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Abstract: Rotating-coil measurement systems are widely used to measure the multipolar fields
of particle accelerator magnets. This paper presents a rotating-coil measurement system that aims
at providing a complete data set for the characterization of quadrupole magnets with small bore
diameters (26 mm). The PCB magnetometer design represents a challenging goal for this type
of transducer. It is characterized by an aspect ratio 30% higher than the state of the art, imposed
by the reduced dimension of the external radius of the rotating shaft and the necessity of covering
the entire magnet effective length (500 mm or higher). The system design required a novel design
for the mechanical asset, also considering the innovation represented by the commercial carbon
fiber tube, housing the PCB magnetometer. Moreover, the measurement system is based primarily
on standard and commercially available components, with simplified control and post-processing
software applications. The system and its components are cross-calibrated using a stretched-wire
system and another rotating-coil system. The measurement precision is established in a measurement
campaign performed on a quadrupole magnet characterized by an inner bore diameter of 45 mm.

Keywords: rotating coil; quadrupole magnet; PCB coil; magnetic measurement

1. Introduction

Magnets are one of the main components in particle accelerators, where they are
used to steer and focus the particle beam along the nominal trajectory. Dipole magnets
are used for steering/bending the particle beam, whereas quadrupole magnets focus and
squeeze the beam. In this context, field quality plays an essential role [1]. Field errors
determine beam perturbations, resulting in emittance growth and in a beam unsuitable
for the experiments [2,3].

The field quality, expressed in terms of the strength and phase of the main field com-
ponent, plus the unavoidable higher error harmonics (see Section 2.1), is a requirement
for magnet designers. Assessment of the field quality is performed through accurate field
measurements, necessary to determine the presence of construction errors, coil deforma-
tions due to electromagnetic forces, dynamical effects such as eddy currents in the bulk
of the yoke, ferromagnetic hysteresis, and iron saturation. Complementary methods exist
to perform magnetic measurements [4], each one optimized for a determined quantity
of interest, such as integrated field, field harmonics, or time evolution of the field in the
magnet gap.
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One of the most relevant techniques to test accelerator magnets is the rotating-coil
method [5–9], also called the harmonic coil. The rotating coil consists of a cylindrical
shaft containing a certain number of induction coils, i.e., field-sensing transducers based
on Faraday’s law of induction, which are rotated around the longitudinal axis of the
magnet. This method generally provides field error measurements with repeatability up to
1 ppm [10–12].

In the context of an ongoing collaboration [13] between the European Organization
for Nuclear Research (CERN) and the Istituto Nazionale di Fisica Nucleare (INFN) of Fras-
cati (Italy), our goal is the development of a new small-radius rotating-coil measurement
system to test the field quality of quadrupoles with small-diameter bores for the European
project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applica-
tions) [14]. The EuPRAXIA project aims at designing an accelerator based on the plasma
wakefield technique, which can deliver a 5 GeV electron beam with simultaneously high
charge, low emittance, and low energy spread to users. Its foreseen electron energy range
and performance goals will enable versatile applications in various domains, e.g., compact
free-electron lasers (FELs) or sources for medical imaging and positron generation, table-
top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray
sources for material testing. This new class of plasma-based accelerators is designed to be
the stepping stone to possible future plasma-based facilities, such as linear colliders at the
high-energy physics (HEP) energy frontier.

Driving plasma accelerator beams requires a particular beam manipulation and associ-
ated magnetic elements. The most critical components of this machine are the quadrupole
magnets. The features of the quadrupole magnet prototype BTF7, which has been tested at
CERN with the prototype rotating-coil system, are summarized in Table 1.

Table 1. Specifications of the BTF7 EuPRAXIA quadrupole prototype tested at CERN.

Parameters Values

Aperture diameter �45 mm
Reference radius r0 10 mm

Nominal magnetic field gradient 50 T/m
Nominal current 93 A
Iron yoke length 440 mm

Total field extension (incl. fringe) 600 mm

The characterization of small-bore magnets is challenging. The sag of a cylindrical tube
such as the measurement coil shaft, having diameter D and length L, simply supported at
both ends, is given in the first approximation by the following expression [15]:

d =
5
α

ρg
L4

ED2 (1)

where ρ is its average volume mass density, E its effective Young’s modulus, and the
numerical coefficient α is equal to 24 for a round bar and 48 for a thin cylindrical tube,
irrespective of its thickness, within an error less than 10 % when the ratio of thickness to
diameter is less than 5%. Increasing the aspect ratio λ = L4

D2 leads very rapidly to a high
sag and undesired flexural oscillations during the rotation, which affect the accuracy of the
measured harmonics [16]. The impact of such mechanical imperfections can be mitigated
by the coil bucking technique [4], which, however, requires very tight tolerances on the
geometry of the coils. In addition, the small size of the rotating shaft and the constraints
on the density of coil turns, which can vary typically between 100 (for multi-layer PCBs)
and 400 turns/mm2 (for multi-wire flat cables), reduce the magnetometer coil sensitivity,
especially on the higher-order harmonics.

An example of a small rotating-coil magnetometer is presented in [17], which describes
a �19 mm and 500 mm long rotating-coil probe (λ = 173 m2) built to test permanent
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magnet quadrupoles for CERN’s Linac4. The proposed design, based on a machined stack
of 80 PCB layers, proved ineffective in rejecting spurious harmonics due to mechanical
imperfections. In [18], a �8 mm rotating-coil system to test CLIC protoytpe magnets with
an aperture of less than �10 mm, necessary to obtain the very high gradient of 200 T/m,
is discussed. This extremely small size was achieved thanks to the choice of synthetic
sapphire as the support material, and the short required length of only 150 mm (λ = 8 m2).
Synthetic sapphire (Al2O3) has an exceptionally high E

ρ ratio of around 110× 1012 m2s−2,
i.e., almost ten times as high as fiberglass. This material can be sintered and polished within
tolerances of a few µm, which makes it an ideal candidate for high-precision coil supports.
Unfortunately, it has a high cost and it cannot be produced in large sizes.

Since the sag of a simply supported shaft grows with the fourth power of its length,
coils significantly shorter than the magnet are commonly used to characterize magnets
whose length exceeds one or two meters. For example, a rotating-coil system was de-
veloped at CERN for measuring the local magnetic flux density of quadrupoles for the
HL-LHC Insertion Region (IR) [19], characterized by a large bore diameter (around 90 mm).
Short coils were also designed to reject pseudo-multipole components in short magnets
dominated by the fringe field [20].

The geometric requirements imposed by the EuPRAXIA quadrupole magnets exceed
the performance of all these systems. This paper aims to present the design, calibration,
and validation of a prototype �26 mm diameter rotating-coil system to be used for the
measurement of the EuPRAXIA quadrupole magnets. The smallest foreseen bore diameter
is 30 mm, which applies to the final focus quadrupoles and drives the requirement for the
rotating-coil shaft diameter. The corresponding shaft aspect ratio is λ = 44 m2, which is
challenging and requires a substantial improvement over our previous �19 mm design.
Another important goal is to simplify the design as much as possible and use low-cost, off-
the-shelf components and open-source software packages, so as to widen the accessibility
of this technology. The requirements for the proposed rotating-coil system, which will be
followed by a more complete final system at a later stage, are summarized in Table 2.

Table 2. Measurement accuracy specifications for characterization of EuPRAXIA quadrupole magnets.

Parameters Accuracy

Integrated gradient 100 ppm
Field harmonics @ r0 100 ppm

Magnetic axis 150 µm

2. Background Theory
2.1. Field Harmonics Theory Fundamentals

The air gap of a magnet can be modeled as a region free of current sources. Considering
a cylindrical volume, coaxial with the gap, sufficiently extended so that the field at both
ends can be considered to vanish, the integral magnetic field density satisfies the 2D Laplace
equation and can be described by a complex-valued harmonic field expansion in a circular
domain of radius r0, also called the reference radius [4]. For z = x + iy,

B(z) = By(x, y) + iBx(x, y) =
∞

∑
n=1

Cn(r0)

(
z
r0

)n−1
(2)

where By and Bx represent the vertical and horizontal field components as a function of the
position, Cn = Bn + iAn is the n-th complex harmonic coefficient, and Bn and An are the
normal and skew harmonic coefficients, respectively, expressed in tesla at the reference
radius r0. The reference radius defines the limit of the desired good field region, which
is that occupied by the particle beam, and is usually set at 2/3 of the magnet aperture
radius, where the field errors remain within the tolerance values. Each value of the integer
n corresponds to a specific flux distribution generated by an ideal 2n-pole magnet. In most
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practical cases, magnets are designed to provide only one main harmonic component m.
Higher-order harmonics, arising from imperfections and manufacturing tolerances, are
used as indications of the field quality. For an ideal quadrupole magnet (n = 2), the main
field component is given by

Bx(x, y) =
1
r0
(B2(r0)y + A2(r0)x)

By(x, y) =
1
r0
(B2(r0)x− A2(r0)y).

(3)

The amplitude of the two components varies linearly with the distance from the origin.
The coefficients Bn and An of the series expansion determine the shape of the magnetic
field lines. A quadrupole magnet in which only the coefficient B2 is non-zero and the skew
coefficient is A2 = 0 is called a normal magnet and the field components can be expressed as

Bx(x, y) = Gy

By(x, y) = Gx
(4)

where G = B2/r0 is the field gradient, expressed in Tm−1.
The origin of the reference system is referred to as the magnetic center, and it represents

where all multipolar field components of order n ≤ 2 are above zero. The expansion
coefficients Bn and An are a function of the excitation current level. In most practical
cases, being interested in the shape of the field rather than its absolute magnitude, the
harmonic coefficients are normalized with respect to the main field component BM (B2 for a
quadrupole magnet), and expressed in units of 10−4,

cn(r0) = 104 Cn(r0)

BM(r0)
= 104(

Bn(r0)

BM(r0)
+ i

An(r0)

BM(r0)
) = bn + ian. (5)

This choice arises from the typical tolerance values of accelerator magnets, where
the harmonics are in the order of 0.01% of the main field component. There are different
applications and experiments for which having a precise magnetic characterization is
crucial [21–24].

2.2. Rotating-Coil Magnetometers

Rotating-coil magnetometers belong to the family of induction coil sensors, where the
magnetic field is measured through the flux variation induced in a sensing coil (also called
a pick-up coil). According to Faraday’s law of induction, the voltage at the terminal of a
sensing coil is proportional to the rate of change of the magnetic flux:

U(t) = −dΦ(t)
dt

, (6)

where Φ is the total magnetic flux linked with the coil. The measurement is generally
performed by rotating the shaft in a static field.

Rotating-coil magnetometers are composed of a certain number of induction coils,
generally long rectangular loops of wire, constrained in width by the magnet aperture
diameter. Considering a point-like winding case, the geometry of an ideal induction coil can
be described by the complex points z1 and z2 shown in Figure 1, representing the location
of the conductor turns in the magnet transverse plane. The origin of the reference system
does not need to be necessarily coincident with the magnetic axis of the magnet under test.
Considering the cross-section of a multi-turn and multi-layer coil, all the winding turns can
be assumed as perfectly packed together on the central positions z1 and z2 in the analysis,
with negligible uncertainty [25].
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Figure 1. Naming convention for angles and radii in the ideal case of a point-link coil winding pack

Given an induction coil with N turns, a total area Ac, and length L, the linked magnetic
flux can be calculated as

Φ = N
∫

Ac
B da = N

∫ L

0

∫ z2

z1

(By(x, y)dx− Bx(x, y)dy) dz

= NL
∫ z2

z1

(By(x, y)dx− Bx(x, y)dy)
(7)

where z1 = r1eiφ1 and z2 = r2eiφ2 . From (2) and considering∫ z2

z1

B(z)dz =
∫ z2

z1

(By(x, y)dx− Bx(x, y)dy) + i
∫ z2

z1

(By(x, y)dy + Bx(x, y)dx) (8)

Equation (7) becomes

Φ(φ) = NL Re
∫ z2

z1

B(z)dz = NL Re
∫ z2

z1

∞

∑
n=1

Cn(r0)(
z
r0
)n−1 dz

= Re
∞

∑
n=1

NL
nr0

(n−1)
Cn(r0)(zn

2 − zn
1 ) = Re

∞

∑
n=1

CnSneinφ

(9)

where Sn are complex sensitivity coefficients, representing geometric factors and related to
the position of the turns in the reference frame. The origin of the reference frame is set as
coincident with the shaft rotation axis. The sensitivity coefficients have the physical units
of m(n+1), and a magnitude scaling exponentially with n. These coefficients are usually
normalized to r(n−1)

0 to express them in m2 and have numbers numerically comparable:

Sn(r0) =
NL

nr(n−1)
0

(zn
2 − zn

1 ) =
NL

nr(n−1)
0

(rn
2 ein(φ2−φ) − rn

1 ein(φ1−φ)). (10)

The complex field harmonic coefficients Cn(r0) are calculated from the measured flux as

Cn(r0) = Bn(r0) + iAn(r0) =
Ψn
Sn

rn−1
0 (11)

where Ψn are the complex coefficients of the Discrete Fourier Transform (DFT) of the
measured flux,

Ψn =
2
N

N

∑
k=1

Φke−2πi k
N . (12)
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3. Proposal
3.1. PCB-Based Induction Coil Magnetometer

The EuPRAXIA project application represents a quite extreme case for the proposed
typology of transducers, planned to be installed in a rotating shaft with an inner diameter
of 26 mm and an overall length of 640 mm. The shaft dimensions allow coverage of the
entire magnet length of 440 mm and its fringe field region.

The aspect ratio of the proposed PCB coil shaft, defined as L4

D2 , is around 250, while
being around 170 for the �19 mm probe and around 10 for the �8 mm probe, introduced
in Section 1. Since mechanical imperfections exist even for smaller aspect ratios, and given
the intention of avoiding expensive materials (such as synthetic sapphire), the much higher
aspect ratio for the proposed �26 mm rotating-coil system required a novel design for the
mechanical asset. Moreover, also the innovation represented by the commercial carbon
fiber tube housing the PCB magnetometer had an influence in the support structure design.

The realization of such a small-radius rotating-coil system significantly impacts the
size of the coil array and, in particular, the geometric width of each coil and their area. A
reduced area means reduced sensitivity to the field harmonic components. The proposed
coil array design aims at counterbalancing this effect.

The adopted technology for the sensing coils is based on the Printed Circuit Board
(PCB) technology, a well-known alternative to the traditional wound coils [17–19]. The PCB
technology is characterized by the high precision of copper track positioning (± 2 µm).
The possibility to achieve higher control over the coil sensitivity and the careful calibration
process allow gradient measurement with accuracy up to the 0.1% level [12].

The proposed PCB coil array was produced at CERN. A PCB array of 5 identical coils,
each in the shape of a rectangular and planar spiral, positioned in a radial configuration,
was designed. The problem of the geometric constraints was addressed by designing the
PCB array with the highest possible number of PCB layers in the available space to increase
the turn density and the coil sensitivity. In the adopted design, the PCB layers are connected
in series with metallic holes drilled in the compressed stack of layers. The PCB layers have
the same nominal surface, and the connections of the pads are placed close together to
minimize the spurious surface of wires between them. A picture of the produced PCB coil
array and a schematic cross-section representation of the PCB array inside the rotating shaft
are shown in Figure 2.

(a) (b)
Figure 2. (a) The PCB array magnetometer with five identical coils in radial configuration; each layer
has eight turns. The drawing is not to scale. (b) Schematic representation of the rotating PCB with
5 radial coils.
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The design parameters of the PCB array are reported in Table 3. The main manufac-
turing parameters of the PCB are reported in Table 4. These parameters are unusual [26]
and could be achieved only by aggressively optimizing the production. The trace-to-trace
separation and trace width were set to 50 µm, instead of the usual more conservative value
of 100 µm, in order to maximize the number of turns per layer. The number of turns was
also increased by adding identical layers, 32 for the proposed design, to maximize the
coil area. Since the coil surface directly affects the voltage levels generated by the coil,
the coil was designed to achieve the accuracy requirements for the measurement of field
harmonics, ensuring peak signals generated by the coil at the 500 mV level for a quadrupole
flux density of the order of 4 T, at the maximum measurement radius, and a rotational
frequency of approximately 1 rev/s.

Table 3. PCB manufacturing parameters of a coil array prototype.

Manufacturing Parameters Value

Copper track thickness 12 µm
Copper track width 50 µm

Copper track distance 50 µm
Via diameter 25 µm

Internal pad width 25 µm
External pad width 50 µm
FR-4 sheet thickness 50 µm

Pre-preg sheet thickness 50 µm

Table 4. Design parameters of the coil prototype.

PCB design parameters Value

PCB width 25.5 mm
PCB total length 620 mm
PCB thickness 3.2 mm

Array design parameters Value

Array width 25 mm
Array length 601.45 mm

Total number of coils 5

Coil design parameters Value

Coil inner length 600.25 mm
Coil inner width 3.5 mm
Coil design area 0.5757 m2

Number of layers 32
Turns per layer 8

Total number of turns 256

3.2. Shaft and Support Structure Design

The PCB coil array is inserted in a cylindrical shaft that allows rotation around its
longitudinal axis. The shaft was realized with a carbon fiber tube, produced by Refitech,
readily available on the market at a very low cost, in a wide range of lengths and thicknesses.
Besides being non-magnetic, the carbon fiber composite has an attractive E

ρ ratio, around

25× 1012 m2s−2 (i.e., around twice as high as the more traditionally used fiber glass).
This material is not a perfect insulator, having a resistivity of around 10 µΩm. However,
an extensive series of tests done at CERN with diameters up to 100 mm and rotational
speeds up to 10 turns/s showed no impact of eddy currents on the accuracy of the measured
harmonics [19]. With respect to more typical designs based on custom tubes or tubular
shells, fabricated on-demand to very tight tolerances but correspondingly expensive, the
innovative aspect of our design consists in inserting the PCB coil array directly inside
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a commercial tube. The observed dimensional consistency of the units chosen is �26±
0.05 mm over a batch of 5 units.

The PCB is installed at the center of the tube using semi-cylindrical centering spacers.
Two connection heads are installed at the extremities of the tube. All connection and
positioning pieces are 3D-printed in Accura 25® plastic, leading to fast and cost-effective
design modifications and reproducibility. Connection head and spacer dimensions were
easily modified to perfectly adapt to the PCB’s final thickness. Adjustable support platforms
and vertical V-shaped stages were designed to suspend the whole rotating system in
the magnet aperture, such that the shaft rotation axis is in the mechanical center of the
quadrupole magnet. A 3D view of the PCB coil array, equipped with connection heads
and spacers, and of the assembled carbon fiber shaft is shown in Figure 3. The shaft
rotation is realized using a commercial sensor-less DC brush-less motor, a Maxon EC
45 Flat [27]. The motor allows rotation of the shaft in both directions and, therefore,
a reduction in systematic errors in measurements, by averaging results obtained in both
rotation directions. A programmable high-resolution incremental encoder, Baumer EIL580P-
T (maximum 65,536 optical pulses per revolution, providing a resolution of 48 µrad) [28],
provides information on the angular shaft position during rotation, generating two square-
wave signals, whose angular shift identifies the rotation direction, and an index square-
wave signal used to identify a complete rotation of the shaft. A through-hole slip-ring is
used to transmit voltage signals to the acquisition system during the continuous rotation
of the shaft. The assembled rotating shaft is shown in Figure 4.

(a) (b)
Figure 3. (a) PCB array connection head and spacer design for shaft mounting. (b) Carbon fiber
external shaft housing the PCB array.

Figure 4. The �26 mm rotating-coil system installed in the BTF7 quadrupole magnet used as
measurement reference between CERN and INFN laboratories.

3.3. Control and Acquisition System Design

A data acquisition system, USB-6366 [29] from National Instruments, with a 16-bit
ADC, eight independent differential analog inputs, 24 digital I/O ports, and a maximum
sample rate of 2 MS/s per channel, was used to acquire all analog and digital signals.
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The software application for the initialization of the measurement task (specifying the
acquisition channels, the acquisition parameters, and the rotation settings), the acquisition
of encoder output digital signals and coil voltages, and the automatic output file generation
was developed in the LabVIEW® framework. Post-processing, including flux integration
and harmonic analysis, was carried out with Matlab® instead.

While the coil rotates, the induced voltages in the five coils are recorded synchronously
on separate channels of the ADC. In a quadrupole magnet, where the field harmonics
of interest for beam control typically do not go above the order n = 6 (dodecapole),
the useful signal bandwidth at the maximum speed of 2 rev/s will be limited to 24 Hz.
As higher-order field harmonics tend to vanish at 1/n, they can be considered as noise
components, and the sampling frequency is set to 200 kS/s to leave a wide margin to
prevent aliasing. At the same time, the encoder outputs are acquired as TTL signals on the
digital input pins. For this application, the number of encoder pulses per revolution was
set to 512, and the digital sampling frequency was set at 2 MS/s to maximize the accuracy
of the pulse edge detection. It is important to remark that, since only the lowest harmonics
have physical relevance, forcing the number of pulses per revolution to be a power of two
has little practical impact, as long as the correct DFT or FFT algorithm is used to derive
the spectral components in the post-processing phase. The voltage between two encoder
pulses is integrated, yielding a measure of the linked flux between the two shaft angular
positions. Mathematically, this corresponds to a re-parameterization of the signal with
respect to the rotation angle instead of time. The integration is performed via software
to replace expensive and dedicated digital integrator cards. The control diagram of the
measurement system is shown in Figure 5.

Figure 5. Control diagram for the proposed �26 mm rotating-coil measurement system. A software
application allows the user to configure the rotation parameters, start the acquisition of encoder and
slip-ring signals, and perform the harmonic analysis.

3.4. Measurement Procedure

The measurement begins with the manual alignment of the shaft within the magnet
aperture in correspondence with the mechanical center. Afterward, the magnet is powered,
the excitation current is set at the desired level, and the shaft motor is started. Storage
of the acquired signals is enabled upon reception of 5 trigger pulses on the reference
channel of the encoder, in order to stabilize the shaft rotation speed before saving the
acquired signals. A variable number of complete rotations, usually ten or more, is then
saved in a single output file, to allow the averaging of the results to evaluate and suppress
random noise components. Five voltages from the five coils, respectively, are acquired,
together with the encoder pulses. Two voltages are considered: an absolute voltage, used
to evaluate the main field component, and a compensated voltage, used to evaluate the
higher-order harmonics. The absolute voltage is the output of one of the two outermost
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coils in the array. The compensated voltage, which provides the highest signal level in any
field multipole of order n ≤ 2, is a linear combination of the five coil outputs, with the
intent of compensating for the main field harmonic and reducing the effect of assembly
errors, mechanical vibrations, and displacements. The main harmonic compensation, also
called bucking, can be realized by inter-connection of the coil terminals (analog bucking)
and acquiring their combination, or numerically, by the individual acquisition of the coil
signals (digital bucking). For the proposed system, digital compensation has been adopted
(see Section 4.5) to increase the system’s flexibility, correcting possible small differences
between the coils and extending the range of possible compensation schemes. At each
completed revolution, the data are post-processed according to the following steps.

3.4.1. Voltage Integration

Figure 6 shows an example of raw voltages. The noise, which is approximately
2 µV RMS, is partly electrical and partly mechanical in origin. The low-frequency noise
component, giving rise to integrator drift, is treated in the next section. The high-frequency
components are naturally reduced by integrating the signal to obtain magnetic flux, which
is then used as the basis to derive magnetic field harmonics. Integration is achieved by
re-parameterization of the signal as a function of the angular position, which additionally
eliminates the impact of torsional vibrations. The coil voltages are integrated between
consecutive encoder triggers using the trapezoidal rule. Since the encoder triggers are
asynchronous with respect to the ADC time-base, the first and last analog samples of each
interval are linearly interpolated to ensure respect of the integration bounds.

Figure 6. Example of acquired coil row voltages over 6 consecutive rotations. The signal amplitude is
proportional to the offset of the coil rotation axis to the magnetic axis of the quadrupole magnet.

3.4.2. Drift Correction

Integration drift is a side effect occurring when a signal is integrated, arising from
the magnification of low-frequency noise components [30]. The integrated voltage signal,
namely the magnetic flux, presents a linear trend in a first-order approximation. Consid-
ering that the flux change over an entire shaft rotation must be equal to zero, the drift is
calculated as the remaining integrated flux after a complete shaft rotation and subsequently
compensated. If the magnetic field to be measured is constant, the output voltage of the five
coils is periodic. Since the acquisition electronics are in a reasonably stable environment,
and given the low period of the signal (max. 2 s), the voltage offset can be assumed constant
over a complete revolution. The estimated remaining flux after a complete rotation was
of the order of a few mVs for the absolute signal before correction.
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3.4.3. Assessment of the Complex Harmonic Coefficients

The DFTs of the fluxes are computed using the Fast Fourier Transform (FFT) algorithm.
The complex field harmonic coefficients are then computed using Equation (11), where the
Sn values are calculated using the coil sensitivity coefficients, obtained by Equation (10),
plugging in the calibrated values of area and radius.

3.4.4. Feed-Down Correction

The feed-down phenomenon is the appearance of spurious field harmonic errors of order
n < m, generated by each harmonic of order m when the reference system is translated.
In an ideal quadrupole C2, the magnetic field magnet is zero at the magnetic center (point O in
Figure 7a). Ideally, the magnetic center is coincident with the mechanical center. If the rotating
coil is placed off-axis, i.e., the measurement coil frame origin O′ in Figure 7b is displaced by
∆z from the magnetic center, a dipole component C1 proportional to the displacement will
appear. The offset can be calculated from the measured harmonics as

∆z = −r0
C1

C2
, (13)

where ∆z = ∆x + i∆y.
The measured harmonic coefficients can then be corrected using the expression

C
′
n =

∞

∑
k=n

(
(k− 1)!

(n− 1)!(k− n)!
)Ck.

(
∆z
r0

)k−n
. (14)

(a) (b)
Figure 7. (a) Magnetic field lines in a normal quadrupole magnet (A2 = 0). (b) The coordinate system
with origin in O′ is used for harmonics calculation if the measurement coil rotation axis is displaced
by ∆z from the magnetic center, marked with O.

3.4.5. Evaluation of Main Field Module and Phase

The main field module is obtained from the normal and skew components of C
′
2, as

taken from the absolute signal,

|C′2| =
√

B′22 + A′22 (15)

and the main field direction α2 is obtained from the field phase φ2 as

α2 =
φ2

2
. (16)

3.4.6. Rotation and Normalization

The phase of the harmonic coefficients is based on the position of the encoder index,
which is, in principle, arbitrary due to mechanical tolerances. The absolute and compen-
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sated harmonic coefficients are rotated such that the measured main field corresponds to the
known type of the magnet under test; in our case, this is defined as a normal quadrupole,
hence A2 = 0. The measured harmonic coefficients are rotated by the field direction angle
−α2 as

C
′′
n = B

′′
n + iAn

′′ = C
′
ne−inα2 . (17)

The last step of the post-processing is the normalization of the harmonic coefficients
with respect to the main field module:

an = 104 An
′′

|C′′2 |
, bn = 104 Bn

′′

|C′′2 |
, cn = 104 Cn

′′

|C′′2 |
. (18)

4. Experimental Results

The accuracy of rotating-coil magnetometers depends on many factors. One significant
contribution is given by sensitivity factors, mainly dependent on the knowledge of the coil
area and rotation radius. These quantities are obtained by calibration against a reference
field (area) and a field gradient (radius). Area calibration is typically performed prior to
the assembly of the magnetometer to verify the quality of the coil production and identify
defects such as inter-turn short circuits, which are difficult to detect through resistance
measurements. Calibrating the rotating radius of each coil requires the final ball bearings
to provide the final rotation axis for the best accuracy; therefore, it should performed on the
fully assembled probe. In addition to the calibration, a basic mechanical characterization
was carried out to evaluate the leading indicators of rotation quality and acquisition, such
as loose contacts, misaligned mechanics, and vibrations.

4.1. Magnetic Surface Calibration

The surface calibration was performed at a field of 1 T in a reference dipole mag-
net available at CERN, having a relative spatial uniformity of the magnetic flux density
of 200 ppm. The reference field was measured using a Nuclear Magnetic Resonance (NMR)
magnetometer. The calibration procedure consists of flipping the coil inside the reference
magnet while integrating the voltage induced by the change in the intercepted flux. The av-
erage magnetic field B, measured by NMR along the coil length, was used as a reference
field value. The voltage integrated while flipping the coil between time instants t0 and t f is
calculated from Faraday’s induction law as∫ t f

t0

U(t) dt =
∫ t f

t0

−dΦ(t)
dt

= Φ(t0)−Φ(t f ) = ∆Φ(t). (19)

As φ1 = 0 and φ2 = π, the magnetic calibrated coil surface Am can be obtained from

∆Φ(t) = AmBcosθm − AmBcosθm−1 = 2AmB (20)

The magnetic surface calibration was performed on two PCB arrays. The results are
compared to design coil area Ad in Figure 8 and reported in Table 5, along with the relative
difference ∆ = Ad−Am

Ad
.
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Figure 8. Results of coil surface calibration for PCB Array 1 and PCB Array 2, compared to the area
design value.

Table 5. Calibration results for coil area in PCB Array 1 and PCB Array 2.

PCB Array 1 Coil A Coil B Coil C Coil D Coil E

Ad [m2] 0.5757 0.5757 0.5757 0.5757 0.5757
Am [m2] 0.5728 0.5758 0.5756 0.5756 0.5757
∆ [ppm] −4990 149 −153 −97 −45

PCB Array 2 Coil A Coil B Coil C Coil D Coil E

Ad [m2] 0.5757 0.5757 0.5757 0.5757 0.5757
Am [m2] 0.5758 0.5756 0.5756 0.5732 0.5756
∆ [ppm] 162 −213 −239 −4431 −147

4.2. Coil Radius Calibration

The calibration of the coil radii was carried out in the BTF7 quadrupole magnet, used
as a reference. The calibration of the coil radii requires knowledge of the field gradient.
A measurement performed by a Single-Stretched Wire (SSW) system was used as a reference.
The integrated gradient g over the magnetic length Lm is defined as

g = GcLm =
∫ +∞

−∞
G(l) dl (21)

where Gc is the field gradient measured along the wire displacement, and G(l) is the field
gradient as a function of the position.

From Equation (10), the sensitivity coefficient S2 to the quadrupole component (ob-
tained for z1 = x1 and ζ2 = x2 in Figure 1) is given by

S2 =
NL
2r0

[(x2 + iy)2 − (x1 + iy)2] =
NL
2r0

[(x2
2 − x2

1 + i2y(x2 − x1)]

=
NL
r0

w(rc + iy) =
Ac

r0
(rc + iy)

(22)

where w = x2 − x1 is the coil width, rc = x1+x2
2 is the average radius of the absolute

coil winding, and y is the coil’s vertical displacement from the PCB array plane. From
Equations (21) and (22), and considering the definition of the gradient as G = B2/r0, the
average coil radius is obtained as

rc = Re(
S2

Ac
r0) =

r0

Ac
Re(

Ψ2

C2
)

=
r0

Ac
(

Re(Ψ2)

B2
) =

r0

Ac

Re(Ψ2)

Gr0
=

1
Ac

Re(Ψ2)

G
=

Lm

Ac

Re(Ψ2)

g

(23)
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The nominal values for coil rotation radius rd and the calibrated rotation radius rc
are reported in in Table 6, along with the calibrated radius r∗ relative to the central coil C
taken as a reference, for each coil on PCB Array 1. The difference ∆ = rd − r∗ from nominal
design values is in the order of tens of µm.

Table 6. Calibration results for PCB Array 1 coil rotation radius.

PCB Array 1 Coil A Coil B Coil C Coil D Coil E

rd [mm] 9.500 4.750 0 4.750 9.500
rc [mm] 9.460 4.799 0.028 4.721 9.472
r∗ [mm] 9.432 4.772 0 4.750 9.500
∆ [µm] 67.6 21.8 0 0.5 0.0

4.3. Mechanical Characterization

In order to characterize the robustness of the system against torsional vibrations, the
rotational speed was obtained from timing intervals between encoder pulses for different
rotation speed levels over 100 consecutive rotations. The results are reported in Table 7
in terms of the measured mean rotation speed ω and standard deviation σ, as well as the
RMS and peak-to-peak of their relative difference in percentage. The presence of modal
vibration components was also investigated by analyzing harmonic components in the
speed spectrum, reported for a nominal speed value of 0.75 rev/s in Figure 9. The spectrum
resembles, as expected, a flat white noise distribution, with most components below the
10−3 rev/s level. The low-frequency peak at 0.75 Hz is the fundamental component
associated with the rotation speed, while the resonance at around 90 Hz appears to be
linked to the lowest torsional mode of the shaft.

Table 7. Rotation speed analysis results.

Parameter 0.25 [rev/s] 0.50 [rev/s] 0.75 [rev/s]

ω [rev/s] 0.251 0.514 0.752
σ [rev/s] 4.973 × 10−3 6.316 × 10−3 5.822 × 10−3

RMS ( ∆ω
ω ) [%] 1.643 1.437 1.313

(∆ω
ω )pp [%] 8.656 6.818 5.825

(a)
Figure 9. Cont.
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(b)
Figure 9. (a) The instantaneous rotation speed signal in the time domain. (b) Frequency spectrum
of instantaneous rotation speed signal at 0.75 rev/s nominal speed.

The mechanical quality of the rotation was further investigated by using a laser tracker
to acquire a set of points from a retro-reflector mounted at one shaft end, as shown in
Figure 10a, while rotating at the nominal speed of 0.75 rev/s. The measured points were
then fitted to a circle, as shown in Figure 10b. The center of this ideal circle, arbitrarily
set to the origin of the coordinate system, represents the rotation axis of the coil shaft.
The absolute value of the radial difference between the measured points and the ideal circle
is below 80 µm, as shown in Figure 10c as a function of the rotation angle. The impact
of this imperfect rotation is mitigated by bucking the coil signals used for the measurement
of field harmonics. The rotation axis is offset by ∆x = −0.522 mm and ∆y = −0.856 mm
with respect to the geometrical axis of the carbon fiber tube, obtained by moving by hand
the retro-reflector all over the outer surface of the tube. Since the axis of rotation of the PCB
coil array is defined by the connection heads at the extremities, rather than the tube, this
offset does not affect the measurement quality.

(a) (b)
Figure 10. Cont.
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(c)
Figure 10. (a) Retroreflector positioned at one shaft end for rotation axis localization. (b) Laser tracker
measurements fit by the ideal circular trajectory. (c) Radial fit difference of the fitted circle to the laser
tracker measurements. The results were obtained over 25 consecutive turns.

4.4. Magnetic Loadline

The magnet Transfer Function (TF), which is the ratio between the field and excitation
current, was measured in DC mode on current plateaus from 0 A up to 100 A and com-
pared with the results obtained by a Single Stretched Wire (SSW) measurement system.
The magnet Transfer Function is shown in Figure 11 and is in good general agreement with
the Single Stretched Wire measurements. The integrated gradient at the nominal magnet
current of 93 A, computed after magnet pre-cycling, is −4.0789 T, i.e., equal (by calibration)
to the reference value measured with the SSW, with a repeatability σ = 6.6391 10−5 T.

Figure 11. Magnet transfer function measured in DC mode from 0 to 100 a and back to 0, compared
to the result obtained with Single Stretched Wire system. For each current plateau, the averaged
gradient at the magnet center was divided by the corresponding current value. The slope of the curve
is due to saturation of the iron yoke.

4.5. Bucking Ratios

The number of coils in the PCB array depends on the compensation scheme necessary
for the magnet to be tested, and it is chosen during the design phase. Mechanical imper-
fections (due to assembly errors) and rotation errors (vibration and torsion) degrade the
metrological performance, giving rise to spurious harmonic content [9]. Since all coils on
the PCB array are nominally identical and subjected to the same vibration modes, com-
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pensation is achieved by taking a suitable linear combination of the outputs of two or
more individual coils. Compensation of the first two components of the field is required
to achieve sufficient accuracy in measuring the harmonic content of a quadrupolar field.
As reported in Section 3.4, this process is commonly referred to as bucking. In the adopted
digital bucking configuration, CoilE is used to measure the most dominant harmonic term.
The dipole and quadrupole bucked signal is then digitally constructed according to the
following linear combination: CoilE − CoilD − CoilC + CoilB. The acquired voltage signals
in the absolute and compensated configurations are shown in Figure 12a. The advantages
of the compensation scheme are visible in Figure 12b, showing lower accuracy in the
measurement of the harmonic coefficient from the absolute signal. The ratio of the second
harmonic coefficient (quadrupole) in the absolute and compensated measurements is called
the compensation or bucking factor, and is around 700.

(a)

(b)
Figure 12. (a) Absolute and compensated filtered voltage signals for 5 consecutive rotations (single
rotation is between two dotted lines) at 0.75 rev/s nominal speed. (b) Standard deviation for higher-
order harmonic coefficients Cn, computed from the absolute and compensated signal. The results
were obtained at r0 = 10 mm, nominal current 93 A, and computed over 25 rotations.

4.6. Comparison with an Existing Rotating-Coil System

A �30 mm rotating-coil probe, previously in use at CERN, was used to test the same
quadrupole magnet for the cross-checking of the �26 mm rotating-coil system, in terms
of measured harmonic field components. Measurements were performed adopting two
pre-cycling conditions: (i) after degaussing, (ii) pre-cycling the magnet with three cycles
between 0 and 100 A. The �30 mm rotating-coil measurement system includes a fast digital



Sensors 2022, 22, 8359 18 of 22

integrator [31] for voltage integration and a software application to control the hardware
components and for the acquisition and post-processing of data. The field multipole
measurement results obtained from the quadrupole compensation scheme are reported
in Figure 13 and compared to the results obtained from the �30 mm system and the
SSW system. Higher-order harmonics computed over 100 repetitions and measurement
repeatability are reported in Table 8, compared to measurement results obtained with
the �30 mm rotating-coil system. The measurement repeatability was tested at different
rotation speed values and the results reported in Figure 14 show the same pattern for the
standard deviations.

(a)

(b)

(c)
Figure 13. (a) Higher-order normalized skew coefficients an. (b) Higher-order normalized normal
coefficients bn. (c )Higher-order normalized harmonic coefficients cn. Higher-order coefficients are
expressed at r0 = 10 mm and nominal current 93 A and measured with both �26 and �30 mm
rotating-coil systems and SSW system. Rotating-coil results have been averaged over 100 revolutions,
at the nominal rotation speed of 0.75 rev/s.
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Table 8. Comparison of measurement repeatability for higher-order multipoles cn at r0 = 10 mm and
nominal current 93 A measured with both rotating over 100 rotations, at the nominal rotation speed
of 0.75 rev/s.

Harmonic Order �26 mm cn �26 mm σ �30 mm cn �30 mm σ
[units] [units] [units] [units]

c3 8.75 3.03 × 10−2 8.79 2.03 × 10−2

c4 3.04 3.88 × 10−2 3.88 2.03 × 10−2

c5 0.98 3.32 × 10−2 0.63 4.31 × 10−2

c6 1.10 2.78 × 10−2 0.93 4.64 × 10−2

c7 0.06 2.18 × 10−2 0.01 5.2 × 10−2

c8 0.03 1.91 × 10−2 0.05 1.06 × 10−2

c9 0.02 1.67 × 10−2 0.04 6.70 × 10−2

c10 0.01 1.55 × 10−2 0.02 9.59 × 10−2

c12 0.01 1.53 × 10−2 0.04 1.57 × 10−2

c13 0.01 1.47 × 10−2 0.02 3.25 × 10−2

c14 0.01 1.45 × 10−2 0.01 2.53 × 10−2

c15 0.01 1.43 × 10−2 0.01 2.42 × 10−2

Figure 14. Comparison of measurement repeatability for higher-order multipoles cn at r0 = 10 mm
and nominal current 93 A for different rotation speed values.

5. Discussion

The PCB technology adopted for coil production allowed high control over track
positioning, albeit with some issues. Both Coil A in PCB Array 1 and Coil D in PCB Array
2 are missing around 0.4% of the coil area, as reported in Table 5. This can be attributed
in all likelihood to a single inter-turn short circuit, which was found, however, not to be
straightforward to identify even with a four-wire measurement. PCB Array 1 was selected
for the probe, excluding Coil A from the analysis. Considering only the four remaining
good coils on each array, the nominal and calibrated coil areas differ from the design
value by around 160 ppm RMS. The measurement repeatability is as low as 0.6 ppm. The
calibrated coil radii r∗ in Table 6, computed with respect to the symmetry axis of the central
coil C, differ from the design value by around 35 µm RMS, i.e., 0.35% relative to the outer
coil radius. The repeatability of the radius measurement is 0.03%. The reason for this poor
result is that the computation of the radius, according to Equation (22), combines the errors
in both the coil area and the magnetic flux measurements. Moreover, there appears to
be a difference between the calibrated radii on one side of the PCB, i.e., for Coils D and
E, which are very close to their nominal values, and those of Coils A and B, which have
an error of up to 67 µm. This asymmetry could be due to a systematic effect in the PCB
manufacturing, which will be investigated further on the other PCBs of the same batch.
In conclusion, for a target accuracy of the rotating-coil system measurement in the range
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of 100 ppm, the nominal values of the geometrical parameters are not sufficient and the
magnetic calibration procedure is indispensable.

The mechanical characterization allowed us to choose the optimal rotation speed
as a trade-off between the coil output voltage amplitude and vibration effects. Results
show speed uniformity less than 1.5%, independent of the speed level, and a peak-to-
peak variation of less than 10% at 0.25 rev/s and decreasing at around 5% at 0.75 rev/s.
The rotation speed was set at 0.75 rev/s, obtaining at the nominal current of 93 A output
voltages in the range of 1 Vpp. Higher rotation speed values would increase the amplitude
of the induced voltages, but were observed to cause noticeable flexural vibrations and were
therefore discarded. The higher-frequency torsional components observed in the speed
spectrum in Figure 9 have no effect on the measurement results.

The field homogeneity of the BTF7 quadrupole was measured at the nominal current
value of 93 A and the results are expressed in terms of magnetic multipoles in units of 10−4

at a reference radius of 10 mm with respect to the main field in Table 8 and Figure 13 for field
errors. The relatively high values of harmonics c3 and c4 are related to the difficulties in
respecting the mechanical tolerances during magnet assembly. The results highlight the
effectiveness of digital bucking of the dipole and quadruple field components in reducing
the standard deviation of higher-order multipoles by almost two orders of magnitude,
down to well below 3 µT, i.e., around 1 ppm.

6. Conclusions

In this article, the design and development of a new small-diameter rotating-coil
measurement system prototype, needed to test the field quality of small-diameter (30 mm
or higher) bore quadrupoles for the European project EuPRAXIA, is presented. Accurate
measurements of the field harmonics in accelerator magnets require the construction of a
dedicated rotating-coil shaft of the largest possible diameter. The proposed magnetometer
design is based on an array of identical coils realized in PCB technology and mounted in
a cylindrical shaft with a diameter of �26 mm.

Some considerations about the manufacturing process were reported. Excluding
from analysis two defective coils, the accuracy of track positioning on the PCB can be
evaluated to be around 2 µm. This is an impressive value for a 32-layer PCB with the
aggressively optimized parameters listed in Table 4, and it is the basis of the excellent
measured quadrupole bucking ratio of approximately 700. However, if one considers the
small size of the coils, this tolerance still leads to peak calibrated rotation radius errors up
to 0.5%, which are unacceptable for the characterization of accelerator beam line magnets.
This underlines the importance of the magnetic calibration for high-accuracy applications.
In the future, optical checks to identify faulty coils shall be carried out systematically on
each individual layer.

The results obtained from the mechanical characterization essentially validate the in-
novative mechanical design, which is based on inserting the PCB coil array in a carbon fiber
tube by means of 3D-printed plastic inserts. Despite the low rigidity of the Accura 25 ® used
for the inserts, and the need to retouch them slightly on the lathe, the quality of the rotation
is very good, with torsional vibrations peaking at the safely high frequency of 90 Hz and
within 1.5% RMS in amplitude. Resorting to low-cost, commercially available components
and 3D-printed parts is key to ensuring the wide applicability of this design, as well as fast
and cost-effective modifications.

Comparison with other measurement instruments proved that our prototype rota-
tion coil system can achieve an absolute accuracy of the main integrated gradient of
approximately 50 ppm, with a repeatability of 10 ppm, while the accuracy of high-order
compensated harmonics is approximately 100 ppm with a repeatability of 10 ppm. This
performance meets the requirements for the measurement of the EuPRAXIA magnets.

Commissioning this prototype system has provided valuable experience to progress
in the design of the production instrument. First of all, different 3D-printed materials
and techniques will be tested for the inserts and the shaft end connections, with the goal
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of minimizing or avoiding completely the need for further mechanical retouches. The set
of screws and pins that lock the PCB and the inserts in place inside the carbon fiber tube
should also be redesigned, to facilitate the disassembly process, as this may be needed
for maintenance. Finally, the shaft support system shall be augmented with the possibility
of shifting horizontally the instrument within the magnet bore, so as to allow one to improve
the accuracy of the in situ radius calibration procedure, as described in [32]. The final
rotating-coil system shall be used at CERN to complete the characterization of the BTF7
quadrupole, including, in particular, the measurement of the magnetic axis offset with
respect to the magnet’s fiducial reference systems. This measurement requires the addition
of suitable, reproducible optical targets to the rotating coil, which were missing in the
prototype but shall be added to the final system.
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