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Abstract

Present study explores the MHD three-dimensional rotating flow and heat transfer of ferro-

fluid induced by a radiative surface. The base fluid is considered as water with magnetite-

Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which

produces a non-linear energy equation in temperature field. Conventional transformations

are employed to obtain the self-similar form of the governing differential system. The arising

system involves an interesting temperature ratio parameter which is an indicator of small/

large temperature differences in the flow. Numerical simulations with high precision are

determined by well-known shooting approach. Both uniform stretching and rotation have

significant impact on the solutions. The variation in velocity components with the nanoparti-

cle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is

larger in comparison to the pure fluid even at low particle concentration.

Introduction

The study of flow in a rotating frame is motivated in view of its theoretical and practical signifi-

cance in geophysics and engineering. Prominent geophysical applications include the magma

flow in earth’s mantle close to earth crust and flows in geological formations subject to earth

rotation. The engineering applications of such flows exist in chemical and food processing

industry, centrifugal filtration process, rotating machinery and design of multi-pore distributor

in a gas-solid fluidized bed. Pioneering study on the three-dimensional rotating viscous flow

induced by a stretching surface was presented by Wang [1]. His problem was governed by an

interesting parameter λ that signifies the ratio of the rotation to the stretching rate. He con-

structed series solutions for small values of parameter λ by regular perturbation approach. He

found that velocity distribution (above the sheet) decreases upon increasing this parameter λ.

Rajeswari and Nath [2] and Nazar et al. [3] extended the Wang’s work for unsteady case. Their
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results indicate a smooth transition from initial unsteady flow to final steady-state flow. Homo-

topy solutions for rotating flow of non-Newtonian second grade fluid were provided by Hayat

et al. [4]. They observed that fluid velocity has direct relationship with material parameter of

second grade fluid. Zaimi et al. [5] examined the rotating flow of viscoelastic fluid bounded by

a stretching surface and concluded that boundary layer thickness is an increasing function of

viscoelastic fluid parameter. Rashidi et al. [6] investigated entropy generation in steady MHD

flow due to a rotating porous disk in a nanofluid. Sheikholeslami et al. [7] reported numerical

results of nanofluid flow and heat transfer in a rotating system with the consideration of mag-

netic field effects. Mustafa [8] used Cattaneo-Christov heat flux model to investigate the rotat-

ing flow of viscoelastic fluid bounded by a stretching surface.

Cooling capabilities of heat transfer equipment have been constrained because of the low

thermal conductivity of conventional coolants including water, oil and ethylene glycol. It is

well known that thermal conductivity of metals is very high as compared to that of liquids.

Thus one of effective approaches to enhance heat transfer performance is via dispersing tiny

metallic particle of nanometer dimensions in the liquids. Choi [9] was the first to introduce the

terminology of nanofluids. Sheikholeslami and Ganji [10] considered the MHD flow and heat

transfer inside a semi annulus enclosure having sinusoidal hot wall. They used Maxwell models

to estimate the effective thermal conductivity and effective electrical conductivity of the nano-

fluids. Turkyilmazoglu [11] examined the flow of five different types of water based nanofluids

due to rotating disk. He employed a spectral Chebyshev collocation method to present numeri-

cal solutions of the developed nonlinear problem. The study of nanofluid convective heat trans-

fer has been a popular research topic for the last several years [12–21]. An electrically

conducting nanofluid subject to magnetic field, known as ferrofluid, has been found pretty use-

ful in several applications. Ferrofluid comprises of iron based nanoparticles such as magnetite,

hematite, cobalt ferrite or some other compounds containing iron. Such iron-based nanoparti-

cles can be used for efficient drug delivery by guiding the particles via external magnets [22,

23]. Particularly, magnetic nanoparticles are prominent in hyperthermia, magnetic cell separa-

tion, cancer tumor treatment (radiotherapy and chemotherapy) and contrast enhancement in

magnetic resonance imaging (MRI). Jue [24] used semi implicit finite element method in order

to simulate magnetic gradient and thermal buoyancy induced cavity ferrofluid flow. Influence

of magnetic field dependent viscosity on the horizontal layer of ferrofluid was addressed by

Nanjundappa et al. [25]. Natural convection flow of Fe3O4-water nanofluid through a rectan-

gular enclosure containing an oval-shaped heat source was considered by Moraveji and Heja-

zian [26]. MHD flow and heat transfer characteristics in a rotating cylinder was examined by

Selimefendigil and Oztop [27]. They observed that cylinder rotation strongly influence the heat

transfer rate at low Reynolds number. Ellahi [28] presented the analytical solutions for MHD

flow of non-Newtonian nanofluid in a pipe. He also considered temperature dependent viscos-

ity in his analysis. Bahirael and Hangi [29] investigated the heat transfer performance of Mn-

Zn ferrite-water ferrofluid in a counter-flow double-pipe heat exchanger under the effect of

magnetic field. In another paper, Bahirael et al. [30] examined the flow of Mn-Zn ferrite-water

ferrofluid through an annulus under the influence of non-uniform magnetic field. Recently,

effect of magnetic field on nanofluid flow and heat transfer has been investigated by several

authors [31–40].

To our knowledge, the rotating flow of ferrofluids developed by stretching surface has never

been explored. Thus present work is undertaken to fill such a void. Interesting aspect of nonlin-

ear radiative heat transfer is also accounted. This allows us to analyze the problem for both

large and small temperature differences between the stretching surface and ambient fluid.

Some studies pertaining to the non-linear radiative heat transfer have appeared in the recent

past (see [41–46] for details). The governing non-linear differential system has been dealt with
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shooting technique combined with Newton method. Emphasis has been given to the role of

embedding parameters on the velocity and temperature functions. In shooting method, the

boundary conditions are assumed as multivariate functions of the initial conditions at a partic-

ular point. It acquires advantage of faster convergence and simple implementation of the meth-

ods for initial value problems such as fourth-fifth-order Runge-Kutta (RK45) method.

Mathematical Model

Consider the rotating flow of Fe3O4-water ferrofluid caused by a radiative surface coincident

with the xy− plane. The surface is subjected to uniform stretch in the x− direction with rate a.

The sheet is maintained at a constant temperature Tw whereas T1 denotes the temperature

outside the thermal boundary layer (see Fig 1). Following the famous Tiwari and Das model

[47], the equations embodying the conservation of mass, momentum and energy are expressed

as below:
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with the following boundary conditions

u ¼ uw ¼ ax; v ¼ 0; w ¼ 0; T ¼ Tw at z ¼ 0;

u ¼ 0; v ¼ 0; T ¼ T1 as z ! 1;
ð5Þ

Fig 1. Geometry of the problem and coordinate system.

doi:10.1371/journal.pone.0149304.g001
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in which u and v are the velocity components along the x− and y− directions respectively, qr =

−(4σ�/3k�)@T4/@z is the Rosseland radiative heat flux in which σ
� is the Stefan-Boltzman con-

stant and k� is the mean absorption coefficient (see Table 1).

Brinkman [48] expressed the dynamic viscosity of nanofluid μnf as

mnf ¼
mf

ð1� φÞ2:5
; ð6Þ

the effective density ρnf and effective heat capacity (ρcp)nf are expressed as [47]:

rnf ¼ ð1� �Þrf þ �rs; ð7Þ

ðrcpÞnf ¼ ð1� �ÞðrcpÞf þ �ðrcpÞs; ð8Þ

We take into account the Maxwell-Garnett model [49] for effective thermal conductivity of

nanofluid knf given below:

knf

kf
¼

ðks þ 2kf Þ � 2φðkf � ksÞ
ðks þ 2kf Þ þ φðkf � ksÞ

: ð9Þ

Moreover, the electrical conductivity of nanofluid σnf is given in the book by Maxwell [50] as

snf

sf

¼ 1þ
3ðss � sf Þ�

ðss þ 2sf Þ � ðss � sf Þ�
: ð10Þ

In Eqs (6)–(10), ϕ denotes the nanoparticle volume fraction and the subscripts s and f corre-

spond to the solid and fluid phases respectively. Thermophysical properties of water and mag-

netite-Fe3O4 are given in Table 2.

Table 1. List of symbols.

(x,y,z) Cartesian coordinate system Subscripts

u,v,w velocity components along the x-,y-,z- directions respectively ƒ fluid phase

T fluid temperature s solid phase

Tw wall temperature nf nanofluid

T1 ambient fluid temperature

uw velocity of the stretching sheet Greek symbols

f0,g dimensionless x- and y- components of velocity λ ratio of rotation rate to the stretching rate

a stretching rate ρ density

B0 uniform magnetic field μ dynamic viscosity

k thermal conductivity ν kinematic viscosity

qr radiative heat flux α thermal diffusivity

M Hartman number Ω angular velocity

Pr Prandtl number σ electrical conductivity

Rd radiation parameter η similarity variable

Re Reynolds number θ dimensionless temperature

qw wall heat flux θw temperature ratio parameter

Nu local Nusselt number ϕ dimensionless nanoparticle concentration

Cf skin friction coefficient τwx,τwy wall shear stresses along x− and y− direction

doi:10.1371/journal.pone.0149304.t001
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We look for similarity solution of Eqs (1)–(4) in the following forms [5]

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

a
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 !

v

u

u

t z; u ¼ axf 0ðZÞ; v ¼ axgðZÞ; w ¼ � ffiffiffiffiffiffi

anf
p

f ðZÞ;

T ¼ T1 þ ðTw � T1ÞyðZÞ:

ð11Þ

In view of the above quantities, the continuity Eq (1) is identically satisfied while Eqs (1)–(5)

become

1
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in which Pr = (μcp)f /kf is the Prandtl number of the base fluid, Rd = 16σ�T13/3k�kf denotes
the radiation parameter,M ¼ sB2

0
=rfO is the magnetic field parameter and λ = O/a is the ratio

of rotation rate to the stretching rate. The quantities of practical interest are the skin friction

coefficients Cfx, Cfy and the local Nusselt number Nux defined as follows.
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; ð16Þ

where twx ¼ tzxjz¼0
and twy ¼ tzyjz¼0

are the wall shear stresses and qw is the wall heat flux

given by
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Using Eq (11) in Eq (16) one obtains

ffiffiffiffiffiffiffi
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p
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1
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0ð0Þ; ð18Þ

in which Rex = uwx/vf is the local Reynolds number.

In the present article, we employed the Tiwari and Das model [47] to address the rotating

flow and heat transfer of Fe3O4-water ferrofluid driven by a linearly stretching surface.

Table 2. Thermo-physical properties of water andmagnetite-Fe3O4 [10].

ρ(kg/m3) Cp(J/kgK) K(W/mK) σ(Ω.m)−1

Water 997.1 4179 0.613 0.05

Fe3O4 5180 670 9.7 25000

doi:10.1371/journal.pone.0149304.t002
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Numerical solutions of the Eqs (12)–(14) subject to the conditions Eq (15) are computed by

using shooting method with Runge-Kutta fifth order integration scheme. In all the calculations

the volume fraction is considered in the range 0� ϕ� 0.2 (as ϕ beyond 0.2 is not physically

realizable due to accumulation) while the Prandtl number Pr = 6.2 for water is used. We have

compared our results with available studies of Wang [1] and Nazar et al. [3] in the case of pure

fluid and found very good agreement (see Table 3).

Numerical Results and Discussion

The numerical values of local Nusselt number Nux=
ffiffiffiffiffiffiffi

Rex
p

for some values of parameters are

computed in Table 4. The magnitude of Nux=
ffiffiffiffiffiffiffi

Rex
p

grows sharply with the volume fraction ϕ is

when larger wall to ambient temperature ratio is accounted. Moreover Nux=
ffiffiffiffiffiffiffi

Rex
p

has direct as

well as non-linearly relationship with the radiation parameter Rd. This outcome is true for

both linear and non-linear radiation cases.

Figs 2 and 3 preserve the effects of magnetic field strength on the dimensionless x− and y−

components of velocity respectively. The function g(η) has a parabolic profile and its value is

negative revealing that flow occurs in the negative y− direction. As the Hartman numberM

enlarges, the flow decelerates in both x− and y− directions. Physically, the presence of magnetic

field restricts the fluid motion due to which a thinner boundary layer appears for stronger mag-

netic field strength.

Table 3. Comparison of current result with previous studies for special cases (ϕ = 0,M = 0).

λ Wang [1] Nazar et al. [3] Present

f@(0) g0(0) f@(0) g0(0) f@(0) g0(0)

0 -1 0 -1 0 -1 0

0.5 -1.1384 -0.5128 -1.1384 -0.5128 -1.13838 -0.51276

1.0 -1.3250 -0.8371 -1.3250 -0.8371 -1.32503 -0.837089

2.0 -1.6523 -1.2873 -1.6523 -1.2873 -1.65235 -1.28726

doi:10.1371/journal.pone.0149304.t003

Table 4. Values of local Nusselt number Nux=
ffiffiffiffiffiffiffiffi

Rex

p

for different values of embedded parameters.

Rd = 1

ϕ M λ Rd = 0 Linear radiation Nonlinear radiation

θw = 1.1 θw = 1.5

0.1 1 0 1.88862 2.29587 2.36871 2.70039

0.5 1.85750 2.23679 2.30471 2.60866

1 1.78831 2.10820 2.16559 2.41046

2 1.62561 1.82975 1.86624 2.00376

0.1 0 1 1.83496 2.16281 2.22182 2.46987

0.5 1.81436 2.14190 2.20074 2.45110

1 1.78831 2.10820 2.16559 2.41046

2 1.72931 2.02393 2.07670 2.30010

0 1 0.5 1.66171 2.15308 2.23565 2.59822

0.05 1.75604 2.18830 2.26323 2.59451

0.1 1.85750 2.23679 2.30471 2.60866

0.2 2.09314 2.38075 2.43596 2.68996

doi:10.1371/journal.pone.0149304.t004
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In Figs 4 and 5, we portray the effects of ratio λ on the x− and y− components of velocity

respectively. Larger values of λ indicates smaller stretching rates (along the x− direction) com-

pared to the rotation rate. Due to this fact, the x− component of velocity f0(η) is inversely pro-
portional to λ and magnitude of the y− component of velocity g(η) increases when λ is

increased.

Fig 2. Effect ofM on f0(η).

doi:10.1371/journal.pone.0149304.g002

Fig 3. Effect ofM on g(η).

doi:10.1371/journal.pone.0149304.g003
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In Figs 6 and 7 we plot the skin friction coefficients Rex
1=2 Cfx and Rey

1=2 Cfy against the

volume fraction ϕ for different values of λ. The values of skin friction coefficients Rex
1=2 Cfx

and Rey
1=2 Cfy are negative since the fluid applies stress on the stretching wall (that causes the

flow). Clearly the magnitudes of Rex
1=2 Cfx and Rey

1=2 Cfy are decreasing functions ofM. This

is attributed to the fact that transverse magnetic field has a tendency to create a drag (known as

Fig 4. Effect of λ on f0(η).

doi:10.1371/journal.pone.0149304.g004

Fig 5. Effect of λ on g(η).

doi:10.1371/journal.pone.0149304.g005
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Lorentz force that resists the transport phenomenon). This leads to the deceleration of flow

and enhancement in the surface shear stress. We also observe that wall shear stresses increase

nonlinearly with an increase in ϕ. This means that larger force will be required to displace the

fluid over the sheet when larger concentration of Fe3O4 particles in water is considered. Physi-

cally, an increase in ϕ enhances the viscous force which induces larger stress at the wall (since

Fig 6. Effect of λ,M and ϕ on
ffiffiffiffiffiffiffiffi

Rex

p

Cfx.

doi:10.1371/journal.pone.0149304.g006

Fig 7. Effect of λ,M and ϕ on
ffiffiffiffiffiffiffiffi

Rex

p

Cfy.

doi:10.1371/journal.pone.0149304.g007
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τyx = μnf@u/@y) and consequently the skin friction coefficient enlarges. The outcome is similar

for both magnetic and non-magnetic nanoparticles. We also conclude that tangential stress τzx
is more sensitive to parameter λ than the tangential stress τzy.

The influence of volume fraction ϕ on the temperature θ is sketched in the Fig 8. As

expected, the intense viscous force due to the consideration of large ϕ develops thicker thermal

boundary. It is also noted that wall temperature gradient augments with an increase in ϕ.

Fig 9 contains the impact of magnetic field on the temperature θ. The resistance associated

with the Lorentz force due to the applied magnetic field enhances the temperature. Due to this

reason, temperature rises and thermal boundary layer gets thicker whenM is incremented. The

behavior of ratio λ on thermal boundary layer is qualitatively similar to that ofM (see Fig 10).

However the effects are prominently felt when λ is varied.

Temperature profiles for several values of temperature ratio parameter θw are sketched in

Fig 11. Unlike the linear radiation case, the profiles change from normal shape to the S-shaped

thicker profiles when θw is increased. Here the thermal boundary layer thickness is controlled

by the effective thermal diffusivity αeff = α + 16σ�T3/3ρCpk
�) which is a function of tempera-

ture. Since the sheet is hotter than the fluid therefore one expects aeff to be larger near the sheet

than at the ambient fluid. Due to this reason, an increase in wall to ambient temperature ratio

parameter θw tends to a decrease the temperature gradient near the surface which results in the

point of inflection. More precisely, the concavity of the temperature function changes in [0,1)

when θw is sufficiently large. On the other hand, the concavity has been preserved in case of lin-

ear radiation heat transfer. As θw enlarges, this corresponds to larger temperature difference

between wall and the ambient which eventually imparts a thicker thermal boundary layer. The

results are in accordance with the previously published articles.

Fig 12 gives the effect of radiation parameter Rd in both the cases of linear and non-linear

radiative heat fluxes. In accordance with Cortell [46], wall slope of temperature tends to a con-

stant finite value when radiation parameter Rd is increased for linear radiation case. Such effect

is not preserved in the case of the nonlinear radiation. Temperature θ appears to be larger when

Fig 8. Effect of ϕ on θ(η).

doi:10.1371/journal.pone.0149304.g008
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larger radiation parameter is accounted. Moreover, temperature θ rises sharply in non-linear

radiation when compared with the linear radiation. From Fig 12 we also envisage that linear and

non-linear radiation results are identical only when Rd is small and θw is close to one. The differ-

ence between linear and non-linear radiation continues to grow as the radiation parameter is

gradually increased, a fact that is also found in [45]. Fig 13 shows that local Nusselt number

Fig 9. Effect ofM on θ(η).

doi:10.1371/journal.pone.0149304.g009

Fig 10. Effect of λ on θ(η).

doi:10.1371/journal.pone.0149304.g010
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Nux=
ffiffiffiffiffiffiffi

Rex
p

has direct relationship with the volume fraction ϕ is increased. Notably, the heat

transfer rate from the sheet significantly varies only for small values of λ. Fig 14 plots the local

Nusselt number Nux=
ffiffiffiffiffiffiffi

Rex
p

against θw for various values of Rd. We observe a sharp growth in

heat transfer rate when θw is increased. The slope of this function further increases when Rd is

increased. Here the comparison of results for pure water and ferrofluid is also given.

Fig 11. Effect of θw on θ(η).

doi:10.1371/journal.pone.0149304.g011

Fig 12. Effect ofRd on θ(η).

doi:10.1371/journal.pone.0149304.g012
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Concluding Remarks

Revolving flow and heat transfer of magnetite-water ferrofluid over a deformable surface is

explored through Tiwari and Das model. The developed non-linear boundary value problem is

tackled by a numerical approach. The major aspects of this work are highlighted below:

Fig 13. Effects of λ,M and ϕ on Nux=
ffiffiffiffiffiffiffiffi

Rex

p

.

doi:10.1371/journal.pone.0149304.g013

Fig 14. Effects of Rd and θw on Nux=
ffiffiffiffiffiffiffiffi

Rex

p

.

doi:10.1371/journal.pone.0149304.g014
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1. The y− component of velocity is negative and has a parabolic distribution.

2. The parameter λ, which gives the ratio of rotation rate to the stretching rate, has opposite

effects on the x− and y− components of velocity qualitatively.

3. For sufficiently large wall to ambient temperature ratio, temperature function θ has an inter-

esting S-shaped profile which indicates the existence of adiabatic case.

4. Variations in x− and y− components of velocity with the nanoparticle volume fraction ϕ is

non-monotonic.

5. The velocity distributions f0 and g decrease when larger values of magnetic field parameter

M are employed.

6. Skin friction coefficient and local Nusselt number are directly proportional to the nanopar-

ticle volume fraction ϕ.

7. Local Nusselt number attenuates when magnetic field strength is intensified.
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