blood group O protects against severe malaria

(Rowe et al., 2007; Fry et al., 2008; Tekeste and

Petros, 2010; Rout et al., 2012; Malaria Genomic

Epidemiology Network, 2014; Ndila et al., 2018;
Degarege et al., 2019)

Larger rosettes in parasites cultured in A, B,

AB compared to O (Carlson and Wahlgren,
1992; Udomsangpetch et al., 1993; Barragan

et al., 2000b)

Parasites from group O patients have lower

mean rosette frequencies than those fromnon-O
patients (Rowe et al., 1995; Rowe et al., 2007;

Rout et al., 2012)

Rosettes from group O patients are more easily

disrupted by immune sera and removal of A/B
antigen decreases rosette size (Barragan et al.,

2000b)

Blood group antigen binding site mapped to

NTS-DBLα the domain of PfEMP1-VarO
(Vigan-Womas et al., 2012)

Blood group A antigen is the most

well-validated host rosetting receptor
Both PfEMP1 (Vigan-Womas et al., 2012)

and RIFINs (Goel et al., 2015) may

interact with A antigen

Challenging to manipulate
therapeutically

Complement
receptor 1 (CR1)

Membrane glycoprotein responsible for regulating
the complement system (Thielen et al., 2018)

Polymorphisms affect CR1 copy number, molecular

weight and sequence (Schmidt et al., 2015)

RBC CR1 deficiency protects in medium-high
(Cockburn et al., 2004; Sinha et al., 2009; Rout et al.,

2011; Panda et al., 2012) but not low malaria

transmission areas (Nagayasu et al., 2001;

Teeranaipong et al., 2008).
CR1 Knops blood group polymorphisms associated

with severe malaria (Opi et al., 2018)

Rosetting reduced in CR1 deficient
erythrocytes (Rowe et al., 1997)

Soluble CR1 and CR1 antibodies disrupt

rosettes in some parasite isolates (Rowe

et al., 1997; Rowe et al., 2000; Vigan-Womas
et al., 2012)

Essential region mapped to the C3b binding

site on CR1 (Rowe et al., 2000)

Further work needed to assess the
relative importance of CR1 in rosetting

isolates and potential as a therapeutic

target

Soluble recombinant CR1 has been
considered for therapeutic use in

humans, e.g. cardiac and renal disease

(Li et al., 2006; Reddy et al., 2017)

Heparan

sulphate (HS)b
Glycosaminoglycan

Heparin is a highly sulfated form of HS that is only

found in mast cells
HS is a receptor for P. falciparum sporozoite invasion

of hepatocytes (Frevert et al., 1993)

HS is a receptor for infected erythrocyte

cytoadherence to endothelial cells (Vogt et al., 2003;
Adams et al., 2014)

Heparin partially disrupts rosettes in some

isolates (Udomsangpetch et al., 1989; Carlson

et al., 1992; Rogerson et al., 1994; Rowe et al.,
1994; Barragan et al., 1999)

Heparinase treatment reported to reduce

rosetting in two culture-adapted parasite

lines (Barragan et al., 1999)
Heparin binds to rosetting IE (Barragan

et al., 2000a; Heddini et al., 2001) and to

rosette-mediating PfEMP1 (Barragan et al.,

2000a; Vogt et al., 2003; Juillerat et al., 2010;
Juillerat et al., 2011; Adams et al., 2014)

Limited evidence that HS is present on

mature RBCs (Vogt et al., 2004)

Further work needed to determine
whether HS is present on normal

erythrocytes and acts as a rosetting

receptor

Therapeutic potential due to PfEMP1
binding and rosette disruption. Clinical

trials of low anticoagulant heparin

ongoing (Leitgeb et al., 2017)

Chondroitin
sulphate (CS)

Glycosaminoglycan
Receptor for infected erythrocyte placental

sequestration in pregnancy malaria (Fried and Duffy,

1996)

Soluble CS did not disrupt rosettes (Rogerson
et al., 1994; Rowe et al., 1994)

Chondroitinase treatment reduced rosetting

in one parasite line only (Barragan et al.,

1999)

No evidence that CS is present on
mature RBC

Minimal evidence for a role in rosetting

CD36 Widely distributed membrane protein and scavenger

receptor (Silverstein and Febbraio, 2009)
Deficiency is common in Africa but not associated

with severe malaria (Fry et al., 2009)

Antibodies disrupt rosettes in single

culture-adapted line only (Handunnetti et al.,
1992)

PfEMP1 variants that mediate rosetting are

group A types that do not bind CD36

(Robinson et al., 2003)

Minimal evidence for a widespread role

in rosetting

Glycophorin C
(GYPC)

Red cell membrane protein responsible for Gerbich
blood group (Jaskiewicz et al., 2018)

Receptor for merozoite invasion of erythrocytes

(Maier et al., 2003)

‘Gerbich-negative’ blood group common in
Melanesians (Patel et al., 2001), but no evidence yet

for association with protection against severe

malaria

Reduced rosetting with GYPC antibodies and
GYPC knockdown RBCs (Niang et al., 2014)

(single culture-adapted parasite line tested)

Gerbich-negative erythrocytes formed

rosettes normally with five P. falciparum lines
(Rowe et al., 1997)

Possible role in P. vivax rosetting (Lee et al.,

2014)

Further work needed to assess the
relative importance of GYPC in P.

falciparum rosetting isolates and

potential as a therapeutic target

Glycophorin A

(GYPA)

Sialoglycoprotein which, along with glycophorin B,

constitutes the MNS blood group

Receptor for merozoite invasion of erythrocytes (Sim
et al., 1994)

GYPA polymorphisms are associated with protection

against severe malaria (Band et al., 2015; Leffler

et al., 2017).

GYPA-deficient erythrocytes showed reduced

rosetting with RIFIN transfected parasites

(Goel et al., 2015)
GYPA antibodies had no inhibitory effect on

rosetting (Lee et al., 2014) (Niang et al., 2014)

GYPA null erythrocytes formed rosettes with

five culture-adapted P. falciparum lines (Rowe
et al., 1997)

Further work needed to assess the

relative importance of GYPA in P.

falciparum rosetting isolates and
potential as a therapeutic target

Unknown
receptor/s

Possibly carbohydrate or protease-resistant protein Protease and heparinase treated erythrocytes
capable of forming rosettes (Udomsangpetch

et al., 1989; Rowe et al., 1994)

Further work needed to identify novel
rosetting receptors

aParasite strains used are not consistent between studies with a wide range of culture-adapted and clinical isolates in use. Results are therefore not necessarily generalizable from single

studies.
bMany studies included here use heparin instead of/in addition to heparan sulphate.
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null mutants, each missing a particular blood group molecule or
membrane glycoprotein (Rowe et al., 1997). The only variant to
show substantially reduced rosetting with five P. falciparum para-
site lines was Knops null cells, which are deficient in CR1.
Normally, erythrocytes have between 100 and 1000 molecules of
CR1 per cell (Wilson et al., 1986), whereas Knops null cells
have fewer than 100 molecules per cell (Moulds et al., 1992).
Erythrocytes with fewer than 50 CR1 molecules per cell form
rosettes poorly (Rowe et al., 1997), with normal rosetting occur-
ring above a threshold of around 100 molecules per cell (JA
Rowe, unpublished data).

Soluble CR1 and CR1 antibodies were shown to inhibit roset-
ting in some but, not all P. falciparum rosetting laboratory strains
and clinical isolates, with only monoclonal antibodies (mAbs)
that map to the C3b binding site on CR1 being effective inhibitors
(Rowe et al., 1997, 2000; Vigan-Womas et al., 2012). A recent
paper suggested that the commercially available CR1 mAb E11
that recognizes epitopes outside the C3b binding site (Nickells
et al., 1998) may inhibit P. falciparum rosetting (Lee et al.,
2014), but this was not seen in our hands (Rowe et al., 2000).
Further evidence of a role for CR1 in rosetting came from the
expression of recombinant PfEMP1 domains in COS-7 cells,
which bound to normal erythrocytes but not to CR1-deficient
cells (Rowe et al., 1997).

Despite these supportive data, direct binding of IEs to CR1
protein has not been demonstrated, and recombinant rosette-
mediating PfEMP1 proteins produced in E. coli (Ghumra et al.,
2012) do not bind to CR1 in Surface Plasmon Resonance experi-
ments (Tetteh-Quarcoo et al., 2012). This could reflect a genuine
lack of interaction between the two molecules, or could be due to
technical reasons (e.g. the recombinant CR1 used in experiments
was produced in mouse rather than human cells, whereas CR1
glycosylation, which may affect function, is cell-type specific)
(Lublin et al., 1986). It is also possible that a serum protein
mediates the interaction between PfEMP1 on IEs and CR1 on
uninfected erythrocytes, as the original experiments were all per-
formed in the presence of serum (Rowe et al., 1997).

Human genetic studies provide additional support for the
importance of CR1 in malaria host–parasite interactions.

Erythrocyte CR1 deficiency is common in some malaria-endemic
countries such as Papua New Guinea (Cockburn et al., 2004) and
India (Sinha et al., 2009), and is associated with protection against
severe malaria in medium to high transmission areas (Cockburn
et al., 2004; Sinha et al., 2009; Rout et al., 2011; Panda et al.,
2012). However, erythrocyte CR1 deficiency may be detrimental
in areas such as Thailand, where malaria transmission is low
(Nagayasu et al., 2001; Teeranaipong et al., 2008). There is also
evidence that the CR1 Swain Langley 2 (Sl2) Knops blood
group polymorphism that is common in African populations
(Moulds, 2010) is associated with protection against severe mal-
aria (Thathy et al., 2005; Opi et al., 2018). Red cells carrying
the Sl2 antigen on CR1 show reduced rosetting (Rowe et al.,
1997; Opi et al., 2018), and Sl2 may have additional effects on
complement activation and regulation (Opi et al., 2018).

Overall, the ability of CR1 mAbs and soluble protein to reverse
rosettes suggests that CR1 plays a role in rosetting for some P. fal-
ciparum isolates. However, further work is needed to fully inves-
tigate the molecular interactions between parasite adhesion
molecules and CR1, and to explore the potential for CR1 reagents
(Li et al., 2006; Reddy et al., 2017) as therapeutic disruptors of
rosetting.

Heparan sulphate and chondroitin sulphate

The glycosaminoglycans HS and chondroitin sulphate (CS) are
found on cell surfaces and in the extracellular matrix of many tis-
sues, and have a role in multiple aspects of the P. falciparum life
cycle including hepatocyte invasion (Frevert et al., 1993), endothe-
lial cell cytoadherence (Vogt et al., 2003; Adams et al., 2014) and,
for CS, placental sequestration (Fried and Duffy, 1996). A number
of papers have showed that heparin (which is a highly-sulphated
form of HS found only in mast cells) can partially disrupt rosettes
in about one-third to one-half of P. falciparum clinical isolates in
vitro (Udomsangpetch et al., 1989; Carlson et al., 1992; Rogerson
et al., 1994; Rowe et al., 1994; Barragan et al., 1999). It was shown
that treating erythrocytes with heparinase III, which selectively
cleaves HS chains, reduces rosetting in two P. falciparum lines
(Barragan et al., 1999), and therefore suggested that ‘HS-like’

Fig. 3. Diagram of the ABO blood group sugars. Schematic representation of the terminal structure of the A (blue square), B (purple) H (green; H is the antigen

carried on blood group O erythrocytes) and Bombay (orange) antigens. Yellow circle: D-Galactose (Gal), yellow square: N-acetyl-D-galactosamine (GalNac), red tri-

angle: L-Fucose (Fuc). The symbols α and β indicate the position of the hydroxyl group and the numbers indicate the specific carbon atoms that are linked between

the sugars. The H, A and B antigens are synthesized by a series of glycosyltransferase enzymes that add monosaccharides to create oligosaccharide chains attached

to lipids and proteins in the erythrocyte membrane.
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molecules on red cells are receptors for rosetting (Chen et al.,
2000). However, there has been only one paper reporting the exist-
ence of HS on normal human erythrocytes (Vogt et al., 2004) and
we have been unable to confirm this, and unable to detect any
rosette-reducing effect of heparinase III in a range of parasite
lines (McQuaid and Rowe, unpublished data).

Fluorescently-labelled heparin does bind to the surface of ery-
throcytes infected with rosetting parasites more than non-
rosetting lines (Barragan et al., 2000a; Heddini et al., 2001), and
some rosette-mediating PfEMP1 variants bind directly to heparin
(Barragan et al., 2000a; Vogt et al., 2003; Juillerat et al., 2010,
2011; Adams et al., 2014). The heparin binding site in the
N-terminal region of the varO PfEMP1 variant was mapped
onto a crystal structure (Juillerat et al., 2011), and shown to be
on the opposite side of the molecule from the erythrocyte binding
site (Vigan-Womas et al., 2012). Hence, the rosette-disrupting
effect of heparin is not due to direct blocking of receptor binding,
but may result from aggregating PfEMP1 monomers and prevent-
ing their interaction with erythrocyte receptors (Vigan-Womas
et al., 2012). Similarly, for another rosette-mediating PfEMP1
variant IT4var60, site-directed mutagenesis studies of recombin-
ant proteins showed that mutations that disrupt heparin binding
are distinct from mutations that disrupt erythrocyte binding, indi-
cating that heparin-like molecules are not the main host rosetting
receptor in this case (Angeletti et al., 2015).

Overall, whether HS is present on normal erythrocytes and is a
host receptor for rosetting requires further confirmation. HS in
present on the luminal surface of microvascular endothelial cells
(albeit at a much lower density than on basolateral surfaces) (de
Agostini et al., 1990; Stoler-Barak et al., 2014), therefore interac-
tions between IE and endothelial HS (Vogt et al., 2003; Adams
et al., 2014) are physiologically relevant and are likely to contrib-
ute to cytoadherence and sequestration in vivo.

Despite the uncertainty on the precise role of HS as an erythro-
cyte rosetting receptor, heparin and other sulphated glycoconjugate
compounds have clear potential as adjunctive therapies for severe
malaria due to their rosette-disrupting effects (Udomsangpetch
et al., 1989; Carlson et al., 1992; Rogerson et al., 1994; Rowe
et al., 1994; Kyriacou et al., 2007). There are reports of successful
heparin treatment in severe malaria (Rampengan, 1991) but its
use is not recommended due to a high incidence of bleeding com-
plications (World Health Organisation, 1986). As an alternative,
Wahlgren and coworkers have developed a low anti-coagulant hep-
arin derivative, Sevuparin, that reverses rosetting and cytoadher-
ence in some P. falciparum isolates (Leitgeb et al., 2011; Saiwaew
et al., 2017) and also blocks merozoite invasion (Leitgeb et al.,
2017). Sevuparin has been shown to be safe in adults with uncom-
plicated malaria (Leitgeb et al., 2017), but has not yet been tested in
severe malaria patients.

The evidence for CS as a rosetting receptor is minimal. One
report shows that rosetting in the P. falciparum line TM284 was
partially inhibited by soluble CS and by chondroitinase enzyme
treatment of erythrocytes, and that several clinical isolates showed
reduced rosetting in the presence of CS (Barragan et al., 1999).
However, other studies have found no effect of CS on rosetting
in a variety of culture-adapted lines and clinical isolates
(Rogerson et al., 1994; Rowe et al., 1994). There is also no convin-
cing evidence that CS is found on the surface of normal human
erythrocytes. Overall, current data do not support a role for CS
in rosetting.

CD36

The membrane glycoprotein CD36 is a scavenger receptor for oxi-
dized lipoproteins and a fatty acid translocase (Silverstein and
Febbraio, 2009). It is expressed on a variety of cell types including

monocytes, macrophages, platelets, microvascular endothelial
cells and adipocytes (Silverstein and Febbraio, 2009), and at low
levels on erythrocytes (van Schravendijk et al., 1992). The binding
of PfEMP1 (group B and C variants) to CD36 on microvascular
endothelial cells plays a major role in P. falciparum sequestration
(Baruch et al., 1996; Robinson et al., 2003). Almost all P. falcip-
arum isolates bind to CD36, and increased CD36 binding
(Newbold et al., 1997; Ochola et al., 2011) and predominant
expression of group B and C PfEMP1 (Kraemer and Smith,
2006; Kyriacou et al., 2006) are associated with uncomplicated
malaria.

The role of CD36 in rosetting is less clear. Anti-CD36 mAbs
are capable of disrupting rosettes in a single culture-adapted
parasite line, Malayan Camp (Handunnetti et al., 1992), but not
in a wide range of other laboratory lines or clinical isolates
(Udomsangpetch et al., 1989; Wahlgren et al., 1992; Rowe et al.,
2000; Niang et al., 2014). The PfEMP1 variants identified as para-
site rosetting ligands (Rowe et al., 1997; Vigan-Womas et al.,
2011; Ghumra et al., 2012) are mostly of the group A type,
which do not bind to CD36 (Robinson et al., 2003).

Intriguingly, while CD36 deficiency is fairly common in
African populations, large-scale genetic studies have shown that
CD36 polymorphisms do not influence severe malaria risk (Fry
et al., 2009). There is some evidence that interaction between
IEs and CD36 may benefit the host, as CD36 may contribute to
innate immune clearance of IEs and platelet-mediated parasite
death (McGilvray et al., 2000; McMorran et al., 2012; Cabrera
et al., 2014). Overall, it is unlikely that CD36 is a clinically signifi-
cant rosetting receptor or a useful therapeutic target in severe
malaria (Cabrera et al., 2014).

Glycophorin C (GYPC; GPC; CD236)

GYPC is a red cell membrane glycoprotein that carries the
Gerbich blood group antigens (Jaskiewicz et al., 2018). It is a P.
falciparum invasion receptor bound by the merozoite protein
EBA-140/BAEBL (Maier et al., 2003; Mayer et al., 2006).
Recently, two studies have suggested that GYPC is a rosetting
receptor for both P. falciparum (Niang et al., 2014) and P. vivax
(Lee et al., 2014; Niang et al., 2014). Niang et al. showed that
the rosetting of a 3D7-derived P. falciparum laboratory strain
(5A-R+) was partially inhibited by a GYPC mAb (clone Ret40f)
and by soluble recombinant GYPC (Niang et al., 2014).
Furthermore, cultured GYPC knockdown erythrocytes failed to
rosette, providing strong evidence that GYPC is an essential roset-
ting receptor for 5A-R+ parasites (Niang et al., 2014). Other para-
site lines or clinical isolates were not tested, therefore the wider
role of GYPC in P. falciparum rosetting was not determined.

Lee et al. (2014) focussed mainly on P. vivax, but also assessed
the ability of GYPC mAb fragments to inhibit rosette formation in
ten P. falciparum clinical isolates from Thailand. A significant
decrease in rosetting was reported with GYPC mAb BRIC 4,
although the reduction in the median rosette frequency was
small (from 11.5 to 5.5%), and was based on a single count for
each isolate with no replication (Lee et al., 2014). The biological
significance of these results is difficult to assess, given the low
starting rosette frequencies and inherent variation in the rosetting
assay. Lee et al. also used a different definition of rosetting to all
previous studies, defining a rosette as an IE binding one or more
uninfected erythrocytes. The usual definition requires the binding
of two or more uninfected erythrocytes, which helps to identify
genuine cell–cell interactions and avoid spurious identification
of rosettes due to close packing of cells under the coverslip during
microscopy.

For P. vivax, Lee et al. showed that the GYPC mAb reduced the
median rosette frequency from 30 to 22% when tested on 11 Thai
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isolates, and that GYPC knockdown cultured erythrocytes formed
rosettes poorly compared to GYPC-positive control cells (median
rosette frequency 6.2 vs. 35.4% in controls, tested on three iso-
lates). Plasmodium falciparum isolates were not tested with the
GYPC knockdown erythrocytes.

If GYPC is a rosetting receptor, it is possible that the
‘Gerbich-negative’ blood group type, which is common in
Melanesian populations (Patel et al., 2001), might influence roset-
ting. As part of a screen of null blood group erythrocytes with five
high-rosetting P. falciparum culture-adapted parasite lines, Rowe
et al. (1997) tested two donors with the Gerbich-negative blood
group (formed by deletion of exon 3 of the GYPC gene on
chromosome 2, giving a truncated protein with altered glycosyla-
tion). Gerbich-negative erythrocytes formed rosettes normally
with the five parasite lines tested. Goel et al. also report normal
rosetting of Gerbich-negative erythrocytes from two donors
(Goel et al., 2015). The true null phenotype for GYPC, called
the Leach phenotype (which arises due to the deletion of exon
3 and exon 4, encoding the transmembrane and cytoplasmic
domains, respectively) is rare and has not been tested in rosetting
assays to our knowledge.

Taking into account all existing evidence, further investigation
of a wider range of parasite lines is needed to determine whether
GYPC is an important host receptor for both P. falciparum and P.
vivax rosetting.

Glycophorin A (GYPA, GPA, CD235a)

GYPA is a highly-expressed erythrocyte surface glycoprotein that
carries the MNS blood group antigens. It is known to be a recep-
tor for P. falciparum erythrocyte invasion (Sim et al., 1994), and
polymorphisms in GYPA are associated with resistance to severe
malaria (Band et al., 2015; Leffler et al., 2017).

There is some limited evidence to suggest that GYPA may have
a role in rosetting. Parasites of the strain FCR3S1.2 transfected
with a specific RIFIN gene formed rosettes that were largely
dependent on blood group A (Goel et al., 2015). However, roset-
ting of the RIFIN-transfected parasites was significantly reduced
with GYPA null cells from blood group O and B donors, whereas
blood group A GYPA null erythrocytes formed rosettes normally.
These data suggest that GYPA may have an accessory role for
RIFIN-mediated rosetting in the absence of the A antigen (Goel
et al., 2015), although whether this applies to rosetting in non-
genetically manipulated parasites in unknown.

Despite the above positive evidence, there are no other data
supporting a role for GYPA in rosetting. GYPA mAb fragments
had no inhibitory effect on rosetting in ten P. falciparum and
11 P. vivax clinical isolates (Lee et al., 2014), and a GYPA mAb
did not inhibit 3D7 5A-R+ rosettes (Niang et al., 2014).
Furthermore, GYPA null erythrocytes (MkMk cells, lacking
both GYPA and glycophorin B) formed rosettes with five culture-
adapted P. falciparum lines (Rowe et al., 1997). Overall, existing
evidence does not support a major role for GYPA in rosetting,
but as with GYPC, further investigation is needed.

New receptors and new approaches

None of the receptors described above fully account for the adhe-
sion interactions between infected and uninfected erythrocytes,
and it is likely that other host rosetting receptors remain to be
identified. There is evidence to suggest that these unknown host
receptors are carbohydrates or protease-resistant proteins, because
uninfected group O erythrocytes treated with trypsin and other
proteases are still able to form rosettes (Udomsangpetch et al.,
1989; Rowe et al., 1994).

In order to progress rosetting research, alternative methods are
needed. Rosetting experiments with GYPC and CR1 knockdown
cultured human red cells derived from CD34+ haematopoetic
stem cells have been performed (Lee et al., 2014; Niang et al.,
2014), using lentiviral transduction of short hairpin RNA (Bei
et al., 2010). However, these cultured erythrocytes have a short
life-span, limiting their usefulness. The development of immorta-
lized erythroid lines (Kurita et al., 2013; Kanjee et al., 2017;
Trakarnsanga et al., 2017; Scully et al., 2019) may overcome this
limitation. Nevertheless, attention must be paid to the subtle
but real differences between mature erythrocytes and these, still
relatively immature, immortalized CD34+ derived cells (Wilson
et al., 2016; Dankwa et al., 2017; Trakarnsanga et al., 2017).
CRISPR-Cas9 technology (Doudna and Charpentier, 2014) has
led to an explosion in the ability to genetically manipulate mul-
tiple cell types, including erythrocyte precursors and immorta-
lized haematopoietic lines (Song et al., 2015; Kanjee et al., 2017;
Hawksworth et al., 2018; Chung et al., 2019; Scully et al., 2019),
potentially giving the opportunity to generate multiple knockout
lines for rosetting research. A consistent supply of knockout
erythrocytes would allow large-scale screens for new rosetting
receptors using cells as close to their normal physiological form
as possible, raising exciting prospects for future work.

Conclusions

Of the rosetting receptors described over the past 30 years, only the
blood group A trisaccharide has been authenticated by a variety of
methodological approaches from a range of different investigators.
For all other potential rosetting receptors, the evidence remains
fragmentary (Table 1) and further research is needed (Table 2).
Recent technical advances in genetic manipulation of red cell pre-
cursors and immortalised lines should enable reverse genetic stud-
ies to bring further clarity to this biologically important topic.
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