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ABSTRACT

Published observations of subinertial ocean current variability show that the vertical structure is often well

described by a vertical mode that has a node of horizontal velocity at the bottom rather than the traditional

node of vertical velocity. The theory of forced and free linear Rossby waves in a continuously stratified ocean

with a sloping bottom and bottom friction is treated here to see if frictional effects can plausibly contribute to

this phenomenon. For parameter values representative of the mesoscale, bottom dissipation by itself appears

to be too weak to be an explanation, although caution is required because the present approach uses a linear

model to address a nonlinear phenomenon. One novel outcome is the emergence of a short-wave, bottom-

trapped, strongly damped mode that is present even with a flat bottom.

1. Introduction

Study of observed subinertial ocean current variabil-

ity shows a tendency for vertical structures not to

fit a simple single baroclinic modal structure. For ex-

ample, Wunsch (1997) showed that in many cases, both

the barotropic and first baroclinic modes are present

and that they are sometimes phase locked in the sense

that enhances surface currents and thus weakens near-

bottom currents (and sometimes in the opposite sense

as well). Sanchez de la Lama et al. (2016, hereinafter

SLF16) more recently summarized observed vertical

structures using empirical orthogonal functions that

very often have weak near-bottom velocities. Fur-

ther, they showed that the variability is often well-

represented by nontraditional (‘‘rough bottom’’)

baroclinic modes that have zero horizontal velocity at

the bottom. Indeed, Samelson (1992) shows that a cor-

rugated bottom can lead to weakened near-bottom

currents, and SLF16 point out that a uniformly sloping

bottom (e.g., Rhines 1970) can, depending on propaga-

tion direction and wave scale, also lead to vertical

structures with weakened deep currents—hence the

expression ‘‘rough-bottom modes.’’ However, SLF16

show that there is not a clear statistical relationship

between observed bottom roughness and modified

modal structure, a finding that LaCasce (2017) ratio-

nalizes in terms of the ubiquity of bottom slopes.

It seems timely to ask whether bottom friction might

play a role in weakening deep ocean currents. For ex-

ample, simple two-layer linear wave problems show

that friction decreases deep currents at low frequency

(e.g., Allen 1984), and various numerical calculations

of nonlinear flows demonstrate that bottom friction

also affects the vertical structure of eddy processes

(e.g., LaCasce and Brink 2000; Arbic and Flierl 2004;

Trossman et al. 2017; Brink 2017). However, it is not

completely clear how bottom friction will affect tradi-

tional baroclinic modes per se. The present study thus

addresses the topic of how strongly bottom friction af-

fects baroclinic modal structures. The question is ap-

proached in the context of linear Rossby waves in a

continuously stratified ocean.

2. Methodology and a calculation

a. Formulation

The linear quasigeostrophic vorticity equation is
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where p is pressure, f is the Coriolis parameter, b is

the northward gradient of f, N is the buoyancy fre-

quency, and Q represents an unspecified potential vor-

ticity source. The (x, y, z) coordinates are eastward,
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northward, and vertical, while t is time. Subscripted

independent variables represent partial differentia-

tion. The equation is to be solved subject to a rigid

lid and (assuming infinitesimally thin turbulent

boundary layers) an Ekman compatibility surface

condition:

p
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52(ty0x 2 tx0y)f

21 at z5 0 , (2a)

where (t0
x, t0

y) is the wind stress vector. At the sloping

bottom, there is also an Ekman compatibility condition:

p
zt

N2
52axf21p

y
1ayf21p

x
2 r(p

xx
1 p

yy
)f22 at

z52h
0
, (2b)

where ax and ay are the bottom slopes in the x and y

directions, respectively (i.e., h 5 h0 1 axx 1 ayy, with

jaxxj, jayyj � h0), and r is the effective bottom resistance

coefficient. In the following, the bottom will often be

taken to be flat so that ax 5 ay 5 0.

b. Vertical modal solutions

The solution to (1) for free mode n is taken to have

the form

p5F
n
(z) exp[i(kx1 ly1v

n
t)] , (3)

so that [from (1)]
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The unforced boundary conditions are

F
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5 0 at z5 0 and (5a)
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where

G52axl1ayk2
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When the stratification is constant, N2 5N2
0 , the solu-

tion takes the simple form of

F
n
5 b cos (z

n
z) , (6a)
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where application of (5) leads to
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with
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Analytical approximate solutions to this problem are

detailed in sections 2d and 2e below. The modal func-

tions have the familiar property of no vertical gradient

(i.e., no vertical velocity) at the surface, while at depth,

higher modes have increasingly sinuous structure, but

always with the vertical velocity (hence Fnz) nonzero

at the top of the infinitesimal bottom boundary layer

(z 5 2h0) as long as G 6¼ 0, for example, in order to

accommodate Ekman pumping when r 6¼ 0. Thus, the

symmetry of the upper and bottom boundary conditions

is broken. Further, when bottom friction is nonzero, G,
zn, vn, and Fn are complex and wave phase is no longer

uniform in the vertical.

c. A nondimensional parameter

A scaling of the bottom boundary condition [(5b)]

helps reveal when frictional effects cease to be pertur-

bations and begin to revamp the wave modal structures.

Specifically, the time derivative in (2b) is estimated

with the inviscid barotropic Rossby wave frequency v0R

(the largest frequency, or shortest time scale, available

for any wavenumber pairing). Thus, a nondimensional

parameter quantifying the frictional effect is

R5
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f 2
(k2 1 l2) , (7)

where NB is the buoyancy frequency at the bottom

(z 5 2h0). This expression can be thought of as con-

sisting of two ratios. The first, r(h0v0R)
21, is the ratio of

the wave time scale to the barotropic spindown time,

a measure of the overall importance of bottom friction.

The remaining factors in (7) constitute a Burger number

for the wave, that is, the ratio of the natural vertical

scale in a stratified system (the deformation scale) to

the water depth. If the deformation scale is large rela-

tive to the water depth, frictional effects are distrib-

uted throughout the water column. If the deformation

scale is less than the water depth, frictional effects

will be trapped near the bottom. This interpretation

2210 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48

Unauthenticated | Downloaded 08/27/22 01:55 PM UTC



emphasizes that frictionally adjusted modal structures

depend on both the relative strength of damping and the

relative importance of the stratification at a given length

scale. Thus, forR� 1, modal structures are unperturbed

by bottom friction, but for R $ O(1), frictional effects

lead to substantial modal adjustments.

An expression similar to (7) can be derived by

multiplying (4a) by Fn and integrating over depth. The

result is

m2
n
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n dz5
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Comparing the two terms on the right-hand side, it is

found that frictional modification of modal structure

over a flat bottom becomes important when

R
I
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f 2
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becomesO(1), whereN2 is a depth average. While this

expression may not be as intuitive as that leading to

(7), it has the advantage of applying to arbitrary dis-

tributions of the stratification. This is a concern be-

cause the usefulness of (7) is questionable when NB is

extremely small, as is the case with an exponential

stratification.

At first, it may be unintuitive that the frictional effect

increases with stratification. After all, stratification in-

hibits the vertical velocity that is the messenger of

spindown in the water column. This is indeed the case,

but stronger stratification also leads to an increasing

tendency to trap any spindown processes closer to the

bottom. Further, stronger stratification, by trapping

spindown closer to the bottom, can inhibit near-bottom

horizontal flow and hence decrease bottom stresses.

Thus, since the bottom boundary condition [(5b)] deals

only with conditions very near the bottom, there is

no contradiction. Moreover, the frictional modifications

to the vertical modal structure often serve to decrease

wave damping, as will be seen below.

d. Asymptotics: Barotropic and bottom-trapped
modes

With constant N2 5 N2
0 , a solution to (4a) subject to

(5a) can take the form

F5 a cosh(gz) , (9a)

where

g5
N

0

f

�
k2 1 l2 2

bk

v

�1/2

(9b)

allows solutions for F that are either barotropic or

bottom intensified. [Choosing this hyperbolic cosine

form in (9a)—as opposed to a simple cosine form—is

somewhat arbitrary, since g is complex, but treating

the forms separately is thought to improve clarity.

This is equivalent to choosing Real(mn
2) , 0 in (4b).]

Substitution of (9a) into the bottom boundary condi-

tion in (5b) yields

v5
ir(k2 1 l2)

g tanh(gh
0
)

N2
0

f 2
. (10)

If stratification is weak, or if v falls near the inviscid

barotropicRossbywave resonance, jgh0j� 1, tanh(gh0)’
gh0, and (10) simply reduces to

v’
bk

k2 1 l2
1

ir

h
0

(11)

with no further approximations. This same form would

result from assuming at the outset that there is no

stratification.

On the other hand, for stronger stratification, Re(g)h0�
1, bottom trapping occurs and tanh(gh0) / 1. Thus, (10)

becomes

vg5 ir(k2 1 l2)
N2

0

f 2
, (12)

so that

05v2 2

�
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N2
0
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When R becomes large, the physically realizable (de-

caying) solution to (13) is then

v5 ir(k2 1 l2)1/2
N

0

f
. (14)

A physical interpretation of this scale is that it repre-

sents the inverse spindown time of a region having

vertical extent f [N0(k
2 1 l2)1/2]21.

e. Asymptotics: Baroclinic modes

Solutions to (4a) with constant stratification subject to

(5a) can be written in the form

F(z)5b cos (hz) , (15a)

where

h2 5
N2

0

f 2

�
bk

v
2 k2 2 l2

�
(15b)
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is a complex quantity. The form (15a) is equivalent to

choosingReal(mn
2). 0 in (4b). The parameterh takes on

discrete values in accord with the bottom boundary

condition, and so

v5
bk

k2 1 l2 1 f 2N22
0 h2

. (16)

For small R, an approximate solution is found by

seeking a perturbation around the r 5 0 values:

h(0) 5 nph21
0 , n5 1, 2, 3, . . . . (17)

Assuming small, O(R) corrections, the expansions

h’h(0) 1h(1) (18a)

and

v’v(0) 1v(1) (18b)

(where v(0) is the frictionless frequency) are used. Thus,

(5b) yields

i(v(0) 1v(1)) tan[(h(0) 1h(1)) h
0
]5

rN2
0

(h(0) 1h(1))f 2
(k2 1 l2)

(19)

and, after Taylor expansion and using tan (h(0)h0) 5 0,

h(1) ffi 2irN2
0 f

22h21
0 (k2 1 l2)(v(0)h(0))21 ; (20)

that is, the correction to the vertical trapping scale in-

creases with the square of scalar wavenumber, as might

be expected from (7). Using this form in (16) and ex-

panding h2 ’ h(0)2 1 2h(0)h(1) leads to the solution

v(1) 5
i2r(k2 1 l2)h21

0

k2 1 l2 1h(0)2
f 2

N2
0

, (21)

for small R (i.e., long waves or weak friction).

In the limit of large R, a similar expansion is carried

out for smallR21. In this case, we anticipate that interior

velocity near the bottom becomes weak (see section 2f

below) so that y / 0 at z 5 2h0. Thus,

h(0) 5 (2n2 1)p(2h
0
)21 for n5 1, 2, 3, . . . . (22)

Then, the correction (imaginary) frequency is

v(1) 5 i2
v(0)2h(0)2

rh
0

f 4

N4
0

"
(k2 1 l2)

 
k2 1 l2 1

f 2h2
0

N2
0

!#21

(23a)

and

h(1) 52iv(0)h(0)f 2[rN2
0h0

(k2 1 l2)]
21

(23b)

for large R.

f. Computed results

When there is no bottom friction, G is real and it is

straightforward to obtain the infinity of solutions for

Fn by solving (6c) for constant stratification. From a

practical standpoint, however, solutions of the form

(6a) with r 6¼ 0 raise computational difficulties because

solving (6c) involves searches in the complex plane,

such that there is sometimes a question as to whether

all of the desired roots have been found. For example,

it is usually easy to find the solution having the sim-

plest vertical structure, but then some higher-mode

solutions can be harder to isolate. A messier, but more

algorithmically certain, approach is to expand Fn in

terms of the complete set of inviscid, flat-bottom

baroclinic modes and thus replace (6) with an alge-

braic eigenvalue problem that is straightforward to

solve with readily available software.

For the case of constant N2 5 N0
2, the inviscid, flat-

bottom (where G 5 0) modes are

G
m
5 a

m
cos(mpzh21

0 ), where m5 0, 1, 2, . . . . (24)

It is also well known that analytical expressions for

G5 0modal structures can also be found for exponential

stratification:

N2 5N2
S exp(zz

21
S ) , and (25a)
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)1Y
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exp(0:5zz21
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(25b)

where J0, J1, Y0, and Y1 are Bessel functions, am is a

constant,

q
m
5 l

m
exp(0:5zz21

S ) , (25c)

qmB is qm evaluated at z5 2h0, and the multiple values

of lm are found by solving

05 J
0
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)Y

0
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exp(20:5h

0
z21
S )]

2Y
0
(l

m
)J

0
[l

m
exp(20:5h

0
z21
S )] . (25d)

In either case, the modes are normalized so that

15

ð0
2h0

G2
m dz . (26)
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The unforced problem for G 6¼ 0 is then solved by

expressing the solution in terms of the inviscid modes;

namely,

F
n
(z)5 �

L

m50

b
nm
G

m
(z) , (27)

where L is a suitably large integer (L 5 50 or more in

the following calculations), and the notation Fn antic-

ipates the multiple solutions to the problem. Multipli-

cation of (4a) by Gm, followed by vertical integration

and application of (5a) and (5b) then yields an alge-

braic eigenvalue problem for vn:

05 (v
n
2D

m
)b

nm
1 fG�

q

b
nq
E21

m G
m
(2h

0
)G

q
(2h

0
)

(28a)

(for n 5 1, 2, 3, . . . , L), where

D
m
5bkE21

m , (28b)

E
m
5 k2 1 l2 1 f 2c22

m , (28c)

and cm is the long gravity wave speed associated

with inviscid mode m. For example, for constant

stratification,

c
m
5N

0
h
0
(mp)21 (29a)

and for exponential stratification [(25a)],

c
m
5 2z

S
N

S
l21
m . (29b)

The problem in (28a) is solved using a MATLAB

function, and the eigenvalues and eigenvectors having

the largest absolute values of vn are saved. The first

three solutions are identified as v0, v1, and v2, and each

is associated with a set b0m, b1m, and b2m. Using these,

the frictional modal structures F0, F1, and F2 are readily

constructed.

A sample calculation with constant N2, a flat bottom,

and representative parameters illustrates the frictional

effects. Specifically, N2
0 5 2.58 3 1026 s22, h0 5 4500m,

l 5 2 3 1026m21, r 5 1 3 1024m s21, f 5 0.73 3
1024 s21, b 5 2 3 10211 (s m)21, and k is varied over a

wide range. The N2
0 is chosen so that c1 5 2.3m s21 in

(29a), while f and b are representative of 308 latitude.
Because r depends on the strength of total bottom

currents (including tides; e.g., Wright and Thompson

1983), it is not obvious what an appropriate deep-sea

value might be, but r 5 5 3 1024m s21 is commonly

used over the continental shelf (e.g., Chapman 1987),

and one might expect abyssal currents in most of the

ocean to be weaker than representative shelf condi-

tions. Hence the choice of r 5 1 3 1024m s21 for these

calculations.

Results of the calculation are summarized in the dis-

persion curves of Fig. 1. For small k, the right-hand

side of (2b) is small (i.e., the curl of the bottom stress

is small), so that frictional effects are weak, and the

modal structures (Fig. 2) are essentially Gn, that is, the

forms found in the complete absence of bottom fric-

tion. The smaller imaginary part of the modal structure

FIG. 1. Frequency vs east–west wavenumber k for Rossby waves

with constant N2. (a) Real part of frequency vR and (b) imaginary

part of frequency vI (in red, with asymptotic expressions as blue or

green broken lines). The blue curves are for modes that are baro-

tropic or bottom intensified (section 2d), and the green curves are

for baroclinic modes (section 2e). Expressions for small k are

dotted lines and for large k are dashed lines. Computed with

N0
2 5 2.58 3 1026 s 22, h 5 4500m, l 5 2 3 1026 m21, r 5 1 3

1024 m s21, f 5 0.73 3 1024 s21, and b 5 2 3 10211 (s m)21. Note

that the vertical axes have different scales in the two panels.
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gives rise to phase shifts as a function of the vertical.

The real part of frequency vR is essentially the inviscid

result, while the imaginary part of frequency vI (Fig. 1b)

behaves as one would expect from a perturbation ex-

pansion for small r (see sections 2d and 2e). However, as

k increases, vI increases for two of the modes, and then

vI for two modes decreases for larger k. At the same

time, vI for the other mode abruptly begins to increase

dramatically for k . 0.7 3 1024m21. What is happen-

ing? Examination of the modal structures for large k

(Fig. 3) clarifies the situation. Two of the modes adjust

so that there is a node in horizontal velocity near the

bottom; that is, they can be thought of as becoming

modes n 5 1/2 and n 5 3/2. The boundary condition

[(2b) or (5b)] is being met by having the bottom stress

become small even though r(k2 1 l2) is growing. This

sort of behavior, where a linear wave mode structure

adjusts so that the effect of bottom friction is minimized,

is not unusual in oceanographic problems (e.g., Allen

1984; Power et al. 1989; Brink 2006). On the other hand,

the wave mode that has damping increasing with k

has reached a state, for large k, that is strongly bottom

trapped (Fig. 3). With a large bottom velocity, there

is nothing to mitigate the growing r(k2 1 l2), and so

the wave damping grows strongly as k increases and

bottom trapping becomes more pronounced. In this

case, stratification increases the wave damping because

it leads to intensified (rather than weakened) near-

bottom currents. It is worth pointing out that this

bottom-trapping happens with a flat bottom.

The asymptotic expressions for the imaginary part

of frequency for barotropic or bottom-trapped modes

[(11) and (14)] are overplotted as blue broken lines in

Fig. 1b. The weak-friction limit in (11) is seen to repli-

cate the calculations quite well for k , 0.4 3 1024m21,

while the strong-friction limit (the blue dashed line for

vI . 1.5 3 1027 s21) captures only the right magnitude

and trend in this example.

The asymptotic results for baroclinic modes [(21) and

(23)] are overplotted as green broken lines in Fig. 1b.

They both provide excellent agreement with the direct

calculations in the appropriate R range. Note that three

of the expressions for wave damping rates—(11), (14),

and (21)—do not depend on wave orientation, although

the largeR, higher-mode expression in (23) does depend

on orientation through v(0).

Up to this point, all results have been for the case of

constant N2. One might ask whether the results change

substantially when one uses a more realistic, surface-

intensified exponential stratification. The inviscid baro-

clinic modes in this case obey (25), and we choose zS 5
350m (following SLF16) and N2

S 5 7.75 3 1025 s22 in

order to obtain a first internal mode gravity wave speed

of 2.3m s21 as in the case with constantN2. The resulting

modal structures (such as the dashed line in the left

panel of Fig. 5) have larger amplitudes near the surface

and relatively constant values in the lower portions of

the water column where N2 is small. After solving (28),

Fig. 4 is obtained for the imaginary part of the fre-

quency. We emphasize that the only difference between

this and the calculations leading to the lower panel of

FIG. 2. Long-wave vertical modal structures for conditions as in

Fig. 1 and k5 2.13 1027 m21. The wave frequencies are as follows:

v0 (solid curves)5 1.04 3 10 26 1i2.223 1028 s21, v1 (dashed)5
4.15 3 1029 1 i1.78 3 10210 s21, and v2 (dash–dotted) 5 1.04 3
1029 1 i4.49 3 10211 s21. Blue lines indicate the real part of the

modal structure, and red lines indicate the accompanying

imaginary parts.

FIG. 3. Short-wave vertical modal structures for conditions as in

Fig. 1 and k5 1.53 1024 m21. The wave frequencies are: v0 (solid

curves) 5 7.01 3 1028 1 i3.033 3 1027 s21, v1 (dashed) 5 1.32 3
10271 i7.933 10211 s21, andv2 (dash-dot)5 1.213 10271 i5.543
10210 s21. Blue lines indicate the real part of themodal structure, and

red lines indicate the accompanying imaginary parts.
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Fig. 1 is the use of exponential stratification. Two

points stand out. First, the long-wave damping is much

weaker (note the changed vertical scale) with expo-

nential stratification than in the case for constant

stratification. This is not surprising in light of the rel-

atively weak (compared to the upper water column)

bottom expression of the baroclinic modes with weak

deep stratification. Second, the transition between

inviscid modal structures (for longer waves) and the

bottom- or surface-intensified large-friction (short

wave) modes occurs at roughly the same wavelengths.

For example, the long-wave barotropic wave’s flat

vI curve begins to bend at about k5 33 1025m21 with

constant N2 (Fig. 1) and around k5 43 1025m21 with

the exponential stratification (Fig. 4). Similarly, the

first baroclinic mode reaches its maximum vI at

k 5 6.4 3 1025m21 for constant N2 (Fig. 1) and at

6.2 3 1025m21 for exponential stratification (Fig. 4).

We conclude from this insensitivity that the vertical

structure of the density stratification does not sub-

stantially affect either 1) our conclusions about the

importance of bottom friction for changing modal

structures or 2) the utility of the RI parameter [(8)]. [It

is evidently more appropriate to use a depth-averaged

N2 than the actual near-bottom value (7).]

The results presented here are fairly representative

of many calculations (not detailed here), executed

with both constant and exponential N2, in that, in all

cases, most wave modes evolve toward a state with

weak near-bottom velocities and with decreasing

wave damping as r(k21 l2) increases. However, in every

calculation, there is always one wave mode that is

increasingly bottom intensified and where the damping

becomes large. In some calculations, the bottom-

trapped wave mode is continuous with the inviscid

barotropic mode as k varies (e.g., Fig. 4), but in some

cases (such as Fig. 1), the bottom-trapped mode is con-

tinuous with one of the small-r baroclinic modes. Also,

for a given set of parameters, the transition from the

nearly inviscid modal structure toward the strongly

frictional structures tends to occur at roughly the same

wavenumber range (e.g., where k’ 0.73 1024m 21 and

RI5 3.7 for Fig. 1b) for each of the three gravest modes.

This transition occurs where the deformation scale

[’2pf/(N0k)5 4100m here] is comparable to the ocean’s

4500-m depth. Finally, even with a sloping bottom (ax

and/or ay 6¼ 0), the results do not change qualitatively:

for large r(k2 1 l2), there is a single, strongly damped,

bottom-trapped wave mode while all other modes adjust

so that near-bottom velocity is small.

3. Forced solutions

Assuming that variables are all horizontally harmonic

in space,

p5P(z, t) exp[i(kx1 ly)] , (30a)

Q5 Q̂(z, t) exp[i(kx1 ly)] , and (30b)

(tx0, t
y
0)5 (t̂x0, t̂

y
0) exp[i(kx1 ly)] , (30c)

the forced problem in (1) and (2) can be stated as

Q̂52(k2 1 l2)P
t
1 ibkP1 f 2

�
P
zt

N2

�
z

, (31a)

�
P
zt

N2

�
52if21(t̂y0k2 t̂x0l) at z5 0 , and (31b)

�
P

zt

N2

�
5 [rf22(k2 1 l2)1 if21(ayk2axl)]P at

z52h
0
. (31c)

Similarly, the problem for the vertical modes can be

expressed for general N2 as (4a) and (5) so that the

(generally complex) free mode frequency for mode n is

given by

v
n
5

bk

k2 1 l2 1 f 2m2
n

. (32)

It is straightforward to show that the vertical modes are

orthogonal according to

d
nm

5

ð0
2h0

F
n
F
m
dz2

fG

bk
F
n
(2h

0
)F

m
(2h

0
) , (33)

FIG. 4. Imaginary part of frequency for conditions as in Fig. 1, but

the stratification is exponential (N2
S 5 7.753 1025 s22; zS5 350m).

Note the change in vertical scale relative to Fig. 1b.
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where dnm is the Kronecker delta (51 for n5m and50

for n 6¼m). Bear in mind that the function G is complex

when r 6¼ 0, and even when r 5 0, it can be either

positive or negative. Note that the normalization im-

plied by this condition reduces to a more traditional

form [(26)] when G 5 0, that is, when the bottom is flat

and there is no dissipation.

To proceed, multiply (31a) by Fn and (4a) by f2Pt and

subtract and integrate over depth. After applying bound-

ary conditions [(5a) and (5b) and (31b) and (31c)], the

following expression is obtained:

if (bk)21
F
n
(0)(kt̂y0 2 lt̂x0)1 (bk)21

ð0
2h0

F
n
Q̂ dz5

ð0
2h0

(iP2v21
n P

t
)F

n
dz2 f (bk)21GF

n
(2h

0
)

3 [iP(2h
0
, t)2v21

n P
t
(2h

0
, t)] . (34)

Now, expand the solution for P in terms of themodes Fm:

P(z, t)5�
m

u
m
(t)F

m
(z) , (35)

and use the orthogonality condition in (33) to obtain

(bk)21[ib
n
f (kt̂y0 2 lt̂x0)2 d

n
]5v21

n u
nt
2 iu

n
, (36a)

where

b
n
52F

n
(0) , (36b)

d
n
(t)5

ð0
2h0

F
n
Q̂ dz . (36c)

A numerical example illustrates the sensitivity of

the forced problem to the imposed scales. We consider

a case with exponential stratification [(25a)] with

N2
S 5 7.75 3 1025 and zS 5 350m. In addition, r 5 1 3

1024m s21, f 5 7.3 3 1025 s21, b 5 2 3 10211 (m s)21,

and h0 5 4500m. With scales representative of

weather systems, k 5 l 5 3.14 3 1026m21 (Fig. 5, left),

modal structures Fn are indistinguishable from the in-

viscid case Gn, and b0 5 21.49 3 1022 1 i5.21 3
1025m21/2 and b1525.413 10221 i4.323 1025m21/2.

With scales representative of midocean eddies at 308N
(Chelton et al. (2007), results are hardly changed: for

k 5 l 5 2.1 3 1025m21 (not shown), modal structures

Fn are virtually indistinguishable from the inviscid

case and b0 5 21.49 3 1022 1 i3.46 3 1024m21/2 and

b1 5 25.40 3 1022 1 i2.82 3 1024m21/2. These largely

unperturbed modal structures argue strongly that, for

the ocean mesoscale, bottom friction cannot account

for weakened near-bottom velocities as found by

SLF16 (a similar conclusion would be reached even

for r 5 5 3 1024 m s21). For short scales, approaching

the submesoscale, frictional effects become pro-

nounced (Fig. 5, right): when k 5 l 5 1.05 3 1024m21,

b0 5 25.87 3 1024 1 i7.42 3 1025m21/2 and b1 5
25.36 3 1022 2 i2.81 3 1025m21/2. For these short

scales, the frictional modal modification is large [in ac-

cord with (8b)], and the formerly barotropic mode

is bottom intensified so that b0 becomes two orders

of magnitude smaller than for the larger-scale exam-

ples. On the other hand, the short-scale baroclinic

modes are adjusting toward zero bottom velocity

even though the surface amplitude hardly changes;

hence, Real (b1) is largely unchanged. Further, the

largest damping of these three examples occurs at in-

termediate length scales (k 5 l 5 2.1 3 1025m21),

where vI1 5 i2.34 3 1029 s21. When the horizontal

length scale is smaller (k 5 l 5 1.05 3 1024m21), ve-

locities near the bottom for baroclinic modes are be-

coming smaller so that damping is smaller (vI15 i9.843
10211 s21). It thus seems likely that, in the open ocean,

modal properties are not strongly affected by bottom

friction until very short (less than around 100 km)

wavelengths are reached.

It is now straightforward to use (36) to compute the

ocean’s response to a wind stress of the form

t̂x 5Aeivt, t̂y 5 0: (37)

Sample results, for a 48-day wind forcing period [chosen

because Brink (1989) showed that observed tempera-

ture fluctuations were driven remotely by the wind at

this period where baroclinic Rossby waves are not

available], are shown in Fig. 6. The character of the so-

lutions does not change greatly until periods are long

enough (order a year or more) to allow near-resonant

excitation of baroclinic Rossby modes. For large spatial

scales (Fig. 6, left), the response is nearly barotropic

and dissipative effects are extremely faint. The veloc-

ity shear in the upper 600m is consistent, through

the thermal wind equation, with the wind driving

a temperature response in the upper thermocline. For

shorter spatial scales (Fig. 6, right), the pressure re-

sponse is confined to the upper 400m (i.e., a deforma-

tion scale) of the water column, and, being surface

intensified, the frictional effect is again negligible.
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Frictional effects become more obvious at lower fre-

quencies, where differences in r clearly affect response

amplitude.

One might ask whether there is really any benefit to

be had by expanding the solution to (31) in terms of

the frictional vertical modes Fn(z) [(4) and (5)]. After

all, one could solve the system by expanding in terms

of the flat-bottom, inviscid modes Gn(z). Comparing

solutions using the two approaches, we find that con-

vergence requires the same number of vertical modes

using either approach. The advantage of the frictional/

sloping bottom modes lies in (36a), where one simply

solves a sequence of uncoupled ordinary differential

equations.When the solution is expanded in terms of the

inviscid modes, the equivalent of (36a) includes fric-

tional coupling among all the modes. Solving such a

system of coupled differential equations for anything

except the simplest functional forms of wind stress

would be tedious indeed.

4. Discussion

One might ask to what extent the above results are

relevant to actual oceanographic conditions. Specifi-

cally, can frictional effects realistically account for

the tendency for many observed subinertial ocean cur-

rent variations to have an n 5 1/2 structure (SLF16)?

After all, bottom friction, at some level, is ubiquitous

in the ocean, and it would often not entail a sensitivity

to wave propagation angle relative to bottom slope. It

is, of course, a stretch to apply the present linear results

to ocean currents that are known to be nonlinear, but

the attempt nonetheless is made. The results in the

previous section argue strongly that, for the ocean me-

soscale, bottom friction alone cannot account for the

SLF16 modal modification, even if a presumably too-

large friction coefficient of 5 3 1024m s21 is applied.

For substantially shorter wavelengths (i.e., the ocean

submesoscale), the modal structures do adjust to have

near-zero bottom velocities for the baroclinic modes,

FIG. 5. Modal structures for the two gravestmodeswith r5 13 1024m s21, f5 7.33 1025 s21,b5 23 10211 (m s)21,

h05 4500m, and exponential stratification (N2
S 5 7.753 1025 s22; zS5 350m). The solid lines are the gravestmode,

and the dashed lines are the next (first baroclinic) mode. Blue is the real part, and red is the imaginary part. The

modes are normalized according to (32). (left) Here, k 5 l 5 3.143 1026 m21. The red lines are indistinguishable

from the vertical axis. (right) Here, k 5 l 5 1.05 3 1024 m21.
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as expected (Fig. 5). It thus seems that bottom friction by

itself is unlikely to distort wave modal structures in the

open ocean for the most energetic (mesoscale) eddy

length scales. However, this conclusion should be

treated as tentative, since it is based entirely on linear

physics, while it is likely that nonlinearity plays a sub-

stantial role in the actual ocean (e.g., Chelton et al.

2007). Certainly, it has been demonstrated that linear-

izing about the mean vorticity field associated with a

steady flow leads to a modification of modal structures

that can either enhance or weaken near-bottom veloci-

ties (Killworth et al. 1997). Further, other studies (e.g.,

Trossman et al. 2017; LaCasce 2017) show that the

presence of a sloping or irregular bottom, or of bottom

friction, can lead to surface-intensified flow. In contrast

to midoceanic conditions, frictional effects in shallower

water are relatively more important [as measured by

r/(vh0)], and stratification is generally stronger in the

upper few hundred meters than at abyssal depths. Our

analysis suggests that, for water depths shallower than a

few hundred meters, bottom friction is clearly expected

to affect both linear wave (e.g., Brink 2006) and non-

linear eddy (e.g., Brink 2017) structures.

Perhaps the more unexpected result here is the de-

velopment of the strongly bottom-trapped, strongly

damped mode at short horizontal length scales. A

bottom-intensified inviscid mode is of course also found

in the presence of a sloping bottom (Rhines 1970), but

bottom trapping with a flat bottom was not anticipated.

Thus, the near-bottom surface quasigeostrophic (SQG;

e.g., Held et al. 1995) phenomenology has been broad-

ened. When the mode is strongly bottom trapped, it

is unlikely to be stimulated by a surface wind stress

(see section 3), but it could still be readily excited in an

initial value problem, in cases with a body forcing, or in

problems involving flow over varying bottom topogra-

phy. Since the bottom-trapped mode is strongly damped,

it is most likely to be found close to where it is excited.

FIG. 6. Pressure response for wind forcing at a 48-day period. Blue curves are the real part of pressure, and red

curves are the imaginary part (although the red curves are almost indistinguishable from the vertical axis in both

cases). Computed for r5 13 1024 m s21, f5 7.33 1025 s21, b5 23 10211 (m s)21, h0 5 4500m, and exponential

stratification (N2
S 5 7.753 1025 s22; zS5 350m). Shown are (left) k5 l5 3.143 1026m21, and (right) k5 l5 1.053

1024m21.
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