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Rossby waves and two-dimensional turbulence 
in a large-scale zonal jet 

By THEODORE G. SHEPHERDt 

Center for Meteorology and Physical Oceanography, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA 

(Received 27 November 1985 and in revised form 10 February 1987) 

The theory of homogeneous barotropic beta-plane turbulence is here extended to 
include effects arising from spatial inhomogeneity in the form of a zonal shear flow. 
Attention is restricted to the geophysically important case of zonal flows that are 
barotropically stable and are of larger scale than the resulting transient eddy field. 

Because of the presumed scale separation, the disturbance enstrophy is 
approximately conserved in a fully nonlinear sense, and the (nonlinear) w a v e  
mean-flow interaction may be characterized as a shear-induced spectral transfer of 
disturbance enstrophy along lines of constant zonal wavenumber k. In  this transfer 
the disturbance energy is generally not conserved. The nonlinear interactions 
between different disturbance components are turbulent for scales smaller than the 
inverse of Rhines’s cascade-arrest scale K~ = (/3,,/2u,,,)~, and in this regime their 
leading-order effect may be characterized as a tendency to spread the enstrophy (and 
energy) along contours of constant total wavenumber K = (k2+Z2)4. Insofar as this 
process of turbulent isotropization involves spectral transfer of disturbance enstrophy 
across lines of constant zonal wavenumber k, it  can be readily distinguished from the 
shear-induced transfer which proceeds along them. However, an analysis in terms of 
total wavenumber K alone, which would be justified if the flow were homogeneous, 
would tend to mask the differences. 

The foregoing theoretical ideas are tested by performing direct numerical simula- 
tion experiments. It is found that the picture of classical beta-plane turbulence is 
altered, through the effect of the large-scale zonal flow, in the following ways: (i) while 
the turbulence is still confined to K > K ~ ,  the disturbance field penetrates to  the 
largest scales of motion; (ii) the larger disturbance scales K < K~ exhibit a tendency 
to meridional rather than zonal anisotropy, namely towards w2 > u2 rather than vice 
versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale 
source is significantly enhanced by the shear-induced transfer associated with 
straining by the zonal flow. This last effect occurs even when the large-scale shear 
appears weak to the energy-containing eddies, in the sense that dU/dy 4 KU,,, for 
typical eddy length and velocity scales. 

1. Introduction 

By virtue of the vertical ‘stiffness’ imparted by rotation to a homogeneous fluid, 
the study of two-dimensional or barotropic systems has always played a central role 
in geophysical fluid dynamics. Although barotropic theory is not strictly applicable 

t Present affiliation : Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge, Silver Street, Cambridge, CB3 QEW, UK. 
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to a stratified fluid, it is nevertheless thought to be qualitatively relevant in various 
ways - particularly for horizontal scales of motion larger than the internal Rossby 
radius of deformation - and it offers the compelling advantage of relative simplicity. 

However the barotropic vorticity equation is itself analytically intractable because 
of advective nonlinearities, and on the energy-containing scales these nonlinearities 
usually cannot be ignored in geophysical applications. An idealization that has had 
some success, especially in meteorology, has been to treat the two-dimensional flow 
as if it were homogeneous turbulence. Using statistical methods and hypotheses that 
rely on the spatial and temporal homogeneity (F j~r tof t  1953; Kraichnan 1967 ; Leith 
1968 ; Batchelor 1969), one can deduce that an intermediate-scale energy-enstrophy 
source will lead to spectral transfers of energy and of enstrophy respectively to larger 
and to smaller scales of motion. This prediction is qualitatively in accord with 
observed atmospheric behaviour (e.g. Chen & Wiin-Nielsen 1978; Boer & Shepherd 
1983), with the intermediate-scale source identified with a forcing of the barotropic 
mode, a t  the scale of the Rossby deformation radius, by the process of baroclinic 
instability. 

Nevertheless the atmosphere departs from the idealization of classical two- 
dimensional turbulence theory in significant ways. Thus the theory has previously 
been extended to include the geophysical effects of Rossby-wave propagation (Rhines 
1975; Holloway & Hendershott 1977 ; Legras 1980), topography (Bretherton & 
Haidvogel 1976 ; Herring 1977 ; Holloway 1978), weak horizontal divergence (Hollo- 
way 1983; Farge & Sadourny 1986), and stratification (Charney 1971; Rhines 1977; 
Salmon 1978,1980), but in all cases horizontal statistical homogeneity was imposed. 
Lin (1982) has recently treated the problem of two-dimensional turbulence in an 
inhomogeneous mean flow using closure methods, but the inhomogeneity was 
required to be extremely weak; it would seem that turbulent closure is impossibly 
cumbersome unless such a restriction is made. However, it  is evident from observa- 
tional data that the atmosphere is significantly inhomogeneous, at  least on the larger 
scales of motion : in particular, the flow has a strong stationary and zonally symmetric 
component which varies substantially with latitude. 

Observations reveal a separation in scale between this zonally symmetric station- 
ary flow component and the energy-containing transient eddies (Boer & Shepherd 
1983). A reasonable first step for extending geostrophic turbulence into the inhomo- 
geneous regime would therefore seem to be the investigation of two-dimensional 
beta-plane turbulence in the presence of a large-scale zonal shear flow. Such is the 
object of the present work. The beta-plane is probably the simplest system that can 
embrace the problem of inhomogeneous waves and turbulence, while still providing 
insight into large-scale geophysical fluid dynamics. McWilliams & Chow (1981) have 
previously performed a numerical simulation study of a three-layer wind-driven 
channel model representing the Antarctic Circumpolar Current, with a mean flow that 
was strongly inhomogeneous. But there remain important questions to be addressed 
within the comparatively simpler barotropic context. Fortunately one can hope to 
capture some of the aspects of the behaviour of large-scale barotropic motions in a 

stratified, quasi-geostrophic fluid by using a barotropic model; this is because, at least 
within the context of baroclinic geostrophic turbulence theory (e.g. Rhines 1979; 
Salmon 1982 ; Sadourny 1985), the principal coupling between the barotropic and the 
gravest baroclinic modes occurs at a single scale - the Rossby deformation radius. 

The governing equation is presented and discussed in $2. It is then argued ($3.1) 
that the flow dynamics is most easily understood by focusing attention on two quite 
distinct, though strongly coupled, processes. The first of these is the interaction 
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between the large-scale zonal flow and non-zonal disturbances of smaller scale : this 
interaction can always be viewed to a good approximation, even at finite amplitude, 
as a shear-induced spectral transfer of disturbance enstrophy along lines of constant 
zonal wavenumber k ($3.1). In  such transfer the disturbance energy is generally not 
conserved. This process is studied in detail in the context of linearized theory, using 
a spectral version of ray-tracing theory ($3.2). 

The second key element of the dynamics is the interaction between different 
disturbance components: a principal effect of this process is to make the disturbance 
field locally isotropic by spreading the enstrophy along curves of constant total 
(two-dimensional) wavenumber K ($ 3.3). In  particular, isotropization involves spec- 
tral transfer across lines of constant zonal wavenumber k, and thus has effects quite 
distinct from the first process of shear-induced spectral transfer along lines of constant 
k. A spectral analysis in terms of K alone would tend to obscure the distincti0n.t 
Perhaps needless to say, the disturbance self-interactions can also be anticipated to 
yield spectral transfer to larger and to smaller K in the usual way; but the timescale 
of such transfer is slower than that of turbulent isotropization. 

The validity of the separate identification of the two processes, and the way in 
which they interact, are examined by considering various direct numerical simula- 
tions in $4. This study does not attempt a thorough investigation of parameter space ; 
rather, the non-dimensional parameters are chosen to represent observed conditions 
in the troposphere. This indeed falls within a regime in which both nonlinearity and 
inhomogeneity are significant, even though the large-scale time- and zonally averaged 
shear would appear weak to the energy-containing eddies in a scale analysis. 

The theoretical and numerical results are discussed in $5,  together with their 
implications for transient eddy parameterization in atmospheric models. Some 
parameter dependences are also described. It is noted in addition that the zonal jets 
generated internally in classical beta-plane turbulence simulations do not induce the 
phenomena found here; the reasons for this are also discussed in $5. 

2. Mathematical description 

The governing equation for the barotropic beta-plane is 

2.1. Equations for a disturbed flow 

Va$t + J ( I I . 9  V2$) +A II., = S(ld.), 

where $is the stream function, J is the two-dimensional Jacobian, is the (constant) 
planetary vorticity gradient, S is a linear operator representing all source and sink 
terms, including viscosity, and the other symbols have their usual meanings. It is 
convenient to consider (2.1) over a doubly periodic domain. 

If the statistics of the flow field are independent of spatial position, so that the 
flow is spatially homogeneous, then (2.1 ) describes classical two-dimensional beta- 
plane turbulence. The characteristics of such a flow are now well known (see e.g. 
Rhines 1975, 1979) : the domain-integrated energy tlV$12 and enstrophy t(V2+)2 are 
invariant for conservative flow (S = 0), and these two inviscid constraints, together 
with a statistical assumption giving an ' arrow of time ' - such as the broadening of 

t Of courae turbulent interactions involve transfer along k-lines too, though this transfer will 
not be enstrophy-conserving for each k. The essential difference between classical homogeneous 
two-dimensional turbulence and the shear-induced transfer discussed here is that the straining field 
of the latter is not considered to be random, and so some phaae information must be retained. 
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spectral lines (Batchelor 1953, p. 186), or more generally the increase of a suitable 
measure of flow entropy (Carnevale 1982) - imply a net nonlinear transfer of energy 
to larger scales, and of enstrophy to smaller scales (Fjrartoft 1953; Merilees & Warn 
1975). The up-scale 'cascade ' is arrested when Rossby-wave dispersion takes over 
from nonlinear advection, at a scale K@ whose magnitude is suggested by simple 
scaling analysis (Rhines 1975; Holloway & Hendershott 1977). From then on the 
development is characterized by a slow evolution into quasi-zonal jets (Rhines 1975; 
Holloway & Hendershott 1977). A forced-dissipative equilibrium model exhibiting 
these features would have an energy-enstrophy input at some intermediate scale, 
together with a highly scale-selective diffusion operator to remove the cascading 
enstrophy at small scales, and perhaps a scale-independent Ekman drag term to 
prevent energy from accumulating at large scales. Numerical experiments of this 
nature have been performed recently by, among others, Basdevant et al. (1981). 

The problem of present interest, however, is that of beta-plane turbulence in the 
presence of an inhomogeneous steady basic zonal flow Y(y). Such a basic flow is itself 
a solution of (2.1) with S( !P) = 0. Writing the full stream function as 

@ = Y+$, (2.2) 

(2.3) 

the ' disturbance ' $ must satisfy the (exact) equation 

V2$t+J(q5, V 2 $ ) + J ( y ,  V'$)+J($, Vzy)+/3~$z = S($). 

One may define the disturbance energy as 

E($) = l b l V $ l z  dz dy = Ih(u' + v') dz dy, (2.4) 

where u = -$g and v = $z. The disturbance-energy equation is obtained by multi- 
plying (2.3) by q5 and integrating the result over the doubly periodic domain. When 
S($) = 0 this yields 

(2.5b) 

( 2 . 5 ~ )  

where U = - Yv. While E($) is called the disturbance energy, in conformity with 
common usage, we recall the well-known fact that the basic-flow and disturbance 
energies are not additive (cf. MGhring 1978; Held 1985). Indeed, rn (2.5) shows, even 
when S = 0 (and so the total energy E(@) is conserved), E($)  is not conserved because 
of the J( Y,  V2$)-term in (2.3), representing straining of the disturbance vorticity by 
the shear in the basic flow. 

To obtain the disturbance-enstrophy equation, multiply (2.3) by Vz$. Then 
integrating the expression over the domain yields the equivalent to (2.5a, b), namely 

(2.6a) 

= jJV'!?'J($, V2$) dx dy, (2.6b) 
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but here it is the J(#, V2!P)-term in (2.3) that violates conservation of disturbance 
enstrophy. For a barotropic fluid, this term is similar to enstrophy generation by 
topography (although topography does not enter into the energy balance and Y does). 

2.2.  Scaling analysis 

Considering now (2 .3)  with S = 0, non-dimensionalize by scaling the terms with 
Y = Uo Lo 'Y' for the basic flow, and $ = uoA0#' for the disturbance. The primed 
quantities are taken to be order unity. Let t = Tt', with T to be determined. Then 
the non-dimensional equation, after dropping the primes, is 

where the following non-dimensional parameters have been introduced : 

It may be recalled that the arrest of the up-scale energy cascade in classical beta-plane 
turbulence (Rhines 1975) occurs at a scale where /3 x 1 ,  equivalently at a 

wavenum ber 

Kp X 

2UO 

(the factor of two arising from an assumption that the zonal and meridional scales 
are the same).t Note also that for the geophysically important case of a scale 
separation between the basic flow and the disturbance, which is indeed the case of 
interest in this study, one may take y 4 1 ;  then the disturbance enstrophy is 
approximately conserved. 

In  (2 .7 ) ,  the ratio of linear to nonlinear effects is rather more complicated than the 
inverse wave steepness B which is relevant to beta-plane turbulence (Rhines 1975; 
Shepherd 1 9 8 7 ~ ) ;  here it may be expressed as 

(2.10) 

While it is true that M 4 1 still represents a highly nonlinear regime where the 
predictions of classical two-dimensional turbulence theory may be expected to hold, 
it is evident that the dynamics of the quasi-linear regime M + 1 is a good deal richer 
and much less tractable than that of the pure Rossby-wave regime of beta-plane 
turbulence. Note that if a P 1 ,  then M 3 1 over all scales. In  addition the combined 
spectral waveturbulence 'jigsaw puzzle' is complicated by the fact that the 
disturbance energy and enstrophy are not generally conserved. However, it  must be 
cautioned that this kind of scale analysis is very crude, and is particularly dangerous 
with regard to Jacobian terms. This is not a trivial matter, as Jacobians can yield 
resultants well short of their maximum value if the gradients of the two fields are 
nearly parallel; moreover the net energetic interaction between Y and # at a given 
time will vanish if Q is exactly isotropic (Lorenz 1953; Pedlosky 1962), despite the 
fact that J( Y, V2$) is locally non-vanishing. 

t Holloway & Hendershott (1977) argue for the alternative K~ /?,,/Srms, where &,, is the r.m.s. 
vorticity, which probably is indeed more appropriate in the forced-dissipative context with a broad 
equilibrium spectrum; but when the forcing is close to K ~ ,  as here, the two estimates are virtually 
the same. 
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2.3. Spectral diagnostic formulae 

The disturbance energy associated with wavenumber K = (k, 1) is given by 

E D ( K )  iK21$(K)12, (2.11) 

and may be broken up into its zonal and meridional components as follows: 

(2.12) 

Here the curly brackets as well as the circumflex indicate a Fourier transform, and 
k and 1 are the x- and y-wavenumbers. To obtain the energy equation for each K, take 
a Fourier transform of (2.3), multiply the result by $*(K), and add the complex 
conjugate; this yields 

(2.13) 
a 
at 
-ED(K) = ID(K)+CD(K) +DD(K) .  

 ID(^) represents the energy transfer to K arising from nonlinear interactions with 
other disturbance components, CD(x) that arising from interactions involving the 
basic-flow and disturbance components together. D,,(K) represents explicit source- 
sink effects. The three terms are respectively associated with the quantities 
J($, V"), J(Y, Vz$)+J($ ,  Vz!P), and S in (2.3), and are defined explicitly in the 
Appendix. The term arising from has not been included as it does not affect the 
energetics. The enstrophy-budget equation is similarly obtained through multiplying 
the Fourier transform of (2.3) by {Vzd}* (K) = -K '$ * (K) ,  and adding the complex 
conjugate, which yields just K' times (2.13): 

(2.14) 

The symbol I is used here to denote a nonlinear interaction term, in the sense that 
it only redistributes the relevant quantity (in the cases of (2.13) and (2.14), 
respectively the disturbance energy and enstrophy) between different wavenumbers; 
hence 

I&) = J{$J($, v2$) dz dy = 0 (2 .15~)  

and 

On the other hand C denotes a nonlinear conversion term, arising from the nonlinear 
interaction with the basic flow, whose integrated effect is a net source or sink for the 
disturbance ; some of the physical-space expressions for C ,  and K'CD were considered 
in (2.5) and (2.6). Of course, both CD(x) and K ' C ~ ( K )  represent a combination of 
nonlinear disturbance interaction and basic-flow disturbance conversion, with the 
partition between these two processes being ambiguous a t  any given wavenumber. 

For the interpretation of some of the numerical experiments, analogous spectral 
diagnostics describing a stationary-transient decomposition of the flow will be 
required. These are defined where they are needed, in 54.5. 
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3. Theory 

3.1. A spectral view of strongly nonlinear wave-mean-zonal-flow interaction 

If the nonlinear (advective) interactions between a zonal basic flow and an arbitrary 
disturbance are spectrally decomposed into wavevector ‘triads’ (cf. Lorenz 1960), 
then it is immediately obvious that these interactions are restricted by a very simple 
yet powerful geometrical constraint : the basic flow couples disturbance components 
of the same zonal wavenumber k. This property is depicted in figure 1 for the special 
case where the basic flow consists of a single mode (k, I )  = (0, l o ) ,  in which a 
disturbance component (k, 1)  interacts via the basic flow only with modes (k, l + l o )  
and (k, l-Zo).  When the basic flow consists of a spectrum of meridional modes then 
the same restriction applies, but now (k, 1)  is coupled with a spectrum of modes of 
the same k, the localness of which will be determined by the localness of the spectral 
representation of the basic flow Y. 

Now, it is equally obvious that this spectral constraint applies not only to the 
basic-flow disturbance interaction, but also - provided the physical problem, includ- 
ing any forcing, is zonally homogeneous - to the interaction between an equilibrated 
zonal flow and the deviations therefrom ; in particular it would apply to the stationary 
and transient flow components in a forced-dissipative problem taken to statistical 
equilibrium. 

It is worth pointing out that in spherical geometry, although nonlinear interactions 
are no longer confined to pairs of wavevector triads (e.g. Tang & Orszag 1978), it is 
nevertheless true that an interaction between a zonal flow and a zonal (k + 0) mode 
involves only modes with the same zonal wavenumber k. Consequently this constraint 
is likely to be useful in interpreting the spectral signature of stationary-transient 
interaction in the atmosphere (Shepherd 1987b, c ) .  

If one now has a conservation law governing a disturbance quantity in the 
interaction between a zonal basic flow (or, depending on which problem is of interest, 
a mean flow, to which the comments of this section apply equally) and an arbitrary 
disturbance, then the above considerations suggest that it may be useful to 
characterize the interaction as a ‘ shear-induced spectral transfer ’ of that conserved 
disturbance quantity along lines of constant zonal wavenumber k. In  this transfer 
process the basic flow, through its shear, plays an essential catalytic role in that it 
forms the third member of the triad, but it is passive in terms of the relevant 
disturbance ‘energetics ’ (defined according to the conserved quantity, not the actual 
energy). This concept is a familiar one to the oceanic-internai-wave community, 
where the notion of ‘induced diffusion’ of wave action through highly non-local 
resonant triads is well established (e.g. Phillips 1977, 55.5). However in the present 
case there is no restriction to resonant interactions, and the formalism is, at least in 
principle, exact. 

When the basic flow possesses either spatial or temporal symmetry, then a 
conservation theorem can always be found for the (linear) interaction between the 
basic flow and an arbitrary disturbance. In  the former case the relation obtained is 
a small-amplitude form of ‘pseudomomentum ’ (or, as some authors prefer, ‘quasi- 
momentum’) conservation (Andrews & McIntyre 1976; Held 1985), while in the latter 
case the relevant quantity is a small-amplitude form of ‘ pseudoenergy ’ (Andrews 
1983). The difficulty is that, in general, these quantities are not conserved by the 
disturbance self-interactions, and thus fail to lead to fully nonlinear descriptions of 
the wave-mean-flow interaction. 

In fact an examination of (2.5a) and (2.6b) immediately reveals that a fully 
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k 

FIQIJRE 1. Possible triad interactions between a basic flow (0, 1,) and an arbitrary disturbance 
component (k, Z), represented in terms of positive wavenumbers. Arrows indicate direction of energy 
transfers if the disturbance is to spread. The basic flow couples disturbances along the dotted 
vertical line of constant k. There is a possibility that this interaction mechanism may enable the 
disturbance to penetrate the ‘Rhines radius’ K = its. 

nonlinear conservation theorem exists for the special case V 2 Y  = -cY (for some 
constant c ) ,  in which the conserved disturbance quantity ((energy) -c-l (enstrophy)) 
(which may be written in the notation of $2.3 as E D - c - W D )  has a straightforward 
spectral representation: its x-component is simply (1 - ( K * / c ) )  ED(x). Basic flows 
satisfying this linear functional relationship include those consisting of a single 
Fourier mode x0, in which case c = K:. (On the beta-plane, such a solution is made 
to satisfy V2Y+/?o y = - cY by adding a (vorticity-free) constant zonal flow 

Although the basic flows to be considered in this study are of the particular form 
described above, the time-mean equilibrated flows (where appropriate) generally are 
not ; moreover it would hardly be prudent to develop a theory applicable only in such 
restrictive circumstances. Instead, the presumed scale separation (which is a far more 
robust characteristic) will be exploited by noting that, as was mentioned in $2.2, the 
disturbance enstrophy QD is approximately conserved when y 4 1 (with y given in 
(2.8)). Indeed this is a natural limit of the previous special case when K; Q K ~ .  

The above discussion suggests that, to a first approximation, one may legitimately 
view the interaction between a large-scale zonal flow and an arbitrary disturbance 
as a shear-induced spectral transfer of disturbance enstrophy 0, along lines of 
constant zonal wavenumber k; this process would show up in the term K ~ C , ( ~ ;  1)  of 
(2.14), considered as a function of 1 for fixed k. If one knows the transfer of enstrophy, 
moreover, this immediately yields the sense of the energy conversion: induced 
up-scale enstrophy transfer requires a net conversion of energy from the large-scale 
flow to the disturbance, down-scale enstrophy transfer the opposite. Viewed in terms 
of QD, namely by examining ~ ~ C ~ ( k ; l ) ,  the wave, mean-flow interaction is spectrally 
‘local’ insofar as it consists of transfers over small ranges of wavenumbers. From an 
energetic standpoint, however, the process is fundamentally non-local in that it 

u = - p 0 / c  to Y.)  
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involves non-negligible transfers between the large-scale flow and the disturbance 
(the associated non-local enstrophy transfers being present but negligible). 

The final essential property of GD that is relevant here is its conservation in 
interactions between various disturbance flow components, that is to say in the 
‘wavewave’ interactions represented by K ~ ~ ~ ( K )  of (2.14). It is this property that 
makes GD such a useful diagnostic quantity for investigating strongly nonlinear 
wave-mean-flow interaction. In  principle G D ( K )  can move freely over the spectral 
domain via disturbance self-interactions, in particular - in contrast to the previous 
class of interactions - acros8 lines of constant k. In  fact, both the disturbance energy 
ED and G,, are conserved in these interactions, as expressed by (2.15a, b); indeed this 
constraint proves essential in understanding the enstrophy transfers associated with 
the nonlinear dynamics of the problem, as will be seen in $3.3. 

3.2. Ray tracing in a zonal jet 

To understand the nature of the shear-induced spectral transfer discussed above, it 
is reasonable to begin by looking at the ‘linear’ interaction between a zonal jet and 
an arbitrary disturbance, where linear in this context means that the zonal flow is 
held fixed. For a significant scale separation, i.e. y 4 1, this interaction is primarily 
characterized as a shearing of disturbance vorticity by the large-scale zonal flow, via 
the J( Y, Vzq5)-term of (2.3). In fact this process is so ubiquitous and so central to the 
dynamics that it is worth considering it in the context of an important special case 
before proceeding to a more general treatment. 

When the basic flow takes the special form of linear Couette flow U(y) K y (this 
does not satisfy the periodic boundary conditions of the present problem, but no 
matter), and /3 = 0, then the linearized version of the vorticity equation (2.3) reduces, 
for a suitably chosen timescale, to 

(;+y;)v%p = 0; 

this equation allows an exact solution, as shown long ago by Kelvin (Thomson 1887). 
Avoiding the question of boundary effects, (3.1) describes a clockwise tilting about 
y = 0 of disturbance wavecrests (figure 2). Since Fourier modes provide a complete 
representation of any smooth initial condition, the problem is thus solved. The key 
points to be noted from figure 2 are that the zonal wavenumber k is k e d ,  while the 
meridional wavenumber I is continuously varying; moreover the wave enstrophy is 
conserved. If the wavecrests initially lean into the mean shear (figure 2a) then 111 
decreases, passes through zero, and then increases without limit; the first stage 
corresponds to an amplification of the wave energy density, as first discussed by Orr 
(1907). If, however, the wavecrests are initially vertical (figure 2b) or lean along the 
mean shear (figure 2c), then 14 simply increases according to 111 = lZil+lkil @-ti). In  
both cases the end state is 111 + 00, or a zonal orientation of the crests. An energetic 
argument based on a consideration of the Reynolds stress would indicate that the 
wave energy is then entirely transferred to the zonal flow. 

It is to be noted that the process just described conforms to the spectral constraints 
discussed in $3.1, but goes further in providing a solution to the linearized problem. 
Furthermore, i t  is evident that the inclusion of non-zero fl  makes no difference to the 
result, as a propagating wave will everywhere encounter the same basic shear. (On 
the other hand Rossby-wave dispersion can affect the local energy density of an 
inhomogeneous sea of wave packets.) 

For a general zonal flow with variable shear, however, no exact analytic solution 

16 FLY 183 
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(4 (4 (4 
FIQURE 2. Adveotive shearing of plane wavecrests by linear Couette flow, in a time sequence 

from left to right. Arrows denote wavevectors. 

has yet been found. Fortunately such inhomogeneous problems can be treated 
approximately using ray-tracing theory (see e.g. Lighthill 1978, $4.6 for more details) 
when the basic state vanes slowly over a wavelength of the disturbance. The 
condition of slow basic-state variation means that solutions may be sought in the 
form of ‘wave packets ’ : namely, localized disturbance envelopes modulating a 
dominant wavenumber K = (k, I). Such wave-packet solutions propagate on the basic 
state according to the ‘ ray-tracing ’ equations 

while the wavenumber evolves according to the generalized Snell’s law 

(3.2a, b )  

(3.3u, b)  

the derivative d/dt in (3.3) referring to the Lagrangian derivative evaluated along 
the ray (3.2). In  the above the ‘intrinsic frequency’ D is given by the Rossby-wave 
dispersion relation 

(3.4) 
Is, k D(k, 1, X, y) = -- 

k2+12’ 

and the absolute frequency w = D+ Uk for a zonal basic flow. All quantities are at  
most slowly varying functions of y. Equation ( 3 . 3 ~ )  expresses the fact that 
conservation of k is a direct consequence of zonal homogeneity; similarly, the time 
invariance of the mean flow incorporated implicitly in (3.3) implies conservation of 
w (along the ray path): dw/dt = 0. To find the change in wave energy E along the 
ray, one may appeal to the fact that the integrated wave action A = E/O is conserved 
following the packet (Bretherton & Garrett 1968). 

The connection between the approximate theory of ray tracing and the exact 
solution for Couette flow is made clear by a consideration of the wave-packet 
dynamics. Choosing a positive shear and k > 0 for definiteness, imagine two wave 
packets as shown in figure 3: packet A has k/l > 0, or crests leaning into the basic 
shear; while packet B has k/Z < 0, or crests leaning along the shear. Consider first 
packet A. By (3.4) and (3.2b), it has a northward or positive meridional group 
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FIGURE 3. Propagation of two wave packets A and B in shear flow. Lines show wavecrests, single 
arrows wavevectors, and double arrows the group-velocity vectors. 

velocity aw/al;  as it  propagates, however, its crests are tilted by the basic shear as 
in figure 2(a, b), and this is reflected in the decreasing value of (11 predicted by (3.3b). 
As in the constant-shear case, k is fixed (see (3.3a)). The orientation of the crests 
is such that the associated Reynolds stress extracts energy from the zonal flow, and 
this is again consistent with the ray-tracing picture: (3.4) implies that if the total 
wavenumber decreases, then Ir2l increases ; thus conservation of wave action implies 
an increase in wave energy, an increase that will be especially pronounced for small k. 

Similar reasoning applied to packet B, which has 1 < 0, demonstrates that it 
propagates southward, 1 becomes more negative, hence 141 and the wave energy 
decrease. The general result is that packets propagating into increasingly westerly 
flow increase both their wave energy and their meridional wavelength, while packets 
propagating into increasingly easterly flow decrease both quantities. 

Since the ratio (u2)/(va) of zonal to meridional energy (( . ) representing a phase 
average) for each packet is given by 12/k2 (cf. (2.12)), it  follows that this ratio decreases 
for packet A and increases for packet B. More generally, disturbances (like packet 
A) evolving to larger scale become increasingly meridionally anisotropic, while 
disturbances (like packet B) evolving to smaller scale become increasingly zonally 
anisotropic. 

A timescale for this process of shear-induced spectral transfer can be determined 
as follows. If 7 is the e-folding time for the spatial scale of the disturbance, then 

K dK 1 dl kldU k2 + l2 

;=1;151=lkdt l= l~dy lq7=Ik ld~ /dyI ’  

At fixed k (and y), 7 is minimized for ka = la,  and it increases rapidly with 111 when 
(11 is large. 

It is now possible to construct the solution to the spectral transfer problem of 93.1 
that is provided by ray-tracing theory. Given spectrally symmetric initial conditions, 
namely a packet with k/l < 0 matching each with k/l > 0, with equal amplitude and 
the same starting latitude yi, then each pair of packets will propagate initially in 
opposite meridional directions with equal speeds, as in figure 3 ; in the spectral domain 
this will appear as a pair of enstrophy ‘pulses’ of equal amplitude, moving one to 
larger and one to smaller 111 but at the same rate, along a line of constant k. As a 
consequence of the relation between enstrophy and energy, this latter picture will 
be represented in energetic terms as a pulse moving to larger 111 while losing energy, 
together with one moving to smaller 111 while gaining energy. Figure 4 shows a 
somewhat exaggerated form of this rather striking signature. 

At the initial instant, the energy gain by packet A will exactly balance the loss 

(3.5) 

16-2 
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FIQTJRE 4. Schematic of enstrophy (-) and energy (----) transfer terms, scaled by Z: to one 
another, for interaction between a disturbance of meridional scale 1, and a zonal flow, assuming 
spectral symmetry. Arrow indicates the sense of the implied energy ‘cascade’; the enstrophy loss 
a t  I = li lies over the energy loss and so the latter is not visible. 

by packet B. This is because dE/& = A d&/dt = A(aG/aZ) dZ/dt will be equal and 
opposite for the two packets. As the pulses move apart, the changes in Z imply 
corresponding changes in M/aZ according to a2&/aZ2 = 2b0 k(k2 - 3Z2)/(ka + using 
(3.4). It follows (noting that A and dZ/dt are both negative in this case) that the energy 
gain by packet A will exceed the energy loss by packet B if Z2 > $k2, implying a net 
transfer of energy from the zonal flow to the disturbance; while if l2 < +k2, then the 
net transfer will be in the opposite sense. This result is valid provided that the 
variation in dV/dy is a higher-order effect, and not surprisingly it parallels the result 
for standing waves in plane Couette flow (e.g. Shepherd 1985, equation 7). The same 
result is also found in the case of a sinusoidal jet by using the exact conservation law 
discussed in 53.1: to leading order in y the net energy exchange vanishes, but the 
next-order effect is a net transfer which is to the disturbance if Z2 > +ke, and to the 
jet if Z2 < $k2 (Shepherd 1984, eq. 0.2). 

If one now considers an ensemble of wave packets (k, I) and (k, -Z)  distributed 
homogeneously in space, rather than just a single pair, then this scenario is unchanged 
except that spectral dispersion about each composite ‘pulse ’ enters immediately. The 
reason is that different pulses evolve at different rates dZ/dt, since they operate under 
the influence of different basic-shear strengths. In  the still more general case of a 

double ensemble, with homogeneous distributions of packets with different k and 1 
but a single value of K ,  one can easily see that the same picture will again emerge - as 
long as one is careful to look along ‘cuts’ defined by lines of constant k. 

Although figure 4 depicts the initial spectral evolution of all disturbances that have 
spectral symmetry, it  cannot hold indefinitely. To the up-scale pulse one of two things 
must happen: either it will reach Z = 0 and then turn back (viewed in terms of IZI), 
corresponding to a wave packet reflection off a turning line; or it  will reverse direction 
before it reaches Z = 0, indicating that the packet has passed through the westerly 
jet maximum and that no turning lines exist. In  the first case the pulse returns to 
its initial value of 111, and is then identical with the initial down-scale pulse (neglecting 
any frictional loss); this is also true in the second case if the jet is symmetric about 
its westerly maximum. 

As far as the down-scale pulse is concerned, there are again two possibilities: either 
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the pulse will head off to very high 111, corresponding to absorption near a critical line 
(anticipating the numerical experiments, we may presume the existence of high-order 
diffusion which would damp small-scale features) ; or it will reverse its tendency and 
move back up-scale, indicating that the packet has passed through the easterly jet 
maximum and that no critical lines exist. The first process is traditionally called 
‘absorption’ because most of the wave energy is given up to the mean flow before 
the packet gets close to the critical line (e.g. Booker & Bretherton 1967 ; Tung 1983) : 
only the wave action (here just the wave enstrophy) is damped. 

In  summary, then, ray-tracing theory predicts the following outcome to the 
spectral transfer problem. Decomposing the disturbance wave field into wave 
packets, that part of the field represented by packets without critical lines (equiv- 
alently, that part projecting onto discrete rather than continuum modes; cf. Held 
1985) will participate in no net wave-mean-flow interaction and can be ignored, the 
packets merely undergoing oscillations in 1. The remainder of the disturbance 
field - which, for parameters relevant to this problem, represents by far the greatest 
part - will eventually be absorbed into the zonal flow : specifically, the disturbance 
enstrophy will be transferred to high 111 and then damped by the presumed high-order 
diffusion, while in the process most of the wave energy will have been transferred 
back to the zonal flow. In the early stages of development, the wave energy- 
especially that associated with smaller zonal wavenumbera - can grow significantly 
at the expense of the zonal flow (the ‘Orr effect’), at the same time becoming 
increasingly meridionally anisotropic (v8 > us) at large scales, but this linear theory 
predicts such a process to be only temporary. 

For completeness it may be noted that, in the case of linear Couette flow in an 
infinite domain, an initially isotropic disturbance field will maintain a constant 
energy level for all time (Shepherd 1985), implying no net energy exchange with the 
zonal flow. When the spatial spectrum is discrete, however, then asymptotic decay 
must eventually prevail ; moreover spatial variations in the basic shear will also alter 
the result. But to the extent that the decaying packets balance the amplifying ones, 
the disturbance energy and enstrophy will both be approximately constant and the 
spectral transfer patterns, like figure 4, may temporarily look like the patterns of 
turbulent cascades in two-dimensional homogeneous turbulence, when analysed in 
terms of K - although here the spectral dispersion takes place in 1 for fixed k. 

3.3. Turbulent isotropization 

The ray-tracing theory of $3.2 predicts strengthening of the zonal flow associated 
with irreversible, shear-induced transfer of disturbance enstrophy to large meridional 
wavenumber 1. However, the problem under consideration is by assumption strongly 
nonlinear, and it is likely that nonlinear interactions will have a significant effect on 
the spectral transfers and on the net sense of the wavemean-flow interaction. Here 
the hypothesis is put forward that the most important dynamical effect of turbulent 
interactions in this context will be their tendency to isotropize the transient eddy 
field by spreading the energy and enstrophy along curves of constant total wave- 
number K.  Such an effect (which might in fact be considered as a phenomenological 
definition of turbulence in this problem) is completely inaccessible to the linear 
wave-mean-flow interaction, insofar as the latter can induce spectral transfer along, 
but not across, lines of constant zonal wavenumber k (cf. 33.1). 

The most thorough investigation of isotropization in two-dimensional turbulence 
seems to be that of Herring (1975), who considered homogeneous flow using a 
combination of closure methods and direct numerical simulation. Herring found that 
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there is, indeed, a clear return to isotropy from anisotropic initial conditions, with 
an anisotropy decay rate proportional to the inverse of the ‘eddy-turnaround time’, 
uo/h, (for notation, see $2.2). However, the process is much slower in two than in 
three dimensions, and is inherently non-local. The non-localness reflects the dominant 
process of the straining of small scales by very large ones, a characteristic feature 
of two-dimensional turbulence. It also leads to an effect whereby anisotropy initially 
concentrated a t  large scales spreads first to smaller scales, before eventually 
disappearing everywhere. Although Herring’s study was for homogeneous turbulence 
only (a necessary restriction because of the closure methods used), one would expect 
it to have some relevance to the present context for scales much smaller than the 
scale of the inhomogeneity , provided that the relevant straining scales - not counting 
the basic flow, of course - were also locally homogeneous. The latter condition could 
well be quite stringent. 

Herring (1975) interpreted the phenomenon of turbulent isotropization as a 
reflection of the known tendency of the inviscid spectrally truncated equations to seek 
(isotropic) statistical-mechanical equilibrium (Herring 1975, pp. 2254-5). There are, 
of course, many difficulties with this sort of argument, which need not be spelt out 
here (see e.g. Salmon 1982 and Shepherd 1987a). But the robust feature of the 
dynamical evolution is the increase of the flow entropy (Carnevale 1982), which 
manifests itself as spectral broadening. This broadening inevitably occurs along 
curves of constant K as well as across them. Numerical evidence (such as figure 10 
of Haidvogel & Held 1980) suggests that the former process tends to be more rapid 
then the latter, although it is hard to find a convincing explanation for this on 
statistical grounds. 

If one now considers the combined picture, of shear-induced spectral transfer 
according to $53.1 and 3.2, together with turbulent isotropization as described here, 
it is evident that the simple picture of $3.2 may be considerably altered. To the extent 
that nonlinear interactions destroy the phase tilt of the disturbances, the straining 
process will be disrupted: in particular, the strengthening of the zonal flow will be 
mitigated, as it relies on the maintenance of a phase tilt in the sense of packet B of 
figure 3. Indeed, the possibility exists of a net transfer of energy to the disturbances, 
in complete contrast to the prediction of linear theory, to the extent that nonlinear 
effects preferentially disrupt the smaller-scale down-scale ‘pulses ’ like packet B in 

The crude scaling analysis of $2.2 suggested that the relative importance for an 
eddy of nonlinear interactions with the basic flow and with other eddies is measured 
by the non-dimensional parameter a = Uo/uo. Now that more insight has been gained 
into the dynamical characteristics of these processes, an improved estimate may be 
made. Taking Herring’s result for the isotropization rate (the eddy-turnaround time 
may simply be viewed as a nonlinear ‘scrambling’ time), and the estimate (3.5) for 
the shear-induced spectral transfer, the two effects will be of comparable importance 

figure 3. 

when 

where the wavevector angle 8 = arctan (k/Z) has been introduced. Equation (3.6) 
indicates that the relevant non-dimensional parameter is in fact E rather than a, and 
the former is much smaller than the latter. E is obviously a sensitive function of 8; 
for fixed a and y it  is maximized, indicating the strongest basic-flow straining, when 
k2 = Z2. 
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4. Numerical experiments 

The theoretical discussion of the last section provides a qualitative description of 
the range of dynamical behaviour that might be expected in the present problem. 
However the theory fails to provide a complete solution to the full problem. One is 
therefore led to direct numerical simulation in order to understand the way in which 
the linear and nonlinear dynamics fit together, and in particular to determine the 
extent to which the dynamics cam be considered as a competition between basic-flow 
straining and turbulent isotropization, as proposed in $ 3.3. 

Three kinds of numerical simulation are considered. The fist two kinds are 
‘ spin-down ’ experiments : that is to say unforced, nearly inviscid evolution from 
spectrally localized initial conditions. A linear run, with wave-wave interactions 
suppressed, is shown first to exhibit the dynamics described in $3.2; then two fully 
nonlinear runs are described. The third kind of numerical simulation discussed is that 
of a forced-dissipative system run to statistical (turbulent) equilibrium. Such 
experiments are the closest analogues to geophysical systems that will be considered 
here, and they provide the most stringent test of the concepts advanced in $3.1. 

One of the principal attractions of spin-down runs is that, because of their 
spectrally localized initial conditions and corresponding spectral gaps, the concept 
of a spectral cascade takes on a very concrete meaning which can be carefully 
observed in the time evolution of the experiment. This can give useful insight into 
the likely character of the nonlinear processes operating in spectrally broader, 
statistically steady, forced turbulence regimes, as has been amply demonstrated by 
the work of Rhines (1975, 1977). 

4.1. Description of the model 

The dynamical model to be considered is that of (2.1), or equivalently (2.3), taken 
over a square doubly periodic domain with a specific zonal basic flow. A form of S 
in (2.1) that covers all the cases is given by 

S($) = - rV2$ - v,, V5$ + vg V8$ + Fo + Fl, 14-11 

where the terms Fo and Fl will be explained presently. The choice of a doubly periodic 
domain rather than a zonal channel is made to ensure that inhomogeneities arise from 
the basic flow alone and not from the boundary conditions associated with channel 
walls. This study has already been restricted, on the basis of geophysical consider- 
ations, to a basic flow consisting of a large-scale zonal jet. The linear theory of $3.2 
suggests moreover that the basic flow ought to have variable shear in order to be 
considered representative, and that interesting phenomena may be associated with 
easterly and westerly flow maxima. A simple choice is that of a cosine jet; it is taken 
to  have the gravest possible meridional structure in order to maximize the scale 
separation between the basic flow and the disturbance. 

Without loss of generality, model units are chosen so that the domain has width 
2 x ,  and the disturbance has an r.m.8. velocity urns = uo x 1. The other parameters 
are then determined on the basis of geophysical scalings, in $4.2. The basic flow is 
chosen to take the form 
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namely a narrow isotropic ring, spectrally localized to 
The initial conditions for all the simulations are classical in this sort of study: 

(0.01 

10 otherwise. 

for 9 < ( k 2 + / 2 ) ;  < 12, 
E d k ,  O l t - 0  = (4.3) 

Phases are assigned randomly. The choice of the central wavenumber is meant to 
correspond roughly to the barotropic transient-energy input scale of the atmosphere, 
which is to say the first internal Rossby radius of deformation, but is not too critical 
for present purposes as long as it  lies outside the cascade arrest scale K~ of Rhines 
(1975).t The choice of initial conditions is of course important only for the spin-down 
experiments; the value of (4.3) in that context is that it highlights the spectral 
cascades of energy and enstrophy. 

It has been found that, except in the later stages of linear simulations, a truncation 
wavenumber of N = 32 (corresponding to a 64 x 64 set of grid points) is sufficient to 
handle the enstrophy cascade and to resolve the essential (large-scale) dynamics. This 
point was checked by monitoring the spectral transfers directly. The resolution is not 
high enough to give much of a hint of an enstrophy-cascading inertial subrange, but 
that is not the object of this study. For a more strongly inhomogeneous jet with 
smaller-scale structure, a higher resolution might well be required. 

The numerical procedure employed is to solve the Fourier transform of either (2.1) 
or (2.3), with the appropriate S, advancing in time through a leapfrog algorithm with 
a leapfrog-trapezoidal step being taken every 23 time-steps to damp the computa- 
tional mode. For these runs the time-step is At = 0.0015. The nonlinear coupling 
arising from the advection terms is handled using the ‘transform method’, namely 
by performing the multiplication in physical space in a manner that conserves both 
energy and enstrophy, then transforming back to the spectral domain. Although the 
procedure is not alias-free, with high-order diffusion this should not present a problem 
since the aliasing is confined to high wavenumbers (Fox & Orszag 1973). The 
evaluation of the derivatives is exact, as is the quadrature used for the Fourier 
transform. 

For the spin-down runs, r = 0 = ug and Fl z 0, and u0 P 0. In  order for (4.2) to 
be an exact solution of (2.1), it  is necessary to impose the extremely weak sourcesink 

F, = uOVO!P = -uO U, siny. (4.4) 

In fact, for the spin-down runs performed the presence of F, had no discernible effect 
whatsoever. Note that the highly scale-selective biharmonic diffusion represents the 
only form of friction, so that the large-scale dynamics is nearly inviscid. It should 
be said that while the choice of a high-order diffusion operator is still a matter of 
some debate within the turbulence community (e.g. Basdevant & Sadourny 1983; 
Sadourny & Basdevant 1985), nevertheless for proper simulation of the large scales 
it seems necessary only to remove enstrophy at the smallest resolved scales - which 
all such operators do, in their own different ways, provided their coefficients are not 
too small (Bennett & Haidvogel 1983). 

For the forced-dissipative equilibrium runs, u0 = 0 and ug =k 0 in (4.1). This implies 
the use of triharmonic rather than biharmonic diffusion, which confines the 
enstrophy dissipation even more to high wavenumbers (although the difference 
does not really matter so far as the large scales are concerned). The scale-independent 

t On the other hand, by taking the central wavenumber as small aa this the possibility of 
coherent-vortex formation is effectively precluded (McWilliams 1984). 
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Ekman damping provided by r is intended to enable a statistical equilibrium to be 
achieved. Fo is again chosen to ensure that (4.2) is a solution of (2.1): 

Fo = rVzY-v8V*Y = - ( r+v8)  U, siny. (4-5) 

Equation (4.5) implies that whenever the sin y component of the total stream function 
Y+q5 falls below its initial (basic) amplitude, it will be forced; and whenever it rises 
above, it will be damped. 

Finally, Fl represents the intermediate-scale energy-enstrophy source, designed to 
simulate the injection due to baroclinic instability at roughly the scale of the Rossby 
deformation radius. Some such forcing is traditional in two-dimensional turbulence 
simulations (e.g. Basdevant et al. 1981), although its precise form is open to debate. 
Forcing of the 'negative viscosity' type (Basdevant et al. 1981) was tried first but 
was ultimately rejected, for two reasons: it was anisotropic in an uncontrollable sort 

of way, and it slowed the approach to Statistical equilibrium. The simulations 
discussed here use instead 

otherwise, 

which is easy to apply since (2.1) is solved spectrally. The attractive aspect of (4.6) 
is that it  provides a constant energy/enstrophy input at each wavenumber in the 
forcing band and is thus both steady and isotropic: the injection due to F, alone is 
given by 

d d 
--E(k, dt 1) = p, -G(k, dt 1)  = p(k2+P).  (4.7) 

While the enstrophy dissipation rate cannot be anticipated since it depends on the 
spectral distribution, the energy dissipation rate is effectively scale independent and 
can be anticipated, being dependent mainly on r and hardly at all on v8. 

4.2. Determination of parameter values 

To determine scales relevant to the atmosphere, summing up the stationary and 
transient components of energy from the FGGE-3A data (Boer & Shepherd 1983) 
leads to 

E,,, x 100 J/kg =s U ,  x 17 m/s, ( 4 . 8 ~ )  

E,,,, x 50 J/kg u* x 10 m/s, (4.8b) 

the asterisk subscript denoting dimensional values. Given u,,, x 1 in the model, this 
suggests choosing U,, = 2 4 2  in (4.2) so that <uZ(y)) = 4 and thus the non- 
dimensional parameter a of (2.8) takes the value of 2. To find a lengthscale, choose 
the mid-latitude domain scale L, = 24000 km. Hence the model units are scaled by 

(4, Ul, Fl), where 

u* 
1 

U, = - x 10 m/s, Ll=K L* x 4 x  loom, 

L 
T - 2 x 4 x los s x 5 days, Po = k: 25. 

- u, u, 

(4.8c, d)  

With this scaling, the intermediate-scale forcing (4.6) is applied at lengthscales just 
smaller than the Rossby deformation radius of lo00 km (taking 10 km for the fluid, 
i.e. tropospheric, depth). 
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To mimic the cascade of enstrophy to subgrid scales, vg or v8 must be chosen so 
that the ‘grid Reynolds number’ u, , , / v6P  or u,,,/v8N5 is less than about 10 
(Bennett & Haidvogel 1983). Here N is the truncation wavenumber, where most of 
the dissipation should be concentrated. For N = 32 and u,,, = 1, for example, this 
suggests the values v6 = 3 x lop6 or v8 = 3 x 

With regard to the forcing and Ekman dissipation in the equilibrium simulations, 
we can use Boer & Shepherd’s (1983) observational estimate of the maximum up-scale 
kinetic energy cascade rate, which is 4 x J/(kg 8). Assuming that this cascade 
originates from intermediate-scale baroclinic-to-barotropic conversion, one may take 
the same value as an estimate of the forcing parameter appropriate to a barotropic 
model; in fact it  is probably a lower bound for the latter, but at least it  gives an 
order-of-magnitude estimate. Putting this quantity in model units, using the scaling 
of (4.8), yields a total energy injection rate of 0.5, which corresponds to ,u = 0.0025 
for each of the approximately 200 modes in the forced wavenumber band. Since the 
Ekman damping rate is given by -2rE, this suggests taking r = 0.5 if the ‘damped’ 
part of the spectrum (roughly E-E,) is to maintain an energy level of 0.5. 

It is interesting that r = 0.5 implies a dimensional spin-down timescale of five 
terrestrial days, which happens to be that which generally gives the best results 
for simple mid-latitude forced linear stationary-wave models (e.g. Held 1983). It is 
also consistent with conventional estimates of the frictional stress being roughly a 

fraction of a dyne/cm2 (Jeffreys 1933). 

which are adopted here. 

4.3. Linear spin-down: run A 

In  this section the ‘linear’ dynamics, consisting of straining of the disturbance by 
the basic shear under the influence of B, is isolated by showing a spin-down 
experiment (run A) with wave-wave interactions suppressed. The experiment is 
performed by solving (2.3) with the J(4 ,  V24)-term omitted, and with S as described 
for spin-down runs in $4.1. 

Figure 5 shows the time evolution of the disturbance stream function and vorticity 
fields. For convenience, the profile of the basic flow (4.2) is superimposed on figure 
5 ( b ) .  The initial disturbance state (figures 5a, b)  is homogeneous and isotropic, but 
by t = 1 the vorticity shows the expected zonal anisotropy, u2 > v2 (figure 5 d ) .  
However the stream function for the same time exhibits rneridional anisotropy, 
v2 > u2 (figure 5 c )  ! This provides a vivid reminder that it is the disturbance vorticity, 
and not the stream function, that is advected (and strained) by the basic flow. 
Inasmuch as the stream function and the vorticity can be interpreted respectively 
as low-pass and high-pass spatial filters of the disturbance velocity field (cf. Rhines 
1977, Q3), figure 5 ( c )  picks out those wave components that have been amplified 
according to the ‘ Orr effect ’ ; evidently some k = 4 components are locally at the stage 
of maximum amplification corresponding to figure 2 ( b ) .  By t = 4 (figures 5 e , f )  the 
disturbance has been nearly eliminated, except in the regions of weak basic shear. 
Note that the meridional scales of 4 are largest in the westerly jet, in agreement with 
ray-tracing theory. However, by this time the resolution is becoming inadequate to 
describe the fine details of the linear evolution. 

Figure 6 shows a time sequence of time-averaged conversion terms for disturbance 
energy and enstrophy, C,(k = 4;  1 )  and kWD(k = 4; Z ) ,  considered as functions of Z for 
fixed k = 4. For the purpose of clarity, the figure shows the development of only a 

part of run A, namely the flow that develops from modes (k, I )  = (4, f 9 )  at t = 0. 
(Since run A is linear, its development is a superposition of the development of the 
individual modes.) Shear-induced, spectral transfer of disturbance enstrophy along 
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FIQURE 5. Instantaneous spatial maps of the disturbance stream function and vorticity fields 
$(z, y) and V*$(z, y) for linear spin-down run A. Solid lines denote positive values, dashed lines 
negative. (a) $, t = 0; ( b )  Vz$, t = 0; (c) $, t = 1; (d) Va$, t = I ;  (e) $, t = 4; (f) Vz$, t = 4. The 
profile of the basic flow is superimposed on (b) .  
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FIGURE 6. (a) Energy conversion term CD(k; 1 )  and ( b )  enstrophy conversion term KW&; I )  for 
fixed k = 4 aa a function of 1, averaged in time, for that part of the linear spin-down run A originating 

from modes ( k ,  1) = (4, k9): t = 0-1 (-), t = 1-2 (----), t = 2-3 ( * - * ' * *  1. 
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lines of constant zonal wavenumber k, anticipated by the arguments of 553.1 and 3.2, 
is clearly evident. The enstrophy (figure 6b)  is very nearly conserved along the line 
k = 4 in the time evolution - the sum of the terms over all I is less than 5 % of the 
largest term - but the energy (figure 6a)  is not at  all conserved. The development 
during t = 0-1 (the solid line of the figures) is very like the schematic of figure 4, 
except that reflection of the ‘up-scale pulse’ of disturbance enstrophy at 1 = 0 is 
already taking place. The Orr effect of up-scale transfer and energetic amplification 
shows up strongly in the energy terms for t = 0-1, as expected from figure 5 (c), but 
is almost completely reversed by t = 2. Figure 6 demonstrates clearly the reversible 
nature of the Orr effect when nonlinear effects are ignored. 

4.4. Nonlinear spin-down: runs B and C 

To try to understand the combined effects of the linear and the nonlinear processes, 
two more spin-down simulations are shown. Run B is classical beta-plane turbulence, 
namely (2.1) with U,, = 0 (no basic flow). Run C has all processes included. 

Snapshots of the disturbance stream function and vorticity fields at t = 4 are shown 
in figures 7 and 8, and are to be compared with figures 5(e,f) .  Qualitatively one sees 
that run C is quite distinct from the other two. While run B exhibits the development 
of zonally elongated eddies of meridional scale KT’ described by Rhines (1975) and 
Holloway & Hendershott (1977) (figure 7 a ) ,  together with the small-scale spatial 
homogeneity and ‘teasing out ’ of vortices associated with pure two-dimensional 
turbulence (figure 7 b), run C has significantly excited the largest scales of motion 
(figure 8a)  -thus penetrating the ‘Rhines radius’ K = K~ - and shows marked 
shear-induced anisotropy in the vorticity field (figure 8 b ) .  But run C also contrasts 
sharply with the linear run A, as the former maintains much greater spatial 
homogeneity in the disturbance field than does the latter, and also appears to trap 
a significant amount of energy at the largest scales. 

These features are quantified in a time series of time-averaged spectra for all three 
runs, shown in figures 9, 10 and 11. The spectra show the zonal and meridional 
components of disturbance energy, defined in (2.12), as functions of the total 
wavenumber K .  (In all spectral data presented as a function of K ,  contributions from 
modes K with n < K < n+ 1, n being an integer, are assigned to wavenumber K = n.) 
Run A (figure 9) initially exhibits large-scale meridional and small-scale zonal 
anisotropy (i.e. ve > ua and ua > v* respectively), a result of the shear-induced 
spectral transfer - entirely a linear process. However, by t = %lo (figure 9d) most 
of the energy has evidently been lost in the interaction with the basic flow, as 
predicted in 53.2. The classical up-scale energy cascade associated with two- 
dimensional beta-plane turbulence, manifested in run B (figure lo), differs from this 
linear shear-induced transfer in at least four important respects: it  is slower; it  is 
fairly isotropic; it is arrested at the Rhines wavenumber K ~ ,  which is roughly K~ x 5 
here; and, Gnally, it is irreversible. 

Turning now to run C (figure ll),  the rapidity of the initial up-scale cascade and 
the associated large-scale meridional anisotropy (figure 11 a) suggest the dominant 
role of the shear-induced transfer mechanism in this range. But the small scales are 
relatively isotropic during t = Ck2, a feature that is inexplicable by linear theory and 
must be attributed to nonlinear effects. In contrast with run B, there is no up-scale 
cascade arrest at K ~ ;  but in contrast with run A, the up-scale transfer is irreversible 
(figure 11 d). The degree of isotropy at the largest scales during t = 1-3 suggests that 
isotropization by nonlinear processes is indeed the mechanism that makes the linear 
up-scale transfer irreversible. An examination of two-dimensional (k, I) spectra (not 
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FIGURE 7 .  Instantaneous spatial maps at t = 4, nonlinear spin-down run B (no basic flow), 
of (a) stream function and (b )  vorticity. 
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FIGURE 8. Instantaneous spatial maps at t = 4, nonlinear spin-down run C (with basic flow), of (a) 
disturbance stream function and (b)  disturbance vorticity. 

shown) confirms that the spectra are indeed approximately isotropic in the sense that 
&(K) tends to be a function of K alone; the key point is that, as anticipated by the 
arguments of 53.3, the anisotropic tendency of the shear-induced transfer is smoothed 
towards isotropy. 

The nature of the shear-induced transfer is evident from figure 12, which exhibits 
the time evolution of C,(k = 4 ; I) and tc2CCD(k = 4; I) and which may be compared with 
figure 6. The qualitative comments made there apply here, but the initial up-scale 
transfer is less cleanly reversed here compared with the linear run. 

4.5. Spectral diagnostic formulae (continued) 

To this point in the paper, the problem under consideration has been studied in the 
context of a (nonlinear) disturbance to a specified zonal basic flow. But in many cases, 
particularly for a flow in forced-dissipative equilibrium, it is more appropriate to 
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FIGURE 9. Disturbance energy spectrum ED(K) for run A, averaged in time, and decomposed into 
zonal (-) and meridional (----) components. (a) t = 0-1 ; (a) t = 1-2; (c) t = 2-3; ( d )  t = 9-10. 

1 2 3 5 10 20 30 1 2 3 S K 1 0  20 

FIQURE 10. As in figure 9, but with E(K) (energy of the total flow, equal to ED(tr) since U, = 0) for 
run B. The Rhines cascade-arrest wavenumber K/ is about 5. 
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FIQURE 11. As in figure 9, but with E,,(K) for run C. 

examine the stationary and transient budgets instead. (As discussed in 53.1, the 
essential theoretical arguments of this paper apply equally for both approaches.) 
Rather than (2.3), one must consider the pair of equations 

J(3, V”) + P o  T, = &$) - JW, V2$’), (4.94 

Vz$i+J(+’, Va$‘)+ J($, Vz+’)+ J($’, V”) +Po$; = S’($)+ J($’, Ve$’), (4.9b) 

where $ = $+$’, the overbar denoting a time average over some interval. The 
transient budgets are obtained by multiplying the Fourier transform of (4.9b) by 
$’*(K) or by - K ~ $ ’ * ( K ) ,  adding the c.c., and then taking a time average; the result 
is completely analogous to (2.13) and (2.14), namely 

(4 .10~)  

-QT(K) = 0 = K 2 1 T ( K )  +K2CT(K) +K2DT(K),  (4.10b) 

where the terms are defined in the Appendix and are exactly as for the disturbance 
quantities, with $’ replacing 4, 3 replacing Y,  and a time average being taken of 
the whole quantity. 

However the stationary flow does not satisfy the governing equation (2.1), but 
rather the balance equation (4.9a). To obtain stationary budgets, multiply the 

Fourier transform of (4.9a) by P(K) or by -K$* (K)  and add the c.c.; this yields 

a 
at 
- E T ( K )  = 0 = IT(K) + CT(K) + DT(K),  

a 
at 

(4 .11~)  

(4.11b) 

a 
g E s ( K )  = 0 = W )  + Cs(4 + D S ( K ) ,  

a 
at 
- G ~ ( K )  = 0 = K’IS(K) + K ~ C ~ ( K ) + K ’ D S ( K ) .  
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FIQURE 12. (a) Energy conversion term C$c; 1 )  and (a) enstrophy conversion term KV&; I )  
for fixed k = 4 aa a function of 1, averaged m time, for run C: t = 0-1 (-), t = 1-2 (----), 
t = 2-3 (...... 1. 

Again the terms are defined in the Appendix. The stationary energy E&) is given 
by (2.11) with 3 replacing $. I&) represents the energy transfer to K arising from 
interactions involving only stationary components, C&) that arising from mixed 
stationary-transient interactions ; the two terms are respectively associated with the 
quantities J(3, V") and J(V, V") in ( 4 . 9 ~ ) .  

It is easily seen that  IT(^) and I&) represent true interaction terms for both energy 
and enstrophy , the first effecting transfers between transient waves, the second 
between stationary waves; thus 

(4.12) 
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Note that the stationary-transient conversion terms seen by the stationary flow, 
CS(x) and K ~ C ~ ( K ) ,  are not the same at each wavenumber as the conversion terms seen 
by the transient flow, CT(x) and K ~ C ~ ( K ) .  However, they are consistent in an 
integrated sense : 

(4.13a, b )  

Equation (4.13) may be verified in physical space using integration by parts, or in 
the following direct fashion. Define 

IsT(K) C S ( K ) + C T ( K )  = I (K)- lS(K)-IT(K) ,  (4.14) 

where I ( K )  is the interaction term computed for the full stream function +. But the 
right-hand side of (4.14) consists entirely of interaction terms, which vanish when 
integrated as in (4.12); hence 

x IST(~)  = 0 and similarly x K ~ & ~ ( K )  = 0, (4.15) 

implying (4.13). One may reconcile (4.10) and (4.11) at each K by rewriting (4.10~) as 

IT(K) + I S T ( K ) - C S ( K ) + D T ( K )  = 0, (4.16) 

with IST(~)  representing an interaction between transient waves induced by the 
catalytic though energetically passive presence of the stationary flow. The physical 
content of such a term must be considered carefully, however, as the definition is not 
free from ambiguity ; all that has been done here is that a particular partition of C T ( K )  

into interaction and conversion effects has been chosen. Whether the partition is 
physically meaningful is a question that can only be addressed within the context 
of a specific problem. In fact, for the present case of a scale separation between the 
stationary and transient flow components, the net enstrophy conversion is negligible 
(i.e. both sides of (4.13b) vanish to leading order) and so K ~ C ~ ( K )  can be mainly 
regarded as an interaction term. 

K K 

4.6. Nonlinear spin-down: run C (continued) 

The diagnostics introduced in the previous section are now used to examine the 
average dynamical behaviour over the active part of run C. Figure 13 shows 
the stationary-transient energy conversion terms, C S ( ~ )  and C T ( ~ ) ,  as well as the 
corresponding terms for enstrophy. The time interval involved is t = 0-15, beyond 
which the transfers are very weak. Since, by (4.13), the sums of the conversion terms 
must cancel, the smallness of K ~ C ~ ( K )  implies that K $ C ~ ( K )  may be considered as a true 
interaction term for the transient flow, with the (time-) mean flow acting purely as 
a catalyst. But the net induced transfer of transient enstrophy is down-scale, or to 
higher I ,  and this leads to a net energetic forcing of the stationary flow. Two features 
are especially noteworthy about the induced transfer seen in figure 13(b) .  The first 
is that the initial down-scale transfer was quickly arrested by nonlinear effects, with 
very little transfer past K = 15. However the enstrophy dissipation, also shown in 

figure 13(b), implies that there was significant transfer to the smallest scales of 
motion, and this must therefore have been carried by the turbulent rather than the 
stationary-transient interactions. Such a result is not so surprising when one 
considers that for these scales, the non-dimensional parameter 6 of (3.6) is less than 
0.1. 

The second point to note here is that there is also transfer from the vicinity of the 
cascade-arrest wavenumber, K = 4, 5, and the implied source of transient enstrophy 
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FIGURE 13. (a) Energy conversion terms C&) (-) and C T ( ~ )  (----), and (b )  enstrophy 
conversion terms K*C,(K) (-) and K ~ C ~ ( K )  (----), for run C, averaged over t = 0-15. In (b)  the 
dottsd line shows the time-averaged dissipation of enstrophy, which outside of the initial scales 
9 < K < 12 must be balanced by nonlinear transfer less net accumulation. 

at these scales can only be an up-scale turbulent cascade from the initial scales. This 
conclusion is confirmed by figure 14, which demonstrates the relative role of the 
‘induced’ and ‘turbulent’ spectral transfers of energy in run C. Specifically, figure 
14 shows the energy fluxes, which are defined by 

I( Y 
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FIGURE 14. Nonlinear spectral fluxes of energy, run C, averaged over t = 0-15: FsT(~) (- ---); 
FT(K) ( * * * * * * ) ;  and F(K) (-), the latter representing the nonlinear interactions computed for the 
total stream function $. The residual, F-FST-FT = Fs = -x Is, is effectively zero. Arrows denote 
the implied senae of the flux in the spectral domain. 

respectively. A positive value of the flux denotes net transfer to smaller scales, that 
is to say down-scale transfer. Apparently there is a classical up-scale energy flux, as 
in two-dimensional beta-plane turbulence (also run B), which is arrested at K . But 

induced transfer mechanism, and this same mechanism also acts around the input 
scales. Once the spectrum has broadened sufficiently, as it must do under the 
basic-flow straining, then turbulent effects begin to take over for K > K ~ ;  figure 14 
shows that they in fact dominate for K > 20. 

The nature of the wave-mean-flow interaction is reflected in the spatial as well as 
in the spectral diagnostics. However, due to the nature of the initial conditions, the 
time-averaged spatial quantities for run C were rather noisy. Consequently, two other 
runs were performed that were identical with run C except for a different random 
specification of phases for the initial disturbance field (4.3), and an ensemble average 
of the three runs produced. The results are shown in figure 15 for t = 0-1, 1-2, and 
0-15. They are still not particularly smooth but at least the trends are clear. 

The Reynolds-stress term ( U V )  (figure 15a), the angle brackets here denoting a 
zonal and ensemble mean, is such as to transport momentum away from the westerly 
jet during t = 0-1 ; this reflects the amplification of disturbance energy associated 
with eddy propagation into the westerly jet, and is in agreement with ray-tracing 
theory. But fort = 1-2, and in the long time-average, the westerly jet is strengthened 
by the eddies, consistent with figure 13. The concentration of eddy amplitude in the 
westerly jet, and its initial meridional anisotropy, is also in agreement with 

the disturbance can be carried through K ~ ,  up to the largest scales of motion, 6 y the 
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FIGURE 16. Ensemble average of %-averaged spatial diagnostics from run C and two similar 
runs, time-averaged overt = 0-1 (-), t = 1-2 (-- --), andt = 0-15 ( - - - * * * ) .  (a) (W)(y) (here the 
t = 0-15 values have been multiplied by 5 to be visible); (b )  (?Erh)(y); (c) (p)(y). The large dots 
in ( b )  show, for selected y, the contribution from zonal-wave (k + 0) modes for t = 0-15. 
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ray-tracing theory (figure 15b, c). What is perhaps surprising is the intensity of eddy 
activity in the easterly jet (also evident in run A, e.g. figure 51). This can however 
also be explained by appeal to ray theory, as disturbances originating in the easterly 
jet (for these parameter settings) have turning lines but not critical lines and are thus 
trapped in a waveguide; hence they do not decay by the mechanism of shear-induced 

transfer. 

4.7. Nonlinear, forced-dissipative equilibrium : run D 

While spin-down runs have great pedagogical value, geophysical systems - 
particularly the mid-latitude tropospheric transient eddy field - tend to be strongly 
forced and dissipated. Consequently it is important to determine whether the 
theoretical ideas advanced in $3 can provide any insight into the behaviour of a model 
in forced-dissipative equilibrium. Here one such experiment, run D, is examined in 
detail; the forcing and dissipation mechanisms are as described in $4.1. Sensitivity 
to the external parameters is discussed briefly in $5.  While the parameters have been 
chosen in $4.2 to correspond as closely as possible to those of the atmosphere, the 
jet can only be considered ‘realistic’ insofar as it  is zonal and of large scale relative 
to the disturbance. 

The simulation extends over a period of At = 80, and an ensemble of data is 
obtained by collecting samples taken every At = 0.2 over the last At = 60. For run D 
the turbulent eddy-turnaround time characterizing the smaller scales is about 0.1, 
so these samples can be considered independent for those scales ; however the mixing 
timescale at the largest scales is considerably slower, on the order of At = 1. To ensure 
that the statistics are reliable, the averaging period was divided into two segments 
of duration At = 30 and the statistics of each compared ; no significant difference could 
be detected. Moreover another experiment, with a different arrangement of phases 
in the initial conditions, was performed and compared with run D; again, no 
significant difference could be detected in the statistics. (This is not a trivial result, 
because the ‘ phase-locking ’ nature of the intermediate-scale forcing (4.6) implies that 
the initial conditions are not totally forgotten; the point is that the phases are 
nevertheless rapidly ‘ scrambled ’ by turbulence.) 

Snapshots of the disturbance stream function and vorticity fields are shown in 
figure 16. These show that the turbulent activity is distributed inhomogeneously, 
with very little enstrophy present in the regions of strongest basic shear. On the 
largest scales of motion there is some evidence of meridional elongation, but the 
intermediate and smaller scales appear to be roughly isotropic - especially so when 
compared with features of similar size in run C (figure 8b) .  

The relative degree of anisotropy can be judged by an examination of figure 17, 
where the zonal and meridional spectra for run D are compared with those for the 
relevant beta-plane turbulence experiment (i.e. with U, = 0). The most notable 

difference between the figures is that in run D, the disturbance energy has penetrated 
significantly past the Rhines radius, up to the largest scales of motion; and, for 
1 < K < K ~ ,  the anisotropy is meridional rather than zonal. Between K~ and the 
forcing scale the flow is quite isotropic in both cases, but note that in run D there 

is no concentration of energy at the forced scales themselves. This latter effect is 
presumably due to the effectiveness of the basic-flow straining in inducing spectral 
transfer on a relatively rapid timescale, but is somewhat surprising in view of the 
fact that the parameter B of (3.6) is so small. Evidence of basic-flow straining can 
also be seen in the slight zonal anisotropy of the small scales. 

It should be emphasized that while beta-plane turbulence does itself generate zonal 
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FIQURE 16. Instantaneous spatial maps during forced-dissipative equilibrium run D of (a) 
disturbance stream function $(z, y) and (b)  disturbance vorticity VB$(z ,  y). 
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FIQURE 17. Time-averaged energy spectrum E(K) for (a) run D, and (a) an equivalent beta-plane 
turbulence experiment (i.e. no basic flow), decomposed into zonal (-) and meridional (----) 
components. 

jets, these tend to be relatively weak and to meander; thus the jets lead to 
shear-induced spectral transfer which is insignificant compared to that from the 
strong, phase-locked basic jets considered in this study. More will be said about this 
in $5. 

Examination of the two-dimensional (k, 1) spectra (not shown) reveals that the 
energy and enstrophy spectra associated with run D are (for K > 1) approximately 
isotropic (in the sense that constant-energy contours tend to be aligned with curves 
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of constant K). The effect is much stronger than in run C, for example, and is entirely 
absent in run A. This is consistent with the attribution of isotropization to irreversible 
turbulent dynamical mixing, as described in $3.3 - indeed, the latter process is the 
only conceivable one that, could effect isotropization. 

Figure 18 shows the stationary-transient energy conversion terms, C S ( ~ )  and 
C&), for run D, as well as the corresponding terms for enstrophy. As in run C, K ~ C ~ ( K )  
may evidently be viewed as a true interaction term for the transient flow. Unlike 
run C, however, there is some net induced transfer of enstrophy from the forced 
scales to larger scales ; with a forced-dissipative experiment, of course, one cannot 
know a priori in which sense the time-averaged transfers will proceed. Figure 18 (b )  
suggests that some of this initial up-scale transfer associated with intermediate- 
scale forcing is reversed, but by no means all of it. Indeed, when viewed in terms 
of the energy (figure 18a), this net up-scale transfer is seen to be quite significant, 
penetrating to the largest scales of motion. 

The fact that C S ( ~  = 1) is negative indicates a net transfer of energy from the 
stationary to the transient flow; this in turn implies that, to maintain equilibrium, 
the stationary flow must be forced rather than damped, which further implies 
equilibration of the ( k ,  1)  = (0, 1) mode below the amplitude of the basic flow. Such 
a result is not required, of course; equilibration could equally well have involved a 

maintenance of the (0, 1)  mode above its basic-flow value. (Recall that the net result 
after ‘ spin-down ’ in run C was a strengthening of the basic-flow component ; and see 
also figure 23, where Fo acts to damp the stationary flow.) In fact, the energy in the 
(0, 1)  mode varied aperiodically within 2 yo of its mean value, but always kept below 
its initial value of 2.0. To test the robustness of this feature of the experiment, the 
basic-flow component was kicked by a factor of 1.08 at t = 20, and allowed to 
re-equilibrate. Despite an energy level following the kick that was well in excess of 
its initial value, it rapidly fell back to its previous equilibrium range, and within 
At = 5 this perturbed experiment was indistinguishable from run D. 

The relative importance of the processes of basic-flow straining and of nonlinear, 
turbulent transfer between different scales may be seen by looking at the relevant 
spectral fluxes of energy in figure 19. Evidently most of the spectral transfer is effected 
by the transient self-interaction term, which is to say by turbulence. The straining 
term is most important in removing energy from the forced intermediate scales and 
in transferring it non-locally up to the straining scales themselves. For K < 5 this is 
in fact the dominant term, but elsewhere the transient self-interaction term is 
stronger. Nevertheless, the significant differences between run D and classical 
beta-plane turbulence attest to the importance of basic-flow straining in determining 

the flow evolution. 
One interesting feature of figure 19 that bears emphasis is the extent to which the 

‘induced’ flux looks similar in form to the ‘turbulent’ flux. There is no reason why 
this has to be the case in general; here it results from the spectrally symmetric forcing 
and the degree of irreversibility in the induced up-scale transfers of enstrophy. 
Analysis in terms of k and 1 makes the dynamical distinction between the two different 
fluxes quite clear, but in this ‘isotropic ’ representation the distinction is muddied. 

Compared with the spin-down run C (figure 14), run D is characterized by a higher 
level of turbulence and the effects of shear-induced spectral transfer are 
correspondingly less visible. However these effects can still be isolated, provided 
one looks at the relevant diagnostic: namely the induced spectral transfers CT(k; 2) 
and K2CT(k; 1)  considered as functions of 1 for fixed k .  According to the theory of $3.2, 
and as verified in the linear spin-down run (figure 6), the development of an initially 
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FIQURE 18. Time-averaged (a) energy conversion terms C s ( ~ )  (-) and C T ( ~ )  (----), and (b)  
enstrophy conversion terms KW,(K) (-) and K*C,(K) (----), for run D. 
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FIQURE 19. Time averaged spectral fluxes of energy, run D: (----), & ( K )  (. . . . . .), 
and P(K) (-). 

spectrally isolated, symmetric disturbance involves both up-scale and down-scale 
induced transfer of enstrophy (the transfer being conservative to leading order in the 
scale separation factor y of (2.8)). But linear theory would always predict a reflection 
of the up-scale pulse. Consequently, what one should expect to see from these 
diagnostics in a time-averaged equilibrium situation is not evident a priori. 

What figure 20 shows, for k = 2, is that on a time average, the shear-induced 
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RQIJRE 20. Time-averaged conversion terms of energy CT(k;  2) (-) and of enstrophy K*C&; 2) 

I 

(----), for fixed k = 2 as functions of 1, run D. 

spectral transfer is approximately symmetric about the forced scales; that is, about as 

much enstrophy gets transferred up-scale as down-scale. This leads, of course, to an 
amplification of the associated disturbance energy; indeed, it is the k = 2 transient 
components that are the primary recipients of energy from the stationary flow. 
(Recall from $3.2 that, all else being equal, amplification is strongest for lower4 
components.) Evidently the induced up-scale transfer is irreversible. Moreover the 
induced down-scale transfer is negligible for scales smaller than the forced ones; figure 
19 shows that the enstrophy cascade is dominantly turbulent, even though it could 
in principle have been effected (as it was in run A) by the process of basic-flow 
straining. 

In figure 20 the sum of K ~ C ~  over all 1 is less than 5 % of the largest term. So even 
for this small value of k, with significant transfer involving 1 = 1,2,  the transient 
enstrophy is conserved to a good approximation in its interaction with the stationary 
flow. For larger k the degree of conservation is even better, as one might expect. 

The picture for 0 < k < 7 is essentially like that of figure 20, though with smaller 
amplitudes for k + 2 ; for k > 7, on the other hand, the induced transfer is principally 
to higher I (there is no room to move to smaller Z!), and the net effect of these scales 
is to strengthen the stationary flow. Overall, however, the effect from the smaller4 
waves dominates, and the stationary flow is a net source of transient energy. These 
results are summarized concisely in the quantities C,(k) and CT(k), shown in figure 
21 ; the former indicates the net sense of the stationary-transient energetic inter- 
action, while the latter demonstrates which k-scales gain energy and which lose it 
in the process. 
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FIGURE 21. Time-averaged energy conversion terms C&) (-) and C,(k) (----), as functions 
of zonal wavenumber, for run D. 

The time-averaged zonal-mean flow (U+ (a)) (y) (the angle brackets denoting a 

zonal mean) for run D is essentially indistinguishable by eye from the basic flow U(y), 
when the two are plotted together. (Recall that the energy of the basic-flow 
(k, 1 )  = (0, 1) component is only diminished by about 2% after equilibration.) 
However the nature of the wave-mean-flow interaction is clearly seen in the spatial 
diagnostics presented in figure 22(a, b). The Reynolds-stress term ( U V )  (figure 22a) 
is such as to sharpen the westerly jet and broaden the easterly jet, roughly speaking, 
with the latter effect dominating to yield a net conversion of energy to the eddies. 
This result is quantified by figure 22(b), which depicts the two spatial forms of 
stationary-transient energy conversion analogous to (2.5 c) (which is expressed in 
terms of the disturbance problem). Recall that in a straightforward manipulation of 
the momentum equation, - ( U +  (G)) d(G)/dy is the eddy-to-mean conversion term 
forthezonal-meanenergy, while - (UV)  d( U +  (ii))/dyisthemean-to-eddy conversion 
term for the eddy energy. Hence figure 22 (b) shows that the eddies gain their energy 
from the regions of maximum zonal-mean shear, as one expects since that is where 
the mechanism of shear-induced spectral transfer is strongest. Finally, the spatial 
distribution of eddy energy is shown in figure 22(c )  and evidently peaks in the jet 
cores, consistent with figure 16. The eddy energy appears roughly isotropic in the 
sensethat (u'2) x (P), but the (u'2)-termcontainstimedeviationsofthezonal-mean 
flow ( u ) ' ~ ;  when this part is removed the remainder (indicated for selected values of 
y by large dots in the figure) is somewhat less than (p). 

It might be argued that irreversibility of the shear-induced up-scale transfer could 
arise in forced-dissipative experiments from the Ekman damping. While large-scale 
damping must inevitably cause some irreversibility and could presumably account 
for the observed spectral transfer patterns, the accumulation of energy at large scales 
and the near-isotropic spectra cannot be explained in this way. Moreover the 
spin-down experiments, which are effectively inviscid at large scales, demonstrate 
clearly that nonlinearity is capable of effecting irreversibility of the shear-induced 
transfers. Of course, a consistent forced-dissipative balance could conceivably obtain 
without any spectral transfer whatsoever; in the event, however, the flow satisfies 
this balance nonlinearly. 
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FIQURE 22. Time- and zonal-averaged spatial diagnostics for run D. (a) ( E ) ( y ) ;  (a) 
(E)  d(U+(Q>)/dy (-1 and ( U + ( Q ) )  d<E)/dy (----I; ( c )  @>(y) (-1 and ( F > ( y )  
(----). The large dots in (c) show, for selected y, the contribution to (G>(y) from zonal-wave 
(k + 0) modes. 

5. Discussion 

This study represents a partial attempt to extend the homogeneous theory of 
geostrophic turbulence into the inhomogeneous regime. In order to make some 
progress, attention has been focused on a particular problem of geophysical signifi- 
cance : namely that of barotropic beta-plane turbulence in the presence of a large-scale 
zonal jet. Then the inhomogeneity arises only from the mean flow, not from the fluid 
medium, and is restricted to the meridional coordinate; moreover it is of large scale. 
These simplifications enable a theoretical approach to be pursued, in which the 
transient disturbance dynamics may be understood as a combination of two distinct 
yet highly coupled processes. The first is an induced spectral transfer of disturbance 
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enstrophy along lines of constant zonal wavenumber k, which corresponds physically 
to a straining of disturbance vorticity by the shear in the zonal basic flow. In  this 
process the disturbance energy is generally not conserved, but the disturbance 
enstrophy is conserved to leading order in the scale separation parameter y of (2.8). 

The second process is one that might be called ‘turbulent isotropization’, and 
reflects the tendency of random nonlinear interactions to spread the enstrophy (and 
thereby the energy) along curves of constant total wavenumber K .  Insofar as this 
process - which will be effected by the transient disturbance self-interactions - 
transfers enstrophy across lines of constant zonal wavenumber, it will interrupt and 
alter the phenomenon of basic-flow straining. Spectrally, one might view such 
interference as a ‘scattering’ which disrupts the delicate phase relations whose 
persistence is required to effect the shear-induced spectral transfer. Stated otherwise, 
shear-induced transfer is a systematic process that is vulnerable to disruption ; 
whereas turbulent isotropization is a random process that indeed thrives on disrup- 
tion. Consequently the latter will tend to dominate the former when the two effects 
operate on similar timescales. 

The validity of this picture of the dynamics, and the way in which the two processes 
interact, has been examined by direct numerical simulation of the flow. It is found 
that the picture of classical beta-plane turbulence is altered, through the effect of the 
large-scale zonal flow, in the following ways: (i) while the turbulence is still confined 
to K > K ~ ,  where K~ is Rhines’s (1975) cascade-arrest scale, the disturbance penetrates 
strongly past K~ up to the largest scales of motion ; (ii) the larger disturbance scales 
K < K~ exhibit a tendency towards meridional rather than zonal anisotropy, in the 
sense that v2 > u2 rather than vice versa; (iii) initial spectral transfers away from 
isotropic intermediate-scale forcing (or from an initial spike, in a spin-down experi- 
ment) are significantly enhanced by the shear-induced transfer associated with 
straining by the zonal flow, even though the scaling estimate of (3.6) would suggest 
otherwise. Indeed, when viewed in terms of K alone the shear-induced transfer away 
from the intermediate scales may frequently appear very similar to the conventional 
cascades of two-dimensional turbulence, even though the two processes are dynami- 
cally quite distinct. This may help account for the apparent success of two- 
dimensional turbulence theory in describing the observed spectral fluxes (in terms of 
the total spherical harmonic wavenumber) of kinetic energy and enstrophy in the 
atmosphere (Boer & Shepherd 1983 ; Shepherd 1987b). 

Seen from the opposite perspective, the shear-induced spectral transfer obtained 
in the context of linearized theory - meaning with disturbance self-interactions 
suppressed - is altered, by full nonlinearity, in the following ways: (i) the up-scale 
transfer of disturbance enstrophy is made into a net, that is to say irreversible, 
transfer, rather than being purely temporary; (ii) the down-scale transfer is super- 
seded very quickly by the (slower) turbulent transfer, so that basic-flow straining has 
little systematic effect on the smaller scales of motion; (iii) tendencies to anisotropy 
are mitigated. Shear-induced spectral transfer of disturbance enstrophy remains the 
mechanism by which the wave-mean-flow interaction may be most directly 
understood; the point is that the closure of the interaction problem, and the 
determination of whether the disturbance acts to weaken or to strengthen the basic 
flow, is crucially dependent upon strongly nonlinear, turbulent effects. 

Indeed this latter tlspect of the problem was found to be quite sensitive to changes 
in the non-dimensional parameters in parallel forced-dissipative experiments 
(although the conclusions presented above were all robust to such changes) ; for a 
more complete description one may refer to Shepherd (1984, ch. VIII). These 
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experiments all showed a distinct pattern : for small but non-zero zonal wavenumber 
k ,  the induced transfer is spectrally symmetric in I about the input scale, and leads 
to  a net up-scale energy transfer and amplification a t  the expense of the stationary 
flow ; while for intermediate k the transfer process is essentially down-scale, implying 
absorption of transient energy into the stationary flow and a strengthening of the 
basic-flow mode. The net sense of the stationary-transient interaction depends 
sensitively on the position of the transition scale k, between these two regimes. 

For example, when the value of F0 was increased from 25 to 64, moving K~ out to 
K )  x 8, the net conversion from stationary to transient energy increased by about 
50 %, even though k, only moved from k = 6 to k = 7. On the other hand, when the 
disturbance energy was doubled (necessitating a halving of the Ekman damping 
coefficient r to maintain stationarity), the net conversion changed sign and k, was 
reduced to k = 4. This change is clearly seen in figure 23, which shows Cs(k)  and C,(k) 
from this run and is to be compared with figure 21. Neither of these changes in k, 
would appear to be a simple consequence of the parametric alterations ; indeed, one 
might have expected that doubling E(#)  would have decreased the importance of the 
‘linear’ straining dynamics and would therefore have weakened the forcing of the 
basic flow, but in fact the opposite occurred. This suggests that the coupling between 
the essential dynamical processes of shear-induced spectral transfer and turbulent 
isotropization is generally rather complicated, and that quantitative closure may well 
need to be correspondingly sophisticated if one desires a parameterization of the 
transient dynamics in terms of the stationary flow. But it is hoped that the diagnostic 
utility of the theoretical ideas advanced here for the understanding of strongly 
nonlinear inhomogeneous flow has now been established. 

Indeed, the essentially non-local character of shear-induced transfer, and its 

sensitivity to turbulent effects, imply that attempts to model stationary-transient 
interaction using a severely truncated or, even worse, a linear model are doomed to 
failure. Clearly a wide range of interacting transient scales of motion needs to be 
considered in such studies. However, the fact that turbulent activity can limit the 
range of significant stationary-transient interaction, as has been demonstrated, 
means that one might hope to parameterize the dynamics beyond this range using 
a reasonably sophisticated turbulent closure (e.g. Sadourny & Basdevant 1985) in 
situations where the level of nonlinearity is sufficiently high. Interpretation of 
atmospheric data in the light of these ideas, which provides an estimate of the degree 
of non-localness of tropospheric stationary-transient interactions, is presented 
elsewhere (Shepherd 19873, c). 

Although the emphasis of this study has been on spectral diagnostic approaches, 
a few remarks are in order concerning the spatial signature of the stationary-transient 
interactions seen in forced-dissipative experiments. The robust results are that the 
eddies (defined relative to the time- and zonal-average flow) gain energy from the 
regions of strongest mean shear; the easterly jet is weakened; and the westerly jet 
is sharpened (e.g. figure 22 for run D). The latter effect seems similar to the barotropic 
eddy forcing of the westerly jet found in the modelling study of McWilliams & Chow 
(1981). All of these points may be understood in terms of the linear theory of 
mean-flow straining presented in $3.2. What is not robust is however the relative 
importance of these effects, and such parameter dependence of the net mean-eddy 
interaction is of course intimately linked to the parallel sensitivity of the net 
stationary-transient interaction discussed above. As regards the eddy variances, they 
were always found to exhibit maxima in the jet cores and minima in the strongly 
sheared regions. Where the eddy variances were anisotropic, the anisotropy was 
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FIQURE 23. Time-averaged energy conversion terms Cs(k) (-) and C,(k) (----), as functions of 
zonal wavenumber, for forced-dissipative equilibrium run similar to run D but with disturbance 
energy doubled and linear damping coefficient halved. 

always meridional rather than zonal. Such concentration of eddy variance in jet core 
regions was also found by McWilliams & Chow (1981), and for the case presented in 
their figure 5 the eddies showed strong meridional anisotropy. It seems likely that 
the present work might help explain their results. 

The weakness of the net wave-mean-flow interaction, and its sensitivity to the run 
parameters, are direct consequences of turbulent isotropization of the transient eddy 
field: near-isotropy of smaller scales imposes a constraint on the triad interactions 
which precludes a strong large-scale barotropic response (Pedlosky 1962). If this 
constraint were removed, for instance by localizing the disturbance forcing and the 
regions of strong nonlinearity, then the net interaction could be significant (Lorenz 
1953); an example of such barotropic driving by inhomogeneous forcing is given by 
Rhines (1977, S8C). Such effects are certainly worth investigating in future work 
along these lines. 

In this study much emphasis has been placed on the differences between the present 
dynamics1 regime and that of beta-plane turbulence. But insofar as beta-plane 
turbulence generates its own zonal jets internally, one is naturally led to wonder why 
these zonally elongated eddies do not induce large-scale meridional anisotropy and 
penetration of transient energy past the ' Rhines radius ' K = K), as the large-scale 
forced jet does here. The simple answer is that the jets generated in beta-plane 
turbulence tend to be relatively weak and to meander around the domain; thus they 
are not capable of effecting systematic straining to the extent that a phase-locked, 
large-amplitude jet is. In fact one can identify the shear-induced spectral transfer 
associated with the beta-jets in the numerical experiments, but i t  is of an insignificant 
magnitude . 

But there is perhaps a more fundamental reason why beta-jets cannot induce 
significant spectral transfer past K), which is that disturbances with K < K )  are 
probably unstable with respect to the k = 0, 1 x K )  modes. While there is no clear 
theoretical basis for this result (there are two obstacles: one is that the hypothesized 
perturbation is of comparable magnitude with the 'basic flow ' ; the other is that strict 
application of Rossby-wave resonant-interaction theory forbids interaction with 
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k = 0 modes), the numerical evidence seems incontrovertible. In the first place there 
is the experience from beta-plane turbulence itself. In  addition, a number of 
experiments were performed with the present model using basic jets with smaller-scale 
meridional structure (details are given in Shepherd 1984, Appendix, and Shepherd 
1987~).  Regardless of whether an I = 1 component also existed which might induce 
transfer up to the largest scales of motion, as in the experiments shown here, it was 
found in all cases that there was no significant penetration of disturbance energy past 
the isotropic circle with radius equal to the smallest scale of the zonal jet. Applied 
to the beta-jets, it may be concluded that even if they were locked in position, purely 
zonal, and strong, they would still be unable to induce spectral transfer past K = K ~ .  

This is an intriguing result which certainly demands further investigation. However, 
it is well beyond the scope of the present study, because it requires a theory that can 
treat the interactions between a stationary flow and transient disturbances of larger 
as well as of smaller scale. 
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Appendix 

The spectral diagnostic quantities of @2.3 and 4.5 are defined as follows: (here the 
curly brackets as well as the circumflex indicate a Fourier transform) 

&c) = SSA(., y) e-i(kz+zg) dzdy = {A}&). 

For the disturbance/basic-flow decomposition, where # is the disturbance stream 
function and Y that of the basic flow, 

E D ( K )  E + K ' I ~ ( K ) ~ ' ;  GD(K) K'ED(K) ; 
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For the stationary/transient decomposition, where 3 is the time-mean stream 

function over some given interval and +' the deviation therefrom, 

while - 

&(K) = ~ K . " I & ( K ) I ~  ; GS(x) = K'&(K) ; 

IS@) = $*(K) {J($, V2$)} (K) + C.C. ; 

CS(K) = @*(K) {J(+', V'V)} (K) +c.c. ; 

D S ( K )  = -$*(K) {S($)> (K) + C.C. 

REFERENCES 

ANDREWS, D. G. 1983 A conservation law for small-amplitude quasi-geostrophic disturbances on 
a zonally asymmetric basic flow. J. Atmos. Sci. 40, 85-90. 

ANDREWS, D. G. & MCINTYRE, M. E. 1976 Planetary waves in horizontal and vertical shear: The 
generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 

BASDEVANT, C., LEQRAS, B., SADOURNY, R. & BELAND, M. 1981 A study ofbarotropic model flows: 
Intermittency, waves and predictability. J. Atmos. Sci. 38, 2305-2326. 

BASDEVANT, C. & SADOURNY, R. 1983 ModBlisation des Bchelles virtuelles dans la simulation 
numBrique des Qcoulements turbulents bidimensionnels. J. Mic. T h b r .  Appl. 2, numBro spBcial, 
243-269. 

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press, 
197 pp. 

BATCHELOR, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional 
turbulence. Phys. Fluids 12, Suppl. 11, 233-239. 

BENNETT, A. F. & HAIDVOQEL, D. B. 1983 Low-resolution numerical simulation of decaying 
two-dimensional turbulence. J. Atmos. Sci. 40, 738-748. 

BOER, G. J. & SHEPHERD, T. G. 1983 Large-scale two-dimensional turbulence in the atmosphere. 
J .  Atmos. Sci. 40, 164-184. 

BOOKER, J. R. & BRETHERTON, F. P. 1967 The critical layer for internal gravity waves in a shear 
flow. J. Fluid Mech. 27, 513-539. 

BRETHERTON, F. P. & GARRETT, C. J. R. 1968 Wavetrains in inhomogeneous moving media. Proc. 
R. SOC. Lond. A 302,529-554. 

BRETHERTON, F. P. & HAIDVOQEL, D. B. 1976 Two-dimensional turbulence above topography. 
J. Fluid Mech. 78, 129-154. 

CARNEVALE, G. F. 1982 Statistical features of the evolution of two-dimensional turbulence. 
J .  Fluid Mech. 122, 143-153. 

CHARNEY, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087-1095. 

CHEN, T . 4 .  & WIIN-NIELSEN, A.C. 1978 Non-linear cascades of atmospheric energy and 

FARQE, M. & SADOURNY, R. 1986 Inhibition de la turbulence bidimensionnelle par une rotation 

FJ'JBRTOFT, R. 1953 On the changes in the spectral distribution of kinetic energy for two 

203 1-2048. 

enstrophy in a two-dimensional spectral index. Tdlua 30, 313-322. 

d'entrainement. C. R. A d .  Sci. Paris 302, Skrie 11, 847-850. 

dimensional, nondivergent flow. Tellua 5 ,  225-230. 

17 F L P  183 



508 T .  G. Shepherd 

Fox, D. G. & ORSZAQ, S. A. 1973 Pseudospectral approximation to two-dimensional turbulence. 
J. Comp. Phys. 11,612-619. 

HAIDVOQEL, D. B. & HELD, I. M. 1980 Homogeneous quasi-geostrophic turbulence driven by a 
uniform temperature gradient. J. Atnws. Sci. 37, 2644-2660. 

HELD, I. M. 1983 Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. 
In Large-Scale Dynamical Processes in the Atmosphere (ed. B. J. Hoskins & R. E. Pearce), 
pp. 127-168. Academic. 

HELD, I. M. 1985 Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci. 
42, 2280-2288. 

HERRINQ, J. R. 1975 Theory of two-dimensional anisotropic turbulence. J. Atmos. Sci. 32, 
2254-227 1. 

HERRINQ, J. R. 1977 Two-dimensional topographic turbulence. J .  Atmos. Sci. 34, 1731-1750. 

HOLLOWAY, G. 1978 A spectral theory of nonlinear barotropic motion above irregular topography. 
J .  Phys. Oceanogr. 8, 414-427. 

HOLLOWAY, G. 1983 Effects of planetary wave propagation and finite depth on the predictability 
of atmospheres. J. Atmos. Sci. 40, 314-327. 

HOLLOWAY, G. & HENDERSHOTT, M. C. 1977 Stochastic closure for nonlinear Rossby waves. 
J. Fluid Mech. 82, 747-765. 

JEFFREYS, H. 1933 The function of cyclones in the general circulation. Procds-Verbaux de 
l’dssociation de Mktdorologie, UGGI (Lisbon). Reprinted in Theory of Thermal Convection (ed. 
B. Saltzman), pp. 200-211. Dover (1962). 

KRAICHNAN, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 

LEQRAS, B. 1980 Turbulent phase shift of Rossby waves. Geophys. Astrophys. Fluid Dyn. 15, 
253-281. 

LEITH, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 
671-673. 

LIOHTHILL, M. J. 1978 Waves in Fluids. Cambridge University Press, 504 pp. 

LIN, H. 1982 Weakly inhomogeneous turbulence theory with applications to geophysical flows. 
Ph.D. thesis, Massachusetts Institute of Technology, 146 pp. (also NCAR Cooperative Thesis 

LORENZ, E. N. 1953 The interaction between a mean flow and random disturbances. Tellus 5, 

LORENZ, E. N. 1960 Maximum simplification of the dynamic equations. Tellus 12,243-254. 

MCWILLIAMS, J .  C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid 
Mech. 146, 2143. 

MCWILLIAMS, J. C. & CHOW, J. H. S. 1981 Equilibrium geostrophic turbulence I :  A reference 
solution in a beta-plane channel. J. Phys. Oceanogr. 11, 921-949. 

MERILEES, P. E. & WARN, H. 1975 On energy and enstrophy exchanges in two-dimensional 
non-divergent flow. J. Fluid Mech. 69, 62-30, 

MOHRINQ, W. 1978 Acoustic energy flux in nonhomogeneous ducts. J. Acoust. Soc. Am. 64, 
1186-1 189. 

ORR, W. M’F. 1907 The stability or instability of the steady motions of a perfect liquid and of 
a viscous liquid. Parts I and 11. Proc. R .  Irish A d .  A 27, M 8 ;  69-138. 

PEDLOSKY, J. 1962 Spectral considerations in two-dimensional incompressible flow. Tellus 14, 
125-132. 

PHILLIPS, 0. M. 1977 The Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press, 
336 pp. 

RHINES, P.  B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443. 

RHINES, P. B. 1977 The dynamics of unsteady currents. In The Sea, vol. 6 (ed. E. D. Goldberg, 

RHINES, P. B. 1979 Geostrophic turbulence. Ann. Rev. Fluid Meeh. 11, 401441. 

SADOURNY, R. 1985 Quasi-geostrophic turbulence: An introduction. In Turbulence and Predicta- 
bility in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghil, R. Benzi & G. Parisi), 
Corso LXXXVIII, pp. 133-158. North-Holland. 

1417-1423. 

NCAR/CT-69). 

238-250. 

I. N. McCave, J. J. O’Brien & J. H. Steele), pp. 189-318. Wiley 



Rossby waves and turbulence in a zonal jet 509 

SADOURNY, R.  & BASDEVANT, C. 1985 Parameterization of subgrid scale barotropic and baroclinic 
eddies in quasi-geostrophic models : Anticipated potential vorticity method. J. Atmos. Sci. 42, 

SALMON, R. 1978 Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. 
Astrophys. Fluid Dyn. 10, 25-52. 

SALMON, R. 1980 Baroclinic instability and geostrophic turbulence. Ceophys. Astrwphys. Fluid 
Dyn. 12, 167-211. 

SALMON, R. 1982 Geostrophic turbulence. In Topics in Ocean Physics (ed. A. R. Osborne & 
P. Malanotte-Rizzoli), Corso LXXX, pp. 30-78. North-Holland. 

SHEPHERD, T. G. 1984 Rossby waves and two-dimensional turbulence in the presence of a 

large-scale zonal jet. Ph.D. thesis, Massachusetts Institute of Technology, 393 pp. 

SHEPHERD, T. G. 1985 Time development of small disturbances to plane Couette flow. J. A t m s .  
Sci. 42, 1868-1871. 

SHEPHERD, T. G. 1987a Non-ergodicity of inviscid two-dimensional flow on a beta-plane and on 
the surface of a rotating sphere. J. Fluid Mech. 184, 289-302. 

SHEPHERD, T. G. 1987 b A spectral view of nonlinear fluxes and stationary-transient interaction 
in the atmosphere. J. Atmos. Sci. 44, 1166-1178. 

SHEPHERD, T. G. 1987c Inhomogeneous two-dimensional turbulence in the atmosphere. In Proc. 
1986 European Turbulence Conference (ed. J. Mathieu & G. Comte-Bellot). Springer (to appear). 

TANQ, C.-M. & ORSZAG, S. A. 1978 Two-dimensional turbulence on the surface of a sphere. J. Fluid 
Mech. 87, 305-319. 

THOMSON, W. 1887 Stability of fluid motion - rectilineal motion of viscous fluid between two 
parallel planes. Phil. Mag. 24, 188-196. 

TUNQ, K. K. 1983 Initial-value problems for Rossby waves in a shear flow with critical level. 
J. Fluid Mech. 133, 443469. 

1353-1363. 

17-2 


