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1 Introduction

The construction and physical understanding of 4d black hole solutions in supersymmetric

theories with negative cosmological constant is relevant for a number of developments in

high energy physics. One can try to analyze such solutions in their own right as string

theory ground states and understand black hole thermodynamics [1–9] and microscopic

degeneracy [10–13], guided by the AdS/CFT correspondence. In this sense black holes

are the best test ground for the fundamental principles of quantum gravity, and therefore

the knowledge of all possible black hole solutions in a given theory can be regarded as a

first step in the programme of solving this theory on a quantum level. Alternatively, these

gravitational systems provide non-trivial asymptotically AdS backgrounds with holographic

duals that exhibit a rich structure and a wide range of applications in field theory and

condensed matter systems, see e.g. [14–19].
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In the present paper we address the question of how to find generic AdS black hole

solutions in theories with U(1) gauge fields and scalars that arise in the framework of gauged

supergravity. Such solutions will be labeled by a set of conserved charges, corresponding to

the global symmetries of the system — in four dimensions these are the mass, NUT charge,

angular momentum, electric and magnetic charges of the U(1) gauge fields, and possible

scalar hair. Unlike asymptotically flat black holes which only have spherical horizons,

solutions in AdS can be further distinguished by their horizon topology [20]. In the compact

case the horizons can be Riemann surfaces of arbitrary genus, while noncompact horizons

correspond for example to black brane solutions.

There have been numerous partial results on the topic in the last decade. Due to the

lack of electromagnetic duality in the electrically gauged theories that are usually consid-

ered,1 the various classes of solutions that were found look considerably different depending

on the types of charges switched on. The known classes of electric solutions include both

extremal and thermal, static and rotating solutions [21–24], where in the BPS limit the

known solutions are necessarily rotating [25, 26] with constant scalars. The available mag-

netic black holes2 can instead be BPS only in the static limit [28] (with the exception of

one hyperbolic rotating solution [29]) with nonconstant scalars, see also [30, 31].3 Their

non-BPS and thermal generalizations were also known only with vanishing angular momen-

tum [34–37]. We show that all these seemingly disjoint classes in fact fall inside a single

general solution, once we allow not only for rotation and electric and magnetic charges, but

also for NUT charge. This extra freedom allows us to find a large parameter space of black

hole solutions in one of the possible models (with prepotential F = −iX0X1) and gives

strong hints on how to tackle the same problem with more complicated scalar manifolds.

We also discuss an alternative but complementary approach to constructing solutions

which is based on dimensional reduction and the real formulation of special geometry, as

developed in [38]. Within this formalism, the problem of constructing stationary solutions

of 4D, N = 2 Fayet-Iliopoulos gauged supergravity reduces to solving a particular three-

dimensional Euclidean non-linear sigma model (with potential). Previously this appraoch

has been used to construct static black hole solutions [34, 36], whereas in this paper we are

interested in rotating solutions and the procedure is adapted accordingly. As an application,

we present the new rotating black hole solutions of the F = −iX0X1 model within this

formalism, thus providing a useful consistency check.

The plan of the paper is as follows. We briefly present the Lagrangian and equations

of motion of the theory at the end of this section. Section 2 contains a general discussion of

the universal structure of black holes based on the Carter-Plebański metric [39, 40], relating

it to various examples existing in the literature. In the same section we comment on the

difference between over- and under-rotating extremal solutions in AdS, and we explain how

to choose different horizon topologies. In section 3 we study the theory with prepotential

1Note that restoring the duality only rotates electric and magnetic charges, without changing the types

of black hole classes, thus the discussion remains true, upto redefinition of the meaning of electric and

magnetic charges.
2Dyonic AdS black holes were constructed recently in [27].
3See [32, 33] for black hole solutions of this type in theories with nontrivial hypermultiplets.
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F = −iX0X1 and find a general class of nonextremal black holes with angular momentum

and magnetic charges. We discuss the thermodynamics and physical properties of these

solutions, showing a new type of limit leading to noncompact horizons with finite area. In

section 4, these solutions are extended to allow for NUT- and electric charges, however the

NUT charge will not be allowed to take arbitrary values. We also show how the solutions

can be written in terms of harmonic functions and special geometry quantities and how

in the limit of vanishing gauging a class of known solutions to ungauged supergravity [41]

is recovered. We end the main discussion of the paper with some general comments and

suggestions in section 5. Some of the useful tools and techniques we used to obtain our main

results are relegated to the appendices. In appendix A we consider supersymmetric rotating

attractors, showing that all asymptotically flat under-rotating attractors are precisely half-

BPS (in [43] they were shown to be at least quarter-BPS). In appendix B we give more

details about the real formulation of special geometry.

Note added. During the write-up of our work, ref. [44] appeared, where charged rotating

solutions of the same model were presented.

1.1 Lagrangian and equations of motion

A detailed description of notations and conventions of abelian N = 2 gauged supergravity

can be found in [45]. In the context of black hole physics, such models are also discussed

in [28, 30, 31, 46], and we refer the reader to those papers for a complete introduction.

The most general bosonic Lagrangian of N = 2 abelian Fayet-Iliopoulos (FI) gauged

supergravity is given by4

e−1L =
1

2
R−gi̄∂

µzi∂µz̄
̄+IΛΣ(z, z̄)F

Λ
µνF

µν|Σ+
1

2
RΛΣ(z, z̄)ǫ

µνρσFΛ
µνF

Σ
ρσ−g2V (z, z̄) , (1.1)

with Λ,Σ = 0, 1 . . . , nV and i, j = 1, . . . , nV , where nV is the number of vector multiplets.

The imaginary and the real part of the period matrix NΛΣ (IΛΣ and RΛΣ), as well as the

metric on the scalar moduli space gi̄ and the scalar potential V , depend on the particular

vector multiplet model. The complex scalars zi are written in terms of the holomorphic

symplectic sections (XΛ, FΛ). All these quantities can be specified uniquely just with a

single holomorphic function, F (X), the prepotential. Therefore specifying the prepotential

is equivalent to defining the full Lagrangian.

The Einstein equations following from (1.1) read

−
(

Rµν −
1

2
gµνR

)

= gµνg
2V (z, z̄) + gµν∂

σzi∂σ z̄
̄gi̄ − 2gi̄∂(µz

i∂ν)z̄
̄ +

−IΛΣgµνF
Λ
ρσF

ρσ|Σ + 4IΛΣF
Λ
µαFν

α|Σ , (1.2)

while the equations of motion for the scalar fields zi are given by

gi̄∂µ(e∂
µz̄ ̄)+e

∂gik̄
∂z̄ ̄

∂µz̄ ̄∂µz̄
k̄+e

∂IΛΣ
∂zi

FΛ
ρσF

ρσ|Σ+
e

2

∂RΛΣ

∂zi
ǫµνρσFΛ

µνF
Σ
ρσ−eg2

∂V

∂zi
= 0 , (1.3)

4We use the convention Fµν = 1

2
(∂µAν − ∂νAµ) for the field strengths. Our signature is mostly plus,

and ǫ0123 = −ǫ0123 = 1.
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and the Maxwell equations for the vector fields AΛ
ν are

∂µ(eF
µν |ΣIΣΛ +

e

2
ǫµνρσFΣ

ρσRΛΣ) = 0 . (1.4)

The requirement of an asymptotic AdS4 geometry fixes the values of the scalar fields at

infinity. Indeed, AdS4 corresponds to an extremum of the scalar potential, yielding the

asymptotic attractor condition

∂V

∂zi

∣

∣

∣

∣

∞

= 0 , ⇔ ξΛDiX
Λ
∣

∣

∞
= 0 , (1.5)

where DiX
Λ is the Kähler covariant derivative of the coordinates XΛ with respect to zi.

The constants ξΛ determine which linear combination ξΛA
Λ is used to gauge a U(1) sub-

group of the SU(2) R-symmetry. In what follows, we shall use gΛ ≡ gξΛ, with g the gauge

coupling constant appearing in (1.1).

2 Universal structure of rotating black holes

This section is devoted to showing that all known rotating black holes in matter-coupled

N = 2 gauged supergravity in four dimensions have a universal metric structure. It turns

out that in all cases the metric can be cast in the form

ds2 = −f(dt+ ωydy)
2 + f−1

[

v

(

dq2

Q
+

dp2

P

)

+ PQdy2
]

, (2.1)

where Q(q) and P (p) are polynomials of fourth degree respectively in the variables q (radial

variable) and p (function of the angular variable θ). The warp factors f , v, ωy are more

general functions of q and p. We start now with the examples and finish the section by

commenting on some novel general features of this metric, such as the difference between

over- and under-rotating solutions and the relation between the function P (p) and the

choice of horizon topology.

2.1 Carter-Plebański solution

The metric and U(1) field strength of the Carter-Plebański solution [39, 40] of minimal

gauged supergravity are respectively given by

ds2 = − Q(q)

p2 + q2
(dτ − p2dσ)2 +

p2 + q2

Q(q)
dq2 +

p2 + q2

P (p)
dp2 +

P (p)

p2 + q2
(dτ + q2dσ)2 , (2.2)

F =
Q(p2 − q2) + 2Ppq

(p2 + q2)2
dq ∧ (dτ − p2dσ) +

P(p2 − q2)− 2Qpq

(p2 + q2)2
dp ∧ (dτ + q2dσ) , (2.3)

where the quartic structure functions read

P (p) = α− P2 + 2np− εp2 + (−Λ/3)p4 ,

Q(q) = α+ Q2 − 2mq + εq2 + (−Λ/3)q4 . (2.4)

Here, Q, P and n denote the electric, magnetic and NUT-charge respectively, m is the mass

parameter, while α and ε are additional non-dynamical constants.
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By making the coordinate transformation

τ = At+By , σ = Ct+Dy , AD −BC = 1 , (2.5)

Eq. (2.2) can be cast into the form (2.1), where

v = Q(A− p2C)2 − P (A+ q2C)2 , f =
v

p2 + q2
, (2.6)

and

ωy =
1

v

[

Q(A− p2C)(B − p2D)− P (A+ q2C)(B + q2D)
]

. (2.7)

We see that there is actually more than one way to write (2.2) as a fibration (2.1) over

a three-dimensional base space. A simple choice would be for instance A = D = 1,

B = C = 0, such that

v = Q− P , ωy =
Qp2 + Pq2

P −Q
.

2.2 Rotating magnetic BPS black holes, prepotential F = −iX0X1

Our second example is the family of BPS magnetic rotating black holes in the model with

prepotential F = −iX0X1, constructed in [29].

This model has just one complex scalar τ . The symplectic sections in special coordi-

nates are vT = (1, τ,−iτ,−i). The Kähler potential, metric and vector kinetic matrix are

respectively of this form:

e−K = 2(τ + τ̄) , gτ τ̄ = ∂τ∂τ̄K = (τ + τ̄)−2 , (2.8)

N =

(

−iτ 0

0 − i
τ

)

, (2.9)

thus requiring Reτ > 0. For our choice of electric gauging, the scalar potential is

V = − 4

τ + τ̄
(g20 + 2g0g1τ + 2g0g1τ̄ + g21τ τ̄) , (2.10)

which has an extremum at τ = τ̄ = |g0/g1|.
The metric of the BPS solution of [29] reads

ds2 =
p2 + q2 −∆2

P
dp2 +

P

p2 + q2 −∆2

(

dt+ (q2 −∆2)dy
)2

+
p2 + q2 −∆2

Q
dq2 − Q

p2 + q2 −∆2

(

dt− p2dy
)2

, (2.11)

with the structure functions

P = (1 +A)
E2l2

4
− Ep2 +

p4

l2
, Q =

1

l2

(

q2 +
El2

2
−∆2

)2

. (2.12)
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The upper parts of the (nonholomorphic) symplectic section (LΛ,MΛ) and the U(1) gauge

potentials are given by

L0 =
1

2

(

g1
g0

) 1

2

(

p2 + (q −∆)2

p2 + q2 −∆2

)
1

2

, L1 =
1

2

(

g0
g1

) 1

2 p2 + q2 −∆2 + 2ip∆

[(p2 + q2 −∆2)(p2 + (q −∆)2)]
1

2

,

AΛ = − Ep
√
−A

4gΛ(p2 + q2 −∆2)
(dt+ (q2 −∆2)dy) , Λ = 0, 1 .

The solution is thus specified by three free parameters A,E,∆. (The asymptotic AdS

curvature radius l is related to the gauge coupling constants by l−2 = 4g0g1). The new

rotating solution that we are going to describe in section 3 is a nonextremal deformation of

this solution. For ∆ = 0, the moduli are constant, and the solution reduces to a subclass

of (2.2), (2.3).

The metric (2.11) can again be written in the form (2.1), where now

v = Q− P , f =
v

p2 + q2 −∆2
, (2.13)

ωy =
P (q2 −∆2) +Qp2

P −Q
. (2.14)

2.3 Rotating black holes of Chong, Cvetič, Lu, Pope and Chow

Finally, there are three other examples of rotating black hole solutions, described in [22–24].

They all fit in the form of the metric (2.1). We report the details of the rotating black

holes with two pair-wise equal charges in SO(4)-gauged N = 4 supergravity constructed

in [22], since they are the most relevant for the new configurations described in section 3.

The metric, dilaton, axion and gauge fields read respectively

ds2 = −∆r

W
(dt− a sin2θdφ)2 +W

(

dr2

∆r
+

dθ2

∆θ

)

+
∆θ sin

2θ

W

[

adt− (r1r2 + a2)dφ
]2

,

eϕ1 =
r21 + a2 cos2θ

W
= 1 +

r1(r1 − r2)

W
, χ1 =

a(r2 − r1) cos θ

r21 + a2 cos2θ
,

A1 =
2
√
2ms1c1

[

adt− (r1r2 + a2)dφ
]

cos θ

W
,

A2 =
2
√
2ms2c2r1(dt− a sin2θdφ)

W
, (2.15)

where

∆r = r2 + a2 − 2mr + g2r1r2(r1r2 + a2) , ∆θ = 1− a2g2 cos2θ , (2.16)

W = r1r2 + a2 cos2θ , rI = r + 2ms2I , sI = sinh δI , cI = cosh δI .

Notice that the other scalar fields ϕ2, ϕ3, χ2, χ3 are set to zero in the truncation of [22].

Also, the two electromagnetic charges of the solution are carried by fields in U(1) subgroups

of the two SU(2) factors in SO(4) ∼ SU(2)×SU(2). In the case δ1 = δ2, the dilaton ϕ1 and

the axion χ1 vanish. Then, the solution boils down to the Kerr-Newman-AdS geometry

with purely electric charge if A1 is dualized, or to purely magnetic KNAdS if we dualize

– 6 –
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A2. Note also that, after dualizing A1, the model considered in [22] (their Lagrangian (52))

can be embedded into N = 2 gauged supergravity as well, by choosing the prepotential

F = −iX0X1 [47].

After the rescaling φ → ay and the redefinition q = r, p = a cos θ, the metric in (2.15)

can again be cast into the form (2.1), with (quartic) structure functions5

P = (1− g2p2)(a2 − p2) , Q = ∆r , (2.17)

and

v = Q− P , f =
v

W
, (2.18)

ωy =
Q(p2 − a2) + P (r1r2 + a2)

v
. (2.19)

As mentioned before, the solutions of [23, 24] can be recast in the form (2.1) too.

The reader can find the complete form of the solution in the original papers, here we

skip the details, since the procedure is straightforward and along the same lines as for the

previous ones.

We first rescale t → Ξt, φ → ay, and redefine q = r, p = a cos θ. Then, for the

single-charged black hole solution of [23] the structure functions are:

P = (1− g2p2)(a2 − p2) , Q = ∆r , (2.20)

v =
(

(1− g2p2)Q− V 2
r (a

2 − p2)
)

(1− g2p2) , (2.21)

f =
v

(H)
1

2 (p2 + q2)
, ωy =

2mqcP
√

1 + a2g2s2

vΞ
, (2.22)

while for the the two-charge rotating black holes of [24] the functions P , Q and v have the

same form as (2.20) (2.21), whereas

f =
v

(H1H2)
1

2 (p2 + q2)
, ωy =

2mrc1c2c̃1c̃2P

vΞ
. (2.23)

The simplicity of the geometry (2.1), and the fact that it is particularly suited for a for-

malism based on timelike dimensional reduction like the one used in [38], should help

constructing new nonextremal rotating black holes in matter-coupled gauged supergravity

with an arbitrary number of vector multiplets and general prepotentials. Unfortunately

even if the universal structure should remain the same, the equations of motion of gauged

supergravity depend crucially on the given model and cannot be solved in complete general-

ity, therefore we first restrict ourselves to considering the simplest interesting prepotentials

with a single vector multiplet.

5It should be emphasized that, like in the case of the Carter-Plebański solution, also here and in the

previous example there is an SL(2,R) gauge freedom that consists in sending t 7→ αt + βy, y 7→ γt + δy,

αδ − βγ = ±1, which preserves the form (2.1) of the metric while transforming the functions f , v and ωy.

This freedom can prove useful for the explicit construction of new solutions.

– 7 –
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2.4 Over- vs. under-rotating solutions

An interesting possibility arises in the extremal limit of rotating black holes (see

e.g. [48, 49]). One can sometimes find several extremal limits that correspond to either of

two physically different solutions, called over-rotating and under-rotating solutions. The

over-rotating solutions (a typical example here is the extremal Kerr black hole) have an

ergoregion, while the under-rotating (that resemble more the extremal Reissner-Nordström

spacetime) do not have ergoregions. Due to the AdS asymptotics, allowing for a wide range

of coordinate choices, it might not be easy to see immediately whether one can have both

types of extremal limits. The key to determining this is the following - one first needs to

write the black hole metric in asymptotically AdS coordinates, from which the asymptotic

time direction can be extracted. Once we know the correct Killing vector k = ∂t, we can

follow its behavior on the horizon. For an under-rotating solution, k is null, |k|2 = 0, while

an overrotating solution has |k|2 > 0, indicating the existence of an ergosphere.

To make the discussion more explicit, let us take the example of our metric (2.1),

ds2 = −f(dt+ ωydy)
2 + f−1

[

v

(

dq2

Q
+

dp2

P

)

+ PQdy2
]

, (2.24)

and assume for the sake of argument that this metric was already written in asymptotically

AdS coordinates6 (this means that in the limit q → ∞, one has ωy = 0, f ∼ q2, v ∼ q4, Q ∼
q4). In the extremal limit, with horizon at qh, Q(qh) = Q′(qh) = 0, the norm of the timelike

Killing vector is −f and f(qh) will be either vanishing or negative. Typically both these

possibilities will exist for some choice of parameters that determine the solution. This leads

to three distinct physical possibilities for the complete geometry:

• f(qh) < 0, only possible if ωy(qh) 6= 0: this corresponds to the over-rotating solution;

typically there is a lower bound for the angular momentum, |J | > Jmin (sometimes

Jmin = 0).

• f(qh) = 0 and ωy(qh) = 0: static attractor, leading to a static black hole, typically

resulting from the limit J = 0.

• f(qh) = 0, ωy(qh) 6= 0: under-rotating solution; typically there is an upper bound for

the angular momentum, 0 < |J | < Jmax.

The first two cases exist as extremal limits for all known rotating solutions with electro-

magnetic charges, while the third case is quite special and exists only in the presence of

nontrivial scalar fields. Under-rotating solutions are known to exist in ungauged supergrav-

ity with cubic prepotentials, [48, 49], but not for quadratic ones of the type F = −iX0X1.

We were not able to find explicit examples of under-rotating solutions in AdS among the

general solutions of the F = −iX0X1 discussed in the present paper, but their existence

in other models is an interesting possibility.

6Note that this in general will not be true for the explicit solutions we find and one needs to first perform

a coordinate change from the Plebański form of the metric to the asymptotically AdS form.
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Note that it is important to identify the asymptotic time to be able to properly distin-

guish between the two rotating cases, thus only an analysis of the near-horizon geometry

is in principle not enough, even if it gives good hints of the nature of the solution. In

particular, observe that the near-horizon geometries of the asymptotically flat under- and

over-rotating solutions are exactly the same (cf. (5.38) and (5.60) of [48]), but the former

are defined in the parameter space J2 < P2Q2, while the latter only for J2 > P2Q2, where

P and Q denote the magnetic and electric charge respectively.

2.5 Relation between P (p) and horizon topology

The horizon topology of the black hole with metric (2.1) can be studied through the

analysis of the function P (p). It is a quartic polynomial in p and here we choose to write

it in the form

P (p) = (p− pa)(p− pb)(p− pc)(p− pd) , (2.25)

where the roots pa,b,c,d depend on the explicit values of the physical parameters of the

metric (mass, NUT charge, electric and magnetic charges).

If we first look at the simple case without NUT charge, we have pairs of roots such

that pc = −pb, pd = −pb. In order for the induced metric on the horizon q = qh (where

Q(qh) = 0) to have the right signature, we need P ≥ 0. Let us first assume that the

polynomial P has four real roots with 0 < pa < pb. Then P is non-negative for |p| ≤ pa or

|p| ≥ pb. Choosing −pa ≤ p ≤ pa leads to a function P (p) that is bounded and vanishes

at two points, which are coordinate singularities. Such a function can be defined for

horizons with spherical topology, where the two singularities correspond to the north and

the south pole of the (possibly squashed) sphere. Choosing the other possibility, pb ≤ p,

leads to hyperbolic topology since the function P is not bounded anymore. The coordinate

singularity at p = pb is at the origin of the hyperbolic space in the standard hyperbolic

coordinates. One can see that in this case we have two disjoint types of black holes within

the same solutions, depending on whether we choose the compact or non-compact range.

The third main type of topology arises in the case when pa and pb are both complex, thus

P is everywhere positive and non-vanishing for real p - this corresponds to the flat topology

of black branes, where no coordinate singularities are encountered.

To summarize the three basic types of topology and their relation with P (p), the

possibilities are

• spherical topology: P (p) bounded and vanishing at two points, north and south pole.

• hyperbolic topology: P (p) unbounded and vanishing at a single point.

• flat topology: P (p) unbounded and never vanishing.

On top of those topologies and their quotients, we can have some new exotic situations

in some special cases. In section 3.3 we will show the situation where the two positive roots

of P coincide, pa = pb. It turns out choosing −pa ≤ p ≤ pa in this case leads to a sphere

with two punctures on the place of the two poles, i.e. the horizon has a cylindrical topology
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but finite area. Thus we are lead to think that whenever the function P (p) has a double

root the horizon is punctured at that point, which is no longer just a coordinate singularity.

The situation with NUT charge is even more complex, since then all four roots can be

a priori unrelated to each other. One can therefore have situations with pd < pc < pb = pa
for example, where the choice of bounded region for P (p) will lead to one pole and one

puncture and therefore to a bottle-shaped horizon topology. Even more exotic possibilities

would be three coinciding roots, a case which is yet to be analyzed carefully. In any case,

the three main types of horizon topologies continue to exist whether one allows for NUT

charge or not.

3 Thermal rotating solutions with magnetic charges

We shall now construct a nonextremal deformation of the BPS solution to the model with

prepotential F = −iX0X1, constructed in [29], and described in the previous section.

Inspired by the form (58) of [22], we can make the ansatz

ds2 = − Q

W

[

dt− p2dy
]2

+
P

W
[dt+ q1q2dy]

2 +W

(

dq2

Q
+

dp2

P

)

, (3.1)

with

Q = a0 + a1q + a2q
2 + a4q

4 , P = b0 + b1p+ b2p
2 + b4p

4 , (3.2)

and

W = q1q2 + p2 , qi = q −∆i , (3.3)

where ai, bi, and ∆i are constants. Eq (3.1) fits into the general form of the metric (2.1) with

v = Q− P , f =
v

W
, ωy = −1

v

[

Pq1q2 +Qp2
]

. (3.4)

It boils down to the BPS solution (2.11) when Q,P reduce to the functions (2.12), and

∆1 = −∆2 ≡ ∆. The ansatz for the gauge potentials and the scalars is

AΛ =
PΛ(dt+ q1q2dy)

W
p , τ = e−ϕ + iχ =

X1

X0
=

µW + iνp

q21 + p2
, (3.5)

where the constants PΛ are proportional to the magnetic charges, and µ, ν are real

constants.

In order to reduce the number of free parameters, we will first restrict to the case

∆1 = −∆2 ≡ ∆, and take µ, ν in the scalar to be the same as in the BPS case. We have

then checked that the equations of motion are satisfied if

a0 = b0 − a2∆
2 − ∆4

l2
+ 2l2

(

g20P
02 + g21P

12
)

, a1 =
2l2(g20P

02 − g21P
12)

∆
, (3.6)

b1 = 0 , b2 = −a2 − 2
∆2

l2
, b4 = a4 = 1/l2 ≡ 4g0g1 , (3.7)

µ =
g0
g1

, ν = 2
∆g0
g1

, (3.8)
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where we assumed that g0, g1 are positive. We can check that the scalar field τ has the

correct behaviour at infinity, since in this model the AdS4 asymptotic geometry is obtained

for τ∞ = g0/g1. If we fix the Fayet-Iliopuolos constants g0 and g1, the solution depends

on the five parameters b0, a2, ∆, P0, P1, thus two more parameters with respect to the

BPS solution. From the second equation of (3.6) we see that, in the case g0P
0 = g1P

1,

one has either a1 = 0 or ∆ = 0. If a1 vanishes, one can thus have equal charges and yet a

nontrivial scalar profile (i.e., ∆ 6= 0). This behaviour is qualitatively different from that of

the solutions constructed for instance in [22].

Notice that the form of the scalar field and of the vector field strengths is the same as

in the BPS case. The latter is recovered for

a2 = E− 2
∆2

l2
, b0 = (1 +A)

E2l2

4
, PΛ =

√
−AE

4gΛ
. (3.9)

A further generalization to a black hole with electric and NUT-charges (that would

include also the solutions of [29] and [22]) is straightforward, however, we postpone this

discussion to the next section and first elaborate on the physical properties and novelties

of the magnetic solutions. In this case, in fact, the absence of closed timelike curves makes

them interesting thermodynamical and gravitational systems.

3.1 Physical discussion

Following section 2.5, we assume P has four distinct roots, ±pa, ±pb, where 0 < pa < pb.

Then P is non-negative for |p| ≤ pa or |p| ≥ pb. Since we are interested in black holes with

compact horizon,7 we consider the range |p| ≤ pa, and set p = pa cos θ, where 0 ≤ θ ≤ π.

By using the scaling symmetry

p → λp , q → λq , t → t/λ , y → y/λ3 , ∆ → λ∆ , (3.10)

a0 → λ4a0 , a1 → λ3a1 , a2 → λ2a2 , b0 → λ4b0 , b2 → λ2b2 ,

one can set pb = l without loss of generality. If we define the rotation parameter j by

p2a = j2, this amounts to the choice

b0 = j2 , b2 = −1− j2

l2
, (3.11)

which implies

a0 = (j2 −∆2)

(

1− ∆2

l2

)

+ 2l2
(

g20P
02 + g21P

12
)

, a2 = 1− ∆2

l2
+

j2 −∆2

l2
. (3.12)

Taking also

t → t+
jφ

Ξ
, y → φ

jΞ
, Ξ ≡ 1− j2

l2
, (3.13)

7As already discussed, noncompact hyperbolic horizons can be obtained by restricting to the region

p ≥ pb and setting p = pb cosh θ, where 0 ≤ θ < ∞. In this case, the rotation parameter is defined by

p2b = j2. The resulting black holes represent generalizations of the solutions of minimal gauged supergravity

constructed in [50].
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the metric (3.1) becomes

ds2 = − Q

(q2 −∆2 + j2 cos2θ)

[

dt+
j sin2θ

Ξ
dφ

]2

+ (q2 −∆2 + j2 cos2θ)

(

dq2

Q
+

dθ2

∆θ

)

+
∆θ sin

2θ

(q2 −∆2 + j2 cos2θ)

[

jdt+
q2 + j2 −∆2

Ξ
dφ

]2

, (3.14)

where we defined

∆θ = 1− j2

l2
cos2θ .

From (3.6) it is clear that for g0P
0 = g1P

1 and ∆ = 0, the mass parameter a1 can be

arbitrary; this leads to the Kerr-Newman-AdS solution with magnetic charge and constant

scalar. On the other hand, for zero rotation parameter, j = 0, (3.14) boils down to the

static nonextremal black holes with running scalar constructed in [34].

The Bekenstein-Hawking entropy of the black holes described by (3.14) is given by

S =
π

ΞG
(q2h + j2 −∆2) , (3.15)

where G denotes Newton’s constant and qh is the location of the horizon, i.e., Q(qh) = 0.

In order to compute the temperature and angular velocity, we write the metric in the

canonical (ADM) form

ds2 = −N2dt2 + σ(dφ− ωdt)2 + (q2 −∆2 + j2 cos2θ)

(

dq2

Q
+

dθ2

∆θ

)

, (3.16)

with

σ =
Σ2 sin2θ

(q2 −∆2 + j2 cos2θ)Ξ2
, ω =

jΞ

Σ2
(Q−∆θ(q

2 + j2 −∆2)) , (3.17)

and the lapse function

N2 =
Q∆θ(q

2 −∆2 + j2 cos2θ)

Σ2
, (3.18)

where

Σ2 ≡ ∆θ(q
2 + j2 −∆2)2 −Qj2 sin2θ .

The angular velocity of the horizon is thus

ωh = ω|q=qh = − jΞ

q2h + j2 −∆2
, (3.19)

whereas at infinity one has

ω∞ =
j

l2
. (3.20)

The angular momentum computed by means of the Komar integral reads

J =
1

16πG

∮

S2∞

dSµν∇µmν , (3.21)

with m = ∂φ and the oriented measure

dSµν = (vµuν − vνuµ)
√
σ̂dθdφ .
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Here, u = N−1(∂t + ω∂φ) is the normal vector of a constant t hypersurface, v = (Q/(q2 −
∆2 + j2 cos2 θ))1/2∂q, and √

σ̂ =
Σsin θ

Ξ∆
1/2
θ

,

where σ̂ denotes the induced metric on a two-sphere of constant q and t. Evaluation

of (3.21) yields

J =
a1j

2Ξ2G
. (3.22)

The Komar mass

M = − 1

8πG

∮

S2∞

dSµν∇µkν (3.23)

has to be computed with respect to the Killing vector k = Ξ−1∂t [8], leading to

M = − 1

8πG
lim
q→∞

∫

dθdφ
sin θ

(j2 − l2)2
[

−2l2q3 − 2(j2 −∆2)l2q + l4a1 +O(q−1)
]

,

which is of course divergent. If we subtract the background with a1 = 0 and the same j

and ∆, we get the finite result

M = − a1
2Ξ2G

. (3.24)

Notice that the ‘ground state’ with a1 = 0 is a naked singularity (contrary to the case of

hyperbolic horizons addressed in footnote 7): the curvature singularity W = 0,8 is shielded

by a horizon if q2h −∆2 + j2 cos2θ > 0, which is equivalent to

2

l2
q2h + a2 > 1 +

j2

l2
.

Now, using Q(qh) = 0, this can be rewritten as
√

a22 −
4a0
l2

> 1 +
j2

l2
,

which can be easily shown to lead to a contradiction by using (3.12).

An alternative mass definition, that does not require any background subtraction,

is based on the Ashtekar-Magnon-Das (AMD) formalism [51, 52]. (Cf. also [23] for an

application to rotating AdS black holes and for more details). First of all we compute the

Weyl tensor of a conformally rescaled metric (in this case the conformal rescaling factor is

Ω = l/q), to leading order in q. This reads

C
t
qtq =

−g20P
02 + g21P

12

8∆g20g
2
1q

5
+O(1/q6) . (3.25)

Once we have this quantity, we can compute the mass associated to the Killing vector

K = Ξ−1∂t, given by

M =
1

8πG(4g0g1)3/2

∫

Σ
dΣaΩ

−1n̄cn̄dC
a
cbdK

b = −(g20P
02 − g21P

12)

4∆g0g1GΞ2
= − a1

2GΞ2
, (3.26)

so that the AMD procedure gives the same result as the regularized Komar integral.

8Note also that for W < 0, the real part of the scalar field becomes negative, so that ghost modes appear.

– 13 –



J
H
E
P
0
1
(
2
0
1
4
)
1
2
7

The magnetic charges πΛ are given by

πΛ =
1

4π

∮

S2∞

FΛ = −PΛ

Ξ
. (3.27)

Now that we have computed the physical quantities of our solution, a comment on the

number of free parameters is in order. We already mentioned that the metric (3.1) and the

gauge potentials and scalar (3.5) depend on five parameters. However, due to the scaling

symmetry (3.10), one of them is actually redundant and can be scaled away. There remain

thus four free parameters, for instance PΛ,∆, j, or alternatively πΛ,M, J . Our black holes

are therefore labelled by two indpendent magnetic charges, mass and angular momentum.

Note also that the parameter ∆ related to the running of the scalar is not independent of

the mass; for this reason our solution does not carry primary hair.

The product of the horizon areas, given formula (3.15), is

4
∏

α=1

Aα =
(4π)4

Ξ4

4
∏

α=1

(q2hα + j2 −∆2) =
(4π)4

Ξ4

4
∏

α=1

(qhα − q+)(qhα − q−) , (3.28)

with q± = ±
√

∆2 − j2. At this point the formulas resemble the ones given in the static

case, and we can use the procedure explained in [35]. We define

κ+ = q4+ +
a2
a4

q2+ +
a1
a4

q+ +
a0
a4

κ− = q4− +
a2
a4

q2− +
a1
a4

q− +
a0
a4

, (3.29)

so that the area product will be given by
∏4

α=1Aα = (4π)4κ+κ−/Ξ
4. Plugging in the

values of the coefficients and using the expression (3.22) for J we have

4
∏

α=1

Aα = (4π)4l2
(

(π0π1)2 + J2
)

. (3.30)

The charge-dependent term on the r.h.s. of (3.30) is directly related to the prepotential; a

fact that was first noticed in [35] for static black holes.

3.2 Thermodynamics and extremality

A quasi-Euclidean section of the metric can be obtained by analytically continuing t →
−itE. It turns out that this is regular at q = qh provided tE is identified modulo 4πΞ(q2h +

j2−∆2)/Q′
h, where Q

′
h denotes the derivative of Q w.r.t. q, evaluated at the horizon. This

yields the Hawking temperature

T =
Q′

h

4π(q2h + j2 −∆2)
. (3.31)

Using the expressions (3.15), (3.22) and (3.24) for the entropy, angular momentum and

mass respectively, as well as the fact that Q vanishes for q = qh, one obtains by simple

algebraic manipulations the Christodoulou-Ruffini-type mass formula

M2 =
S

4πG
+

πJ2

SG
+

π

4SG3
(π0π1)2 +

(

l2

G2
+

S

πG

)

(

(g0π
0)2 + (g1π

1)2
)

+
J2

l2
+

S2

2π2l2
+

S3G

4π3l4
. (3.32)
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Note that this reduces correctly to equ. (43) of [8] in the KNAdS case (g0π
0)2 = (g1π

1)2,

∆ = 0, a1 arbitrary.

Since S, J, πΛ form a complete set of extensive parameters, (3.32) represents also the

black hole thermodynamic fundamental relation M = M(S, J, πΛ). The quantities conju-

gate to S, J, πΛ are the temperature

T =

(

∂M

∂S

)

J,πΛ

=
1

8πGM

[

1− 4π2J2

S2
− π2

S2G2
(π0π1)2 + 4

(

(g0π
0)2 + (g1π

1)2
)

+
4SG

πl2
+

3S2G2

π2l4

]

, (3.33)

the angular velocity

Ω =

(

∂M

∂J

)

S,πΛ

=
πJ

MGS

[

1 +
SG

πl2

]

, (3.34)

and the magnetic potentials

ΦΛ =

(

∂M

∂πΛ

)

S,J,πΣ 6=Λ

=
1

MG

[

π

4SG2
π0π1ηΛΣπ

Σ +

(

l2

G
+

S

π

)

g2Λπ
Λ

]

, (3.35)

where

ηΛΣ =

(

0 1

1 0

)

,

and there is no summation over Λ in the last term. The obtained quantities satisfy the

first law of thermodynamics

dM = TdS +ΩdJ +ΦΛdπ
Λ . (3.36)

Furthermore, by eliminating M from (3.33)–(3.35) using (3.32), it is possible to obtain

four equations of state for the black holes (3.14). It is straightforward to verify that the

relation (3.33) for the temperature coincides with eq. (3.31), whereas (3.34) yields

Ω = ωh − ω∞ , (3.37)

with ωh and ω∞ given respectively by (3.19) and (3.20). It is thus the difference between

the angular velocities at the horizon and at infinity which enters the first law; a fact that

was stressed in [8] for the case of the KNAdS black hole.

The Hawking temperature (3.31) vanishes in the extremal case, when qh is at least a

double root of Q. The structure function Q can then be written as

Q = (q − qh)
2

(

q2

l2
+

2qhq

l2
+ a2 +

3q2h
l2

)

,

and we must have

a0 = a2q
2
h +

3q4h
l2

, a1 = −2qha2 −
4q3h
l2

. (3.38)
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These equations restrict of course the number of free parameters compared to the nonex-

tremal case. To obtain the near-horizon geometry of the extremal black holes, we define

new (dimensionless) coordinates z, t̂, φ̂ by

q = qh + ǫq0z , t =
t̂q0
Ξǫ

, φ = φ̂+ ωh
t̂q0
ǫ

, q20 ≡ Ξl2(q2h + j2 −∆2)

6q2h + a2l2
, (3.39)

and take ǫ → 0 keeping z, t̂, φ̂ fixed. This leads to

ds2 =
q2h −∆2 + j2 cos2θ

C

(

−z2dt̂2 +
dz2

z2
+ C

dθ2

∆θ

)

+
∆θ sin

2θ(q2h + j2 −∆2)2

(q2h −∆2 + j2 cos2θ)

(

dφ̂

Ξ
+

2qhωh

C
zdt̂

)2

, (3.40)

where the constant C is given by

C =
6q2h
l2

+ a2

=

{

(

1− ∆2

l2

)2

+
(j2 −∆2)2

l4
+

14

l2

(

1− ∆2

l2

)

(j2 −∆2) + 24(g20P
02 + g21P

12)

}1/2

.

If qh is at least a triple root of Q, C vanishes, and one has an ultracold black hole. In

this case, the zooming procedure (3.39) does not conform to Geroch’s criteria of limiting

spaces [53], and thus the resulting geometry would not even solve the equations of motion.

This problem was first pointed out by Romans [54], and discussed also in [55]. There

exists an alternative limiting procedure [56, 57] which basically consists in going first to the

situation where Q has a double root, and then taking the near-horizon limit simultaneously

with the ultracold limit in a particular way. We postpone a discussion of the ultracold case

to a future publication.

Note that in the extremal limit, when T = 0, it is easy to see that the entropy is only

a function of the discrete charges J and πI by inverting (3.33) in terms of S.

3.3 Noncompact horizon with finite area

We shall now discuss the special case where the polynomial P (p) has two double roots,

i.e., pa = pb in the notation adopted at the beginning of section 3.1. This corresponds

to j2 = l2, which means that the conformal boundary rotates at the speed of light. For

the Kerr-AdS solution, this limit (in which the metric (3.14) is of course singular) was

explored in [4],9 where it was argued that it represents an interesting example in which to

study AdS/CFT.

Using again the scaling symmetry (3.10), we can set pa = l without loss of generality,

so that

P (p) =
1

l2
(p2 − l2)2

9See also [58, 59].
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in this case. The induced metric on the horizon q = qh (where Q vanishes) is given by

ds2h =
P

q2h −∆2 + p2
(q2h −∆2 + α)2dy2 +

q2h −∆2 + p2

P
dp2 , (3.41)

where the constant α takes into account a possible shift t → t+αy, similar to (3.13). If we

want y to be a compact coordinate, the absence of closed timelike curves requires setting

α = l2, since otherwise gyy will be negative close to p2 = l2. Note that we consider the

coordinate range −l ≤ p ≤ l, and that (3.41) becomes singular for p2 = l2. To understand

more in detail what happens at these singularities, take for instance the limit p → l, in

which (3.41) simplifies to

ds2h = (q2h −∆2 + l2)

[

dρ2

4ρ2
+ 4ρ2dy2

]

. (3.42)

Here, the new coordinate ρ is defined by ρ = l − p. Eq. (3.42) is clearly a metric of

constant negative curvature on the hyperbolic space H2 (or on a quotient thereof, if we

want y to be a compact coordinate). Since (3.41) is symmetric under p → −p, an identical

result holds for p → −l. Thus, for p → ±l, the horizon approaches a space of constant

negative curvature, and there is no true singularity there. In particular, this implies that

the horizon is noncompact, which comes as a surprise, since one might have expected the

limit of coincident roots pa = pb to be smooth, and for pa 6= pb the horizon was topologically

a sphere. Moreover, the horizon area reads

Ah =

∫

(q2h −∆2 + l2)dydp = 2Ll(q2h −∆2 + l2) , (3.43)

where we assumed y to be identified modulo L. We see that, in spite of being noncompact,

the event horizon has finite area, and the entropy of the corresponding black hole is thus

also finite. To the best of our knowledge, this represents the first instance of a black hole

with noncompact horizon, but still finite entropy.

In order to visualize the geometry (3.41), we can embed it in R
3 as a surface of

revolution.10 To this end write the flat metric in cylindrical coordinates,

ds23 = dz2 + dr2 + r2dφ2 ,

and consider z = z(p), r = r(p). Setting φ = 2πy/L, and identifying the resulting line

element with (3.41), one gets

r =
L

2πl
(q2h −∆2 + p2)−1/2(l2 − p2)(q2h −∆2 + l2) , (3.44)

as well as
(

dr

dp

)2

+

(

dz

dp

)2

=
q2h −∆2 + p2

P
, (3.45)

10This is possible if L(q2h−∆+ l2) is not too large, since otherwise (dz/dp)2 in (3.45) will become negative

in some region.
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Figure 1. The event horizon of a black hole in the case where P (p) has two double roots, embedded

in R
3
as a surface of revolution.

which is a differential equation for dz/dp. By expanding near p = ±l, one easily sees

that z diverges logarithmically for |p| → l, and that r goes to zero in this limit. We

integrated (3.45) numerically for the values l = 1, L = 2π and q2h −∆2 = 5. The resulting

surface of revolution is shown in figure 1, where the z-axis is vertical. Note that the two

cusps extend up to infinity, with z → ±∞ for p → ±l respectively, while the ‘equator’

z = 0, where r becomes maximal, is reached for p = 0.

The metric on the conformal boundary q → ∞ of the black hole solution reads

ds2bdry = −dt2 + 2dtdy(p2 − l2) + l2
dp2

P
, (3.46)

and hence y becomes a lightlike coordinate there.

4 Inclusion of NUT- and electric charges

Inspired by the solution in section 5 of [22], we make the following ansatz to include also

NUT- and electric charges:

ds2 = − Q

W
[dt− p1p2dy]

2 +
P

W
[dt+ q1q2dy]

2 +W

(

dq2

Q
+

dp2

P

)

, (4.1)

where Q,P are again given by (3.2) (with a4 = b4 = 1/l2), and

W = q1q2 + p1p2 , q1 = q −∆ , q2 = q +∆ , p1 = p− δ , p2 = p+ δ .
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The ansatz for the gauge potentials and the scalars is

AΛ =
PΛ(dt+ q1q2dy)

W
p1 +

QΛ(dt− p1p2dy)

W
q1 , (4.2)

τ = e−ϕ + iχ =
X1

X0
=

µW + i(νp+ λq)

q21 + p21
, (4.3)

where the constants QΛ are proportional to the electric charges, and µ, ν, λ are constants

to be determined.

We have checked that the equations of motion of the F = −iX0X1 model are satisfied

if the parameters assume the following form:

a4 = b4 = 1/l2 , (4.4)

a0 = b0 − a2∆
2 − ∆4

l2
+

g0P
02

2g1
+

g1P
12

2g0
+

g0Q
02

2g1
+

g1Q
12

2g0
+

−a2∆
2Q12

P12
− 2∆4Q12

l2 P12
− ∆4Q14

l2 P14
, (4.5)

b1 = −2l2P1(g20(−2P0P1Q0 + P02Q1 − Q02Q1) + g21Q
1(P12 + Q12))

∆(P12 + Q12)
, (4.6)

a1 = −2l2P1(g20(−P02P1 + P1Q02 − 2P0Q0Q1) + g21P
1(P12 + Q12))

∆(P12 + Q12)
, (4.7)

b2 = −a2 −
2∆2(P12 + Q12)

l2 P12
, (4.8)

µ =
g0
g1

, ν =
2∆g0
g1

, λ =
2∆g0Q

1

g1P1
, δ = −∆Q1

P1
. (4.9)

The solution has free parameters ∆, b0 a2, P
Λ and QΛ. It reduces to the one we have

previously found for Q1 = 0 = Q0.

Let us now keep the ansatz (4.1)–(4.2) for the metric and the gauge fields and look for

a solution with a scalar field of the form

τ = e−ϕ + iχ =
X1

X0
=

µW + i(νp+ λq)

q22 + p22
. (4.10)

In this case, the equations of motions are satisfied for the following parameters

a4 = b4 = 1/l2 , (4.11)

a0 = b0 − a2∆
2 − ∆4

l2
+

g0P
02

2g1
+

g1P
12

2g0
+

g0Q
02

2g1
+

g1Q
12

2g0
+

−a2∆
2Q02

P02
− 2∆4Q02

l2 P02
− ∆4Q04

l2 P04
, (4.12)

b1 = −2l2P0(g21(−2P1P0Q1 + P12Q0 − Q12Q0) + g20Q
0(P02 + Q02))

∆(P02 + Q02)
, (4.13)

a1 = −2l2P0(g21(−P12P0 + P0Q12 − 2P1Q0Q1) + g20P
0(P02 + Q02))

∆(P02 + Q02)
, (4.14)
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b2 = −a2 −
2∆2(P02 + Q02)

l2 P02
, (4.15)

µ =
g0
g1

, ν = −2∆g0
g1

, λ = −2∆g0Q
0

g1P0
, δ = −∆Q0

P0
. (4.16)

One can easily check that the two ansätze (4.3) and (4.10) (when expressed in terms of the

parameters ∆ and δ) are related by the strong-weak coupling transformation

τ → g20
g21τ

. (4.17)

This is actually a residual Z2 symmetry of the full symplectic group Sp(4,R) that remains

after the gauging, corresponding to a reparametrization of the scalar manifold, given by

the action of the matrix

S =

(

A B

C D

)

∈ Sp(4,R) , (4.18)

with B = C = 0,

A =

(

0 g1/g0
g0/g1 0

)

, (4.19)

and D = (A−1)T . Since S2 = I, it generates Z2, as stated. Notice also that the scalar

potential is invariant under (4.17). Moreover, the matrix (4.18) acts on the charges by

interchanging g0P
0 ↔ g1P

1 and g0Q
0 ↔ g1Q

1, which is exactly what transforms (4.5)–(4.9)

to the new parameters (4.12)–(4.16).

In order to discuss more in detail the solution (4.4)–(4.9), we assume that the poly-

nomial P has four distinct roots pa < pb < pc < pd. Since we are interested in black holes

with compact horizon,11 we consider the region pb ≤ p ≤ pc (where P is positive), and set

p = N + j cos θ, where

N ≡ pb + pc
2

, j ≡ pc − pb
2

, (4.20)

and 0 ≤ θ ≤ π. Using the scaling symmetry (3.10), supplemented by

δ → λδ , b1 → λ3b1 ,

one can set pd = −N +
√
l2 + 4N2 without loss of generality.12 This implies

b0 = (j2 −N2)

(

1 +
3N2

l2

)

, b1 = 2N

(

1− j2

l2
+

4N2

l2

)

, b2 = −1− j2

l2
− 6N2

l2
,

a0 = b0 + b2(∆
2 + δ2) +

(∆2 + δ2)2

l2
+ 2l2

[

g20(P
02 + Q02) + g21(P

12 + Q12)
]

,

a2 = 1 +
j2

l2
+

6N2

l2
− 2

l2
(∆2 + δ2) . (4.21)

11Black holes with hyperbolic horizons can be obtained by taking the region p ≥ pd.
12This choice is made in order to correctly reproduce the KNTN-AdS solution of minimal gauged super-

gravity as a special subcase, see e.g. [26].
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Taking also

t → t+

(

j

Ξ
+

N2 − δ2

jΞ

)

φ , y → φ

jΞ
,

the metric (4.1) becomes

ds2 = − Q

q2 −∆2 + (N + j cos θ)2 − δ2

[

dt+
j sin2θ

Ξ
dφ− 2N

Ξ
cos θdφ

]2

+
[

q2 −∆2 + (N + j cos θ)2 − δ2
]

(

dq2

Q
+

dθ2

∆θ

)

(4.22)

+
∆θ sin

2θ

q2 −∆2 + (N + j cos θ)2 − δ2

[

jdt+
q2 + j2 +N2 −∆2 − δ2

Ξ
dφ

]2

,

where now

∆θ = 1− j2

l2
cos2θ − 4Nj

l2
cos θ ,

while the fluxes and the scalar field are given respectively by

FΛ =
PΛ(q2 −∆2 − (p− δ)2)− 2(q −∆)pQΛ

[q2 −∆2 + (N + j cos θ)2 − δ2]2
sin θ

[

jdt+
q2 + j2 +N2 −∆2 − δ2

Ξ
dφ

]

∧ dθ

+
QΛ(p2 − δ2 − (q −∆)2)− 2(p− δ)qPΛ

[q2 −∆2 + (N + j cos θ)2 − δ2]2
dq ∧

[

dt+
j sin2θ

Ξ
dφ− 2N

Ξ
cos θdφ

]

,

τ =
g0
g1

q +∆− i(p+ δ)

q −∆− i(p− δ)
,

with p = N + j cos θ.

If one turns off the rotation (j = 0), and fixes the charges in terms of N,∆, δ accord-

ing to

g1P
1 =

N2

l2
− Nδ

l2
+

1

4
, g1Q

1 = − δ

∆
g1P

1 , g0P
0 = g1P

1+
2Nδ

l2
, g0Q

0 = g1Q
1+

2N∆

l2
,

one recovers the spherical NUT-charged BPS solution constructed in [47].13 With the

charges fixed as above, and

a1 = −4N

∆

[

2Nδ2

l2
+

2N∆2

l2
− 2N2δ

l2
− δ

2

]

,

all the constraints (4.5)–(4.8) are satisfied.

From (4.22), we can also get a dyonic solution without NUT charge. Setting N = 0

one has

b0 = j2 , b1 = 0 , b2 = −1− j2

l2
, a2 = 1 +

j2

l2
− 2

l2
(∆2 + δ2) ,

a0 = j2 −
(

1 +
j2

l2

)

(∆2 + δ2) +
(∆2 + δ2)2

l2
+ 2l2

[

g20(P
02 + Q02) + g21(P

12 + Q12)
]

,

13The flat or hyperbolic BPS solutions of [47] can be obtained in a similar way. Notice that only the

latter represent genuine black holes, while in the spherical or flat case one has naked singularities [47].
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and a1 is given by (4.7). Since b1 vanishes, (4.6) implies P1 = 0 or

g20
(

Q0Q1 + P0P1
)2

=
(

Q12 + P12
)(

g21Q
12 + g20P

02
)

, (4.23)

which allows to express e.g. Q0 in terms of the other charges. The solution is thus specified

by the five parameters P0,P1,Q1, j,∆, or alternatively by three charges, angular momentum

and mass.

Note that, also in the case with nonvanishing N , (4.6) together with the second

eq. in (4.21) fix one of the electromagnetic charges in terms of the other parameters, and

therefore the solution is labelled by three independent U(1) charges, NUT charge, angular

momentum and mass. It is thus not the most general solution, which should have four

independent U(1) charges.

4.1 Solution with harmonic functions and flat limit

We can partially rewrite the ansatz in terms of complex harmonic functions in order to make

the dependence on the prepotential more suggestive. If we define the variable ρ = q − ip,

we can use the harmonic functions in ρ,

X0 ≡ H0 = h0

(

1− ∆− iδ

ρ

)

, X1 ≡ H1 = h1

(

1 +
∆− iδ

ρ

)

, (4.24)

with h0 = g−1
0 , h1 = g−1

1 . We can then rewrite the scalar ansatz as

τ =
H1

H0
, (4.25)

while the function W appearing in the metric and gauge field ansätze (4.1), (4.2) can be

cast into the form

W = l2(q2 + p2)e−K(XΛ) , (4.26)

where K is the Kähler potential of special geometry that depends on the prepotential.14

In the case of F = −iX0X1, we have

e−K
F=−iX0X1 =

1

l2(q2 + p2)
(q1q2 + p1p2) , (4.27)

as needed.

Rewriting the solution in this form makes it easy to take the limit of vanishing gauging.

We take g0, g1 → 0, keeping the ratio an arbitrary finite constant (which is the value of the

scalar field at infinity). This leads to a simplification in the explicit parameters ai, bi that

parametrize the functions P (p) and Q(q). We can again write the metric in the form (4.22),

but now with ∆θ = Ξ = 1. A further redefinition of the radial coordinate q = r +m for

a1 = −2m leads to

Q = r2 + (j2 +m2 −N2 −∆2 − δ2) .

14Note that here we do not mean the physical Kähler potential K(τ, τ̄), but the one that is obtained

directly from the sections (4.24).
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Written this way, the solution can be seen to sit inside the general class of solutions of [41]

with arbitrary mass, angular momentum, electric and magnetic and NUT charges. Just

like in the case with cosmological constant, we cannot recover the most general class due to

the restriction that the NUT charge is fixed in terms of the electric and magnetic charges,

cf. (4.6) and (4.21).

5 Final remarks and outlook

Given the various examples and solutions we presented in the preceeding sections, we can

make an ansatz that is likely to yield solutions for more general prepotentials with arbitrary

number of vector multiplets. The metric ansatz would remain

ds2 = −f(dt+ ωydy)
2 + f−1

[

v

(

dq2

Q
+

dp2

P

)

+ PQdy2
]

, (5.1)

with

Q = a0 + a1q + a2q
2 + g2q4, P = b0 + b1p+ b2p

2 + g2p4, v = Q−P, f = ve2U , (5.2)

e−2U = i(X
Λ
FΛ −XΛFΛ) , ωy = −1

v

(

Q(c0 + c1p+ p2) + P (d0 + d1q + q2)
)

, (5.3)

scalar fields given by the symplectic sections

XΛ = hΛ(q − ip+∆Λ − iδΛ) , (5.4)

and gauge fields

AΛ =
1

W

(

PΛ(p+ k0)(dt+ (d0 + d1q + q2)dy)

+ QΛ(q + l0)(dt− (c0 + c1p+ p2)dy)
)

. (5.5)

The real constant parameters a0, a1, a2, b0, b1, b2, c0, c1, d0.d1, k0, l0, h
Λ,∆Λ, δΛ, PΛ, QΛ will

eventually have to be expressed in terms of the physical parameters of a given solution

(mass, angular momentum, NUT charge, electric and magnetic charges) upon solving the

equations of motion in a chosen model. The question whether the above ansatz leads to

solutions in models of the STU type is left for future research.
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A 1/2 BPS near-horizon geometries

An interesting class of half-supersymmetric backgrounds was obtained in [46]. It includes

the near-horizon geometry of extremal rotating black holes. The metric and the fluxes read

respectively

ds2 = −z2eξ
[

dt+ 4(e−2ξ − L)
dx

z

]2

+ 4e−ξ dz
2

z2

+16e−ξ(e−2ξ − L)dx2 +
4e−2ξdξ2

Y 2(e−ξ − Leξ)
, (A.1)

FΛ = 8i

(

X̄LΛ

1− iY
− XL̄Λ

1 + iY

)

dt ∧ dz (A.2)

+
4

Y

[

2X̄LΛ

1− iY
+

2XL̄Λ

1 + iY
+ (ImN )−1|ΛΣ gΣ

]

(zdt− 4Ldx) ∧ dξ ,

where L is a real integration constant, X ≡ gΛL
Λ, and Y is defined by

Y 2 = 64e−ξ|X|2 − 1 . (A.3)

The moduli fields zα depend on the coordinate ξ only, and obey the differential equation

dzα

dξ
=

i

2X̄Y
(1− iY )gαβ̄Dβ̄X̄ . (A.4)

For L > 0, the line element (A.1) can be cast into the simple form

ds2 = 4e−ξ

(

−z2dt̂2 +
dz2

z2

)

+ 16L(e−ξ − Leξ)

(

dx− z

2
√
L
dt̂

)2

+
4e−2ξdξ2

Y 2(e−ξ − Leξ)
, (A.5)

where t̂ ≡ t/(2
√
L). Eq. (A.5) is of the form (3.3) of [48], and describes the near-horizon ge-

ometry of extremal rotating black holes,15 with isometry group SL(2,R)×U(1). From (A.4)

it is clear that the scalar fields have a nontrivial dependence on the horizon coordinate ξ

unless gΛDαX
Λ = 0. As was shown in [46], the solution with constant scalars is the near-

horizon limit of the supersymmetric rotating hyperbolic black holes in minimal gauged

supergravity [25]. Moreover, in [29], a class of rotating BPS black holes with running

scalar was constructed for the prepotential F = −iX0X1, which has again (A.5) as near-

horizon limit.

Let us first consider the case of gauged supergravity with flat scalar potential V , that

was studied recently in [43]. The condition V = 0 translates into

DαXgαβ̄Dβ̄X̄ = 3|X|2 . (A.6)

15Metrics of the type (A.5) were discussed for the first time in [60] in the context of the extremal Kerr

throat geometry.
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Now, using (A.4), it is straightforward to show that

d|X|2
dξ

= DαXgαβ̄Dβ̄X̄ . (A.7)

Using (A.6), this can be integrated to give

|X|2 = C2e3ξ , (A.8)

where C denotes an integration constant. Then, (A.3) allows to express ξ in terms of Y ,

e−ξ = 8C(Y 2 + 1)−1/2 . (A.9)

In asymptotically flat space, there are underrotating black holes [49], whose near-horizon

geometry is given by

ds2 = −e2Ur2(dt+ ω)2 + e−2U

(

dr2

r2
+ dθ2 + sin2 θdφ2

)

, (A.10)

where

e−4U = −I4 − j2 cos2 θ , ω = j
sin2 θ

r
dφ , (A.11)

j is the rotation parameter and I4 denotes the quartic invariant of the charges. It turns out

that (A.10) is actually a one-half BPS solution of gauged supergravity (with flat potential).

To see this, choose C = |I4|1/2/32 (we need I4 < 0), L = (|I4| − j2)/16, and make the

coordinate transformation

z =
r

2
, x =

2φ

j
, e−ξ =

1

4
e−2U , (A.12)

that casts (A.1) into (A.10). (Use also (A.9) to eliminate Y in favour of ξ). In [43] it was

shown that the underrotating near-horizon geometry (A.10) preserves at least one quarter

of the supersymmetries, but it was not excluded that it is even 1/2 BPS (cf. footnote 14

of [43]). Here we showed that this is indeed the case.

In the case of the model with prepotential F = −iX0X1, the general solution of the

differential equation (A.4) was found in [29], and is given by

τ =
X1

X0
=

g0
g1

Y − i+ C

Y − i− C
, (A.13)

where C denotes a complex integration constant. We shall now obtain the conditions under

which the near-horizon geometry of the general solution of section 4 fits into this 1/2 BPS

class. In the extremal limit, the function Q has a double root at q = qh. Defining new

coordinates z, t̂, ŷ by

q = qh + ǫq0z , t =
t̂q0
ǫ

, y = ŷ − t̂q0
(q2h −∆2)ǫ

, q20 ≡ q2h −∆2

Ĉ
, Ĉ ≡ a2 +

6q2h
l2

,
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and taking ǫ → 0 with z, t̂, ŷ fixed, we get the near-horizon limit of (4.1), (4.3) and the

field strength following from (4.2),

ds2 =
Wh

Ĉ

(

−z2dt̂2 +
dz2

z2

)

+
Whdp

2

P
+

P

Wh

(

(q2h −∆2)dŷ − 2qhz

Ĉ
dt̂

)2

, (A.14)

τ =
g0
g1

qh +∆− i(p+ δ)

qh −∆− i(p− δ)
, (A.15)

FΛ =
PΛ((p− δ)2 − q2h +∆2) + 2pQΛ(qh −∆)

W 2
h

[

(q2h −∆2)dŷ − 2qhz

Ĉ
dt̂

]

∧ dp

+
QΛ((qh −∆)2 − p2 + δ2) + 2qhP

Λ(p− δ)

WhĈ
dt̂ ∧ dz , (A.16)

where Wh ≡ q2h −∆2 + p2 − δ2. This coincides with (A.5), (A.13) and (A.2) respectively if

the following constraints hold:

Q =
1

l2
(q2 − q2h)

2 , QΛ = δ = 0 , PΛ =
8q2h
l4gΛ

√
L . (A.17)

The coordinates ŷ and p are related to x and ξ in (A.5) by

ŷ =
l2
√
L

qh(q
2
h −∆2)

x , eξ =
16q2h
l2Wh

, (A.18)

while the constant C in (A.13) is given by C = −i∆/qh, and Y = −p/qh. Since the

location of the horizon can be set to qh = l without loss of generality by using the scaling

symmetry (3.10), the 1/2 BPS near-horizon geometry is specified in terms of the two

parameters ∆ (or alternatively C) and L. Note that this solution was first constructed

in [29]. Since (A.2), (A.5) and (A.13) do not exhaust all possible half-supersymmetric

solutions, the results of this appendix do not necessarily imply that there are no further

1/2 BPS subclasses of (4.1)–(4.3).

B Real formulation of special geometry

Here we will present three dimensional effective Lagrangian for stationary field configu-

rations, adapted to the real formulation of special geometry. In the ungauged case, the

resulting three-dimensional Lagrangian, which takes the form of a non-linear sigma model,

was constructed in [38] (see eq. (29)). For the case of gauged supergravity one must add

an additional Fayet-Iliopoulos potential

e−1
3 L3 =

1

2
R3 − H̃ab

(

∂qa∂qb − ∂q̂a∂q̂b
)

+
1

2H
V (q)

− 1

H2

(

qaΩab∂q
b
)2

+
2

H2

(

qaΩab∂q̂
b
)2

− 1

4H2

(

∂φ̃+ 2q̂aΩab∂q̂
b
)2

,

(B.1)

where H̃ab = −1
2

∂2

∂qa∂qb
log(−2H). The Lagrangian is completely determined by specifying

a Hesse potential H, which plays the an analogous role to the holomorphic prepotential
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when using special real coordinates. In [34, 36] static solutions were considered for which

the second and third lines of the above Lagrangian can be consistently set to zero. In this

paper we are interested in NUT charged and rotating solutions in which case all terms

become relevant.

The fields appearing in (B.1) are related to the complex scalar fields and gauge fields

appearing in the main text by the following dictionary:

qa :=

(

xΛ

yΛ

)

:=

(

eφ/2ReLΛ

eφ/2ReMΛ

)

, (B.2)

∂mq̂a :=

(

1
2∂mζΛ

1
2∂mζ̃Λ

)

:=

(

1
2F

Λ
m0

1
2GΛ|m0

)

, (B.3)

(

∂mφ̃+ 2q̂aΩab∂mq̂b
)

:= 2H2ε nr
m ∂[nωr] , (B.4)

whilst the three- and four-dimensional metrics satisfy the expression

g4 = −eφ(dt+ ωmdxm)2 + e−φg3 . (B.5)

The Hesse potential is related to the Fayet-Iliopoulos potential V through expression (A.2)

of [34], and to the KK-scalar through −2H = eφ.

B.1 Equations of motion

For future reference it will be convenient to write down the full equations of motion of the

three-dimensional effective Lagrangian (B.1).

We first perform the variation with respect to the qa fields, which results in the

equations

2∇m
[

H̃ab∂mqb
]

− ∂aH̃bc

(

∂mqb∂mqc − ∂mq̂b∂mq̂c
)

+ ∂a

(

1

2H
V (q)

)

+ 2∇m

[

1

H2
qcΩca

(

qdΩde∂mqe
)

]

− 2∂a

(

1

H
qc
)[

Ωcb∂mqb
1

H

(

qdΩde∂
mqe

)

− 2Ωcb∂mq̂b
1

H

(

qdΩde∂
mq̂e

)

]

− ∂a

(

1

4H2

)

(

∂mφ̃+ 2q̂cΩcd∂mq̂d
)(

∂mφ̃+ 2q̂cΩcd∂
mq̂d

)

= 0 .

(B.6)

Next, by varying the q̂a fields we get

2∇m
[

H̃ab∂mq̂b
]

+ 4∇m

[

1

H2
qcΩca

(

qdΩde∂mq̂e
)

]

−∇m

[

1

H2
q̂bΩba

(

∂mφ̃+ 2q̂cΩcd∂mq̂d
)

]

+
1

H2
Ωab∂mq̂b

(

∂mφ̃+ 2q̂cΩcd∂
mq̂d

)

= 0 .

(B.7)

The variation of the φ̃ field, which descends from the Kaluza-Klein vector, gives us simply

∇m

[

1

4H2

(

∂mφ̃+ 2q̂cΩcd∂mq̂d
)

]

= 0 . (B.8)

– 27 –
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Since the dualisation procedure swaps the role of the field equations and Bianchi identities,

this equation gives us simply the Bianchi identity for the KK-vector. Finally, from the

variation of the three-dimensional metric we obtain the following Einstein equations

1

2
Rmn − H̃ab

(

∂mqa∂nq
b − ∂mq̂a∂nq̂

b
)

+
1

2H
gmnV (q)

− 1

H2

(

qaΩab∂mqb
)(

qcΩcd∂nq
d
)

+
2

H2

(

qaΩab∂mq̂b
)(

qcΩcd∂nq̂
d
)

− 1

4H2

(

∂mφ̃+ 2q̂aΩab∂mq̂b
)(

∂nφ̃+ 2q̂cΩcd∂nq̂
d
)

= 0 .

(B.9)

B.2 Example: solution of the F = −iX0X1 model

By way of example, we shall present the rotating nonextremal solution of the F = −iX0X1

model, as given section 4, in terms of the real formulation of special geometry:

g3 = v

(

dq2

Q
+

dp2

P

)

+ PQdy2 ,

qa =
v

1

2

µ
1

2 2W























q1

µWq1 − p1(νp+ λq)

q21 + p21
µWp1 + q1(νp+ λq)

q21 + p21

p1























, q̂a =
1

2W





















P0p1 + Q0q1

P1p1 + Q1q1

µ(P0q2 − Q0p2)

1

µ
(P1q1 − Q1p1)





















,

1

H

(

∂pφ̃+ 2q̂aΩab∂pq̂
b
)

= − v

PW
∂qωy ,

1

H

(

∂qφ̃+ 2q̂aΩab∂q q̂
b
)

=
v

QW
∂pωy .

Here the functionsQ,P,W, q1, q2, p1, p2 and parameters PΛ,QΛ, µ, ν, λ are those that appear

in the solution (4.1)–(4.9), and the KK-vector is given by

ωy = −(Pq1q2 +Qp1p2)

v
, v = Q− P .

Using the expression for the Hesse potential (B.1) of [34], one may explicitly check that

the above field configuration solves the equations of motion (B.6)–(B.9).
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