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Abstract: The worldwide incidence of neuropathic pain is around 7–8% and is associated with
significant and disabling comorbidities (sleep disturbances, depression, anxiety). It is now known
that cellular ageing of microglia contributes to neurodegenerative diseases, mood disorders, and, even
if with less evidence, chronic pain. The aim of this work was to investigate in vitro and in vivo the
senolytic activity of rosmarinic acid (RA) to be exploited for the management of NP symptoms. BV2
cells were stimulated with LPS 500 ng/mL for 24 h. Treatment with RA 1 µM improved cell viability
and reduced IL-1ß release leading to an attenuation of neuroinflammation. We then moved on to test
the efficacy of RA in reducing microglial senescence. In our model, BV2 cells were stimulated with
LPS 500 ng/mL every 72 h for 4 h/day, over a period of 10 days. RA 1 µM reduced the expression
of the β-galactosidase enzyme, reduced the release of senescence-associated secretory phenotype
(SASP) factors, increased cell viability, and reduced the presence of nuclear foci of senescence (SAHF),
well-known cellular senescence markers. In the Spared Nerve Injury (SNI) model, 28 days from
surgery, repeated oral administration of RA 5 mg/kg reduced hyperalgesia and NP-associated
symptoms, such as anxiety and depression. A reduction of senescence markers was detected on
both hippocampal and spinal samples of SNI-treated mice. This study represents a starting point
for investigating the role of microglial senescence as a possible pharmacological target in controlling
symptoms related to the more advanced stages of peripheral neuropathy.
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1. Introduction

The worldwide incidence of neuropathic pain (NP) is around 7–8% and is associated
with significant and disabling comorbidities, such as sleep disturbances, depression, and
anxiety, which further affect patients’ quality of life [1]. Controversies over the most ap-
propriate therapeutic approach still exist, as neuropathy is a multifactorial and subjective
condition. In fact, there are numerous side effects associated with drug treatments, includ-
ing sedation related to the use of tricyclic antidepressants (TCAs) or gabapentin/pregabalin,
and to the anticholinergic activity of TCAs [2]. The use of medicinal plant preparations
for the treatment of neuropathies has been gaining momentum in recent years, especially
considering their increased patient compliance. One of the most extensively researched
medicinal plants is Melissa officinalis L., which has been used for centuries for its seda-
tive effects; preparations based on it are known to have anxiolytic and antidepressant
properties, which are mainly due to the presence of rosmarinic acid (RA) [3–6]. RA is
known for its antioxidant, antibacterial against both gram-positive and gram-negative
bacteria, antiviral, anti-inflammatory, analgesic, neuroprotective, cardioprotective, and
many other activities [7]. The anti-inflammatory activity of RA may be exploited for the
management of NP, since it represents a chronic neuroinflammatory disease, consisting of a
strong microglial activation. NP begins with an inflammatory process, which if unresolved
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can lead to alteration of the normal activity of the central nervous system environment. In
this condition, the microglia may not withstand this continuous stimulation and lose their
function, until they become senescent [8]. It was recently shown that senescent microglia
are characterized by cellular hyperactivation leading to morphological change, reduced
phagocytic activity, and massive release of pro-inflammatory cytokines [9,10]. It is now
known that cellular ageing of microglia contributes to neurodegenerative diseases, mood
disorders, and, even if with less evidence, chronic pain [11]. Under normal conditions,
microglia cells are activated in response to a stimulus or insult to the body, developing a
physiological inflammatory response to maintain homeostasis [12]. However, as in many
pathological contexts, the inflammatory process tends to become chronic due to excessive
microglial activation, with accelerated ageing and loss of function [13]. Finding a therapy
that can control pain and comorbidities is certainly an important key point in the thera-
peutic approach of neuropathies. The aim of this work is to test the effectiveness of RA in
reducing the symptomatology associated with peripheral neuropathy in the spared nerve
injury (SNI) model by reducing microglia senescence.

2. Materials and Methods
2.1. BV2

BV-2 (murine microglial cells, C57BL/6 Tema Ricerca, Genova, Italy) cells were used
for this study. Cells were kept in culture in a 75 cm2 flask (Sarstedt, Verona, Italy) in medium
containing RPMI with 10% heat-inactivated fetal bovine serum (56 ◦C, 30 min) (FBS, Gibco®,
Milan, Italy), 1% glutamine, and 1% penicillin-streptomycin solution (Merck, Milan, Italy).
Cells were cultured at 37 ◦C and 5% CO2 with daily change of culture medium. For the
neuroinflammatory and senescent model, we used bacterial lipopolysaccharide from Gram-
(LPS, Salmonella enteridis, Merck, Darmstadt, Germany) solubilized in RPMI to obtain a
stock of 500 µg/mL and diluted in the medium of BV2 cells to obtain a final concentration
of 500 ng/mL. Briefly, for the neuroinflammation model, BV2 were treated continuously
for 24 h with LPS 500 ng/mL, in minimal medium (RPMI with 3% FBS). For the senescence
model, BV2 cells were treated 4 times, for 4 h/day for a total of 10 days with LPS 500 ng/mL
in minimal medium (RPMI with 3% FBS). RA (Merck, Darmstadt, Germany) was solubilized
directly in RPMI cell culture medium at a concentration of 1 mg/mL, filtered (Filter syringe
0.2 µm, 30 mm, Biosigma, Venice, Italy), and then diluted in the medium to obtain final
concentrations of 0.01, 0.1, 1, and 10 µM. In the neuroinflammatory model, RA was added
6 h after the starting of the LPS stimulation. In the microglial senescence model, a 4 h
pre-treatment of the cells with RA was performed on the last 3 days of the total time interval,
followed by stimulation with LPS [14].

2.2. Sulforhodamine B (SRB) Assay

The viability of the cells was assessed by the SRB test. Briefly, cells were seeded in 96-
well plates (2 × 104 cells per well). After treatment, cells were fixed in 50% trichloroacetic
acid (TCA, Merck, Darmstadt, Germany) in RPMI at 4 ◦C for 1 h. The next day, the wells
were treated with a 4 mg/mL solution of SRB in 1% acetic acid in double distilled H2O
for 30 min at rt. Then, 4/5 washes with acetic acid were performed to remove excess dye.
Finally, Tris-HCl (pH = 10) was used for cell lysis and absorbance at 570 nm was recorded
using a multiplate reader (Biorad, Milan, Italy). The treatments were carried out in three
independent experiments (n = 3), and cell viability was calculated by normalizing the
values to the mean of the control [15].

2.3. Senescence-Associated Heterochromatic Foci Analysis (SAHF)

BV2 cells were initially seeded in 24-well plates (10 × 104 cells per well) containing
previously sterilized (brand) slides at the bottom of the wells. After appropriate treatments,
cells were fixed with 4% PFA for 30 min at 4 ◦C. After 3 washes with PBS, the slides were
treated with a solution of 1 µg/mL DAPI in mounting medium (90% glycerol + PBS),
allowed to dry in the dark at rt overnight, and then stored at 20 ◦C. After approximately
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one week, the slides were observed with an OLYMPUS BX63F fluorescence microscope
connected to a PC with an image acquisition card. The treatments were carried out in three
independent experiments (n = 3), and the DAPI intensity was calculated by normalizing
the values to the mean of the control [16].

2.4. Animals

CD1 male mice (8 weeks of age, 20 g, Envigo, Varese, Italy) were housed in the
vivarium of Ce.S.A.L. (Centro Stabulazione Animali da Laboratorio, University of Florence,
Florence, Italy) and used seven days after their arrival. Mice were housed in standard
cages, maintained at 23 ± 1 ◦C with a 12 h light/dark cycle, light on at 7 am, and fed with
standard laboratory diet and tap water ad libitum. All tests were conducted during the light
phase. The experimental protocol was approved by the ethical committee for animal care
and research of the institute (University of Florence), under license of the Italian Ministry
of Health (410/2017-PR). Mice were handled in accordance with relevant European Union
(Council Directive 2010/63/EU of 22 September 2010 on the protection of animals used for
scientific purposes) and international regulations (Guide for the Care and Use of Laboratory
Animals, US National Research Council, 2011). All studies involving animals are reported
in accordance with the ARRIVE 2.0 guidelines for experiments involving animals. The
experimental protocol was designed to minimize the number of animals used and their
suffering. G power software was used to perform a power analysis to choose the number
of animals per experiment [17,18].

2.5. SNI Procedure Experimental Schedule

The SNI is a model of peripheral mono-neuropathy, which was performed as previ-
ously described. Briefly, animals were anaesthetized with 4% isoflurane in O2/N2O (30:70
v/v). The right paw, conventionally referred to as ‘ipsi’, was operated, while the left ‘contra’
was left intact. In the trifurcation of the sciatic nerve, the peroneal and tibial were tied
together with 5.0 silk thread (Ethicon; Johnson & Johnson Intl, Brussels, Belgium) and cut,
while the sural remained intact. Tests were conducted 7 days after the operation to observe
operation-induced thermal hyperalgesia. Sex differences in pain response were described
in the SNI model with microgliosis and hypersensitivity to pain being mainly found in
male mice. RA (1, 5, and 10 mg/kg, p.o.) was solubilized in saline and orally administered
(n = 8) via gavage daily, once a day, starting from day 21 to 28 after surgery. The control
un-operated (Sham) and operated (SNI) groups were treated with the vehicle (n = 8) [19,20].

2.6. Acute Pain and Thermal Hyperalgesia Measured with the Hot Plate Test

To induce an acute stimulus in the model of acute pain and to assess thermal hyperal-
gesia in the SNI model, the hot plate test was used. Briefly, the animal’s response time to
a thermal stimulus (52 ◦C) applied to a 24 cm-diameter electrically operated device was
measured. Mice were placed on the hot plate, surrounded by a transparent acrylic cage. A
response was considered positive when the animals licked themselves, shacked their heads
or jumped. In SNI mice, this test was performed in the baseline (BL) condition and at day
7-21-28 after surgery [21].

2.7. Rotarod Test

The possible onset of motor side effects induced by treatment was evaluated with
rotarod test, as previously described [22]. Animals were habituated before starting the test.
The rotarod is an instrument consisting of a rotating rod with a diameter of approximately
5 cm. This rod is placed at a height of about 15 cm from the base of the instrument. The
speed of the rod was 16 rpm and the time in which the number of falls of the animal was
calculated was 30 s. This test was performed in the baseline (BL) condition and at day
21–28 after surgery [23].
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2.8. Evaluation of Anxiolytic-like Effect
2.8.1. Open Field (OF) Test

The open field test was used to assess anxiety levels in the animal. A rectangular box
(78 cm × 60 cm × 39 cm) was used, in which an inner perimeter approximately 3 cm from
the walls was defined. The animals were placed in the center of the box and habituated for
5 min. After, the time the animal remained in the inner portion during the 5-min test was
measured. The longer the animal remained in the center of the box, the less anxious it was.
This test was performed in the baseline condition (BL) and on day 21–28 after surgery [23].

2.8.2. Light Dark Box (LDB) Test

The LDB test was performed as previously reported [7]. Briefly, each mouse was left
free to move for 5 min in a box with two different compartments, the dark and the light
(60-W bulb lamp, white) chamber, separated by a small door (10 cm × 3.2 cm). The time
spent in the light compartment and the number of transitions was used as a sign of the
anxiety state of each animal. This test was performed on day 21–28 after surgery [23].

2.9. Evaluation of Antidepressant-like Activity
2.9.1. Sucrose Splash Test (SST)

The aim of the test was to assess the presence of a depressive-like behavior in the
mouse. A 10% sucrose solution in H2O was prepared and a small amount was placed on
the animal’s back. The mouse was placed inside a box, and the time it spent cleaning was
measured over the total test duration of 5 min. The aim was to obtain information on the
state of depression of the mouse; the more marked this was, the more the animal tended to
clean itself with difficulty. This test was performed in the baseline condition (BL) and at
day 21–28 after surgery [24].

2.9.2. Tail Suspension Test (TST)

The TST was performed as described by Borgonetti and co-authors [9]. Mice were
suspended from a pole attached 50 cm overhead the base by means of adhesive tape placed
in the middle of the tail. The time during which the mice persisted immobile was measured
with a stopwatch during a 6 min test period. Mice were considered immobile when they
drooped impassively and entirely unmoving, except for movements caused by breathing.
Immobility was considered as a depression-like behavior (behavioral despair) and was
measured in the last 4 min, when behavioral despair is established, and an antidepressant
activity of a drug is more easily identified. This test was performed at day 21–28 after
surgery [24].

2.10. Cells and Tissues Protein Extraction

Proteins from adherent cells were extracted by RIPA buffer (50 mM Tris-HCl pH 7.4,
150 mM NaCl 1% sodium deoxycolate, 1% Tryton X-100, 2 mM PMSF) (Sigma-Aldrich,
Milan, Italy) and the insoluble pellet was separated by centrifugation (12,000× g for 30 min,
4 ◦C).

To detect the release of IL-1ß, we used the media of BV2 cells. From the cell medium,
50% TCA was added and left to incubate at 4 ◦C for 10 min. This was followed by
centrifugation at 14,000 rpm for 5 min, after which the supernatant was removed. The
pellet (precipitated proteins) was then resuspended in cold acetone and the microtubes
placed in an oven to promote evaporation of the acetone and drying of the pellet (60 ◦C
approx. for 20 min). Finally, the pellet was resuspended in 4X Loading Buffer (Merck,
Darmstadt, Germany) and the finished samples were stored at −20 ◦C.

To examine protein expression in animals, tissues were removed after 28 days from
surgery. Samples were homogenized in a lysis buffer containing 25 mM Tris-HCl pH (7.5),
25 mM NaCl, 5 mM EGTA, 2.5 mM EDTA, 2 mM NaPP, 4 mM PNFF, 1 mM di Na3VO4,
1 mM PMSF, 20 µg/mL leupeptin, 50 µg/mL aprotinin, 0.1% SDS (Merck, Darmstadt,
Germany). The homogenate was centrifuged at 12,000× g for 30 min at 4 ◦C and the pellet
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was discarded. The total protein concentration in the supernatant was measured using
Bradford colorimetric method (Merck, Darmstadt, Germany) [14,25].

2.11. Western Blotting

Protein samples (30 µg of protein/sample) were separated by 10% SDS-polyacrylamide
gel electrophoresis (SDS-PAGE). Proteins were then blotted onto nitrocellulose membranes
(90 min at 110 V) using standard procedures. Membranes were blocked in PBST (PBS with
0.1% Tween) containing 5% non-fat dry milk for 90 min and incubated overnight at 4 ◦C
with primary antibodies: anti-ß-galactosidase (Santa Cruz Biotechnology, Dallas, TX, USA,
Cat# sc-65670, RRID:AB_831022IBA1), anti-IκBα (Santa Cruz Biotechnology, Dallas, TX,
USA, Cat# sc-1643, RRID:AB_627772), and anti-IL-1ß (Santa Cruz Biotechnology, Dallas,
TX, USA, Cat# sc-52012, RRID:AB_629741). The day after, blots were rinsed three times
with PBST and incubated for 2 h at rt with HRP-conjugated secondary antibodies and then
detected by chemiluminescence detection system (Life Technologies Italia, Monza, Italy).
Signal intensity (pixels/mm2) was quantified using ImageJ (NIH). The signal intensity was
normalized to that of GAPDH (1:5000 Santa Cruz Biotechnology, Dallas, TX, USA) [25].
The treatments were carried out in three independent experiments (n = 4), and protein
expression was calculated by normalizing the values to the mean of the control [20].

2.12. Statistical Analysis

For in vitro experiments and behavioral experiments, statistical analysis was obtained
with one-way or two-way ANOVA, followed by Tukey or Bonferroni post hoc test. For each
test, a value of p < 0.05 was considered significant. Data are expressed as the mean ± SEM.
The software GraphPad Prism (version 5.0, San Diego, CA, USA) was used in all statistical
analysis.

3. Results
3.1. RA Reduced LPS-Induced Toxicity and IL-1β Release in BV2 Microglia Cells

RA is a polyphenol with anti-inflammatory and antioxidant activity [7]. In this work,
we tested its ability to reduce the toxicity produced by stimulation with LPS 500 ng/mL in
BV2 cells, to reproduce an in vitro model of neuroinflammation (Figure 1C). LPS 500 ng/mL
reduced cell viability after 24 h of stimulation. Treatment with RA 0.01 µM was not
able to counteract the toxic effect produced by LPS. The effect of RA was observed at
a concentration of 0.1 µM and peaked at a concentration of 1 µM. No further increase
was detected at higher doses (Figure 1A). LPS 500 ng/mL induced the phenotype shift
of microglial cells, leading them to assume a pro-inflammatory phenotype. Indeed, after
24 h, LPS-stimulated BV2 showed an increase of IL-1β release in the media, compared to
non-stimulated control (CT) cells (cells without any treatment). Treatment with RA 1 µM
reduced microglial activation, as showed by a reduction of IL-1β release (Figure 1B), thus
leading to an attenuation in the inflammatory process.
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*** p < 0.001 ** p < 0.01 * p < 0.05 (n = 3). (B) Effect of RA 1 µM in reducing IL-1β release in LPS-
stimulated BV2. One-way ANOVA * p < 0.05 (n = 3). (C) Schematic representation of the experimental
protocol adopted in the neuroinflammation model.

3.2. RA Reduced the Senescence Process in BV2 Cells Intermittently Stimulated with LPS

Intermittent repeated stimulation with an inflammatory agent such as LPS has been
reported to induce senescence in microglial cells [14]. The senescence model was optimized
by stimulating BV-2 murine microglial cells with LPS 500 ng/mL for 4 h/day for a total of
10 days (Figure 2G). The parameters we considered were cell viability and morphology,
expression of inflammatory factors related to the senescence-associated secretory phenotype
(SASP), expression of β-galactosidase (β-gal), and development of nuclear senescence foci.
These parameters represent selective markers of microglial senescence [10]. Cells were
pretreated with RA at the optimal concentration of 1 µM for 4 h on three consecutive days
prior to day 10 of stimulation (i.e., on day 8, 9, and 10). Cell viability was considered
in the optimization of the model, as senescent cells undergo cell death faster and have
less capacity to easily reproduce. The SRB test showed that pre-treatment with RA can
counteract the reduction in cell viability produced by LPS in BV2 cells, as not only was
the level of cell viability restored to that of the controls, but there is even an increase in
cell viability, indicating a potential protective effect (Figure 2A). A representative image
of one well of CT ((i); unstimulated BV2), LPS ((ii); LPS-stimulated BV2), and RA + LPS
((iii); LPS-stimulated BV2 and treated with RA) is shown in Figure 2B. It is evident that the
number of cells in the well treated with LPS was lower than in CT, while treatment with
RA can increase the number of cells, consistently with what was found in the cell viability
test. Senescent cells can interact with their environment by releasing inflammatory factors.
These characterize the senescence-associated secretory phenotype or SASP [26].
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NF-κB is part of these bioactive elements. LPS 500 ng/mL leads to a gradual decrease
of the IκBα inhibitor at 10 days of stimulation (Figure 2C). β-gal represents one of the
main markers associated with cellular ageing [27]. In fact, LPS 500 ng/mL increased β-gal
expression in cells. The RA pretreatment resulted in a significant reduction in the levels
of β-gal compared to the LPS-treated group (Figure 2D). Finally, Figure 2E,F show the
development of senescence foci at the nuclear level. Fluorescence microscopy highlighted
that the nucleus of cells not treated with inflammatory stimuli was homogeneous in shape
and density (Figure 2E,F). On the contrary, the nucleus of LPS-stimulated cells was more
fragmented and showed gaps corresponding to foci of senescence, a sign of an ongoing
cellular ageing process (Figure 2E,F; [28]). Treating cells with LPS 500 ng/mL resulted
in a progressive increase in the percentage of foci in the nucleus. Pretreatment with RA
markedly reduced the presence of foci, making the core more uniform and similar to the
control group (Figure 2E,F).

3.3. Analgesic Effect of RA in a Mice Model of Acute Pain

Once the effect of RA on neuroinflammation and microglial senescence had been
assessed in vitro, we moved on to in vivo analysis. To evaluate the analgesic effect of RA
in acute pain, the hot plate test was used (Figure 3A). A time course of analgesic activity
was constructed for each dose by performing the test 30, 60, 90, and 120 min after oral
administration. RA did not produce any effect at the doses of 1 mg/kg and 10 mg/kg
(Figure 3B). At the dose of 5 mg/kg, RA increased the pain threshold 60 min after oral
administration, disappearing at 90 and 120 min after administration. Analgesic activity
peaked 60 min after administration and then faded at 90 and 120 min after administration
(Figure 3B). Comparing the effect of a dose of 1 mg/kg, 5 mg/kg, and 10 mg/kg at
60 min after oral administration, RA showed a bell-shaped dose-response curve, typical of
substances of natural origin (Figure 3C). We therefore used the RA effective dose obtained
from this test in the other tests in the chronic model.
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Figure 3. Effect of RA in acute pain. (A) Schematic representation of the protocol used in naive mice
(Sham, Sh) in the acute pain model (n = 8 for each experimental group). (B) Dose-response curve of
orally administered (p.o.) rosmarinic acid (RA) at 30, 60, 90, and 120 min, obtained by hot plate test.
Two-way ANOVA ** p < 0.01, * p < 0.05 (n = 8). (C) Comparison of the effect obtained by RA at the
dose of 1, 5, and 10 mg/kg at the 60-min peak activity. One-way ANOVA ** p < 0.01, * p < 0.05 (n = 8).

3.4. Effect of RA on Hyperalgesia and Associated Comorbidities in the SNI Model

RA was evaluated in a model of peripheral NP (SNI) (Figure 4A). RA was administered
at a dose of 5 mg/kg, which was demonstrated to be the most effective dose from the
dose–effect curve in acute pain, and the tests were performed after 60 min, identified as the
time of peak activity (Figure 4A). Between 21 and 28 days after the operation, the animals
were subjected to several behavioral tests monitoring: hyperalgesia, locomotor activity,
anxiety-like state, and depression-like state. SNI animals developed severe hyperalgesia
produced by sciatic nerve ligation. Daily oral administration of RA 5 mg/kg reduced
the state of hyperalgesia produced by the model with values comparable to those of the
non-operated animals (Sham). The control SNI animals were treated only with the vehicle
in which the RA was dispersed (Figure 4B). Once the activity was demonstrated in pain,
we moved towards the evaluation of the main comorbidities associated with neuropathic
condition. The SNI animals also developed motor impairment, measured by the rotarod
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test, as the SNI animals fell more times in 30 s than the Sham animals. Animals treated with
RA can reduce the number of falls, probably because they feel less pain (Figure 4C). To
evaluate the occurrence of anxiety in animals, the OF test was performed. The SNI animals
spent less time in the center of the arena than the Sham animals, suggesting a strong state
of anxiety-like behavior. SNI animals treated with RA 5 mg/kg increased their time spent
in the center of the arena, indicating an anxiolytic-like effect of RA (Figure 4D).
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Figure 4. Effect of RA on SNI-induced behavioral phenotype. (A) Representation of the protocol used
in the Spared Nerve Injury (SNI) model, in which the experimental group used are: unoperated mice
(SH), operated mice (SNI), operated mice treated orally (p.o.) with rosmarinic acid (RA) 5 mg/kg
(n = 8 for each experimental group). Evaluation of thermal hyperalgesia with hot plate test (B),
locomotor function with rotarod (C), anxiety-like symptoms with open field test (D), and light-dark
box (E): time spent in the light chamber, (F): number of transitions), depressive-like symptoms with
sucrose splash test (G), and tail suspension test (H), final 4 min) after three weeks from surgery
in SH, SNI, and SNI + RA. Dots are number of animals. ns = not significant. One-way ANOVA
**** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.

This was confirmed with the LDB test. The treatment with RA reduced the anxiety
state of the animals by increasing their time spent in the light compartment (Figure 4E). No
effect was observed on the number of transitions from one part to the other (Figure 4F).

In addition to the assessment of anxiety-like symptoms, we also assessed the occur-
rence of symptoms associated with depression by performing the SST. In a relaxed state,
the mouse will tend to take more care of its appearance and will clean itself more fre-
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quently (Figure 4G). SNI animals spent less time on cleaning compared to non-operated
mice (Sham). Treatment with RA was able to attenuate this depressant-like tendency in
operated animals by slightly increasing the time spent by the mice cleaning themselves.
This antidepressant-like effect was more evident with the TST. During the 6 min of the test,
in the first 2 min, the basal reaction of the animal towards aversive conditions, and the
next 4 min, in which a behavioral despair is established making it possible to evaluate the
antidepressant-like effect of a drug, were initially measured (Figure 4H). In the final 4 min
of the test, the SNI animals remained immobile for a longer time, compared to the Sham,
while treatment with RA restored the values to the control level (Figure 4H).

3.5. RA Reduced the Expression of β-Galactosidase in the Spinal Cord and Hippocampus of
SNI Mice

After showing the relationship of neuroinflammation and cellular senescence in vitro,
we investigated their correlation with NP by evaluating the presence of these processes in bi-
ological tissues from SNI animal models. The study involved samples from the spinal cord
and hippocampus, which are mainly involved in pain and associated comorbidities. Con-
comitant with clinical symptoms, an elevated level of β-gal in the spinal cord (Figure 5A)
and hippocampus (Figure 5B) of SNI mice was observed, compared to sham-operated
controls, suggesting the development of cellular senescence in these tissues (Figure 5A).
The administration of RA reduced the expression of this marker in both tissues.
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Figure 5. Effect of RA on ß-gal expression. β-galactosidase (ß-gal) protein expression in spinal
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and mice with neuropathy treated with rosmarinic acid (RA) 5 mg/kg after 28 days from surgery.
Representative blots are reported, loading sample individually.

4. Discussion

The incidence of NP worldwide is around 7–8%, with greater frequency in women
than men (8% versus 5%, respectively) and in patients over 50 years of age (8.9% versus
5.6% for those under) [29,30]. This is accompanied by several comorbidities such as anxiety,
depression, memory impairment, and sleep disturbances. These factors have an important
negative influence on the neuropathic condition itself and consequently on the patient’s
quality of life, requiring a therapeutic approach that acts on several fronts [2,31]. Today,
the first line of treatment for NP is represented by TCAs, antiepileptic drugs such as
gabapentin or pregabalin, and serotonin-norepinephrine reuptake inhibitors (SNRIs) [31].
However, these treatments do not address the underlying causes of neuropathy but are
symptomatic. Furthermore, the side effects brought by these drugs, such as sedation
associated with TCAs, should not be forgotten and can further compromise the quality
of the patient’s life [32]. Consequently, in recent years studies have focused on finding
parallel therapies that could complement or in some cases even replace the classical ones.
Natural products fit into this context, especially considering their heterogeneity of the
mechanisms of action [33]. Formulations based on Melissa officinalis L., known to be
therapeutically effective as a sedative or calming agent in mood disorders such as anxiety,
depression, and insomnia, have been widely used for centuries in various pathological
contexts. These conditions are also the main comorbidities of the NP (Kennedy et al.,
2004). RA is a natural antioxidant and anti-inflammatory polyphenol derived from many
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plants including M. officinalis. Polyphenols are characterized by numerous beneficial effects
on the body, and RA, with its numerous properties, makes no exception, especially as a
strong anti-inflammatory [34–37]. Indeed, RA was reported to exert anti-inflammatory
effects against neuroinflammation in microglia cells [38]. Neuroinflammation is one of
the processes underlying the neuropathic condition. Following peripheral neuronal injury,
a major inflammatory response develops, linked to the activation of microglia, which
are thought to be one of the main contributors to the hypersensitivity characteristic of
neuropathy [12,39,40] The chronic microgliosis that characterizes NP then leads to a loss of
activity of these cells, which can no longer recover their physiological activity, leading the
cell towards senescence. Senescent microglia have recently been linked with the onset of
numerous neuronal pathologies, including chronic pain. The aim of this work, hence, was to
test whether RA could alleviate the NP and NP-associated symptoms in the SNI neuropathy
and to test whether these effects can be related to a reduction of microglial senescence. In
our work, we optimized the concentration of RA required for the best activity in reducing
inflammation in LPS-stimulated (24 h) microglial cells, resulting in a pro-inflammatory
microglial phenotype. RA was found to be active in counteracting neuroinflammation
even at very low micromolar concentrations. These results are consistent with Wei and
coworkers [38], who showed the ability of RA to suppress pro-inflammatory microglial
activation and to promote microglial polarization to the anti-inflammatory phenotype in
LPS-stimulated BV2 cells. Previously, it has been reported that RA suppressed TLR4 and
CD14, reducing inflammasome activation [41]. Given the activity on neuroinflammation,
we then moved on to test the concentration of RA needed for reducing inflammation
in the microglial senescence model. An in vitro model of senescence based on BV-2 cell
cultures, in which cells are stimulated every 48 h for a duration of 4 h with LPS, up to
six total stimulations was already reported in the literature [16]. By modifying the timing
and concentration of LPS, we optimized the microglial senescence model and obtained
more robust effects. In our model, BV-2 cells were stimulated with LPS 500 ng/mL every
72 h for 4 h/day, over a period of 10 days. It was possible to confirm an increase in the
senescent phenotype by considering several specific markers of senescent microglia, such
as increased levels of the enzyme β-gal, increased release of SASP factors, decreased cell
viability and the presence of nuclear foci of senescence. Applying RA to the model a
reduction in each parameter was observed, indicating a reduction in the cellular ageing
process. Protective effects of RA against oxidative cellular senescence have been already
observed on fibroblasts [42] and neurons [43], but this is the first work in which the anti-
senolytic activity of RA against microglial cells was observed. Medicinal plant extracts
with high amounts of RA have also been seen to have anti-ageing properties in the clinical
practice. A clinical study in the literature has shown that chronic administration of a lemon
balm extract in a daily dose of 500 mg improves the cognitive abilities of patients suffering
from Alzheimer’s disease with mild associated dementia, with a reduction in the cellular
senescence process. Intriguingly, the used extract had a high RA content [44]. Once we
had assessed the effect of the RA on neuroinflammation and microglial senescence using
the in vitro model, we moved on to test it in an in vivo model of peripheral neuropathy,
the SNI. In this model, RA was able to reduce not only the hyperalgesia produced by the
SNI, but also the anxiety and depression associated with it. Indeed, it is very common
for patients with neuropathy to have comorbidities that debilitate their normal quality of
life. A correlation between relief of SNI symptoms and attenuation of microglia senescence
was highlighted by the reduction of senescence markers at both hippocampal and spinal
level, the main players involved in pain/anxiety/depression mechanisms, following RA
oral treatment. Present data indicate that, despite RA’s low ability to cross the blood-brain
barrier, the oral dose used of 5 mg/kg repeatedly administered was sufficient to have a
central effect [45]. As previously reported, after a single oral administration, RA could
be quickly absorbed into the blood and eliminated slowly [46]. In addition, our data
are consistent with those of Areti and colleagues, who showed that RA 25 mg/kg p.o.
reduced spinal glia activation in oxaliplatin-induced peripheral neuropathy, leading to
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a reduction of mechanical allodynia and cold hyperalgesia [47]. Moreover, RA 10 and
30 mg/kg was able to increase the paw withdrawal threshold of diabetic rats in a model
of streptozotocin (STZ)-induced neuropathy [48] and, in a model of chronic constriction
injury (CCI), orally administered RA was able to reduce heat hyperalgesia up to fourteen
days after the operation [49].

Finding an orally administered therapy that can reduce both hyperalgesia and other
symptoms associated with neuropathy is certainly an important objective in clinical practice.
RA has been shown to lower cognitive disorders in several animal models [49,50], further
supporting the efficacy of RA in relieving both NP and associated symptoms reported in
the present study. Indeed, for the first time we have seen that RA is able to control both
hyperalgesia and behavioral disturbances, which is certainly a pharmacological advantage.
The final stage of research was to assess the development of cellular senescence in biological
tissues from SNI mice and to correlate RA efficacy in attenuating SNI phenotype with
microglia senescence. It is therefore hypothesized that a cellular ageing process develops in
these tissues during neuropathy. However, it is not known whether this occurs, and which
cells are affected, so the aim for the future is to carry out further studies.

5. Conclusions

The use of natural substances as a nutraceutical intervention for the prevention or
treatment of numerous diseases affecting the central nervous system leads to the study
and research of new bioactive molecules. In this paper, we investigated the role of RA, a
typical bioactive molecule found in many medicinal plants used in traditional medicine
as potent anti-inflammatory agents, for its possible senolytic activity. This last aspect
turns out to be very interesting, as cellular aging appears to be central in the onset of
many diseases. In this work, we specifically wanted to investigate microglial senescence
in the modulation of neuroinflammation related to neuropathic pain. Indeed, the loss of
activity of these cells impairs the normal function of the nervous system. In our work, RA
could reduce inflammation and microglial senescence in vitro, and these activities may
be related to its ability to reduce symptoms associated with peripheral neuropathy in the
murine SNI model. Although further studies are required to investigate the role of RA in
pain/behavioral disorders/senescence in more detail, this study represents a starting point
for investigating the role of microglial senescence as a possible pharmacological target in
controlling symptoms related to the later stages of peripheral neuropathy.
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