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Abstract: This study considers the evolution of weakly nonlinear long Rossby waves in a horizontally
sheared zonal current. We consider a stable flow so that the nonlinear time scale is long. These as-
sumptions enable the flow to organize itself into a large-scale coherent structure in the régime where a
competition sets in between weak nonlinearity and weak dispersion. This balance is often described by
a Korteweg-de-Vries equation. The traditional assumption of a weak amplitude breaks down when the
wave speed equals the mean flow velocity at a certain latitude, due to the appearance of a singularity in
the leading order equation, which strongly modifies the flow in a critical layer. Here, nonlinear effects
are invoked to resolve this singularity, since the relevant geophysical flows have high Reynolds numbers.
Viscosity is introduced in order to render the nonlinear critical layer solution unique, but the inviscid
limit is eventually taken. By the method of matched asymptotic expansions, this inner flow is matched
at the edges of the critical layer with the outer flow. We will show that the critical-layer induced flow
leads to a strong rearrangement of the related streamlines and consequently of the potential vorticity
contours, particularly in the neighbourhood of the separatrices between the open and closed streamlines.
The symmetry of the critical layer vis-a-vis the critical level is also broken. This theory is relevant for the
phenomenon of Rossby wave breaking and eventual saturation into a nonlinear wave. Spatially localized
solutions are described by a Korteweg-de-Vries equation, modified by new nonlinear terms; depending
on the critical-layer shape, this leads to depression or elevation waves. The additional terms are made
necessary at a certain order of the asymptotic expansion while matching the inner flow on the dividing
streamlines. The new evolution equation supports a family of solitary waves. In this paper we describe
in detail the case of a depression wave, and postpone for further discussion the more complex case of an
elevation wave.

1 Introduction

Rossby waves are common features of geophysical flows and can be observed in global weather maps
in the mid-latitudes of both hemispheres (Wang et al. (1998)). They make important contributions to
nonlinear geophysical dynamics in various ways. Synoptic eddies in the oceans can be modeled by the
so-called Rossby solitons, or as barotropic solitary eddies, or as modons, that exist due to a balance
between nonlinearity and dispersion due to the Earth’s rotation meridional gradient (S-effect)(Kizner
(1997)). The vortex pair blocking observed in the atmosphere can be modeled as a stationary barotropic
(Swaters (1986)) or baroclinic (Malguzzi and Malanote-Rizzoli (1985)) solitary Rossby wave, or as an
envelope solitary Rossby wave (Luo (1996)). The long-lived nature of these nonlinear waves depends on
the persistence of zonal shearing motions, and is clearly linked to the large-scale coherent features of
geophysical flows. One of the most famous motivations related to the study of nonlinear Rossby wave
stems from the suggestion by Maxworthy and Redekopp (1976) that the Great Red Spot of Jupiter, and
some other features of the Jovian atmosphere, may be a manifestation of planetary solitary waves.

The theory of the stability of shear flows has been the object of an intense study for the past century.
However, in general, little can be done analytically if the flow is initially unstable, since then nonlinear
terms take importance on a short time scale. The number of unstable modes grows so quickly that it
becomes rapidly impossible to describe the motion in a simple way. We here therefore restrict attention to
a stable flow so that the nonlinear time scale is long. We consider weakly nonlinear Rossby waves whose
meridional wavelength is large compared to the latitudinal extent of the shear layer. These assumptions
will enable the flow to organize itself into a long-lived and large-scale coherent structure.

We consider the superposition of a small-amplitude linear Rossby wave on a mean shear flow for
which the wave speed equals the mean-flow velocity at a certain latitude. A critical-layer singularity
then occurs in the linearized stability analysis, and we examine the subsequent modifications of the flow.
The dynamical processes involved within the critical layer can be expected to play an important réle
in the large-scale dynamics of the atmosphere and the oceans. Rossby-wave breaking generates highly
inhomogeneous flows, that is, narrow zones, oriented east-west, which are essentially nonlinear whereas
one can observe a wave-like motion outside (Bradshaw et al. (2002)). Breaking is also characterized by a
rearrangement of the potential vorticity (PV) contours in a more or less irreversible way (McIntyre and
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Palmer (1985)). Nonlinear critical layer theory is attractive for the modeling of Rossby wave breaking
because it implies an analysis of two such coupled regions: an inner flow where nonlinear dynamics plays
an outstanding réle and an outer flow where linear motions prevail. Here, we will focus on outer flows
which lead to solitary waves. Matching the inner and outer flows leads to the distortion of the PV
contours within the critical layer, and yields the characteristic cat’s eyes motions: bounded flows where
the streamlines are closed. The study of solitary Rossby waves propagating in a horizontally sheared zonal
flow was first undertaken by Long (1964), Benney (1966) and Redekopp (1977). These works showed that
the amplitude of long Rossby waves in a shear flow obeyed a Korteweg-de Vries (KdV) equation. Here we
expect to obtain a KdV equation, but altered by new nonlinear terms. The evolution of a solitary wave
may be complicated in this case. However, in many previous studies, solitary waves have been considered
in systems whose dynamics is modeled by a modified integrable equation. We only report a few of them
which are listed in Kivshar and Malomed (1989) and the many references therein: scattering of a shallow
water KdV soliton by a depth inhomogeneity, an ion acoustic soliton in an inhomogeneous plasma and
acceleration of Langmuir soliton under the action of nonlinear Landau damping.

In the literature related to shear flows on the §-plane, Brown and Stewartson (1979) also explored
the evolution of a marginal disturbance. But, they only considered an initially regular neutral mode. A
critical layer analysis is then not required at leading order, but is postponed to the following order, which
is mathematically more tractable since the dynamics is weakly nonlinear. The generalization of Rayleigh’s
inflection point theorem states that 8 —U : (y) must change sign at some value of y for instability to occur.
As a result, neutral modes are regular. Singular neutral modes can be found in the stable linear régime:
they are subcritical modes. The S-parameter must be large enough to stabilize the flow. Reynolds stress
arguments rule out the existence of singular neutral modes in the linear theory. Nevertheless, singular
solutions of the Rayleigh equation exist with a nonlinear critical layer. This is caused by the absence
of a phase jump through the critical layer (Benney and Bergeron (1969)). Maslowe and Clarke (2002)
generated a singular neutral mode as the result of a resonant interaction between two regular modes.
These interactions occur more easily than for the usual resonant wave triad. However, the dynamics
does not remain weakly nonlinear as time proceeds (Vanneste (1998)). The two Rossby waves generate
an effective forcing which creates a nonlinear critical layer, affecting, in turn their own dynamics. The
motion inside the critical layer is characterized by fast oscillations associated with the presence of Rossby
waves. Nevertheless, the motion remains essentially linear outside the critical layer as the forcing there
is very weak (proportional to the product of the amplitudes of the resonant waves).

Warn and Warn (1978) studied a directly forced critical layer, with a forcing amplitude of €. They
showed that when t = O(e*%) the nonlinear terms become of the same magnitude as the linear terms
within the critical layer, whose thickness has decreased to O(e%). They therefore focused on the nonlinear
evolution of the critical layer by using the slow time T = e%t, with the initial conditions being the
asymptotic state ¢ — oo of the original initial-value problem. They observed that the phase shift strongly
evolved with time while no steady state was attained for large T'. Numerical instabilities prevented the
integration of the equations of motion of the critical layer from proceeding. The asymptotic case k — 0
was analysed and revealed strong time-dependance of the motion within the cat’s eyes. But numerical
resolution limited the large-scale assumption and noise rapidly appeared for T' = O(1). The presence of
harmonics of same order as the fundamental was detected outside the critical layer whereas Benney and
Bergeron had found this result only inside the critical layer. In the inviscid and long-wave assumptions,
Stewartson (1978) found an analytical solution for the motion within the critical layer. Later, Killworth
and McIntyre (1985) demonstrated the linear shear instability of this flow with respect to two-dimensional
disturbances. The fastest growing disturbances develop more rapidly than the nonlinear evolution time
of the critical layer. Haynes (1985) numerically followed up the growth and nonlinear saturation of the
initial perturbations. The distribution of vorticity is finally deeply rearranged affecting the absorption
properties of the layer. When the wavelength is not so long, instability is not so important (Haynes
(1989)). The time-integrated absorptivity may be considerably increased, sometimes to three and four
times that predicted by the Stewartson solution. A steady state does not seem to be attained even after
a long integration, in agreement with Warn and Warn (1978). The motion within the critical layer is
disordered and looks turbulent even when a small dissipation is added (Haynes (1989)).

Our study is distinct from these due to the limiting processes involved. Warn and Warn had chosen:
v —=0,t = o and k¥ — 0 whereas we will take: k¥ — 0, £ = 0o and v — 0. With such limit ordering,
Redekopp (1977) studied both regular and singular neutral modes but he omitted to the coupling through
the streamwise-velocity jump between the critical layer and the outer flow and stopped his expansion at
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the leading order. As a result, only the usual KdV equation emerged.

We study here the evolution of a free singular neutral mode for long space and time scales, both
outside and inside the critical layer. Some specific assumptions must be taken concerning the mean flow
profile. Indeed, critical layers do not appear on stable monotone profiles with smooth initial conditions in
a free problem (Brunet and Warn (1990)). However, these restrictions are not stringent. The evolution
of an initial free disturbance to a marginally stable shear flow depends on the scale over which it is made.
A sorting out process intervenes controlled by linear equations at the end of which most components
of the disturbance are decaying algebraically with time leaving only a mode with a large wavelength
(Stewartson (1981)).

In this study the singularity is removed in the critical layer by reintroducing advection terms. The
equations of motion are analytically integrated at each order of an asymptotic expansion. Integration
constants are determined by using an averaging technique on the viscous components which is a general-
ization by Redekopp (1977) to a solitary wave of the work of B enney and Bergeron (1969). An additional
term Cx[A] appears in the KdV equation for the modal amplitude A, which then has the form,

6TA+R0A8)(A+506§(A+VE)5)(A =Cx[A]. (1)

The extra term C is a smooth functional of A, and is made necessary at a certain order of the asymptotic
expansion by matching the inner flow on the dividing streamlines.

The plan of the paper is as follows. In section 2, we formulate the problem and give the main
assumptions used in our study. Section 3 displays the equations of the outer flow and gives the local
solutions around the singularity. The critical-layer flow is examined in section 4, where, in particular,
the description of this flow is refined in section 4.5 by a better parametrization of the streamlines. The
outcome is an amplitude evolution equation of the Korteweg-de Vries type, but with a novel nonlinear
term. The flow within the defining separatrices within the critical layer (the so-called “cat’s eye” flow)
is analyzed using an extension of the Prandtl-Batchelor theorem (Batchelor (1956), see also Rhines and
Young (1982)) to slowly-evolving solitary-wave motions, described in Appendix B. In section 5, we show
that slow diffusion of the critical layer has a negligible effect on the amplitude equation. The evolution
equation is examined in section 6, and a solitary-wave solution is found whose characteristics depend
on the outer flow. In section 7, we demonstrate the existence of an infinity of modes which are able to
generate a solitary wave for different classical mean velocity profiles. The case of a constant shear flow for
the mean velocity profile is studied in section 8 which enables us to find an analytical expression for the
outer flow, and so we can explicitly determine the integration constants at each order. Section 9 offers
some concluding remarks.

2 Formulation

We consider a steady and horizontal parallel shear flow U(y) in a Cartesian frame (z,y) centred at a
latitude whose directions are east for x and west for y. We suppose that the fluid is confined between
two rigid walls y;1, y» either or both of which may be at infinity. We focus on two-dimensional neutral
wave disturbances having a real phase speed c. In a frame of reference moving with the wave T =z—ct,
we may write the total streamfunction ¥ as

‘Il:/(U(y)—c)dy-i—ezp, (2)

where € is a measure of the disturbance amplitude and is taken to be very small, while 1) is the perturbative
streamfunction. The dimensionless equation of motion is the vorticity equation in the g-plane

[0+ (U~ 0,100 + €I (A, 0) + (5~ U000 = A% 3

R is the Reynolds number and is assumed to be very large; indeed, the critical layer scaling will impose
1/R = Ae# where A is an O(1) constant. A body force balances the diffusion of the mean flow U and will
appear in the equation of the inner flow. The equation (3) is supplemented by the boundary conditions
at the rigid walls,
Yp=0 at y=y1,y=19>. (4)
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The continuity of the leading-order vorticity inside the critical layer, without using thin viscous boundary
layers along the separatrices is made possible due to small O(e%) jumps in the mean vorticity. This
conjecture by Habeman (Haberman (1972)) was demonstrated by Brown and Stewartson (1978) in a study
of an unsteady, nonlinear and viscous Rossby wave critical layer; the latter acts as a source of vorticity.
Here we focus on the long-time asymptotic régime after the critical-layer formation stage characterized
by an O(e?) vorticity spreading throughout the domain by diffusive action. This outward diffusion from
the critical layer generates a distorted mean flow. The shear velocity is therefore decomposed in the form

Uly) = Uo(y) + €U (y) + € Us(y) + . .. (5)

Uo(y) is the initial velocity profile, Uy (y), Ua(y) ... are the outcome of its interaction with the Rossby
wave. The initial wave speed ¢g is slightly modified by the interaction

and C=Co+€%61+602+... (6)
The steady linear inviscid disturbance equation is then,

(Uo(y) — o) AY® + (B — Uy ()@ =0. (7)

This equation is singular at y = y. where the phase velocity of the wave perturbation equals the given
flow velocity. Hence, this equation fails in the critical layer where y ~ y.. Then transience, nonlinearity
or viscosity must be reintroduced in the critical-layer leading-order solution. Here, nonlinearity, together
with slow transience, is chosen as being more appropriate for the high Reynolds number flows of geo-
physical motions. Nevertheless, viscosity is later introduced to render the inviscid solution unique. An
inner asymptotic expansion with scalings valid in the critical layer for a long-time régime is considered
in conjunction with the outer expansion. By the method of matched asymptotic expansions, these are
matched at the edges of the critical layer. In order to obtain a balance between the effects of quadratic
nonlinearity and dispersion, we introduce the scaled variables,

X =¢ig, T = eit. (8)
Note that the usual scaling for a KAV equation is expected to be (see (Redekopp (1977)) for a discussion
in the present context),

X =€z, T = e3¢. 9)
However, it turns out that this traditional KdV scaling is not valid here, because a matching between the
flows in the critical layer characterized by unbounded or bounded streamlines respectively cannot then
be achieved. The nonlinear terms automatically appear in the inner flow at the leading order since we
aim to remove the apparent critical-layer singularities with nonlinear terms. As a result, our scaling (8)
is determined by the need to introduce the dispersive term in 8% A into the critical-layer flow at the right
order; the analysis will show that dispersion must appear at the order €? in the velocity field in order
to balance the functional term in (1) for OrA. With (9), the dispersive term will appear too late in the
outer flow. Note that our present scaling implies that the dispersive effects are stronger, and the time
scale is shorter, than that for the usual KdV dynamics.

The perturbation streamfunction is then expanded as

=10 ez M 4 e @ 4 e3nep® 43 P .. (10)

The need for the presence of a logarithmic dependence in e will appear later on.

3 Outer flow

3.1 The singular mode

Substitution of (10) into (3) yields, at the leading order the equation determining the singular neutral
mode. Thus we set out

PO = A*(X,T)e(y), (11)
where A* is the mode amplitude and ¢(y) then satisfies the Rayleigh-Kuo equation
B8—Us (y)
L =09+ —-2p=0. 12
o(9) = 0p+ 9 (12)
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We assume that there is a critical layer at y = y. where Up(y.) = co and Up(y.) # 0. We can therefore
redefine the amplitude by A* = UyA. Then the local Frobenius solutions of (12) with = y — y., are

nga = n+ Z aO,nnn ) (13)
n=2

¢b = 1 + Z bO,nnn + b0¢a (77) ln |77*| ) (14)
n=2

with the first coefficients given by (the mean flow is evaluated at the critical level):

]. ]_ — 111 ]_ —
a0 = 5bo,  aos = g(Uo — 5bof),
B—U, 1w 1 _u 3
bo = — i &, bop= 5Wo = 5Upbo — gbg)-

The next coefficients are given in (A1). We denote by = bo/Up, 3 = /Uy, while 5* is a normalized
cross-stream coordinate given by n* = n/no where n will be determined when matching the outer flow
with the critical-layer induced flow. We will also use a dimensionless §-coefficient evaluating the ratio 8
toUy: f=8/bo, B = —1if B> U, and § — 0if U, > B.

On either side of the critical level, the singular mode takes the form,

¢+ (y) = a+b0¢a + d)b; Y>Ye,
9~ (y) a"boda+p, Y <Ye- (15)
Here, we have already invoked the condition that ¢ should be continuous at y = y., a result which will

be confirmed later by matching across the critical layer. Next, we impose the boundary conditions (4) at
y1,2 which at this order imply that

¢t (y2) =0, ¢ (1) = 0. (16)

These conditions then determine each of a* and a~ in terms of the single remaining parameter, namely
y.. Eventually, matching across the critical layer will determine the phase jump [a]t = a* — a™; this
then completes the determination of ¢+ (y), ¢~ (y) and we can simply refer to the singular mode as ¢(y).
Indeed, we will find that [a]f = 0.

3.2 O(e?) flow

Proceeding to the next order, the motion is altered by advection (denoted by the subscript /) due to the
additional flow Uy, and by the dispersion (denoted by d). Thus, ¢)(!) satisfies the equation

Lo(pV) = —L1(p)A* — pO% A, (17)

"

_ Uiy —cipn, U (y)
Uo(y) —co " Uoly) —co

The general solution for ¢(!), written in a form displaying the behaviour near the critical layer is

where L;(9) @, ci = Ui(ye) , 1=1,2...

PV = ¢V A*(X,T) + ¢ 03 A*(X,T) + ¢B*(X,T) =

O ™ I |n*| + ci,1,nn™) + Q11 $a + Brade) A(X,T)

n=0
)

+ (O _leannn] + aaida + Baidy) 0% A*(X,T) + ¢B*(X,T). (18)

n=2

Here B*(X,T) is the second-order amplitude of the mode which, like A(X,T) obeys an amplitude equa-
tion derived at the next order vis-a-vis the amplitude equation for A(X,T). The explicit values of the
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coefficients by 1 pn, €1,1,n - - - are given to the first order in the Appendix Al. The coefficients a (respectively
B) are related to the regular (respectively singular) Frobenius solutions (13) of the homogeneous equation
(12). They may take different values above and below the critical layer, indicated where necessary by the
superscripts =£.

We note here that the solutions ¢l(,1d) in (18) can be written in the alternative form

y y
& = mab+oér | Foudy—¢ir [ Férdy,
YB YB
where F = —['17@)) , —% for 52 respectively . (19)

Here ¢, 11 are the two linearly independent solutions to the homogeneous equation and W is the related
Wronskian. ¢7,rr can be found explicitly in some cases (see section 8 for the case of a constant shear
flow). Also, yg = y1,2 for the solutions below and above the critical layer, and the corresponding solutions
are then indexed by F respectively. This is the procedure followed by Redekopp (1977). However, we
have preferred to obtain the solution in the form (18) instead as it allows an explicit analysis of the
critical layer. In the form (19), the solutions satisfy the outer boundary condition automatically, while
the connection with the solutions in (18) can be found in principle by expanding the integral terms near
the critical level. This process would eventually yield linear relationships between the coefficients ; 4 in
(19) and the coefficients §; 4 and a4 in (18). The boundary conditions (4) at y; » respectively affect
these relations. The jumps of the singular Frobenius series coefficients 3; 4 will be calculated by matching
across the critical layer. We then deduce the jumps between each ¥+ and a via the preceding relations.

We have chosen a more elegant way to obtain the a* jumps by applying the Fredholm alternative to
the inhomogeneous equation (17); for instance for the component ‘751(1) of the O(e3) streamfunction the
alternative gives

"

ve Ui (y) I Ui(y) —a 2, @) sy 4 05y 4D s R
P/ (Uo(y)—co+[ﬂ UO(y)]i[UO(y)_CO]z)‘ﬁ dy = P{o" (0°)¢ (0°) — ¢V (0°)$(0%)},  (20)

where P denotes the regular Cauchy part, that is here

c

P{¢l(1)(03)¢l (0%)} = (1 +a)bo(cr,1,0 + Br1) 5 P{¢§1)I(OS)¢(OS)} =bo(abi,1,0+ Bi,1) + b +ain+aig,

while s = 1(—1) if y. < (>)yps. A similar relation is obtained for the dispersive component ¢‘(11).

3.3 O(é?) flow

The particular solution components become more singular near the critical level than the homogeneous
solutions ¢4 (see (13) at the higher orders. Thus, ¥ contains contributions due to the temporal
derivative of the mode amplitude A*, the quadratic nonlinearity (denoted by the subscript n) and the
dispersive terms in 6% and 9% (denoted by the subscript f for fourth derivative in X) with a linear part
in A* corresponding to the effect of the additional mean flow on ¥(©) and ¥(), Each contribution will
affect the coefficients of the amplitude equation governing the evolution of A:

B-Uy)y ¢ 1

Lo (@) Us(y) — Co) Uo(y) —co 2

_[B-Uy)e 472 = [£1(9) + £3(9)] A*

" [Uolw) — co]?
Uy —c, o (N1 92 4% _ (D a1 4o oo e U)X
~[Goiy —at " + L)) A" = 900k A" — £1(9)B" — R BT+ AT

Apx—1 A* — (

(21)



Here, we now use the KdV equation (1) to remove the time-derivative term. The general solution for
(2 again expressed in a form appropriate at the neighbourhood of the critical level y, is then given by

@ = > [br2an™ Inn*|+c1200" 1+ 01200+ 81260 A D _[ba2,nn™ In 7% |+Ca2,nn"|+a 200+ Ba,265 }0% A

n=0 n=0

1 — * n * n— *
+ i{z[an,%nnn In? 7" + bp2,nn" In 0% + cp2,nm N+ an2@a + Bn2¢p }A >

n=0

+{ leromn"] + ag20a + Brads O A" + Ul _[be2,nn™ In [0*| + ce,nn™] + @e,26a + Be25 }C[A]

n=0 n=0

[e's)
+ )\{Z bv,2,nnn In |T)*| + cv,2,nnn + av,2¢a + Bv,2¢b}X +... (22)

n=0

The explicit values of the coefficients b 2.5, ¢i,2,n ... are given to the first order in the Appendix Al.3.
Note that they contain a linear dependence on the coefficients Ry, Sp, Vy of the KAV equation (1), and
these coefficients are yet to be determined.

The fourth contribution (denoted by the subscript ¢) is caused by the motion inside the critical layer.
The presence of a higher-order dispersive term leads to the possible existence in the left-hand side of (1)
of a term Dyd% A, but we will show later that in fact Dy = 0. The coefficients a (respectively () are
again related to the regular (respectively singular) Frobenius solutions (13) of the homogeneous equation
(12), and again may take different values above and below the critical layer, indicated where necessary by
the superscripts . As above, imposition of the boundary conditions (4) at y; 2 yields relations between
each a and . Also, as above in Section 3.2, the solutions can be expressed in a second form analogous
to (19), but it is not necessary to give the details here. The Fredholm alternative gives here

P [ Low®)pdy =P [ NH@)sy) dy = PO (08 0°) — 6@ 09607} (23)

Ye Ye

NH (y) is the r.h.s of the equation (21). The last term in (23) can be easily expressed via the previous
Frobenius expansion series (22).

4 Nonlinear critical layer flow

A balance between the mean flow and the perturbation occurs in the critical layer, which leads to the
scaling )
n=y—y. =eY. (24)

The governing vorticity equation (3) is then
{300 + (Tydx — Uxdy) B2 + €20%)U + €3 BTy = (0T + 2620%02 T + 204 T) + EAF . (25)

1" 1" 1

Here F is the (viscous) body force, F = —U, (y) = —[U, +€e2U{VY +...]. The expansion of the outer
expansion in terms of Y (Appendix A2) determines the way in which the inner expansion must proceed

T=c {qx(") +erlnel® 4 3T 4 eln? e0® + elnel™@ + €3O 4 .. } . (26)
We shall describe explicitly the analytical expressions of the critical-layer flow at each order.

4.1 Of(e)

The leading-order equation is
(@ 0x — ¥R 0y) ), = A03 ).

We take the inviscid limit A — 0, and hence search for a solution in the form:
7@ = ¢ £ A¥® + 0(\2).
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It is useful to transform the variables into streamfunction coordinates,
(X,Y,T) = (£=X,5=00,T). (27)

Note that here, and elsewhere, an overbar denotes division by U(;, so that, for instance, U(')S = U(l)lil(o) =
T, Then, the leading-order vorticity equation reduces to

0) ,(0
‘I’g,l)f‘l’g,x)fyg =0,
so that \Ilz(,ol)/y = FOs T).
Here F(% is an arbitrary function at this stage. Next, we get for the viscous term

0) 1,(0 0
TNy =0T,

or ‘Ilq()(,)%,y5 = {Syféo)}s.

We require that this viscous correction has the the same basic periodicity as that in the outer flow. For
a wave train with a wavelength 27 /A, we see that after averaging the expression above over one period,
and integrating once we get

FO - M/(OA)(T) ‘
57 [ nya Sy dé

But then, on matching with the outer expansion, we readily find that
MO =0, FO -y

Hence, we have established that
/ i1
UpS =00 = UolzY? + AX,T)]. (28)

This result agrees, of course, with the classical result of Benney and Bergeron (1969). It demonstrates,
inter alia, the continuity of the singular mode through the critical layer, a results which we have already
anticipated.

Although the form of the streamlines in the critical layer now depends on the precise form of the
amplitude A(X,T), it is useful here to suppose that A has a solitary-wave shape; that is, it decays rapidly
as X — oo, and otherwise consists of a single hump, with a maximum (minimum) of A9 = A(0) > (<)0
at X = 0. In effect, we are taking the limit A — 0 in the above. The critical layer is then characterized
by a zone in which streamlines overturn, and are enclosed within a shape commonly called the cat’s eye
(cf. figure 1). These streamlines are separated from the remaining part of the flow by separatrices, on
which S = 5., whose shape depends on the sign of Ag. The cat’s eye has a classical profile, but now has
an infinite period with the following characteristics:

A>0,5.=Ap,acentre at A =0,5 = 0,a hyperbolic point at A = Ay, S = Ao,

A<0,S.=0,acentre at A = Ag,S = Ap,a hyperbolic point at A=0,S =0.

Following the nomenclature of Redekopp (1977), the first case is called a depression wave, and the second
is an elevation wave; the respective possible solitary waves are then D-waves or E-waves.

The same technique applied at 0(6% Ine€) gives

1
o) = ShUoVA. (29)
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Figure 1: Shape of the nonlinear wave according to the signe of A (¢ streamwise coordinate in the frame
moving with the nonlinear wave speed, ( = X — VT). (a) D-wave: A >0, b) E-wave: A < 0.

3
4.2 O(e2)
4.2.1 Motion outside the separatrices

We consider first the motion outside the separatrices, where all streamlines pass to infinity.
Let us denote the total potential vorticity by

Qtotal = A — fo — By.

Strictly, of course, the usual potential vorticity is —Q¢otq; but we shall retain the present sign convention
here. In the critical layer this becomes

Quotat = 4 +H%U — 2BV — fo.
Thus, the leading-order term is Qg = U('] — fo. Next, the equation for Q(?) = lIlgfz, - pBY is
(Sydx — Sx8)Q® = AQ¥}, .
The inviscid potential vorticity is then given by
QY = ¥y —BY = Q(S,T). (30)
The viscous component of the vorticity is found from

‘1’1(;2,;/1@ = (SvQs)s -

As before, we can impose the condition that < ‘1’5;2,%/1/5 >=0 so that we get

asmy = mem { [

[I(w,T) _ (2w)—%] dw + (25)%} + NO(TY,
Se

T /A ) _
where I(S,T) = QK([ /A{2[S—A(§,T)]}§ dg) g

Note that S > 0 for an open streamline. We now take the limit A — 0 to get
I(S,T) = (25)" = .
Finally, matching with the outer expansion gives

Q(S) = sboUyV2S + U;®, where s =sgn[Y]. (31)
9
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Integrating Q once, we obtain
P = boG(A, 8) + BS + UY +UP(E,T),

where G(A4, ) = Ug{A(£,T) In[T (4, 8)] +[S(S — 4)]7},
S— Az N ‘ S

Ao Ao
Here we recall that S is defined by (28). We omit the subscript ¢ for the velocity and the streamfunction
§,2) when |Y| = oo is

1
2

and T(4,8) = ‘

when no confusion is possible. The expansion of ¥

NG 1
o) = b, [7 +Aln|Y|+ A0 - lnle/2|)]
1 '
+HB(A+ V%) + UPY +UP(E,T) + 0(1/Y?),

which must be matched with

n Y2 ! !
Uy > +UY +bUg(1+a® +In|Y| —Inn)A+ O(1/Y).

We then have g = 1/1/2|A¢| and
/ 1 A
UD(E,T) = Up(a® + 5 — B)boA.
Integrating once again, we get

T = peH(4,S) + % BSy(2A+ S) + U, S + U Sy + P (¢,T), (32)

where H(A,S) = U(;{A(Sy In[7 (4, S)] - 3\/25) + %sS\/ZS’} :
Matching with the outer flow then gives:

@) = (¢ 0+ By — U,") A*(X,T) + B3,0x=A%(X,T) + B*(X,T).

4.2.2 Motion within the separatrices

Within the region of closed streamlines, we invoke a modified form (see Appendix B) of the Prandtl-
Batchelor theorem (Batchelor (1956), Rhines and Young (1982)) to determine the interior potential
vorticity. At this order, the interior potential vorticity is a constant. Consequently, by matching on the
separatrix S = S, with the inner flow described above, we get that

]_ ! I_
Q(S) = Q2 = 5T +U1),
where (), is a constant. The additional mean flow possesses a vorticity jump through y. given by
[U1]F = —2bgUy Ve - (33)

Y. is the cross-stream location of the separatrix when £ tends to infinity; from the discussion of section
1

4.1, we see that Y, = (24¢)2 for a D-wave, and Y, = 0 for an E-wave. Also []T denotes the jump across

the critical layer. The velocity inside the separatrices is readily found

29 = QySy + BS + Un(X,T).

The superscript ¢ denotes the closed motion within the dividing streamlines. We deduce from this the
relationship linking the coefficients a®
bola] T A(E,T) = 0

implying that



This result establishes the singular neutral mode has a zero phase jump across the critical layer, as
expected (Benney and Bergeron (1969); Redekopp (1977)) and completes the determination of this mode.
The integration constant is

1 '
Us(X,T) = 0oG (4, S2) + 3VelU1 ] + U,
so the streamfunction is finally
1
T2 = Qu8 + U Sy + g55y(2A +8) + &(X,T).

The matching of the streamfunction () on the separatrix S = S, leads to an equality, modulo an
additional constant,
2 4 0@ = g2

1 1
so that ®,(X,T) = 5(<1><2>+ + 827y 4 5[c<2>+(T) +Cc®~(1)].

Allowing ®®) to possess a jump through the critical layer, we obtain the following relationships,

U 1E '
U (0 + al) A+ 02 = 200 A = 350, &

and [B41]T =0. (35)
The O(€? In? €) flow is simply
1
o = gUObgA2. (36)

4.3 O(elne)
4.3.1 Motion outside the separatrices

The equation for \Ilgfz, is

U(Sydx — Sxdv) B, = J(2M,Q) — 0r9), + 202 T, .
In the inviscid limit, and with the variable change (27) this reduces to
UpSy ¥y = Sy(()Qs — 15'Q¢) .
and hence, on using (29,30) we get that
Y, = T0Qs + FO(S,T).

Further, it is readily shown that the viscous part of the streamfunction is 1115,4) = 0. Imposing the
periodicity condition as before, now yields that

1 1
‘I’gjll)fy = 5005y AQs + MW(T)(25)2 + NU(T).

M® and N® are determined from the behaviour as Y — +o0, and we find that
MMM =0, NOT)=0.
Recalling the expression (31) for @), we finally get that

1, ., Y
vy = EsbgUO—QSA. (37)

But, we now see that for the E-wave, there is a singularity as the separatrix is approached, since S —
S. = 0 in that case. By contrast, the D-wave remains well-defined as for it, S. = Ag # 0. Hence, in this

paper, we will henceforth consider only the D-wave, and defer discussion of the E-wave. However, we
11



note here that this singularity in the E-wave is in fact only apparent, as it can be removed by a change
of the variable S which better models the distortion of the streamlines in the nonlinear critical layer.
Integrating once more, and again applying the matching conditions as Y — +o00, we find that

1
v = hQA+UN(ET),

1 ! — !
where U (E,T) = SboUl(B7y — U1")A + far0% A+ Bl

Here, we recall that the superscript ‘s’ denotes £, that is the values above and below the critical layer
respectively, and we note that, from (35), there is no jump in the coefficient B4,1. Finally, on integrating

IIlgf) in a similar manner, we get that

1 1. oo
T = SHAG(A, S) + U + SboU A)Sy + W (E,T), (38)
1 / 1 -
where  ®(6,T) = 5 (b1204" + bi200% A* + br200% A* + be,oUsClA]) + 5 (buz0 = bobo) A™.

4.3.2 Motion within the separatrices

The closed streamlines are characterized by \Ilgfgf) = ()4 where Q4 is a constant (see Appendix B), But
now, we see that it is impossible to match the vorticity continuously across the separatrix because, from
the previous subsection, we have from (37) that

1, .Y,
Ty (Se) = 30U0 A

where here, Y; denotes the value of |Y'| on the separatrix, and Yo, = /24, is its value as £ — £oo. Note
that this expression also holds formally for the E-wave, but in that case Y, = 0 and so the vorticity is
infinite on the separatrix.

The streamwise velocity is given by ‘Ilgf <) = Q4Sy + Uy. Matching the velocity across the separatrix
with the expression found in the previous subsection, yields

Us = GhU(BT, + B) A+ 300U (a0 A+ B),
together with the condition
Qus = boU; (bo¥ao + 511 ) 4,
which in turn reduces to
Qi=0, [B]f=—-2boYVee, (Ut =uD7).

Then, on using (34), we find that the vorticity gradient jump for the distorted mean flow is given by
— I 2 7
U, 1" = —6b2Ve , CONF = —ZbyUy S, Yoo 39
1 0 3 0

Finally, the matching of the streamfunction ¥(%¢) = 1/, Sy + ®,(¢,T) with the flow found above in the
previous subsection yields

@Dt =0, & = %bgU(;[boAlnT(A, S.) — %YSYOO]A +oW oW,

The first equality confirms the implicit assumption that the coefficients of the KdV equation (1) are
indeed well-defined and have the same value above and below the critical layer, that is,

R(-)’_:R(;a SS_ZS(;a VE)+:V;J7’ DSLZDS-

Here, we recall that Dy is the coefficient of a possible term 0% A4, but will later be shown to be zero. Also
the first equality shows that C(Y+ = C(4)—,

12



4.4 0O(&)
4.4.1 Motion outside the separatrices

The general procedure is now clear, so we shall omit all details and only display essential results. The
equation for ¥ is

nr

Up(Sydx — SxOy) UL}, = J(T?, Q) — 8rQ + A5 3®) —U,") .

Using the variables S and £ as before, the solution for the inviscid part is

o = Qs (w) - n[sy]) + 768, T), (40)
_ aT*A(:L‘: T)
where II[Sy] = 5@ dzx .

Applying the secularity condition to the viscous part yields

"

1 ” 1 ! !
FO = U - Sh0Us)S + S[M®(T) = 50Uy IV2S + U (41)

Note that it is not necessary to introduce a viscous time scale in the critical layer (compare Redekopp
(1977)). Next, we consider the matching with the outer flow as ¥ — oo, which yields M®) = U, .

Integrating lIlgfg/ and again applying matching conditions as Y — +00, we get

" = 1
¥ = §( - —Bbo)Sy(ZA +8) — 202U, Sy A + sbo( BA+SBS + u<2>)\/25
+ U [S(S - A)F + TSy — 53 Lh / IMiw - A)%]
2w(w — A)]

+ boUy(Bi1 A + Ba10% A + sboV2SA + B) ln[T(A, H+UB(E,T), (42)

1_»
where UBE,T) = (eu,1 + bobrs — §U1 JA* + (@a1 + Baibo)0% A* + (1 + a)boB* .

A second integration yields

" ]_ ! ! ]_ "
v® = (U, - bgg)@A + 5S)g + (U, — 203U, A + 3501 V25)S

+B°(§BA+”(2))Q(A 5)+% (GA+9)S(S—A)* + Azln[T(A,S)]}
LS dw (U — Ay FAye 1
4b0/oo (’UJ1 - A)% /Oo [w2(w2 _ A)]% dws 4b0]C(A:S) Arx—

+ boUo (B1,1 A + Ba10% A + B){Sy In[T (4, )] - sV/25}
+ %bgU(;A{Q[S(S — AP In[T(4,9)] = S+ AI[T (4, )} + UP (£, T)Sy + 8O (€, T), (43)

1 500 . 55 o1 .
where @) = (2 Ca— o T TaaPWU0A” + (B2 + c12.0 = Up)A™ + 5 (B2 + €n21) A

+ (Ba2 + €a,2,0) 0% A* + (B2 + ¢£,2,0)0% A* + (Be,2 + Cc,z,o)U(l)C[A] + (11,0 + BB1,1)B* + BB,a,10% B

Here, recalling that A > 0 for a D-wave,

1 1

K(A,S) = (%) : {Sarctan[(¥) ] CA(S — A3 — g(s - A)} .

13



4.4.2 Motion within the separatrices

The streamfunction within the closed streamlines is
]_ "t
goe) = U0 S(S +44) + Q58 +Us (X, T)Sy + &5(X, T),

where @5 is a constant. Note that at this order the vorticity is not constant (see (B)). Matching of the
vorticity is not possible; indeed, if so it would imply an absence of a dispersive term in the amplitude
equation. However, the streamwise velocity must be continuous (due to the necessity to have a continuous
pressure via Bernoulli relation), which leads to two conditions; the first determines U

]_ " ]_ ! !
Us = 5ULYoYoo + U], + boUs (8, , A + a0k A+ B) InT(4,80) + U, (44)

where f is the mean value of f through the critical level, f = 1/2(f* + f~).
The second condition yields the evolution equation

% Bbo[SeYoo — V(24 + S.)] — 202Uy (24 + 3S.)Y, + 2b0(§ BA+UD)Y,

+2(U, — Qs)Y, + U] = bo/ 1 ds. (45)

S (S - A)2
w [25(S = A4)]

Since this equation must be valid when A = 0 (or when S. — o0), we can obtain an expression for Q5
Qs = U, — 302UsS.,  S.#0.

In order to evaluate the integral on the right-hand side of (45), we can use the assumption that the solution
is a wave with constant speed V. II is thus straightforwardly computed by substituting drA = —V0x A.
After integrating over S, for the D-wave, this gives

2boV (Yoo — Y5) -

Then, the temporal derivative Arx-1 is introduced through V yielding the integrated KdV equation,
and by factorizing by A, A%, % A ..., we find that the coefficients of the equation (1) are given by

N ' 1)t
Vo = (a —-1- §,3)b0UOSC + Z Bo Yo (46)
1. '
Ry = 41+ §,B)b0U0 , (47)
1 Y.
= = p— 4
SO 4[04(1,1]_ b() ) ( 8)
DO = 07 (49)
while the right-hand side of (1) is given by
1. 5 1[oga]t 1 A
Cl[A] = zbpUpYo(1 —a+ =p) AY; — ———— AY s — —[ag1] T —0% A. (50)
2 9 4 b() 4 ' bO

This last term breaks the characteristic KAV invariance with respect to the transformation: X =
X, T = 8T ,A = §2A. It also prevents one from extracting a symmetric operator enabling one
to analytically study the stability of the possible solutions (Pelinovskiy and Grimshaw (1996)). These
expressions are the main results from our critical layer analysis. Note, in particular, that the constants
Vo, Ry and Sy are not independent of A because they depend explicitly on 49 = A(X — VT =0). They
are also dependent on the O(e?) velocity jumps: [az,1]F and [e,1]F whose expressions involve both the
outer and inner flows are in general given by (see section 8 for a special case).

ol = =P [ (G s+ U ) i =) () ol sl + e+ Dol ol (51

14



oadt = [ " 9y dy + abolBaal* | (52)

1
where we recall that P is the Cauchy principal part of the integral. [81,1]F, [c1,1,0]T and [B4,1]T have been
determined by the inner-flow study.
Continuing, we find that the matching of the streamfunction across the separatrices yields the following
jumps
[Br2lt =0, [Ba2lt = —2Ba100Yee, [Br2lt =0, [Be2]t =0, (53)

1,2]— = 400 0o T _é_—Clzo_—:ll o0 5
[B12]F = 208, | Yoo — [Us]F — [e1,2,0]* — 20, V-
+ _ _n [Ué’]i» . (5) n 4 _n o
[01,2,0]7 = 4Yo (boQ2 + bOﬁl’l -2U,) - bo +[U]T, [CY]T = {ggl Yoo + [Uo]T}Se s
together with the determination of the constant of integration

1, (%  dw YTI(r — A)3] —r 2 Apx— 1
By =—b . ; dr — ZboK (A, So) A x—1
i 40/00 (w—A)a/oo [r(r — A)]F g4, Se)Arx

1 3 1 1
+ 50VsYeo {5 +a—In[T(4,50)] = 78} A" + Slan A" + aa 05 AT Y,
1, 1, 1 500 55 40070
+ {1420~ o B+ W[T(A, SO} BU AP IN[T (4, 50)) + (4 —a = ooy + = BBl A”
0

Sc 1 2 ! 6 Sc *
+ ,6’b0%YSYOo - §boScUo(A +4S,) — EbOE(ALA +5.) + ﬁl,2A

1 * * * !
+ 5Bna A + (B, , + Caa0)h A + Bra0k A + BupUnClA]

+C® 4 (Uy — Q5)Se + (110 + Brig) B* + Bpa10%B* . (54)

The jumps in the a-coefficients at the second-order are

e [P BTG AUy _dW)
okt =R [ gt CO P [ (Gnts) et O

_ 2 B-Uy(y) .o ve 1) 2 U1(y) — a1 9
[aap]t = SOP/y1 mfﬁ (y)dy + /y1 d(y)d (y) dy + o mﬁi’(y) dy

Y2

_P ; (U{’ () +[8-Uy (y)]Uo(y) —

Uily) — a1 ) 3(y) 8" (y)

dy + 2841022+ a)Ys, (56
UO(y) co Y Idel 0( ) ( )

fawalt =7 [ (070) + 18- U AL =) (=G ) 20y,

Uo(y) —c/ \ Up(y) — ¢ Uo(y) —c
©B-Ug®) oo\, o [P Us(y) o Uay) =
VP | G e CO WP | (Gt e TP U g )W

+abo[Bi2]T — [cr2.1]F + (1 + a)bo[ci20]T, (57)

[y o]t = —P / 6 o) dy (58)
_ b2 /B_U(’JI(ZU) 2
acalt =P [ e ) dy. (59)

The expansion can be continued, and we have explicitly calculated the terms at O(e%/2 In” €), O(¢%/2 In¢)
and O(e%/2). We shall not give the details here, but note that the outcome is the determination of the
evolution equation for the second-order amplitude B obtained at the order €3. The O(€?) In € streamwise
velocity reveals to be discontinuous on the separatrices.
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4.5 Redefinition of the separatrix

In the previous subsections, we have determined the flow within the critical layer by using the variable
S = ¥ which gives a first approximation of the location of the dividing streamlines, namely S. = A(0).
But an examination at the next order of the expansion shows that this definition is incomplete. The
cat’s eye is not symmetric with respect to the critical level and a better variable S is needed in order to
correctly describe the geometry of the critical layer,

S =8+ 600(3) + 2™ (8) + 620 () + e260™ (3,) + ep® (3) + €252 (5) + e (S).  (60)

The functions ¢ are determined by ensuring that there is zero velocity at the stagnation point, a
property which was not previously satisfied. We also check that the velocity is zero at infinity in the core
of the two halves of the cat’s eye. The comparison with the preceding section can be made with the use
of another cross-stream coordinate Y. Indeed, S can be written as a function of S or equivalently and
more simply in terms of Y:

~ - 1 - 1~.
S=8+00W(8) —e2p®(S) + 62T (S) +... = §Y2 + A,

with )7'=Y+6%b0A+6%(BA+L:{2)+€%5[{(4)+___

The separatrix is then defined by

Y, =[2(5. — A)]7 and S, = A(0).
The expressions for ¢ are

p(S) = —¥W, 0@ = —(BA+1h)Sy, ¢ =0,

) = So(BA +Ub) A~ UDSy, o = J5® A @ + LFRAN)Sy.
We obtain the new expansion:
U= eU(l) S+e2 3@ 4+ 2meP® + 2ned™® + 25O 4 2 In2eT® + 2 lneF @ + ...

The integration constants F are not altered by the change of variables. We give in Appendix C the new
expressions of potential vorticity, velocity and streamfunction to the first orders. We describe below the
O(€?) term that yields the evolution equation.

With this new variable, the PV at O(e?) is now given by (the notation follows that of subsections
4.4.1 and 4.4.2),

QO =%, +B(BA+IL), QP9 =Qs,
whereas the vorticity is lilgfg, = \Ilgfg, — (BA+ Zzz{z)(ﬁ +QsSy), \ilgfgf) =Qs—B(BA+ L:{z)

The definition of U, is given in the Appendix C. Again matching of the potential vorticity cannot be
satisfied, and it is discontinuous through the separatrix. The new velocity is

B = Sto(U; ~ 380)2A + 8)(Sy — 57) — 2RUA(Sy, — s¥:) + sbo(5pA + UD) (V25 - Vi)
+ s%BbO(S’\/2—S‘ _ 8.V — s%bo(K[A, §]— K[A,5.]) - BSs (BA +Th), (61)
BP9 = —3Sy (BA+ k), (62)

and is trivially continuous through the separatrices thanks to the appropriate choice of ¢® and ()

1 p(2)2 A D _ 2
PO (S) =2 ™ - 550 = 58b0)(2A + S)YViSy + 2BV, ASy — sbo(5BA + U)o Sy

~ 2752

+ 350(%1([,4, S.] - %ﬂécyoo)sy — U Sy — T, [S(S — A)]> Sy
—205(S — A) — bo(Bi1 A + Ba10% A+ sbgV25A + B)Sy In[T (4, 5)], (63)
16



P50 = 12

2 52

— Q553 — pPQs — Us Sy . (64)
) = p(:) on the separatrix implies (45) and the expression of Us
Us =u® + %(Q’{Ym + [V )Y, + 00U (B, A + Baa0% A+ B) InT(4, ).
The new streamfunction is defined by
50 = 10 1 U + o202,

We easily check that ¥() = ¥(5:¢) on the separatrix. The jump relationships are identical to these found
with the plain inner expansion. The amplitude equation is not modified by this new separatrix definition.

5 The distorted mean flow

We recall that the matching of the open- and closed-streamline flows within the nonlinear critical layer
involved a distorted mean flow Uy, Us .... The latter is created as the critical layer is forming in a
transition stage, where the initial unsteady process is caused by vorticity diffusion from the critical layer.
The mean flow gradually spreads out from the critical layer in two regions on either side, called diffusion
boundary layers, and the distortion diminishes with the distance from the critical layer. The critical
layer evolves in a complicated way at the beginning and then in a decelerated mode (Fritts (1978)). For
large T = €it in a stable flow, in the frame moving with the nonlinear-wave speed, a quasi-steady régime
is established, and the time evolution is given by a slow diffusion process. The diffusion length vAT
increases with T" where we recall that A is defined by 1/R = Xei where R is the Reynolds number. We
are in a régime where A < 1 but the time is very large compared to the diffusion time in the critical-layer,
that is 7> 1/, and so VAT > 1; thus we cannot neglect this quantity. In this section, we will examine
this situation and explicitly express the additional mean flow U; as a function of AT and Y.

We will use a theory of the diffusion boundary layer developed by Troitskaya and Reznik (1996) who
applied it to the quasi-steady critical layer of a stratified shear flow. In spite of the different scalings
here, the resulting equations are the same, and so we will display their equations without giving details.

Essentially, a fourth variable is now used, the diffusive wavenumber v = 1/(2v/AT) which is very
small. The general motion of the critical layer is given by

Yo = Yeo + 6%2143(6, V)VAT. (65)

Here & is an unknown function of v that tends to a constant when €2 v AT — 0. Yo is the critical level in
the limit when AT" — 0. The inner cross-stream variable Y is thus a function of v. The nonlinear critical
layer analysis in section 4 must now take into account the evolution in a moving critical layer. This also
implies a slowly evolving wave speed: ¢(v); indeed the critical level is now determined by the condition

Uly.) =c+T0rc=c— %V@,,c. (66)

The wave speed is easily obtained through an expansion in €2 Jv

1

2€2 , 1
c=Uo(yeo) + g%m(e, v)Uy(yeo) + €2U1(yeo) + ...  provided that AT K 1/e.

5.1 The diffusion boundary layer

Here, we examine the outer flow in the region far from the critical layer but where Y ~ 1/v, so a relevant
inner scaling is

H=vY. (67)
The related streamfunction is ¥ pp = v?>¥. Using this scaling, we find that the mean vorticity equation
in the diffusion boundary (DB) layer, (cf. Troitskaya and Reznik (1996)), at the lowest order is

dk 1
g)B,HH + QVQ_(D2.)B,V +2(H + Kk — Vd_u) (D2)B,H = X}—m,HHa (68)
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with Qgg = 111%33 yy- The momentum flux Fp, is assumed to be constant outside of the critical layer. It
follows, from matching with the outer flow, that here the right-hand side is zero. The boundary conditions
are obtained by matching the DB layer with the undisturbed flow U, (y) as |H| — oo and with the critical
layer at H = vY;as Y = O(1), so H = O(v) and at the zeroth order in v, H = 0.

The determination of the leading-order flow ( (D233, U (D2 1)3) within the diffusive boundary layers is per-
formed in Appendix D. The main outcome is that an additional undisturbed mean shear flow e%Uu,l is
indispensable for our present theory. Since Uy is stationary due to the forcing balancing its dissipation,
it follows that U in the critical layer cannot be created by the diffusion of Uy but is due to an additional
flow that, away from the critical layer remains in an undisturbed state, U,,; say. This implies that we
have a new stationary flow Upew = Uy — 6%Uu,1 connected to the forcing Fhew = —/\Uﬁlew. So, the
undisturbed flow becomes U, = Unew + e%Uu,l; by diminishing F', we allow the diffusion of the mean
flow U,,,1 around the critical layer to create the flow U;. This new body force does not alter the amplitude

equation. The same development can be carried out at the next order for Qgg = ‘Ilg’gg,yy. As the O(€?)

vorticity cannot be matched on the separatrix, we do not know the jump of Ué, although we can find a
single relationship linking the jumps of Ué and U;' obtained at 0(6% In€). This degree of freedom allows
us to choose the value of [a;2]T (cf. its expression (57)).

5.1.1 Effect on the critical-layer flow

Equation (25) is modified by the movement of the critical level in such a way that its right-hand side
becomes at the leading order

MOLT + 20er [12O2T, + (k — vk, )03 T}
The first modification within the bracket occurs for the O(e?) flow and is of order v. It is thus negligible
compared to the previous terms that depend on €2 /v. The amplitude equation is hence not modified by
the diffusion of the outer flow.
6 The amplitude equation
The amplitude A satisfies the following equation
OrA+ RyAdx A + S0% A+ Vodx A = Cx[A]. (69)

In general, due to the right-hand side, it would seem likely that this equation is not integrable, and needs
to be solved numerically. However, it is possible to find a travelling solitary wave explicitly. Thus, we
seek a solution where A = A((), ( = X — VT where A — 0 as {( & +00, so that (69) becomes

(Vo —V)A+ S RoA” + So0% A = C[A]. (70)
Next, using the expression (50) for C[A], together with (46, 47 and 48), we get
VA4 4ureA? + w(Y, + Yoo )A 4+ uM(A) = x(V; + Yoo )% A, (71)
where Y, =[2(A4o — A)]% , Yoo = /24,
and M(4) = (240(a — 1~ 3§) = ViVau(1 ~ 0+ 2H)}A,
while x = _i[ad,l]t/goa w = %[al,l]f/go, p= %boUé, Ro = 8puro.
Here we recall that Ag = A(0). This can readily be integrated once more to yield

X(OxAY = Yool = A{ (@ Bro) 21— A} 1]~ 21+ A - (1 - D)k
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Figure 2: (a) A for ry =0,—1,—5 (dotted line, solid line and dashed line) (o = 1, (b) A with {; = 2 and
the same values of r; When r1 — —o0, A({) tends to the Dirac-d function.

_ 5, 1 [al,l]f i A
Where Q—l—a+§ —5 ngOO y and A_A_O (73)
The speed is given by
9 1 4 1
V= ,U,(Cl + g - 4—5,3)140 + §’WYOO

We re-arrange (72) by putting Y* = (1 — A)2

N 4  BEY, 5 Q 52 Q 3 5Q
8Y52:— Q- oo Y*3 ___2y*2___ _Y* hd g
(Ox¥s) 5T°[ad,1]1r( Tl T G +4+8r0)
This can be reduced to a degenerate elliptic equation
g dr ¢
=+ (74)
/0 Vso(r —r1)(1—=7) Go
5 s 3 5Q
where (o = 1 IE?;;;OO ’ P TLE = 8ro and so = sign[ro] .

Note that [ag1]T is always positive. If s = 1 then we require that r; < 0, or Q/rg > —6/5, and then

—T1 5

A=1- (rl + (1= ry) tanh? {arctanh[(l_“ )f] +la- rl)%|§_0|})2. (75)

On the other hand if sy = —1 then we require that r; > 1, or Q/rg < —14/5 and then

i _ _ 2 1T — 1 % 1 _ 1 £ 2
A=1 (7‘1 + (1 — ry)cotanh {arctanh[( -~ ) ] + 2(r1 1)2|CO |]}) . (76)
Note that this case holds when ro < 0, which in turn requires that 8/9 3 < U(I)I < B, which is quite

1
a restrictive condition. For both waves, the width of the hump is inversely proportional to Aj. The
solution related to the case 7o = 0, that is (1) without the quadratic term is defined by

_[BYeor] )2
2[0¢d,1]i— ’

~

A=1- (1 — exp| (77)
Some typical plots of these waves and the corresponding separatrices are shown in figures 2, 3 and 4.
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Figure 3: (a) A for ry =1,2,5 (asin figure 2 )and (o =1. 1, - 1, A > 1

A(¢) tends to the Dirac-8 function.
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7 Nonlinear critical layer neutral modes

We now consider the issue of the existence of such solitary-wave motions coupled with a nonlinear critical
layer, as described in the preceding sections. The problem reduces to finding a solution ¢(y) of the
Rayleigh-Kuo equation (12) in the form (15), that satisfies the boundary conditions (16) in the outer
flow far from the critical layer, and matches the local Frobenius solutions (13) at the edges of the critical
layer. Further, in order to have a solitary wave solution, we must also have r; < 0 or r; > 1 (see (74).
Note that for a finite-period nonlinear wave, a pair (co, k) may exist that satisfies the first two conditions,
with 8 being a given parameter. It is the singular neutral mode. But, for k tending to zero, only some
values of § may be allowed. The solitary wave condition on 1 may be a further restriction depending
on the chosen velocity profile Uy. The numerical integration of the Rayleigh-Kuo equation is necessary
as the boundary conditions (16) are usually not located near the critical layer. Thus ¢ = abog, + ¢p is
computed using a fourth-order Runge-Kutta scheme in each of the upper and lower regions of the outer
flow. ¢, and ¢ are computed a second time via the Frobenius local solutions at the levels y = y. 4,
where § is a measure of the width of the critical layer and will be taken as § = 10 x h, where h is the
integration step. The coefficient a is determined from matching both solutions at y = y. — § by cancelling
the Wronskian of numerical and local solutions. § is then computed by using a secant method finding
the root of the Wronskian at y = y. + 4.

For the additional undisturbed profile U, 1 (y), we choose shape perturbation of the flow Up; that is,
for instance, if we study the hyperbolic tangent mixing layer, U, 1 will be also defined by tanhy but
multiplied a coefficient so that U;,l(yco) = U;,l. The given parameters are y.o and U;yl; as all mean-flow
jumps like [U;]F, [U;]F ... are proportional to Y, [ay1]* is also proportional to Yy, and the latter is
used to non-dimensionalize. We will henceforth prefer employing the ratio o = U;’l /(boUpyYao) (bo and U,
evaluated in y.o) as the second parameter. kg is determined from (D9), and then all parameters describing
the diffusion layer, qlil, u10, U;"I, K1 - .. can be found. Thus, we can then compute y. and the Frobenius
series coefficients, ag,, and bg,,. The Cauchy part of the integral in (20) is computed by separating the
different outer flows, namely, the undisturbed flow, the diffusion layer and the flow around the critical
layer described by the Frobenius solutions. The DB layers are asymmetrical vis-a-vis the critical layer;
the edges of the diffusion layers are defined by the intersections between the undisturbed and DB velocity
curves. These connections are not always possible, and depend on the choices of Up(y) and U;(y). This
is a third limitation (denoted by L3) to the existence of the neutral modes, the first limitation being the
long-wavelength assumption (L1) and the second condition (L2) being the solitary-wave requirement that
r1 < 0 or 71 > 1. Another limitation also arises due to the proximity of the boundaries; however, here
the wall and diffusion layers interaction was not examined owing to its complexity. In addition, we have
another limitation (L4) due to the strong truncation to the first order for «.

The velocity profiles studied are:
— (a) Poiseuille flow: Up(y) = Uy /2(y* — d?) for 0 < y < d; we deliberately avoid the interaction of two
critical layers by taking y > 0;
— (b) A jet profile: Uy(y) = sech?(y) for 0 < y < d with the same remark;
— (c¢) A laminar mixing layer: Up(y) = tanh(y) for —d <y < d.
d is chosen large for (b) and (c) so that the flow at y ~ |d| is nearly uniform. The boundary conditions
are that ¢ =0 at y = 0,d for (a), » =0 at y = 0 for (b), ¢ decays exponentially at y = d for (b) and at
y = —d for (c), and ¢ radiates at y = d for (c).

We have plotted the curves ¢y as a function of 8 for different values of the ratio o. In Figure 5 (a),
we examine the effect of ¢ on the neutral modes for a Poiseuille velocity profile. When ¢ = —1, we
observe two branches at § ~ 0 and # ~ 10. Other branches not shown in the graph exist for larger g
(B ~28,54,88...). Both branches support solitary waves. When o < 0, Up(y) and U; (y) have opposite
signs. Decreasing the mean velocity seems to have a favorable effect on the existence of solitary waves.
Indeed, no modes were found when o = 1 whatever the branch may be, L3 being never satisfied. In Figure
(6), the hyperbolic-tangent profile neutral modes are displayed for ¢ = 1 and ¢ = —2. Two branches
exist. One for small values of 8 (8 < 0.4) and another which may span all possible range of 5. However,
for large f3, |k1| is also large. As a result, our truncated first-order expansion in €z /v is insufficient and we
are hence restricted to a maximal 8 ~ 2. Both branches are invariant when ¢ varies but the permittive
range of 5 changes. When the first branch is nearly forbidden, we found only two non-converging modes.

21



[y
o

100 %

iy S 1 et
b ° " +

I - i

80 ° 8- + o ¢
:+ + : +

1, ° ] + o
i N i .

604" 6 * +

44 + . +

c0 1+ + co + + it

. + + - + -+

40 4 . +

1 o+ + 7] + + |
i i - +

i + + i + +

5 . 21 - N

i b o

] + - + +

] ° 1 % e

(O hn o o o s e e B B S B B N R R N N (0] T T T — T T T T T T
[e] 2 4 6 8 10 12 [e] 0.5 1 1.5 2

(a) k (b) B

Figure 5: Neutral modes (d = 10): (a) Poiseuille flow: Uy = =2, 0 = U;’l/(boU(;Yoo) = —1, ko = 0.5419,
(b) Couette flow, U(') =1, 0 = 1; + denotes modes supporting a solitary wave (L2+L3+L4), ¢ denotes
modes not supporting a solitary wave (but satisfying L3+L4), O denote modes supporting a solitary wave
but the €2 /v series is not convergent (L2+L3),0 denotes modes not satisfying L3.
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Figure 6: Neutral modes within a mixing-layer flow: d = 10 (a) ¢ = 1, ko = —0.5419, (b) 0 = -2,
ko = 0.2790; Both short straight lines bound the domain of the D-wave with 4 > 1. + denotes modes
supporting a solitary wave (L2+L3+L4), ¢ denotes modes not supporting a solitary wave (but satisfying
L3+L4), O denotes modes supporting a solitary wave but the €2 /v series is not convergent (L2+L3),0
denotes modes not satisfying L3.
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Figure 7: Neutral modes within a jet flow: d = 10 (a) o = 1, ko = —0.5419, (b) 0 = 2, kg = —0.2790.
Both short straight lines bound the domain of the D-wave with r; > 1. + denotes modes supporting a
solitary wave (L2+L3+L4), ¢ denotes modes not supporting a solitary wave (but satisfying L3+L4), O
denotes modes supporting a solitary wave but the €2 /v series is not convergent (L2+L3),0 denotes modes
not satisfying L3.

Whereas on the second branch, the modes are located between 8 = 0 and § ~ 1.1 for ¢y varying between
—1 and —0.8. The expansion does not converge rapidly for ¢y close to —1. When o0 = —2, modes are
present on the first branch for —0.6 < ¢y < 0.1; for the second branch, the expansion strongly diverges
and so many truncated modes are not located on the branch. It is the reason why a gap lies between
B ~ 0.6 and B ~ 1.2. A negative o favors the existence of modes. In Figures (7), the jet profile gives
one unique branch the same for all o that has a maximal ¢ ~ 0.5 and a maximal § ~ 1.1. The curve
around the maximal ¢y does not permit a solitary wave mode (L2). The computation for o = 2 seems
to converge more rapidly than for ¢ = 1. The second difference is the range where solitary wave modes
are forbidden. For the first curve, the range is between 8 ~ 0.6 and 0.9 whereas for the second curve,
it is between 8 ~ 0.5 and 0.8. The ends of the branch are characterized by modes not satisfying (L3).
The areas where the modes should satisfy (L2) with 71 > 1 are delimited by short straight lines on the
graphs, and they are very small. For instance, in Figure 7 (a) the modes (8 = 0.521, ¢o = 0.508) and
(8 =0.512, ¢ = 0.505) are such as r; < 0 and are located at the frontier between the modes that do or
do not satisfy (L2). In figure 8 (a), (L4) is not satisfied for r; < 0. o < 0 decreases the S-range of the
solitary-wave neutral modes, Figure 8 (a) shows again that for ¢ = —2, these neutral modes are confined
around two small zones with § ~ 0.4 — 0.5 and 0.8. This should be contrasted with the corresponding
results for the mixing-layer profile. These few examples thus show the importance of the choice of Up.
Figure 8 (b) displays the behaviour of Ui (y) in the outer flow. The two different velocity gradients at
either side of the critical layer are clearly seen. However, the connections between the diffusion layers
and the undisturbed flow are not distinguishable, which is no longer true when the mode approaches a
zone where (L3) is not satisfied.

This section demonstrates that whatever the velocity profile Up(y), it is possible to find an undisturbed
flow U,,1 such that the critical layer could diffuse and adjust the vorticity on its edges. The number of
modes supporting solitary waves is infinite although belonging to small sets in 5. Except for the Poiseuille
flow, the relevant 8 does not exceed an order one value.

8 The case of a linear shear flow
Here we assume that the mean flow obeys is given by Up(y) = ¢+ U(l)n, that is a Couette flow, for which

case we can obtain some explicit formulae. Since now ro = 8/9 > 0, this constant-shear flow only permits
the first case (75). We display here the coefficients of the amplitude equation and then explicitly give the
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Figure 8: Neutral modes within a jet flow: d = 10 (a) ¢ = —2, ko = 0.2790. Both short straight lines
bound the domain of the D-wave with r; > 1. + denotes modes supporting a solitary wave (L2+L3+14),
o denotes modes not supporting a solitary wave (but satisfying L3+L4), O denotes modes supporting
a solitary wave but the €2 /v series is not convergent (L2+L3),0 denotes modes non satisfying L3. (b)
Ul(y)-cl, with o = 2, 8 = 0.826, ¢ = 0.491, y, = 0.894, yo = 1 and a = —0.385; U, intersects Uy 1 at
y =0.524 and y = 1.844.

expression of the streamfunction at the first three orders.

5 1 Yo, 32 1 Yo
Vo = (§ —a)BS. — Z[al,l]i_7 ) Ry = _3187 So = _Z[ad,l]i—7,
_1 + +g2 gy e _ 1 4_ _ (L ol
€l = ol A+ ol R AYE - VG-, V= —Gat 1o ss,

Note that Ry and Sy are always negative.

8.1 The singular mode

This can be expressed in terms of the dimensionless coordinate g = 2 |Bn|% and the Bessel functions J;
and Y] of the first kind.

ot(y) = olAt (o) +B™i(0)], if B>0,
¢ (y) = oA Ji(io) + B Yi(io)], (78)
¢t (y) = elA* Jilio)+ B Vi(i9)], if B<O0,
¢~ (y) = eo[A” Ji(e) +B7Yi(0)]. (79)

Henceforth, we will only describe the first case; the other case is similar. Near y,

2
$7() = ——{BY¢ +bo[mrAT + BT (27 — 1 +1n¢)lda},
2 _ _ . =
¢ (y) = i_{B ¢y +bo[mA” +B7(2y =1 +1In=9)l¢a},  with ¢ =pn.
Here 7 is the Euler constant. By equating this expansion with (15), we have BT = —7r/2 and B~ = —im/2.
The boundary conditions (16) yield
Yi(e2) - _mYi(i;m)
At =2 . AT =isoe
2 Ji(g2) 2 Ji(ion)
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Figure 9: (a) S[J1(i01) Y1(02) — J1(02)Y1(i01)] as a function of the dimensionless coordinate g2: g1 = 0.2
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Yi(e2) _ Yi(ien)
and at =—-14+2y+lnp—7 , a”=—-14+2y+In—p—7"7"2.
7 4 Ji(02) 7 LA (i01)
The condition for a zero phase jump gives the dispersion relation
Yi(ee) _ Yi(ior) _ _i
Ji(e2)  Ji(ier) '

To solve this relation numerically, we must examine the roots of S[Y;(02)J1(i01) — Y1(i01)J1(02)]. If we
fix g; and search for gy (cf. figure 9), we notice that g, possesses an infinity of discrete values which are
nearly periodic. When p; tends to nought, g tends to a root of Ji, ji,,, where k is an integer. When
01 tends to infinity, oo tends to a root of Y3 (g2), y1,5. As a result, g» belongs to the successive intervals,
[y1,1,71,1)s [¥1,2,71,2], - .. Inside each interval, go is determined uniquely. The graph (5, co) is plotted in
Figure 5 (b) for U(I) =1, 0 = 1. The modes are shared between two branches. The upper one is bounded
by the constraint y < d at high ¢y and and the second by (L3) around 3 ~ 2. A third branch starting at
B ~ 2 for small ¢q is forbidden due to the constraint (L3). When ¢ = —1, no modes are allowed, once
again due to (L3). It is the same result as the Poiseuille flow but for opposite o. Indeed, this time Uy (y)
and U; (y) are of opposite directions when o > 0. (L4) is always valided; so (L2) is except for very small
values of c¢g.

8.2 order

The expressions of d)l(l) at either side of the critical level cannot be determined analytically due to the
presence of the additional mean flow Uy (y) in the right-hand side of (19) whose evolution is defined in

terms of the error function. However, c;Sfil)i are easily obtained through (19)

2 A+
D = 2(PUD(e) + B0 - QQZ)Q—QQ[H(@)JZ(@) — Yale)h(0)]) + 7ia 6, (80)
A

2
0= = Zi(T A d(io) + B Vaio)] -

. L[V (i) aior) — Yalion) i (i0)]) + 77167 (81)

Yi(io1) o1

Hence, we deduce that, after expanding qﬁg) around vy,

7z1=ﬂ;:1+

215 Ja(02)
3 02 J1(92) ’
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The Fredholm alternative for 1[131) (52) yields

oL (9 o
oarl” = 555707 + T2a):

The O(€?) relations are given in the Appendix E.

9 Conclusion

In this study, we have explicitly analyzed the strong interaction of a free Rossby wave in a shear flow
with a nonlinear critical layer in the long-wave régime. The presence of a flow in a nonlinear critical
layer leads to a scaling which provides a stronger dispersion with shorter length scales and a shorter time
scale than those which hold in the traditional KdV dynamics (Redekopp (1977)). For the flow within
the separatrices in the nonlinear critical layer, we use a modified form of the Prandtl-Batchelor theorem.
Our analysis, based on the hypothesis of a smooth and slow evolution of the flow within the nonlinear
critical layer, leads to the derivation of a modified Korteweg-de-Vries equation at the third order of the
asymptotic expansion in the inner flow. On the contrary, Brown and Stewartson (1979) investigated the
more rapid evolution of long Rossby waves in the special case when U(')' (y.) = B, which has the effect
of removing the singularity at the leading order. They found that the dynamics was described by two
coupled equations, derived at the second order, and which were not amenable to explicit integration. For
instance, a nonlinear wave of wavenumber O(e%) in their approach evolves with the time T' = e%t, and
experiences finite oscillations in vorticity at T = O(1), which is damaging for the formation of solitary
waves. For a smaller wavenumber O(e%), the D-wave hypothesis was ruled out and the E-wave motion
also possessed such finite oscillations. Warn & Warn (1978) obtained similar coupled temporal equations
with T = €2t but for finite-period nonlinear waves. Their leading-order streamwise velocity had a jump
through the critical layer and the computed critical-layer flow was very far from being solitary-like for
small wavenumbers. OQur slower time-scale allows us to find a zero velocity jump at the leading order as
in previous steady critical layer studies (Benney and Bergeron (1969),Davis (1969)). Nevertheless, our
higher-order analysis reveals a O(e%)—veloci‘cy jump which causes a coupling of the outer and inner flows,
which in turn modifies the KdV equation that emerges as a necessary relation in order that the O(e%)
velocity may be matched all along the separatrices within the critical layer. The new nonlinear terms in
the amplitude equation are the outcome of the interactions taking place in the critical layer and are not
polynomials in the amplitude. Such an equation would seem not to be integrable. However, solitary wave
solutions exist and are found explicitly. We also note that Hickernell (1984) derived a temporal evolution
equation for a weakly nonlinear Rossby wave critical layer on a hyperbolic tangent basic velocity profile.
Its very rapid time scaling of e s yielded a nonlinear term result in the form of a convolution integral,
with the consequence that the amplitude equation was not integrable.

We have found that the flow within the separatrices must obey certain topological conditions, which
are unlikely to be satisfied after matching the outer flow (outside the critical layer) with the inner flow
(within the critical layer) unless the streamline geometry within the critical layer is adjusted by the
introduction of a strained coordinate. However, this parametrization is still insufficient to describe the
critical-layer flow around the dividing streamlines in the case of the E-wave (see section 4.1 and Figure
1). A second additional layer with its own scaling and variable must then be introduced to cancel a
certain singularity. This additional layer is not specific to this problem, but appears whenever one wishes
to accurately model the motion in the neighbourhood of the separatrices without using viscosity, and
instead by only taking into account of nonlinearity. For instance, such an additional layer was used
by Caillol and Grimshaw (2004) to describe the strong critical-layer interaction between an aximmetric
vortex and an azimuthal mode. Due to the technical complexity of the E-wave modelling, we have
postponed its study for a subsequent article.

Our analysis of the existence of singular neutral modes needs the simultaneous study of all flows:
undisturbed, diffusive and critical-layer flows. We have found that an infinity of modes exist, but only
for certain S-domains. The condition relating to the compatibility of the amplitude equation vis-a-vis
the solitary wave solutions, is not as stringent as the condition for the existence of the diffusive bounday
layers with respect to the choices of the undisturbed mean flows: Up(y) and U, 1(y). Concerning the
physical relevance of these solutions, the main issue is whether the present long-time régime, evolving
with the slow time T = €% is possible in practice, and in particular whether the free Rossby wave mode
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does not decay before the nonlinear dynamics within the critical layer can be established. One approach
to examine this issue would be to consider the linear initial-value problem, in order to see if Rossby waves
with O(e®) wavenumbers can survive the algebraic decay of free modes. Another approach would be to
consider the stability of the solitary waves found here, probably through direct numerical simulations. In
this context, we note that Maslowe and Clarke (2002) found some evidence for the existence of Rossby
waves in the presence of a nonlinear critical layer in a numerical study of resonant wave interactions.
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Appendices

A The outer flow

A1l First terms in Frobenius series

Al.l O(e)
]_ — — 11 — 11 — — 1" —_— "
bos = E[()'U({V — 5b3 — 4b2U, — 12boU, — 66U, + 3Bbo(4U, — 383)]
A1.2  O(e?)
c1,0 = [71 - b_la c1,1 =0,
0
biio0=0, bi,11=0, b12= bo(U; — bOUi)/za
cq12 = —1/2,
— 111 ]_— mnr
by,10=0, by11 =Upy , by12 = §boU0 ,
c’u,l,O = 0, Cv’171 = 0, Cv,l,g = (2[70[‘/ - 350U(;” - ﬁé’ﬁél,)/4
A1.3  O(é)

bi20 = —boVo, bi21 =0,

]_ — — I — — 11 — I = 17 = !
€1,2,0 = §{T0Uo — by '[(2abg + 3b3 + 4bo 2)To + 2(c1,1,0 + Bi,1) Uy + 2(Uy — boU, — Bi1bolUy)]},
_ _ 1 _
an,2,0 = bobo, an21 =bo(3ag3s —bo2 + Zﬂb0)7

_ 1 N _
bn,2,0 = 2bobo(1 + a — Zﬂ) —boRy, bp2,1 =0,
1.
Cn2,0 = —550,

ba2,0 = —boSo, ba21 =0,

" — 1

— _ 11 U, .yl
ca,2,0 = —So(abo — Uy + bo )+ Bai (U — =2),ca2,10 =0,

0
be2,0 = bo, be2,1 =0,

= 1/

1, - - b
Ce2.0 = =(2abo + 3bg +4—2 —T,),
2 bo

6
Cn2,1 = W[ng(l - a2) + 2&0,3b0(6(l + 5) - 6b0b0,2
0
+ 12b0,3 + bgRo + 4b0,2R0 — Zabo(bg + 2[)072 — bgRg)]
1 _ — _ _ 1 — — — — = = _n —
+ 75 (243(2abo + 68 — Ro)Uy — 2(B(6abo + 6o — 3R0) — Ty 1} —35(T5 —28)), (A1)
2,1 =0, bgag = —boDo, bs21 =0,
cr2,0=0, cro1=PBa1/bo, (Do=0).
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A2 Outer expansion expressed with the inner variable Y

The expansion of the streamfunction around the critical-layer edges is

1. 1
lim T = e{—U0Y2+A*+e%1ne—b0YA*
Y —soco

*2
2Y

1
+6 ln € gboboA* + 61116 5 I:(bl’z’o + /BilbOY + EngZ)A* + (§bn,2,0 + bobg ln |Y*|)A*2

1

€2 [6U0Y3+ U15Y2+[Cl10+511+b0(a +In|Y*))Y]A* + B1105A* + cnpomr

+(ba2,0 + boBa Y )0 A" + bp2,00% A" + Upbe,z,0C[A]]

mnr Y Y3 ’ Y2
+e [0 U U

1 1
+Hef a0+ Bz + 20 Y™ + (afy + Bibo In Y)Y + (bo,z + 585aiy + 5bg In [Y*[)Y?]A

+e
2
+ed2,0 T Ba2 + ba20In Y| + (af + boﬂd,l In|[Y*|)Y]0% A* + (cr2.0 + Br2 + braoln |[Y*|)95 A*

+Up(Cer2.0 + Bez + benonY*)C[A]| + O(e2 In? €, €3 Ince, e%)}

S 91 Fbn2oIn|Y*] + a0 In’ |Y*|+ "4°]A*2

B Extended Prandtl-Batchelor Theorem

The momentum equation underlying the vorticity equation (3) is within the separatrices
du+ux Q+VH = e V2u+ A4 F, (B2)

where H = p/p+ %|u?, u = (¥,,—7,,0) and Q = QsotwZ. The fluid variables will again be decomposed
into inviscid and viscous parts. Because the time-scale is slow (see 8), we shall assume here for simplicity,
that the flow is stationary in the reference frame moving with the wave, since our main concern is with
steady waves. Also, the time evolution term does not affect the lowest-order vorticity terms.

We now adapt the arguments of Batchelor (1956) and Rhines and Young (1982) to the present situ-
ation, where it is necessary inter alio to take account of the body force term. We study an imaginary
closed-streamline flow that can be constructed by cutting the D-wave flow on the axis ¢ = 0 (see figure 1
(a)) and swapping the left and right parts so that the right part be at the left and the resulting flow look
like a E-wave motion. Consider then a family of closed streamlines, and integrate B2 around a streamline
to get

?fuxQ-d1+?§VH-d1+Ae%7f(V><Q)- %fUO X - dl+e%?{8Tu-d1=0, (B3)

where dl is the line element. The two first terms (both inviscid and viscous) vanish. Further for a steady
travelling wave Opyu = —V 0xu, the last inviscid integral vanishes by symmetry. Within the critical layer,
u is O(e) relative to V x Q, so the last viscous term can be ignored to leading orders. (B3) then reduces
to

]{(VXQ—US(y)ﬁ)-dlzo. (B4)
We now expand the potential vorticity,
1 .
Quotat = Z03 ¥ + 2020 — fo—e2fY = Qo+ €2 Qo+ elneQu +eQs+ -

As in Batchelor (1956) and Rhines and Young (1982), we introduce new coordinates along and perpen-
dicular to the closed streamline. This converts (B4) to

6 ota. " ~
F et fo; @z a-o.
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It is now readily established that at the leading order,
Qo = constant = U(l) — fo,

while at the next order 1
@2 = constant = §(U1+ + Ui*).

Here, the evaluation of the constant comes from the matching with the flow outside the separatrices. At
the next order also
4 = constant .

However, at the order O(€) we find that

Qs = U(’]”S + constant .

Continuing this process, we eventually find that (s is not constant within the region of closed streamlines.

C New streamline definition

The new inner flow when expressed with the variable S is displayed until the order €2 In € for the vorticity,
streamwise velocity and streamfunction.

C1 order €3
Q(?) = Q ) Q(2’C) = Q? ) li’gggf = lIlg/Q%/ ’
) = byG(4,8) + B — A) + UpSy +UD —lly,  F29 = QS5 + B(S — A),
with Uy = boG (4, S.) + $V4[U T + U®@.
§@ =@ (3) + U(’)(p(2) (9)
order €2In’e TG = _gB)

C1.1 order €?lne
The vorticity distortion has not only vanished but vorticity is equal in open and closed-streamline flows:

~ ~ - - c ]_

QW=Q"9 =0, Wy} =¥ =264

Both velocities and streamfunctions are equal as well:

~ ~ ~(4.c 1 ~ 1 ~
lllgf) = —iﬂbOSf,A, lI’gf’ ) — —Eﬂbosf/A U™ - §b0Q2A+U4,

~ 1 ~ ~ 1 ~ ~ .
B = b AU® +58) + D, §U) =~y Ay + B3) + s,

with Uy = U® + 1byQ2A and &4 = Lbo (U —UP)A + M.

D Diffusive boundary layer flow

The vorticity and & are expanded following €3 Jv

By =Y (9) e, w=(2)x. (D5)

The related vorticity jump was determined in the critical layer study (see 33) and is

[U1]F = —2[Uq (ye) — B]Yao = Q25 (0T, v) — Q125(07,v),
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the vorticity gradient also possesses a jump (see 39)

Yoo _
(01T = ~6[Us (ye) = B 7 = QB (0%,1) = Q3 (07, ).
0

Let us assume that the above jumps are also expanded like in (D5). Each fo) then satisfies

i — 2kQY +2HQ), +2 Z (1+5)5 Q0 1 = (D6)
j=0

The boundary conditions at infinity are based upon the existence of an undisturbed mean flow (denoted
by the subscript u) that must be nevertheless perturbed vis-a-vis the basic flow Uy in the form

Uu(y) = Uo(y) + €2 U1 (y) + eUna(y) +

U, is expanded around y.o. Dropping U, that is useless and letting H appear through y, we have when
H — oo

1 1

(2) 6% ” (2) ’ €2 " (2) ’ €2 1._.» 9
QDB,H - 7Uu,1(y60)3 Qpp —~ Uu,l(yc0)+7Uu,1(yc0)(H+"@)a Upg — Uu,l(yco)(H+"5)+7§Uu,1(yc0)(H+f‘ﬁ) .

The boundary conditions on the edges of the critical layer are derived by using the mean flow expansion
around y,. of the first section expressed through the DB inner variable H, so when H — 0

1

6% ” "
QBbu = = UL (), QBh = Uilye) + - U1 WH, Uy~ Ul B + U] (5 H? + o).

We will prove the presence of the small velocity w19 later on. The expansion of the distorted flow U;
around the critical layer is therefore

! 1 "
Ul Ul(yc) 2”10+U1(y_yc)+ EUI (y_yc)2+"'

u19 is absorbed in the expansion of c.
We solve the equation D6 to the two first orders. The leading-order vorticity Q(()Q) is given by

H+k 2
& =U,, + i / e ™ du. (D7)

o0

It is the classical error function evolution of a laminar boundary layer (Batchelor (1967)). The boundary
conditions on the critical-layer edges yield

+ o _ 2 _ ko 2 ’ +

1110/ e dU—‘ho/ e du= [Ul,O]—-
“+oo —0o0

The leading-order streamwise velocity being

H+ ko

p 1
Ué2) — Uu,l(H + ko) + 45 ((H + ko) / =% du + 56_(H+n0)2) 7 (D8)

800

we have two other boundary conditions for the velocity
— 2 _ 2 !
drole ™ + 2ko(v/m — J)] = q;ro[e "o —2koJ] = —2k0U, 1
with J = f:; e~%" du. Finally, g5, are

'
QKOUuJ _

+ =_
o e ro — 2KoJ o

QHOU'(IJ,,l
e f0 4 2kp(y/m = J)

Ko satisfies ) , ) ) ,
2k0vVTU, 1 = [Uy o)L €70 [e750 + 2k0(v/m — J)][e™"0 — 2k0J] . (D9)
This relation admits a unique and finite solution provided U;,l is non-zero. In this case, k¢ is an odd
function of U;,l
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D1 order e /v

The first-order vorticity Q?) satisfies the equation
Qhw — 208 + 2(H + r0)QL); = —4k1 Q)

its general solution having the right behaviour at H — oo is

H+ko

n 1
§2) = Uu,l(H + ko) + ¢4 ((H + Kio)/ efu2 du + 56_(H+K0)2) + K;quoe_(H+no)2 .

8§00
The related velocity is obtained after integration over H

@) 1 _» 1 Hrtro 2 H 2 Hrtro 2
U” =< u,l(H—f—mo)z—}—qul ([1+2(H+no)2]/ e ™ du+(H+fc0)e*( +ro) )—Hcquo/ e " du.

2 800 SO0

The integration constants gf;, 1 and ujo are determined by the following relations. The vorticity gradient
jump gives

2 "
qii_lJ + ql_l (\/_ - J) + 251 [qu]tH067KO = _[Ul,O]i_ ) (D].O)
as for the vorticity jump
1 _ 1 _ _ '
qﬂ[§€_'§g — koJ] = g [Ro(Vm = J) + 56 ng] + ’fl[qw]te " = [Ul,l]1L ) (D11)

whereas the matching of the streamwise velocity on the critical-layer edges yields

4y (l‘c'/()e_ng —(1+2/§%)J) —4k1qf0J = a1 ((1+25§)(\/E—J)+fsoe_”g) +4k1q7,(Vm—J) = —2;9(2)U;I,1+4u10 .

(D12)
u1o can be chosen distortionless. We express x; with the help of D10 and injects it in D11 and D12, ¢f,
are then univoquely determined, then x; is obtained through D10. Finally, x; and ¢j; are

(2K0 [Ui,l]J—r + [U{,,O]J—r)

K1 = —

WLE
qﬁz—%({aww + R0/ = UL ol +2{(V7 — T) (6 1) + mEDTIUL LI,
4 = ﬂ ({1 + ) [moD* = J] + JHUL oJ* + 250 {30 D* — J] + JHUL 1)

u1g is constrained by the relation

Iioe

G/ (kDY = JllkoD™ + V7 = J]+ DD YU, o]F

1
2
Ui = §K0Uu,l

{8 ~ DlseD* oD + 7 ]+ DD, (D)

with D+ = e — 2k0J, D~ = e~ + 2o (/7 — J).
The first-order vorticity within the cat’s eye is thus

Uyl
2y

({1 + 8D + ko(V/7 = INIDT +{(1+ k)[woD* — J] + J}Z—; — e (D" + rov/m) ) U o]

Q2= Uy + [27 — V7 + 4k (/7 — J)e™] S

"‘0

RV

f({(f ~ J)( = 1) + KD }D* + {KElmoD* — J]+ J}D~

— koe (D + kov/T) ) IV} 1]E] + O(5) . (D14)
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E order ¢ constant-shear flow

Some components of 1)(?) are expressed in this subsection through a similar relation to (19) valid at O(e?)
and with the subsequent relations between v/ and ;.

E1 0%A
612 = 35 G (@Y (0) = i e (0]~ oo (g2 Yale) — a2 (o)
1 10°—df 2 o
+ oo [ W0 e) ~ Yale @) + Vi) (o) — Ya( ()]
4
— 2213 () a(es) — Yale) (o)) + 511 (ea)¥(0) — Vi) (o)
2 o
57 Gl (@) = Vi@ Ts(ex)] }
+ 2
T 0 Y0 )]+ 7 7 LR ()1 00) Vi )+ 7t (BL

J2(02) 0 J3(e2) 63 Ja(e2) o3
+ _ Bt + 3 2 _ 2 2_ El6
12 = Pra T 1010045 1 () ¥ 24057 Ti(0s) T 24058 Ti(e0) T 115257 (E16)

5771
991J ( )
5

[Y1(ig1)J2(i0) — Ya(io)Ji(io1)]

[J2(i01)Y2(i0)—Ya(io1) J2(i0)]+

71'9{ 46n3 [J1(i01)Y1(i0)—Y1(i01)J1(i0)]

n’
ﬁ 901J1(i01) 0
0)J

1 4 a4
* 965° 96,33 [12J (i01) 10

Ppo =
1(i01) = Y1(i01)J1(i0)] — %’ﬁ
2 5 4

EJ(Q )[Yl(zg)Jz(lQl) Y2(i91)<]1(i9)]_g%[Jl(iQI)Y%(iQ)_Yl(iQI)J3(iQ)]
20} (ig)Valier) — Yi(io)aier)]
5J1()1Q3Q1 1{t0)J3(101
—ij(j )%[}ﬁ(zgl)J2(zg) Ya(io)Ji(ion)] + 7 J’Y(L;’;l)g_gl%[m(ig)lz(igl)_n(iQI)Jl(iQ)]‘F'YfiQ(ﬁ;
(E17)
L Ja(io1) oi Js(ie) . o Ja(ior) o
T2 =h f’z_”d’l"?2452¢]1(¢gl) 2405% Ji(io1) 2408 Ji(ier)  11523% (E18)
E2 A?
¢ = —2RoB (A" Jo(0) + B* Yo (o) - Q—‘;%mw@(@) - Ji(@)Yo(e2)])

—snf? [ SIATI0) + BV WP @V () - KOV @) dr +oF,6%, (F19)

o A
01 Y1(i01)
48708 [ 1A D) + B VP V) — (in)YaGie)) dr +15,67, (E20)

01

92 =2iRoB( A" Jolio) + B Yo(ie) - [¥i(ie)Jo(ier) — Ji(ie)¥olien)])
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2 Jo(e2) Yi(e2)
=g +Roﬁ(g J?(Qz) 2’y+7rJ1(Q2) —lncp)
~2fP [ 8RB A0 - 1) Th@V0) — AW (@]dr + enaa, (E21)

B B = 72 Jo(ior) Yi(io1)
Yon = By + Rof (igl Tolier) A TiGio) SD)

_2BFP / e ( Ql)Jl(z'r)—n(ir)f[Jl(ig)Yl(ir)—Jl(z'rm(ig)]dr+cn,2,1. (E22)

2 \J1(ie1)
E3 C[A]
@)+ _ 97 ( 4+ + AT e B o
O = 25(ADo(0) + B V(o) — 35 (0 To(e2) ~ Yolea) h(@)]) +0fa 6T, (E29)
92 = =2iB( A" Jo(io) + B Yolio) + Yf) [Yo(ier) (o) - Yi(i0) Jo(ien)]) + 7 @ > (B24)

(1 Jo(02) - — 8- (1 - Jolior)
=8 A(1-2505) v =aa A= 2 5TES)

E4 Fredholm alternative

The jumps (55), (58) and (59) are in the constant-shear case:
/1 1

ﬂﬂ(nzﬁ(w) - mJi (igl))

0
—app{ip [7 2 (R ne - vite) de+ P [ (B a0 - @) de}, (€29

03 Jo(e2) . ol Ja(ior) 1 ot a4
TT2B Ti(e) T2 J1(i91)_12053(J2(i91) W(W(l g§)+16)

[yt = (1+ 04 )+16) +

1

Yia (0} of 1 3 Ja(e2) i Ja(ien) 0
125(J2(92) +Jf(i@1)) Mam io1 J1(z'gl))(J12(igl) +4), (E20)
= 1 1
forea” ﬂ(anf(gz) - me(igl))' (E27)
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