
A&A 470, 815–820 (2007)
DOI: 10.1051/0004-6361:20077382
c© ESO 2007

Astronomy
&

Astrophysics

Rossby waves in “shallow water” magnetohydrodynamics

T. V. Zaqarashvili1,2, R. Oliver1, J. L. Ballester1, and B. M. Shergelashvili2,3

1 Departament de Física, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
e-mail: [temury.zaqarashvili;ramon.oliver;dfsjlb0]@uib.es

2 Georgian National Astrophysical Observatory (Abastumani Astrophysical Observatory), Kazbegi Ave. 2a, Tbilisi 0160, Georgia
e-mail: temury@genao.org

3 Instituut voor Theoretische Fysica, K.U. Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
e-mail: Bidzina.Shergelashvili@fys.kuleuven.be

Received 1 March 2007 / Accepted 25 May 2007

ABSTRACT

Aims. The influence of a toroidal magnetic field on the dynamics of Rossby waves in a thin layer of ideal conductive fluid on a rotating
sphere is studied in the “shallow water” magnetohydrodynamic approximation for the first time.
Methods. Dispersion relations for magnetic Rossby waves are derived analytically in Cartesian and spherical coordinates.
Results. It is shown that the magnetic field causes the splitting of low order (long wavelength) Rossby waves into two different
modes, here denoted fast and slow magnetic Rossby waves. The high frequency mode (the fast magnetic Rossby mode) corresponds
to an ordinary hydrodynamic Rossby wave slightly modified by the magnetic field, while the low frequency mode (the slow magnetic
Rossby mode) has new and interesting properties since its frequency is significantly smaller than that of the same harmonics of pure
Rossby and Alfvén waves.
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1. Introduction

The large-scale dynamics of planetary atmospheres is mostly de-
termined by Rossby waves. These waves arise because of the
latitudinal variation of the Coriolis parameter and are widely
used in the geophysical context (Pedlosky 1987; Gill 1982).
Rossby waves also can be of importance in solar and stel-
lar astrophysics, particularly in a thin layer called tachocline
that is believed to exist below the convection zone of solar-
like stars (Spiegel & Zahn 1992; Gough & McIntyre 1998;
Garaud 2002; Cally 2003; Miesch 2005). The thickness of the
tachocline is very small compared to the stellar radius and,
therefore, the ordinary shallow water approximation can be
easily applied, but the hydrodynamic (HD) Rossby wave the-
ory needs to be modified in the presence of a large-scale hor-
izontal magnetic field. The influence of the horizontal mag-
netic field on the large-scale fluid dynamics has been studied
in the context of the Earth’s liquid core using the two dimen-
sional β-plane approximation in Cartesian coordinates by Hide
(1966). However, to study the plasma dynamics over spatial
scales comparable to the stellar radius requires to consider spher-
ical coordinates. Magnetohydrodynamic (MHD) “shallow wa-
ter” equations for the solar tachocline have been recently pro-
posed by Gilman (2000) and the dynamics of various “shallow
water” MHD waves in the solar tachocline have been studied
by Schecter et al. (2001) (see also De Sterck 2001). Large-scale
Rossby-like waves are absent from their consideration as the
f -plane approximation has been used. However, we should men-
tion the recent work by Leprovost & Kim (2007), which studies
the influence of shear, Rossby, and Alfvén waves on the trans-
port properties of MHD turbulence on a β-plane in the solar
tachocline.

Here we use the MHD “shallow water” equations in or-
der to study the influence of a toroidal magnetic field on the
dynamics of Rossby waves in a rotating sphere. First we use
Cartesian coordinates and derive the dispersion relation of mag-
netic Rossby waves in the β-plane approximation. Next, we
solve the problem in spherical geometry, thus deriving the prop-
agation properties of magnetic Rossby waves with a wavelength
comparable to the radius of the sphere.

2. Basic considerations

Let us consider a thin layer of ideal conductive fluid on a sphere
rotating with angular velocity Ω0. The layer is taken as an in-
compressible fluid with a rigid base and a free upper surface and
is permeated by a horizontal uniform magnetic field. The un-
perturbed uniform thickness of the layer, H0, is smaller than the
stratification scale height and so the medium density can be con-
sidered uniform. This system differs from the classical shallow
water system only by the presence of the magnetic field. Then,
the “shallow water” MHD equations in an inertial frame can be
written as (Gilman 2000; Schecter et al. 2001)

∂t B + (V·∇)B = (B·∇)V, (1)

∂tV + (V·∇)V =
1

4πρ
(B·∇)B − g∇H, (2)

∂tH + ∇·(HV) = 0, (3)

where V and B are the horizontal velocity and magnetic field,
H is the thickness of the layer, ρ is the fluid density, ∇ is the
horizontal gradient and g is the gravitational acceleration. The
divergence-free condition for the magnetic field, which arises
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from the requirement that B is parallel to the upper free surface,
takes the form (Gilman 2000)

∇·(HB) = 0. (4)

A general feature of the large-scale dynamics in such a system
is that it does not significantly depend on the chosen geome-
try (flat, spherical or cylindrical) for equatorially trapped waves
(Longuet-Higgins 1965; Pedlosky 1987). However, the consid-
eration of spherical geometry is desirable for waves with wave-
length comparable to the size of the sphere. Therefore, we first
study the problem in the simpler Cartesian coordinates and then
turn to the more complicate spherical geometry.

3. Cartesian coordinates

We consider a local Cartesian coordinate frame (x, y, z) in which
the x axis is directed towards the rotation, the y axis is directed
towards the north pole of the sphere and the z axis is directed
vertically.

Let us next consider that the unperturbed magnetic field,
(Bx, 0, 0), is directed along the x axis. Then, after linearizing
Eqs. (1)–(3) their components are written in the rotating frame as

∂ux

∂t
− f uy =

Bx

4πρ
∂bx

∂x
− g∂h
∂x
, (5)

∂uy
∂t
+ f ux =

Bx

4πρ

∂by
∂x
− g∂h
∂y
, (6)

∂bx

∂t
= Bx

∂ux

∂x
,
∂by
∂t
= Bx

∂uy
∂x
, (7)

∂h
∂t
+ H0

(
∂ux

∂x
+
∂uy
∂y

)
= 0, (8)

where ux, uy, bx and by are the velocity and magnetic field pertur-
bations, h = H−H0 is the perturbation of the layer thickness and
f = 2Ω0 sinΘ is the Coriolis parameter (withΘ the latitude). For
zero magnetic field this system transforms into the HD shallow
water equations (Pedlosky 1987).

Differentiation with respect to time of Eqs. (5)–(6) and using
Eqs. (7)–(8) gives

∂2ux

∂t2
− f
∂uy
∂t
= v2A
∂2ux

∂x2
+C2

0

(
∂2ux

∂x2
+
∂2uy
∂x∂y

)
, (9)

∂2uy
∂t2
+ f
∂ux

∂t
= v2A
∂2uy
∂x2
+C2

0

(
∂2ux

∂x∂y
+
∂2uy
∂y2

)
, (10)

where vA = Bx/
√

4πρ and C0 =
√
gH0 are the Alfvén and surface

gravity speeds, respectively.
We now perform a Fourier analysis of the form exp (−iωt +

ikxx) and after some algebra obtain

∂2uy
∂y2
+

⎡⎢⎢⎢⎢⎣ω2

C2
0

− k2
x −

k2
xv

2
A

C2
0

− ω2 f 2

C2
0(ω2 − k2

xv
2
A)
− kxω

(ω2 − k2
xv

2
A)

∂ f
∂y

⎤⎥⎥⎥⎥⎦
×uy = 0. (11)

When vA = 0 this equation governs the linear dynamics of vari-
ous kinds of waves (namely Poincaré, Kelvin and Rossby waves)
in the HD shallow water approximation (Pedlosky 1987), but the
inclusion of the magnetic field leads to the modification of the
wave modes.

At a given latitude, Θ0, one can perform a Taylor expansion
of the Coriolis parameter and retain the lowest order latitudinal
variation of f , which leads to (Pedlosky 1987; Gill 1982)

f = f0 + βy, (12)

where the parameter

β =
2Ω0

R0
cosΘ0 (13)

(with R0 the radius of the sphere) plays a major role in the so
called β-plane approximation. Away from the equator βy � f0
and therefore from Eq. (11) we readily get

∂2uy
∂y2
+

⎡⎢⎢⎢⎢⎣ω2

C2
0

− k2
x −

k2
xv

2
A

C2
0

− ω2 f 2
0

C2
0(ω2 − k2

xv
2
A)
− kxωβ

(ω2 − k2
xv

2
A)

⎤⎥⎥⎥⎥⎦
×uy = 0. (14)

Thus, we can now perform a Fourier analysis of the form
exp (ikyy), which gives the dispersion relation

ω4 − [2k2
xv

2
A + f 2

0 +C2
0(k2

x + k2
y)]ω

2 − C2
0kxβω

+k2
xv

2
A[k2

xv
2
A +C2

0(k2
x + k2

y)] = 0. (15)

This dispersion relation contains high and low frequency
branches, which respectively correspond to magneto-gravity
waves and to Alfvén and Rossby waves. Note that for β = 0 this
dispersion relation transforms into that of f -plane MHD “shal-
low water” waves (Schecter et al. 2001).

We next concentrate in the case of small Alfvén speed, i.e.
vA � C0, such as corresponds to the interiors of solar-like
stars. Then, the high frequency branch of Eq. (15) contains
Poincaré waves, whose dispersion relation is (Pedlosky 1987)

ω2 = f 2
0 + C2

0(k2
x + k2

y), (16)

while the low frequency branch yields the dispersion relation

ω2 +
kxβ

k2
x + k2

y

ω − k2
xv

2
A = 0. (17)

Note that the dispersion relation (17) was first obtained by Hide
(1966) in the two dimensional case (see also Acheson & Hide
1973). This formula reveals some interesting properties. For
short wavelengths, i.e. large kx, the last term in Eq. (17) dom-
inates over the second one, which leads to the solution

ω = ±kxvA. (18)

This is the dispersion relation of pure Alfvén waves unaf-
fected by rotation and propagating eastward and westward in the
toroidal direction.

Nevertheless, for large-scale motions pure Alfvén waves no
longer exist and instead we have Rossby waves modified by the
magnetic field. For large wavelengths, i.e. small kx, Eq. (17) has
two different solutions. For the high frequency solution one can
easily recover the dispersion relation of HD Rossby waves,

ω ≈ − kxβ

k2
x + k2

y

· (19)

For the low frequency solution we have the dispersion relation

ω ≈ kxv
2
A(k2

x + k2
y)

β
· (20)
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Hence, the horizontal magnetic field causes the splitting of
ordinary large-scale Rossby waves into two modes propagat-
ing in opposite directions. The high frequency mode has the
properties of HD Rossby waves and can be called fast mag-
netic Rossby mode. But, additionally, a lower frequency mode
arises whose frequency is significantly smaller than that of pure
Alfvén and Rossby waves at the same spatial scale. Due to its
small frequency it can be called slow magnetic Rossby mode
(“hydromagnetic-planetary waves” in Acheson & Hide 1973).
The phase speed of the mode in the x direction depends on both
the Alfvén speed and the β parameter,

vph =
ω

kx
=
v2A(k2

x + k2
y)

β
· (21)

The phase speed is different from Alfvén and Rossby phase
speeds, which again indicates the different nature of this
wave mode.

Numerical dispersion diagrams for the general dispersion
relation (15), i.e. without assuming vA � C0, are presented
in Fig. 1. The upper panel displays all wave solutions and
shows that Poincaré waves are almost not affected by the mag-
netic field. The middle panel is a detailed view of the low
frequency branch of the dispersion diagram. It is clearly seen
that for small scales, i.e. for large kx, magnetic Rossby waves
tend to the Alfvén wave solutions (dashed lines), whereas for
small kx, i.e. for large spatial scales, the two modes behave differ-
ently: the solution with higher negative frequency corresponds
to HD Rossby waves (triangles) and the low frequency solu-
tion, which differs from pure Rossby and Alfvén wave dispersion
curves, is a new wave mode. Finally, the bottom panel shows
the perfect fit between the solutions to Eq. (15) and the approx-
imate dispersion relation for magnetic Rossby waves (circles),
Eqs. (19)–(20), in the limit of small kx.

The present consideration in Cartesian coordinates gives the
basic properties of magnetic Rossby waves. Nevertheless, to
study the dynamics of Rossby waves with spatial scales com-
parable to the radius of the sphere it is desirable to use spherical
coordinates. Therefore, in the next section we study the same
problem in spherical coordinates (r, θ, φ).

4. Spherical coordinates

Let us consider an unperturbed toroidal magnetic field Bφ. Then,
the linearized form of Eqs. (1)–(3) can be rewritten in the rotat-
ing frame as

∂uθ
∂t
− 2Ω0 cos θuφ +

g

R0

∂h
∂θ
− Bφ

4πρR0 sin θ
∂bθ
∂φ

+2
Bφ

4πρR0

cos θ
sin θ

bφ = 0, (22)

∂uφ
∂t
+ 2Ω0 cos θuθ +

g

R0 sin θ
∂h
∂φ
− bθ

4πρR0

∂Bφ
∂θ

− Bφ
4πρR0 sin θ

∂bφ
∂φ
− Bφ

4πρR0

cos θ
sin θ

bθ = 0, (23)

∂h
∂t
+

H0

R0 sin θ
∂

∂θ
(sin θuθ) +

H0

R0 sin θ

∂uφ
∂φ
= 0, (24)

∂bθ
∂t
− Bφ

R0 sin θ
∂uθ
∂φ
= 0, (25)

Fig. 1. a) Dispersion diagram of “shallow water” waves in the presence
of a horizontal magnetic field. The two extreme upper and lower so-
lutions correspond to Poincaré waves, which are almost unaffected by
the magnetic field, whereas the two low frequency modes are magnetic
Rossby waves. b) Low frequency branch of the dispersion diagram.
c) Low frequency, large wavelength part of the dispersion diagram. In
all panels solid lines correspond to the solutions to Eq. (15), triangles
to the HD Poincaré and Rossby waves (i.e. in the absence of magnetic
field), dashed lines to pure Alfvén waves (whose dispersion relation
is given by Eq. (18)) and circles to the approximate analytical formu-
las (19)–(20). The parameters used to obtain the dispersion diagram are
kyR0 = 1, vA/C0 = 0.005 and Θ = 45◦.

∂bφ
∂t
+

1
R0

∂

∂θ

(
uθBφ

)
= 0, (26)

where uθ, uφ, bθ and bφ are the velocity and magnetic field per-
turbations, while h = H − H0 is the perturbation of the layer
thickness. For zero magnetic field this system transforms into
the HD shallow water equations (Longuet-Higgins 1965).

We assume the unperturbed magnetic field to be
Bφ = B0 sin θ, which means that it has a maximal value at
the equator and tends to zero at the poles. We take a sinusoidal
dependence of the magnetic field on θ for two main reasons: first,
the sinusoidal profile simplifies the calculation in the spherical
symmetry and second, the toroidal magnetic field seems to be
located mainly in low latitudes due to the eruption of magnetic
flux at these latitudes. Let us next introduce the new variables
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ûθ = sin θuθ, ûφ = sin θuφ, b̂θ = sin θbθ, b̂φ = sin θbφ. Then,
Eqs. (22)–(26) take the form:

∂ûθ
∂t
− 2Ω0 cos θûφ +

g

R0
sin θ
∂h
∂θ
− B0

4πρR0

∂b̂θ
∂φ

+2
B0

4πρR0
cos θb̂φ = 0, (27)

∂ûφ
∂t
+ 2Ω0 cos θûθ +

g

R0

∂h
∂φ
− B0

4πρR0

∂b̂φ
∂φ

− 2B0

4πρR0
cos θb̂θ = 0, (28)

sin2 θ
∂h
∂t
+

H0

R0
sin θ
∂ûθ
∂θ
+

H0

R0

∂ûφ
∂φ
= 0, (29)

∂b̂θ
∂t
− B0

R0

∂ûθ
∂φ
= 0, (30)

∂b̂φ
∂t
+

B0

R0
sin θ
∂ûθ
∂θ
= 0. (31)

We now perform a Fourier analysis of the form exp (−iωt + isφ)
and define

ω

2Ω0
= λ,

4Ω2
0R2

0

gH0
= ε,

v2A
4Ω2

0R2
0

= α2,
gh

2Ω0R0
= η,

cos θ = µ, − sin θ
∂

∂θ
= (1 − µ2)

∂

∂µ
= D. (32)

After some algebra we get

−λ2ũθ − µλûφ − λDη + s2α2ũθ + 2α2µDũθ = 0, (33)

−λ2ûφ − µλũθ + λsη − 2sα2µũθ − α2sDũθ = 0, (34)

ελ(1 − µ2)η − Dũθ − sûφ = 0, (35)

where ũθ = iûθ.
Substitution of ûφ from Eq. (34) into Eqs. (33) and (35)

leads to

−λ2ũθ + µ
2ûφ − (λD + sµ)η + s2α2ũθ + 2α2µDũθ

+µs
α2

λ
(D + 2µ)ũθ = 0, (36)

ελ(1 − µ2)η − Dũθ +
s
λ

(µũθ − sη) +
α2

λ2
s2(D + 2µ)ũθ = 0. (37)

After obtaining η from Eq. (37) and substituting it into Eq. (36)
we get a single equation for ũθ,

(λD + sµ)

{
1

s2 − ελ2(1 − µ2)

[
λD − sµ − α

2

λ2
s2λ(D + 2µ)

]}
ũθ

−(λ2 − µ2)ũθ + s2α2ũθ + 2α2µDũθ

+µs
α2

λ
(D + 2µ)ũθ = 0. (38)

In the approximation for slowly rotating stars (such as in the
solar case),

ε

s2
=

4Ω2
0R2

0

gH0s2
� 1 (39)

and Eq. (38) takes the form

[(λD + sµ)(λD − sµ) − α
2

λ
s2(λD + sµ)(D + 2µ)

−s2(λ2 − µ2) + s4α2 + 2α2s2µD + µs3 α
2

λ
(D + 2µ)]ũθ = 0. (40)

The approximation (39) implies that magneto gravity waves (i.e.
magnetic Poincaré and Kelvin waves) are neglected from our
consideration, thus retaining only magnetic Rossby waves.

Now, Eq. (40) can be rewritten as[
∂

∂µ
(1 − µ2)

∂

∂µ
− s2

1 − µ2
+ n(n + 1)

]
ũθ = 0, (41)

if

n(n + 1) = − sλ + 2s2α2

λ2 − α2s2
· (42)

Equation (41) is the associated Legendre differential equation
(Abramowitz & Stegun 1964), whose typical solutions are the
associated Legendre polynomials,

ũθ = Ps
n(cos θ) (43)

if n is an integer (when n is not integer the solutions are the
associated Legendre functions).

Equation (42) defines the dispersion relation for spherical
magnetic Rossby waves,

n(n + 1)
(
λ

s

)2

+
λ

s
+ α2[2 − n(n + 1)] = 0, (44)

where n plays the role of the poloidal wavenumber.
In the non-magnetic case, i.e. for α = 0, the dispersion rela-

tion reduces to the HD Rossby mode solution (Longuet-Higgins
1965). But the magnetic field causes the splitting of the ordinary
HD mode into fast and slow magnetic Rossby modes as in the
rectangular case (it is worth recalling that Rossby-type waves
are sometimes called planetary waves, which is probably a more
appropriate name for the spherical geometry).

Before studying the dispersion diagram, let us first consider
the properties of wave modes for particular values of n. For
purely toroidal propagation, i.e. when n = 0, we have only one
mode with the dispersion relation

ω

s
= − v

2
A

Ω0R2
0

· (45)

In the weak magnetic field limit this mode has significantly
lower frequency than pure Rossby and Alfvén waves and
can be associated to the slow magnetic Rossby mode. Note,
that n = 0 mode is absent in non-magnetic spherical case
(Longuet-Higgins 1965).

For n = 1 we have only the fast magnetic Rossby mode,
which in this case is identical to the HD Rossby mode, with the
dispersion relation (Longuet-Higgins 1965)

ω

s
= −Ω0. (46)

For n > 1 we have both fast and slow magnetic Rossby modes.
In the weak magnetic field limit, i.e. for vA � 2Ω0R0, the dis-
persion relation for the fast magnetic Rossby mode is

ω

s
≈ − 2Ω0

n(n + 1)
(47)
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Fig. 2. Numerical dispersion diagram of spherical “shallow water”
waves in the presence of a toroidal magnetic field. The dependence of
the wave frequency on the poloidal wavenumber n is plotted here for
α2 = 0.036. The continuous and dashed lines are the solutions for the
slow and fast magnetic Rossby modes, respectively. The dotted line is
the HD Rossby mode, which is obtained from Eq. (44) with α2 = 0.

(which is similar to HD Rossby mode, Longuet-Higgins 1965)
and the dispersion relation for the slow magnetic Rossby mode is

ω

s
≈ − v2A

2Ω0R2
0

[2 − n(n + 1)]. (48)

Equations (47)–(48) show that the toroidal magnetic field causes
the splitting of ordinary HD Rossby waves into two different
modes propagating in opposite directions for n > 1. Such split-
ting is also present for all non-integer values of n smaller than 1.
Thus, the general behaviour of the wave modes in spherical
geometry is similar to that of the Cartesian case. There are
some differences, however. First, the dispersion relation of mag-
netic Rossby waves in a Cartesian frame depends on the lat-
itude; second, magnetic Rossby waves are dispersive with re-
spect to the toroidal wavenumber, kx, in Cartesian geometry (see
Eqs. (19)−(20)), while they are not dispersive with respect to the
toroidal wavenumber, s, in spherical geometry.

Numerical solutions to the general dispersion relation (44)
are presented in Fig. 2. The dependence of the wave frequency
on the poloidal wavenumber n is plotted here for α2 = 0.036.
The continuous and dashed lines are the solutions for slow and
fast magnetic Rossby modes, respectively. The dotted line is the
HD Rossby mode, which is obtained from Eq. (44) with α2 = 0.
It is clearly seen that for small scales, i.e. for large n, fast and
slow magnetic Rossby waves behave similarly and tend to the
Alfvén-like wave solutions, whereas for n < 3, i.e. for large spa-
tial scales, the two modes behave differently: the solution with
higher negative frequency corresponds to HD Rossby waves
(dashed line) and the low frequency (continuous line) solution,
which differs from pure Rossby wave dispersion curves, is a new
wave mode (see similar consideration by Hide 1966; Acheson &
Hide 1973). It must be mentioned that the value of the toroidal
wavenumber, s, does not influence the general behaviour of the
modes and that increasing s leads only to a linear increase of
the frequency,ω.

The frequency of particular harmonics depends on the
strength of the toroidal magnetic field. The frequency of the
s = 1, n = 2 harmonics of fast (dashed) and slow (continuous)
magnetic Rossby modes vs. the ratio of the Alfvén speed to the
rotation rate, α = vA/2Ω0R0, are plotted in Fig. 3. The fast and
slow modes have lower frequency than the angular velocity, Ω0,
for α < 0.5 and α < 0.8 respectively. When α goes to zero,
the fast mode frequency tends to 0.3Ω0, while the slow mode
frequency tends to zero. Therefore, the slow magnetic Rossby

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
s=1, n=2

v
A
/2Ω

0
R

0

ω
/Ω

0

Fig. 3. Frequencies of the s = 1, n = 2 harmonics of fast (dashed)
and slow (continuous) magnetic Rossby modes vs. the ratio of the
Alfvén speed to the rotation rate, α = vA/2Ω0R0. When α tends to zero,
then the slow magnetic Rossby mode has a very low frequency, while
the fast mode frequency tends to ∼0.3Ω0.

mode may have very low frequency depending on the ratio of
the Alfvén speed to the angular velocity.

5. Discussion

The recently developed “shallow water” magnetohydrodynamic
approximation (Gilman 2000) has stimulated further study of
MHD wave modes in this system. While ordinary “shallow wa-
ter” modes (Poincaré, Kelvin, Rossby) have been intensively
studied in the geophysical context (Pedlosky 1987; Gill 1982),
the inclusion of a horizontal magnetic field enriches the wave
spectrum. Magneto-gravity and Alfvén modes in the “shallow
water” MHD system have been recently studied by Schecter
et al. (2001). However, large-scale modes (those with stellar spa-
tial dimensions; for example, Rossby waves) were absent from
their consideration due to the use of the f -plane approxima-
tion. On the contrary, here we emphasize the large-scale behav-
ior of wave modes in the “shallow water” system. Considering
the β-plane approximation and, especially, spherical coordinates,
enables us to study the wave dynamics on spatial scales cor-
responding to stellar dimensions. Particular attention is paid to
the slow magnetic Rossby mode, expressed by Eqs. (20), (45),
(48). The presence of this mode in rotating magnetised fluids
was first pointed out by Hide (1966) using the two dimensional
Cartesian β-plane approximation in the context of the Earth’s
liquid core. Here we derive analytical dispersion relations of this
mode in both Cartesian and spherical “shallow water” MHD sys-
tems. In the low Alfvén speed limit (compared to the surface
gravity speed), this mode has a smaller frequency than that of
pure Alfvén and Rossby modes and consequently may have new
interesting consequences in large-scale stellar dynamics.

However, this consideration needs some modifications when
applied to concrete astrophysical situations; for example, to the
solar tachocline. It is believed that the tachocline is divided
in two parts: the inner “radiative” layer with a strongly stable
stratification and the outer “overshoot” layer with a weakly sta-
ble stratification (Gilman 2000). The subadiabatic stratification
provides negative buoyancy in both layers, which leads to the
so-called “reduced gravity”, gr (Gilman 2000; Schecter et al.
2001). Therefore, the developed theory of fast and slow magnetic
Rossby waves should be modified for tachoclines of solar-like
stars using the reduced gravity instead of the ordinary one. Then
the results can be quite different for the radiative and overshoot
layers due to the significant difference between the reduced
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gravity there. Schecter et al. (2001) estimated the reduced grav-
ity in the radiative layer as 500−1.5× 104 cm s−2 and in the over-
shoot layer as 0.05−5 cm s−2. Then the surface gravity speed C0
is higher than the Alfvén speed in the radiative layer, but not in
the overshoot one, where both speeds may have similar values
(Schecter et al. 2001). Therefore, the results obtained here can
be easily applied to the radiative part of tachocline, but not to
the overshoot one. The exception is the dispersion relation (15),
which can be applied to both parts of the tachocline.

It must be also mentioned that differential rotation, typical of
the tachocline dynamics, is absent from our consideration. The
goal of this paper is to study the influence of the magnetic field
on the large-scale dynamics of a “shallow water” system in gen-
eral. However, differential rotation should be taken into account
in more realistic models of wave dynamics in the tachocline.

6. Conclusions

The influence of a toroidal magnetic field on the dynamics
of Rossby waves in a thin layer of ideal conductive fluid on
a rotating sphere is studied in the shallow water MHD approxi-
mation for both, Cartesian and spherical geometries. It is shown
that in both cases the magnetic field causes the splitting of low
order (long wavelength) ordinary Rossby wave harmonics into
two modes (here called magnetic Rossby modes). The high
frequency mode (the fast magnetic Rossby mode) corresponds
to ordinary HD Rossby waves slightly modified by the magnetic
field, while the low frequency solution leads to a new mode (the

slow magnetic Rossby mode) with interesting properties. Low
order (with respect to the poloidal wavenumber) harmonics of
the slow magnetic Rossby mode have lower frequency than the
pure Rossby and Alfvén wave frequencies of the corresponding
harmonics.
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