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1 Introduction

The structure of the known interacting field theories involving particles of spin greater

than two depends significantly on the presence or absence of a cosmological constant. On

(anti) de Sitter backgrounds of any dimension, Vasiliev’s equations describe higher-spin

gauge theories with an infinite tower of massless fields of increasing spin [1]. These models

display several unconventional features, mainly because interactions involve more than

two derivatives. In flat space the situation is even subtler, since one loses the option to

balance higher derivatives by inverse powers of the cosmological constant. As a result,

interactions of massless fields in flat space are expected to be fraught with more severe

non-localities than their (A)dS peers (see e.g. [2] for a review), and it is not yet clear if

consistent interacting theories can be defined at all. These difficulties, however, are absent

for massive fields, which bring in a dimensionful parameter that can play a role analogous
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to that of the cosmological constant. String field theories indeed involve infinitely many

massive higher-spin fields and they can be defined on flat backgrounds.

Therefore, even if (A)dS backgrounds favour interactions of massless higher-spin parti-

cles, flat space is not completely ruled out by higher spins. Several indications also suggest

that string models could actually be broken phases of a higher-spin gauge theory (see e.g. [3]

for a recent review). In order to clarify this issue one should understand if the striking

differences in higher-spin theories with or without cosmological constant are really funda-

mental, or if they are induced by technical assumptions on the “allowed” field theories.

At present we indeed control higher-spin gauge theories only in a context in which we do

not fully control String Theory. To make progress in this quest, it is important to develop

tools to analyse the elusive higher-spin theories in flat space and to study the pathologies

of the flat limit of the known interacting theories in (A)dS.

In this paper we consolidate one of these tools for flat space; we compute one-loop

partition functions for higher-spin fields in D-dimensional Minkowski space at finite tem-

perature and with non-vanishing angular potentials. Although they are determined by the

free theory, one-loop partition functions often provide useful information on the consis-

tency of a given spectrum for a possible interacting quantum field theory. This powerful

feature has been extensively exploited for higher-spin gauge theories on AdS backgrounds:

in D = 3 the comparison between bulk and boundary partition functions [4–6] has been

an important ingredient in defining the holographic correspondence between higher-spin

gauge theories and minimal model CFTs [7]. In D > 3 the analysis of one-loop partition

functions of infinite sets of higher-spin fields provided the first quantum checks [8–12] of

analogous AdS/CFT dualities [13]. More recently, holographic considerations driven by the

structure of one-loop partition functions have also been used to conjecture the existence of

consistent quantum higher-spin gauge theories in AdS with spectra that differ from those

of Vasiliev’s theories [14–16].

In flat space this tool has been poorly employed in the higher-spin context; aside from

computing one-loop partition functions for any D, here we also provide a first application of

our results when D = 3. This is a promising setup to explore relations between higher-spin

theories in flat and (A)dS spaces because, in contrast with what happens when D > 3, the

limit of vanishing cosmological constant does not entail any subtlety. The main reason is

that, in the absence of matter couplings, higher-spin gauge theories in AdS3 are described

by Chern-Simons actions [17] that can be cast in the form

S =
kg

16πG

∫
tr

(
e ∧R+

1

3ℓ2
e ∧ e ∧ e

)
, with R = dω + ω ∧ ω , (1.1)

where e and ω are one-forms that generalise the gravity vielbein and spin connection and

that take values in a suitable gauge algebra (typically sl(N,R) for theories involving fields

of spin 2, 3, . . . , N — see e.g. [18] for a review). In (1.1) G denotes Newton’s constant and kg
is a factor that depends on the normalisation of the trace, while ℓ denotes the AdS radius.

One can clearly consider the limit ℓ → ∞ in the action.1 This simplification is related to

the absence of local degrees of freedom in theories involving fields of spin s ≥ 2. Another

1In the metric-like formulation of the dynamics [19, 20], on which we rely to compute partition functions,
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key feature of gravitational theories in three dimensions is the richness of their asymptotic

symmetries in both AdS [22–26] and flat space [27–32]. The combination of simplicity and

powerful infinite-dimensional asymptotic symmetries makes these models important testing

grounds for the holographic principle, in both its AdS/CFT realisation and its possible flat

space counterpart. However, in spite of the straightforward way one can obtain interacting

actions in flat space from the ℓ → ∞ limit of (1.1), higher-spin gauge theories in flat

space are arguably less understood than those in AdS3. An important reason is that their

asymptotic symmetry algebras at null infinity are less familiar than those that emerge in

AdS3 at spatial infinity. The latter are typically WN algebras, which are well studied global

symmetries in two-dimensional CFT [33]. In the following we propose a characterisation

of the unitary representations of their flat space counterparts — that we call “flat WN

algebras” — and we test our proposal by matching their vacuum characters with suitable

products of partition functions of higher-spin fields. In this process we thus achieve two

goals: on the one hand we improve the current understanding of the representation theory

of flat WN algebras. On the other hand, in analogy with similar results in AdS3 [4, 6, 34],

we confirm that the asymptotic symmetries identified by the classical analysis of [30–32]

are a robust feature of these models, that should persist also at the quantum level.

The paper is organised as follows: in section 2 we compute one-loop partition functions

of higher-spin fields on Minkowski space of arbitrary dimensions D with finite temperature

1/β and a maximal number of angular potentials ~θ. We employ the heat kernel method

of [34]. As already shown for gravity in D = 3 [35], these techniques are more tractable in

flat space than in (A)dS, so that we do not have to resort to their successive refinements [36,

37]. In section 2.2 we study massive and massless bosonic fields of any (discrete) spin,

whose partition functions are given in (2.24) and (2.28, 2.30). In section 2.3 we then move

to massive and massless fermionic fields of any spin, whose partition functions are given

in (2.49). In section 2.4 we rewrite partition functions in terms of characters of the Poincaré

group. For massive fields we obtain

ZM,s[β, ~θ ] = exp

[ ∞∑

n=1

1

n
χM,s[n~θ, inβ]

]
, (1.2)

where χM,s is a character of a representation of the Poincaré group of mass M and spin s.

For massless fields this natural rewriting has to be amended when D is odd, as one also

has to introduce suitable angle-dependent coefficients.

In section 3 we focus on D = 3. In section 3.1 we begin by reviewing several aspects of

the representation theory of the BMS3 group — i.e. of the group of asymptotic symmetries

at null infinity of pure gravity in D = 3 — that are relevant in the following. We emphasise

that its representations are induced representations classified by orbits of supermomenta,

and we show how one can describe the representations of the corresponding bms3 algebra

in terms of induced modules. In section 3.2 we move to higher spins, proposing to build

unitary representations of flat WN algebras as Hilbert spaces of wavefunctions defined on

the limit is well defined because interactions involve at most two derivatives in D = 3, so that no inverse

powers of the cosmological constant enter the action [21].
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coadjoint WN orbits of (higher-spin) supermomenta. We also compute vacuum characters

and the characters of other illustrative representations. We then test our proposal by

checking that vacuum characters of flat WN algebras — which take the form

χvac[θ, β] = e
β
8G

N∏

s=2

( ∞∏

n= s

1

|1− ein(θ+iǫ)|2

)
, (1.3)

where ǫ is a regulator that ensures the convergence of the infinite product — match the

product of the partition functions of fields of spin 2, 3, . . . , N computed in section 2.2. We

also take advantage of the description of these representations in terms of induced modules

to make contact with previous proposals on the structure of representations of flatWN alge-

bras. This allows us to explain how our representations evade some no-go arguments against

the existence of unitary higher-spin gauge theories in three-dimensional flat space that ap-

peared in the literature [38]. In section 3.3 we include fermions: we discuss in detail the

representation theory of the N = 1 extension of the BMS3 group relevant for supergravity.

We then extend our results to hypergravity theories describing the gravitational coupling

of a massless field of spin s + 1/2. In both cases we also exhibit the matching between

vacuum characters and the product of partition functions of fields of spin 2 and s+ 1/2.

We close the paper with a discussion of possible extensions and applications of our

work even beyond three dimensions (section 4), while two technical appendices fill the gap

between the results of heat kernel computations and the rewriting of partitions functions

in terms of Poincaré characters.

2 Partition functions in flat space

We wish to study one-loop partition functions of higher-spin fields living in D-dimensional

Minkowski space at finite temperature 1/β, and with non-zero angular potentials. We will

denote these potentials as ~θ = (θ1, . . . , θr), where r = ⌊(D−1)/2⌋ is the rank of SO(D−1),

that is, the maximal number of independent rotations in (D − 1) space dimensions. The

computation involves a functional integral over fields living on a quotient of RD, where

the easiest way to incorporate one-loop effects is the heat kernel method. Accordingly,

we will now briefly review this approach, before analysing separately bosons (section 2.2)

and fermions (section 2.3). In section 2.4 we then rewrite partition functions in terms of

characters of the Poincaré group.

2.1 Heat kernels and the method of images

Our goal is to compute partition functions of the form

Z[β, ~θ ] =

∫
Dφ e−S[φ] (2.1)

where φ is some collection of fields (bosonic or fermionic) defined on a thermal quotient

R
D/Z of flat Euclidean space, satisfying suitable (anti)periodicity conditions. (The explicit

action of Z on R
D, with its dependence on β and ~θ, will be displayed below — see eq. (2.7).)
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The functional S[φ] is a Euclidean action for these fields. Expression (2.1) can be evaluated

perturbatively around a saddle point φc of S, leading to the semi-classical (one-loop) result

Z[β, ~θ ] ∼ e−S[φc]

[
det

(
δ2S

δφδφ

)∣∣∣∣
φc

]#
(2.2)

where the exponent # depends on the nature of the fields that were integrated out. The

quantity δ2S/δφ(x)δφ(y) appearing in this expression is a differential operator acting on

sections of a suitable vector bundle over RD/Z. The evaluation of the one-loop contribution

to the partition function thus boils down to that of a functional determinant.

The heat kernel method is a neat way to compute such determinants; after gauge-

fixing, they reduce to determinants of operators of the form (−∆ +M2). In short (see

e.g. [34, 39] for details), it allows one to express det(−∆+M2) as an integral

− log det(−∆+M2) =

∫ ∞

0

dt

t

∫
dDxTr [K(t, x, x)] , (2.3)

up to an ultraviolet divergence that can be regulated with standard methods. Here

K(t, x, x′) is a matrix-valued bitensor known as the heat kernel associated with (−∆+M2).

It satisfies the heat equation

∂

∂t
K(t, x, x′)− (∆x −M2)K(t, x, x′) = 0 , (2.4)

along with the initial condition

K(t = 0, x, x′) = δ(D)(x− x′) I , (2.5)

with I the identity matrix having the same tensor structure as K (here omitted for brevity).

Heat kernels are well suited for the computation of functional determinants on quotient

spaces. Indeed, suppose Γ is a discrete subgroup of the isometry group of RD, acting freely

on R
D. Introducing the equivalence relation x ∼ y if there exists a γ ∈ Γ such that

γ(x) = y, we define the quotient manifold R
D/Γ as the set of corresponding equivalence

classes. Given a differential operator ∆ on R
D, it naturally induces a differential operator

on R
D/Γ, acting on fields that satisfy suitable (anti)periodicity conditions. Because the

heat equation (2.4) is linear, the heat kernel on the quotient space can be obtained from

the heat kernel on R
D by the method of images:

KRD/Γ(t, x, x′) =
∑

γ ∈Γ

K(t, x, γ(x′)) . (2.6)

Here, abusing notation slightly, x and x′ denote points both in R
D and in its quotient. In

writing (2.6) we are assuming, for simplicity, that the tensor structure of K is trivial, but

as soon as K carries tensor or spinor indices (i.e. whenever the fields under consideration

have non-zero spin), the right-hand side involves Jacobians accounting for the non-trivial

transformation law of K.

We will be concerned with thermal quantum field theories on rotating Minkowski

space. This means we will define our fields on a quotient R
D/Z of Euclidean space, with

– 5 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
4

the action of Z defined as follows. For odd D, we endow R
D with Cartesian coordinates

(xi, yi) (where i = 1, . . . , r) and a Euclidean time coordinate τ , so that an integer n ∈ Z

acts on R
D according to

γn

(
xi
yi

)
=

(
cos(nθi) − sin(nθi)

sin(nθi) cos(nθi)

)
·
(
xi
yi

)
≡ R(nθi) ·

(
xi
yi

)
, γn(τ) = τ + nβ . (2.7)

For even D we simply add one more spatial coordinate z, invariant under Z. In terms of

the coordinates {x1, y1, . . . , xr, yr, τ} (and possibly z at the end of this list for even D), the

Lorentz matrix implementing the rotation (2.7) is the nth power of

J =




R(θ1) 0 · · · 0

0
. . . 0

...
... 0 R(θr) 0

0 · · · 0 1




or




R(θ1) 0 · · · 0 0

0
. . . 0

... 0
... 0 R(θr) 0 0

0 · · · 0 1 0

0 · · · 0 0 1




(2.8)

for D odd or D even, respectively. Being isometries of flat space, these transformations

are linear maps in Cartesian coordinates, and their nth power therefore coincides with

the Jacobian matrix ∂γn(x)µ/∂xν that will be needed later for the method of images.

Throughout this paper we take all angles θ1, . . . , θr to be non-vanishing. We now dis-

play the computation of one-loop partition functions on R
D/Z, first for bosonic, then for

fermionic higher-spin fields.

2.2 Bosonic higher spins

In this subsection we study the rotating one-loop partition function of a single bosonic field

with spin s and massM (including the massless case). ForM > 0 its Euclidean free action

can be presented either (i) using a symmetric traceless field φµ1...µs of rank s and a tower of

auxiliary fields of ranks s− 2, s− 3, . . . , 0 that do not display any gauge symmetry [40], or

(ii) using a set of doubly-traceless fields of ranks s, s−1, . . . , 0 subject to a gauge symmetry

generated by traceless gauge parameters of ranks s− 1, s− 2, . . . , 0 [41]. In the latter case,

the quadratic action is given by the sum of Fronsdal actions [19] for each of the involved

fields, plus a set of cross-coupling terms with one derivative proportional to M and a set of

terms without derivatives proportional to M2. In the massless limit, all couplings vanish

and one can consider independently the Fronsdal action for the field of highest rank:

S[φµ1...µs ] =
1

2

∫
dDxφµ1...µs

(
Fµ1...µs −

1

2
δ(µ1µ2

Fµ3...µs)λ
λ

)
, (2.9)

where

Fµ1···µs = �φµ1...µs − ∂(µ1|∂
λφ|µ2...µs)λ + ∂(µ1

∂µ2φµ3...µs)λ
λ , (2.10)

and parentheses denote the symmetrisation of the indices they enclose, with the minimum

number of terms needed and without any overall factor. In the alternative formulation of

the dynamics where no gauge symmetry is present [40], in the massless limit all auxiliary

– 6 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
4

fields except the one of rank s− 2 decouple. The remaining fields can be combined into a

doubly traceless field whose action is given again by (2.9) [19]. For further details we refer

e.g. to [42].

Note that in all space-time dimensions other than three, the vacuum saddle point of

the action (2.9) (or of its massive counterpart) is the trivial field configuration φµ1...µs = 0.

Accordingly, the whole partition function (2.2) is captured by its one-loop piece. In D = 3,

the presence of a mass gap makes this situation slightly different; we will return to this

issue at the end of this subsection.

Massive case. Applying e.g. the techniques of [4] to the presentation of the Euclidean

action of a massive field of spin s of [41], one finds that the partition function is given by

logZ = − 1

2
log det(−∆(s) +M2) +

1

2
log det(−∆(s−1) +M2) , (2.11)

where ∆(s) is the Laplacian ∂µ∂
µ acting on periodic,2 symmetric, traceless tensor fields

with s indices on R
D/Z. We will denote the heat kernel associated with (−∆(s) +M2) on

R
D as Kµs,νs(t, x, x

′), where µs and νs are shorthands that denote sets of s symmetrised

indices. The heat equation (2.4) and initial condition (2.5) for Kµs,νs(t, x, x
′) then read

(∆(s) −M2 − ∂t)Kµs, νs = 0 , Kµs, νs(t = 0, x, x′) = Iµs, νsδ
(D)(x− x′) , (2.12)

where Iµs,νs is an identity matrix with the same tensor structure asKµs,νs . A set of repeated

covariant or contravariant indices also denotes a set of indices that are symmetrised with the

minimum number of terms required and without multiplicative factors, while contractions

involve as usual a covariant and a contravariant index. The tracelessness condition on the

heat kernel amounts e.g. to

δµµKµs, νs = δννKµs, νs = 0 . (2.13)

The solution of (2.12) fulfilling this condition is

Kµs, νs(t, x, x
′) =

1

(4πt)D/2
e−M2t− 1

4t
|x−x′|2

Iµs, νs , (2.14)

with

Iµs, νs =

⌊ s
2
⌋∑

n=0

(−1)n2nn! [D + 2(s− n− 2)]!!

s! [D + 2(s− 2)]!!
δnµµδ

s−2n
µν δnνν . (2.15)

Note that the dependence of this heat kernel on the space-time points x, x′ and on

Schwinger proper time t is that of a scalar heat kernel, and completely factorises from

its spin/index structure which is wholly accounted for by the matrix I. This simplification

is the main reason why explicit heat kernel computations are more tractable in flat space

than in AdS or dS.

To determine the heat kernel associated with the operator (−∆(s)+M2) on R
D/Z, we

use the method of images (2.6), taking care of the non-trivial index structure. Denoting

2More precisely, the field at Euclidean time τ + β is rotated by ~θ with respect to the field at time τ .
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the matrix (2.8) by Jα
β (it is the Jacobian of the transformation x 7→ γ(x)), the spin-s

heat kernel on R
D/Z is

KRD/Z
µs, νs (t, x, x

′) =
∑

n∈Z

(Jn)α
β . . . (Jn)α

βKµs, βs(t, x, γ
n(x′)) , (2.16)

where we recall again that repeated covariant or contravariant indices are meant to be

symmetrised with the minimum number of terms required and without multiplicative fac-

tors, while repeating a covariant index in a contravariant position denotes a contraction.

Accordingly, formula (2.3) gives the determinant of (−∆(s) +M2) on R
D/Z as

− log det(−∆(s) +M2) =

∫ +∞

0

dt

t

∫

RD/Z
dDx (δµα)sKRD/Z

µs, αs
(t, x, x)

=
∑

n∈Z

(Jn)µβ · · · (Jn)µβ Iµs,βs

∫ +∞

0

dt

t

∫

RD/Z
dDx

1

(4πt)D/2
e−M2t− 1

4t
|x−γn(x)|2 .

(2.17)

In this series the term n = 0 contains both an ultraviolet divergence (due to the singular

behaviour of the integrand as t→ 0) and an infrared one (due to the integral of a constant

over R
D/Z), proportional to the product βV with V the spatial volume of the system.

This divergence is a quantum contribution to the vacuum energy, which we ignore from

now on. The only non-trivial one-loop contribution we must take into account then comes

from the terms n 6= 0 in (2.17). Using

|x− γn(x)|2 = n2β2 +
r∑

i=1

4 sin2(nθi/2)(x
2
i + y2i ) (2.18)

in terms of the coordinates introduced around (2.7), the integrals over t and x give

− log det(−∆(s) +M2) =
∑

n∈Z∗

1

|n|
χs[n~θ,~ǫ ]

r∏
j=1

|1− ein(θj+iǫj)|2
×




e−|n|βM if D odd,

M∆z
π K1(|n|βM) if D even,

(2.19)

where K1 is the first modified Bessel function of the second kind, and ∆z ≡
∫ +∞
−∞ dz is

an infrared divergence that arises in even dimensions because the z axis is left fixed by

the rotation (2.8). Following [35] we have added small imaginary parts to the angles θj to

make the series convergent. Similarly

χs[n~θ,~ǫ ] ≡ (Jn)µβ . . . (Jn)µβ Iµs, βs ≡
[
(Jn)µβ

]s
Iµs, βs (2.20)

is the full mixed trace of Iµs,νs , with the understanding that θj is replaced by θj ± iǫj in

all positive powers of e±iθj . For odd D, the result of this regularisation agrees with the

flat limit of the AdS one-loop determinant, in which case the parameters ǫj = β/ℓ are

remnants of the inverse temperature (with ℓ the AdS radius).3 For even D, the flat limit of

the AdS result contains an infrared divergence; it is not obvious to us how this divergence

3According to [43], a different regularisation may produce a completely different, albeit finite, result.
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can be regularised so as to reproduce the combination ∆z ·K1 of (2.19), but apart from this

subtlety, the other terms of the expression indeed coincide with the flat limit of their AdS

counterparts. From now on we will often omit displaying the ǫ-regularisation explicitly,

keeping it only in the final results.

Expression (2.19) is a higher-dimensional, higher-spin extension of the result derived

previously for spin two in three dimensions in [35]. In particular, the divergence as ǫj → 0

is the same as in three dimensions. The new ingredient is the angle-dependent trace (2.20);

in appendices A.1 and A.2 we show that it is the character of an irreducible, unitary repre-

sentation of SO(D) with highest weight λs ≡ (s, 0, . . . , 0). More precisely, let Hi denote the

generator of rotations in the plane (xi, yi), in the coordinates defined around (2.7). Then

the Cartan subalgebra h of so(D) is generated by H1, . . . , Hr, plus, if D is even, a generator

of rotations in the plane (τ, z). Denoting the dual basis of h∗ by L1, . . . , Lr (plus possibly

Lr+1 if D is even), we can consider the weight λs = sL1 whose only non-zero component

(in the basis of Li’s) is the first one. The character of the corresponding highest-weight

representation of so(D) coincides with expression (A.1):

χs[n~θ ] = χλs [nθ1, . . . , nθr] or χλs [nθ1, . . . , nθr, 0] , (2.21)

for D odd or even, respectively.

We can finally display an explicit formula for the one-loop partition function (2.11).

Using expression (2.19) for the one-loop determinant together with property (2.21), we find

Z[β, ~θ ] = exp




∞∑

n=1

n−1

r∏
j=1

|1− einθj |2
×





(
χ
SO(D)
λs

[n~θ ]− χ
SO(D)
λs−1

[n~θ ]
)
e−nβM

(
χ
SO(D)
λs

[n~θ, 0]− χ
SO(D)
λs−1

[n~θ, 0]
)
M∆z
π K1(nβM)


 ,

(2.22)

where the upper (resp. lower) line corresponds to the case where D is odd (resp. even). Re-

markably, the differences of SO(D) characters appearing here can be simplified: according

to eqs. (A.26a) and (A.27), the difference of two SO(D) characters with weights (s, 0, . . . , 0)

and (s− 1, 0, . . . , 0) is a (sum of) character(s) of SO(D − 1):

χ
SO(D)
λs

[~θ ]− χ
SO(D)
λs−1

[~θ ] (D odd)

χ
SO(D)
λs

[~θ, 0]− χ
SO(D)
λs−1

[~θ, 0] (D even)



 = χ

SO(D−1)
λs

[~θ ] . (2.23)

Since r = ⌊(D− 1)/2⌋ is the rank of SO(D− 1), the right-hand side of this equality makes

sense regardless of the parity of D, and the partition function (2.22) boils down to

Z[β, ~θ ] = exp




∞∑

n=1

1

n

χ
SO(D−1)
λs

[n~θ,~ǫ ]
r∏

j=1
|1− ein(θj+iǫj)|2

×




e−nβM (D odd)

M∆z
π K1(nβM) (D even)


 . (2.24)

In section 2.4 we will show that the function of n~θ and nβ appearing here in the sum

over n is in fact the character of an irreducible, unitary representation of the Poincaré

group with mass M and spin s (see eq. (2.55)). A similar result holds in Anti-De Sitter

space [12, 37, 44].
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Massless case. We now turn to the one-loop partition function associated with the

Fronsdal action (2.9). The gauge symmetry forces one to fix a gauge and introduce ghost

fields [4], and leads to the following expression for the one-loop term of the partition

function:

logZ = −1

2
log det(−∆(s)) + log det(−∆(s−1))− 1

2
log det(−∆(s−2)) . (2.25)

As before, ∆(s) is the Laplacian on R
D/Z acting on periodic, traceless, symmetric fields

with s indices. The functional determinants can be evaluated exactly as in the massive

case, setting M = 0. In particular, using limx→0 xK1(x) = 1, the massless version of the

functional determinant (2.19) is

− log det(−∆(s)) =
∑

n∈Z∗

1

|n|
χs[n~θ,~ǫ ]

r∏
j=1

|1− ein(θj+iǫj)|2
×
{
1 if D odd,
∆z

π|n|β if D even,
(2.26)

which has been regularised as discussed in the massive case. The matching (2.21) between

χs and a character of SO(D) remains valid, but a sharp difference arises upon including

all three functional determinants in (2.25): the combination of χs’s is

χs[n~θ ]− 2χs−1[n~θ ] + χs−2[n~θ ]
(2.21)–(2.23)

= χλs [n
~θ ]− χλs−1 [n

~θ ] . (2.27)

It is tempting to use (2.23) once more to rewrite this as a character of SO(D − 2), and

indeed this is exactly what happens for even D because in this case the rank of SO(D− 1)

equals that of SO(D − 2):

Z[β, ~θ] = exp




∞∑

n=1

1

n

χ
SO(D−2)
λs

[n~θ,~ǫ ]
r∏

j=1
|1− ein(θj+iǫj)|2

∆z

πnβ


 (even D). (2.28)

If D is odd, however, in going from SO(D−1) to SO(D−2), the rank decreases by one unit:

expression (2.27) contains one angle too much to be a character of SO(D− 2). As we show

in appendix A.3, one can nevertheless write the difference (2.27) as a sum of SO(D − 2)

characters with angle-dependent coefficients (see eq. (A.26b)). Namely, let us define

Ar
k(
~θ) ≡ | cos((r − i)θj)|θk=0

| cos((r − i)θj)|
, k = 1, . . . , r, (2.29)

where |Aij | denotes the determinant of an r×r matrix. Then the rotating one-loop partition

function for a massless field with spin s reads

Z[β, ~θ] = e−S(0)
exp




∞∑

n=1

1

n

r∑
k=1

Ar
k(n

~θ,~ǫ)χ
SO(D−2)
λs

[nθ1, . . . , n̂θk, . . . , nθr,~ǫ ]

r∏
j=1

|1− ein(θj+iǫj)|2


 (odd D),

(2.30)
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where the hat on top of an argument denotes omission. We have also included a spin-

dependent classical action S(0), whose value is a matter of normalisation and is generally

taken to vanish, except in D = 3. In the latter case, S(0) = −β/8G for s = 2 (where G is

Newton’s constant) ensures invariance of the on-shell action under modular transformations

of the vacuum [35, 45], in analogy with the similar choice in AdS3 [34]. On the other hand,

S(0) = 0 for all other spins because their vacuum expectation values are assumed to vanish.

For D = 3 the partition function (2.30) can thus be written as

Z[β, ~θ] = eδs,2
βc2
24

∞∏

n= s

1

|1− ein(θ+iǫ)|2 , c2 = 3/G, (2.31)

and is the flat limit of the analogous higher-spin partition function in AdS3 [4]. We will

return to this formula in section 3.2.

The massless partition functions (2.28) and (2.30) are related to the massless limit

of (2.24). Indeed, as we show in appendix A.4, it turns out that

χ
SO(D−1)
λs

[~θ ] =

s∑

j=0





∑r
k=1Ar

k(
~θ)χ

SO(D−2)
λj

[θ1, . . . , θ̂k, . . . , θr] for odd D,

χ
SO(D−2)
λj

[~θ] for even D.
(2.32)

Accordingly, the massless limit of a massive partition function with spin s is a product of

massless partition functions with spins ranging from 0 to s,

lim
M→0

ZM,s =
s∏

j=0

Zmassless,j , (2.33)

consistently with the structure of the action [41]. This result stresses again the role of the

functions Ar
k(
~θ ) defined in (2.29): when the dimension of the space-time is odd one needs

angular dependent coefficients because the rank of the little group of massless particles

is smaller than the maximum number of angular velocities, so that a single SO(D − 2)

character cannot account for all of them.

2.3 Fermionic higher spins

We now turn to the fermionic analogue of the analysis of the previous subsection. The

Euclidean action for a field with spin s+1/2 (where s is a non-negative integer) and mass

M > 0 can be given either (i) using a symmetric, γ-traceless spinor field with s space-

time indices and a set of auxiliary fields with no gauge symmetry [46] or (ii) using a set

of symmetric spinor fields with s, s − 1, . . . , 0 space-time indices and vanishing triple γ-

trace, subject to a gauge symmetry generated by γ-traceless parameters with s − 1, . . . , 0

space-time indices [47]. In the latter case, the action is given again by a sum of actions for

massless fields of each of the involved spins, plus a set of cross-coupling terms proportional

to the mass. In the limit M → 0 the quadratic couplings vanish and one is left with a sum

of decoupled Fang-Fronsdal actions [20]

S[ψ, ψ̄] =
1

2

∫
dDx ψ̄µ1...µs

(
Sµ1...µs −

1

2
γ(µ1

/Sµ2···µs) −
1

2
δ(µ1µ2

Sµ3···µs)λ
λ + h.c.

)
, (2.34)
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where

Sµ1...µs = i
(
/∂ ψµ1...µs − ∂(µ1

/ψµ2...µs)

)
, (2.35)

and one can consider only the field of highest rank/spin.

To compute the partition function for ψ, ψ̄ we need to evaluate a path integral (2.1)

with the integration measure DψDψ̄ and S the action (2.34) or its massive analogue. The

fermionic fields live on R
D/Z as defined by the group action (2.7), but in contrast to bosons,

they satisfy antiperiodic boundary conditions along the thermal cycle. For a massive field,

one thus finds that the partition function is given by

logZ =
1

2
log det(−∆(s+1/2) +M2)− 1

2
log det(−∆(s−1/2) +M2) , (2.36)

where ∆(s+1/2) is the Laplacian acting on antiperiodic, symmetric, γ-traceless spinor fields

with s indices on R
D/Z. For massless fields, the gauge symmetry enhancement requires

gauge-fixing and ghosts, leading to [6]

logZ =
1

2
log det(−∆(s+1/2))− log det(−∆(s−1/2)) +

1

2
log det(−∆(s−3/2)) . (2.37)

To evaluate the necessary functional determinants, we will rely once more on heat kernels

and the method of images.

The heat kernel KAB
µs,νs associated with the operator (−∆(s+1/2)+M2) on R

D is the

unique solution of the heat equation

(∆(s+1/2)−M2−∂t)KAB
µs,νs = 0 , KAB

µs, νs(t = 0, x, x′) = I
(F )
µs, νs1

ABδ(D)(x−x′) . (2.38)

Here KAB
µs,νs is a bispinor in the indices A and B, and a symmetric bitensor in the indices

µs and νs. (We use again the shorthand µs to denote a set of s symmetrised indices.) It is

also γ-traceless in the sense that

γµKµs, νs = Kµs, νsγ
ν = 0 . (2.39)

The solution of (2.38) satisfying this requirement is

Kµs, νs(t, x, x
′) =

1

(4πt)D/2
e−M2t− 1

4t
|x−x′|2

I
(F )
µs, νs , (2.40)

where I
(F )
µs,νs is the following bisymmetric, γ-traceless tensor:

I
(F )
µs, νs =

⌊ s
2
⌋∑

k=0

(−1)k2kk! [D + 2(s− k − 1)]!!

s! [D + 2(k − 1)]!!

(
δkµµδ

s−2k
µν δsνν −

δsµµδ
s−2k−1
µν δsννγµγν

D + 2(s− k − 1)

)
. (2.41)

Up to the replacement of I by I
(F ), the fermionic heat kernel (2.40) is the same as the

bosonic one in eq. (2.14). In particular, I(F ) carries all tensor and spinor indices of the

heat kernel.
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To evaluate the determinant of (−∆(s+1/2) + M2) on R
D/Z, we use once more the

method of images (2.6). As before, we need to keep track of the non-trivial index structure

of KAB
µs,νs , which leads to

KRD/Z
µs, αs

(t, x, x′) =
∑

n∈Z

(−1)n(Jn)α
β . . . (Jn)α

β UnKµs, βs(t, x, γ
n(x′)) , (2.42)

where the factor (−1)n comes from antiperiodic boundary conditions, J is the matrix (2.8),

and U is a 2⌊D/2⌋ × 2⌊D/2⌋ matrix acting on spinor indices and defined by

Jα
βγ

β = UγαU−1 . (2.43)

In other words, U is the matrix corresponding to the transformation (2.8) in the spinor

representation of SO(D), and it can be written as

U = exp


1
4

r∑

j=1

θj [γ2j−1, γ2j ]


 . (2.44)

In particular, a rotation by 2π around any given axis maps ψ on −ψ, in accordance with the

fact that spinors form a projective representation of SO(D). Note that, using an explicit

D-dimensional representation of the γ matrices, one gets

Tr(Un) = 2⌊D/2⌋
r∏

i=1

cos(nθi/2) . (2.45)

Now, plugging (2.42) into formula (2.3) for the determinant of −∆(s+1/2), one obtains a

sum of integrals which can be evaluated exactly as in the bosonic case. The only difference

with respect to bosons comes from the spin structure, and the end result is

−log det(−∆(s+1/2)+M2) =
∑

n∈Z∗

(−1)n

|n|
χ
(F )
s [n~θ,~ǫ ]

r∏
j=1

|1− ein(θj+iǫj)|2
×




e−|n|βM D odd,

M∆z
π K1(|n|βM) D even,

(2.46)

where we have discarded a volume divergence independent of all chemical potentials (as on

page 8), and where

χ(F )
s [n~θ,~ǫ ] = (Jµα)sTr

[
I
(F )
µs,αs

]
(2.47)

is the fermionic analogue of (2.20), with the same regularisation as above. This result takes

exactly the same form as (2.19), up to the replacement of χs by χ
(F )
s . In appendices B.1

and B.2, we show that

χ(F )
s [n~θ]

B.1&B.2
=




χ
λ
(F )
s

[n~θ ] for odd D,

χ
λ
(F )
s

[n~θ, 0] for even D,
(2.48)

where the term on the right-hand side is the character of an irreducible representation of

SO(D) with highest weight λ
(F )
s = (s+1/2, 1/2, . . . , 1/2) (written here in the dual basis of

the Cartan subalgebra of so(D) described above (2.21)).

– 13 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
4

Having computed the required functional determinants on R
D/Z, we can now write

down the partition functions given by (2.36) and (2.37). In the massive case, the difference

of Laplacians acting on fields with spins (s+ 1/2) and (s− 1/2) produces the difference of

two factors (2.48), with labels s and s − 1. It turns out that identity (2.23) still holds if

we replace λs and λs−1 by their fermionic counterparts, λ
(F )
s and λ

(F )
s−1. (The proof of this

statement follows the exact same steps as in the bosonic case described in appendix A.3,

up to obvious replacements that account for the change in the highest weight vector.)

Accordingly, the rotating one-loop partition function of a massive field with spin s+1/2 is

Z[β, ~θ ] = exp




∞∑

n=1

(−1)n

n

χ
SO(D−1)

λ
(F )
s

[n~θ~ǫ ]

r∏
j=1

|1− ein(θj+iǫj)|2
×
{
e−nβM (D odd)
M∆z
π K1(nβM) (D even)


 . (2.49)

In the massless case we must take into account one more difference of characters,

namely (2.27) with λs replaced by λ
(F )
s . Again, this difference can be written as a combi-

nation of SO(D− 2) characters (the proof being almost the same as in appendix A.3), and

the partition function of a massless field with spin s + 1/2 exactly takes the form (2.28)

or (2.30) (for D even or odd, respectively) with an additional factor of (−1)n in the sum

over n, and the replacement of λs by λ
(F )
s . In particular, for D = 3, the massless partition

function can be written as

Z =
∞∏

n= s

|1 + ei(n+1/2)(θ+iǫ)|2, (2.50)

an expression that we will use in section 3.3 and that can be recovered as the flat limit

of the AdS result [6]. One can also verify that relation (2.33) remains true for fermionic

partition functions.

2.4 Relation to Poincaré characters

In this subsection we show that all one-loop partition functions displayed above can be

written as exponentials of (sums of) Poincaré characters. Along the way we briefly review

the construction of induced representations of semi-direct products that will be useful also

for section 3. We refer e.g. to [48, 49] for a more self-contained presentation.

Representations of semi-direct products. Let G be a group, A an Abelian vector

group, σ a representation of G in A. Then the semi-direct product of G and A (with

respect to σ) is the group denoted G ⋉σ A (or simply G ⋉ A) whose elements are pairs

(f, α) ∈ G×A and whose group operation is (f, α) · (g, β) = (f · g, α+σfβ). The Poincaré

groups are precisely of that type, with G a Lorentz group or a spin group, and A a group

of translations, the action σ then being the vector representation of the Lorentz group.

It turns out that all irreducible, unitary representations of a semi-direct product are

induced representations analogous to those of the Poincaré group [50–52]. They are classi-

fied by orbits of “momenta” belonging to the dual space of the Abelian group. Concretely,

take some momentum vector p ∈ A∗ and denote by Op = {f · p |f ∈ G} its orbit under
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G. Let also R be some unitary representation of the corresponding little group Gp, and

denote its character by χR. Then, according to the Frobenius formula [53], the character

of the associated induced representation is

χ[(f, α)] =

∫

Op

dµ(q) ei〈q,α〉χR[g
−1
q fgq] δ(q, f · q) , (2.51)

where µ is some (quasi-invariant) measure on Op, δ is the associated Dirac distribution,

and the gq’s are boosts such that gq · p = q. One can verify that the value of χ[(f, α)]

is independent of the choice of µ, and that χ[(f, α)] vanishes if f is not conjugate to an

element of the little group (see e.g. [49]). We now apply this formula to the Poincaré group,

while in the next section we will use it to evaluate characters of flat WN algebras and of

supersymmetric extensions of bms3.

Poincaré groups and induced representations. The connected Poincaré group in D

dimensions is a semi-direct product SO(D−1, 1)↑⋉R
D, where SO(D−1, 1)↑ is the proper,

orthochronous Lorentz group and R
D is the group of space-time translations. The classifica-

tion of (projective) irreducible, unitary representations of this group follows from the clas-

sification of orbits of momenta in terms of the value of the mass squared [50]. In particular,

massive orbits have little group SO(D− 1), while massless orbits have little group SO(D−
2)⋉ R

D−2. We now evaluate the characters of irreducible representations of the Poincaré

group. To our knowledge, Poincaré characters have been discussed previously in [49, 54–56].

Massive Poincaré characters. Consider a massive momentum orbit Op with positive

energy, where p is the momentum of a massive particle at rest, say p = (M, 0, . . . , 0) ∈ R
D.

Let R be an irreducible, unitary representation of the corresponding little group SO(D−1)

labelled by a highest weight λ and pick a measure µ on Op. Since the character (2.51)

vanishes whenever f is not conjugate to an element of the little group, we will take f to be

the rotation (2.8). Note that we could have chosen any other rotation by the same angles

without affecting the result, since the value of the character depends only on the conjugacy

class of the group element at which it is evaluated.

When D is odd, and provided all angles θ1, . . . , θr are non-zero, the delta function

δ(q, f · q) in (2.51) localises the integral over the orbit to a single point — namely the

momentum in the rest frame, p. The character (2.51) then reduces to

χ[(f, α)] = eiMα0
χR[f ]

∫

Op

dµ(q)δ(q, f · q) , (2.52)

where χR[f ] = χ
SO(D−1)
λ [~θ ] because the rotation (2.8) belongs to the little group. To inte-

grate the delta function, we use the spatial components of the momentum q as coordinates

on the orbit; in terms of these coordinates the integral reads

∫

Op

dµ(q)δ(q, f · q) =
∫

RD−1

dq1 . . . dqD−1δ
(D−1)(q− f · q) =

r∏

j=1

1

|1− eiθj |2 , (2.53)
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where we have chosen the flat Lebesgue measure on Op owing to the µ-independence of the

result. The character (2.52) then becomes

χ[(f, α)] = eiMα0
χ
SO(D−1)
λ [~θ ]

r∏

j=1

1

|1− eiθj |2 . (2.54)

In order to represent a particle with spin s, we choose the weight λ to be λs = (s, 0, . . . , 0)

(in the dual basis of the Cartan subalgebra of so(D − 1) described above (2.21)). With

this choice, expression (2.54) actually appears in the exponent of (2.24): taking α0 = iβ,

we can rewrite the rotating one-loop partition function for a massive field with spin s (in

odd D) as the exponential of a sum of Poincaré characters:

ZM,s[β, ~θ ] = exp

[ ∞∑

n=1

1

n
χM,s[n~θ, inβ]

]
. (2.55)

The series in the exponent is divergent for real θi’s. This divergence can be regularised by

adding suitable imaginary parts to these angles, as explained below (2.19).

In D = 3 space-time dimensions, the massive little group is SO(2) ∼= U(1) and its

character for an irreducible representation with spin s is eisθ, so that (2.54) boils down to

χM,s[(rotθ, α = iβ)] = e−βM+iθs 1

|1− eiθ|2 , (2.56)

where we take α to be a Euclidean time translation by β.4 In the next section we will

show that the characters of flat WN algebras (and of supersymmetric versions of bms3) are

natural extensions of this formula.

When D is even, the situation is more involved because the integral localises to a

line instead of a point. For α being an Euclidean time translation by β, this leads to a

non-trivial, infrared-divergent integral

∫ +∞

−∞
dk δ(k − k)e−β

√
M2+k2 =

M∆z

π
K1(βM) , (2.57)

where we interpret δ(0) as ∆z/2π, with ∆z the height of the rotating box along the space

direction dual to k, and K1 is a modified Bessel function of the second kind. Accordingly,

for even D, the character of a rotation (2.8) accompanied by a Euclidean time translation

by β in a massive representation of the Poincaré group is

χ[(f, α = iβ)] =
M∆z

π
K1(βM)χ

SO(D−1)
λ [~θ ]

r∏

j=1

1

|1− eiθj |2 . (2.58)

For λ = λs = (s, 0, . . . , 0), this expression coincides with the combinations appearing in

the partition function (2.24) upon writing the latter as (2.55). The same matching works

for massive fermionic fields in all space-time dimensions when replacing λs by λ
(F )
s =

(s+ 1/2, 1/2, . . . , 1/2).

4A parity-invariant version of this expression is obtained upon replacing eisθ by 2 cos(sθ).
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Massless Poincaré characters (discrete spin). The little group for particles with

vanishing mass is SO(D − 2) ⋉ R
D−2. A massless particle is said to have discrete spin if

the space of its spin degrees of freedom forms a finite-dimensional representation of the

little group, in which all boosts spanning R
D−2 are represented trivially. In this subsection

we will focus on such particles, relegating some comments on continuous spin particles to

section 4. Once more, we will treat separately even and odd space-time dimensions.

In even space-time dimensions, any rotation in SO(D−1) is conjugate to an element of

SO(D− 2) (in accordance with the fact that these groups have the same rank). In fact, for

even D, the rotation (2.8) belongs to the subgroup SO(D−2) of the Lorentz group leaving

invariant the momentum of a massless particle moving along the z axis, so the massless

characters of Poincaré in even D are just the limit M → 0 of (2.57), with the character of

SO(D − 1) replaced by a character of SO(D − 2). Using also limx→0 xK1(x) = 1, we get

χ[~θ, β] =
∆z

πβ
χ
SO(D−2)
λ [~θ ]

r∏

j=1

1

|1− eiθj |2 , (2.59)

which is indeed the expression appearing in the partition function (2.28) upon writing it

as (2.55).

In odd space-time dimensions, SO(D − 2) has lower rank than SO(D − 1), so the

rotation (2.8) is not, in general, conjugate to an element of the massless little group: it has

one angle too much, and whenever all angles θ1, . . . , θr are non-zero, the character (2.51)

vanishes. The only non-trivial irreducible character arises when at least one of the angles

θ1, . . . , θr vanishes, say θr = 0. Then the arguments explained above can be applied once

more, the only subtlety being that the two spatial components (k1, k2) of momentum that

are not rotated produce an integral
∫

R2\{0}
dk1dk2 e

−β
√

k21+k22δ(k1 − k1)δ(k2 − k2) =
∆z∆z′

2πβ2
, (2.60)

where we have once more interpreted the delta functions evaluated at zero as infrared-

divergent factors. The character of an irreducible massless representation of the Poincaré

group in odd space-time dimension D is thus

χ[θ1, . . . , θr−1, β] = χ
SO(D−2)
λ [θ1, . . . , θr−1]

∆z∆z′

2πβ2

r−1∏

j=1

1

|1− eiθj |2 . (2.61)

However, comparison with (2.30) reveals a mismatch: the partition function does not

take the form (2.55) in terms of the massless characters (2.61); in field theory, all r

angles θi may be switched on simultaneously! To accommodate for this one can resort

to the angle-dependent coefficients Ar
k(
~θ) introduced in (2.29). Also in this context,

one can understand the origin of these coefficients through the massless limit of the

character (2.54). Using relation (2.32), the product of massless partition functions with

spins ranging from zero to s can be written as (2.55), where the characters on the

right-hand side are massless limits of massive Poincaré characters. However, it is not clear

to us how the quantities appearing in the exponent of (2.30) can be related directly to

Poincaré characters without invoking a massless limit.
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Remark. The relation (2.55) between one-loop partition functions and characters of

the underlying space-time isometry group is not new. From a physical standpoint, it is

merely the statement that a free field is a collection of harmonic oscillators, one for each

value of momentum: the index n then labels the oscillator modes, while the integral over

momenta is the one in the Frobenius character formula (2.51). In particular, standard, non-

rotating one-loop partition functions are exponentials of sums of characters of (Euclidean)

time translations. This relation has also been observed in AdS [37, 44, 57]; our partition

functions are flat limits of these earlier results, up to the even-dimensional regularisation

subtlety mentioned below eq. (2.20). Note that this issue already emerges at the level of

characters: although most of (2.58) is a flat limit of an SO(D − 1, 2) character, it is not

clear how to regularise the divergences that pop up when one of the angles vanishes in

order to recover our regulators ∆z. This problem would also appear in odd D if one or

more angles were set to zero.

3 Three-dimensional applications

In this section we exhibit the matching between certain combinations of higher-spin parti-

tion functions in three dimensions and vacuum characters of suitable asymptotic symmetry

algebras. We start by reviewing the purely gravitational setting studied in [35, 48, 49, 58],

before moving on to illustrative classes of bosonic (section 3.2) and supersymmetric (sec-

tion 3.3) higher-spin theories [30–32]. In the latter cases the characterisation of repre-

sentations of the asymptotic symmetry algebras is subtler; nevertheless, motivated by the

analogy with the gravitational setup, we propose to extend to this context several tools of

the theory of induced representations recalled in section 2.4.

3.1 BMS3 particles and induced bms3 modules

The asymptotic symmetries of three-dimensional gravity without cosmological constant

at null infinity are given by the bms3 algebra [27–29], whose representations are most

conveniently analysed from the viewpoint of the underlying BMS3 group. The unitary

representations of this group — or BMS3 particles — have been studied in detail in [48, 58].

Here we briefly recall some results of this analysis that we are going to extend to the

higher spin setup. We also present a characterisation of induced representations at the

Lie-algebraic level, that allows us to make contact with earlier proposals on the structure

of unitary representations of flat W algebras [38].

BMS3 representations. The BMS3 group is a semi-direct product G⋉g, where G is the

Virasoro group (consisting of superrotations) and g is its Lie algebra, seen as an Abelian

vector group5 (consisting of supertranslations):

BMS3 = Diff(S1)⋉Vect(S1). (3.1)

5Below we will use the more accurate notation G ⋉Ad gAb, where gAb is an Abelian vector group

isomorphic to g as a vector space, and the subscript “Ad” indicates that G acts on gAb according to the

adjoint action.
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Accordingly, the duals of (centrally extended) supertranslations are pairs (p(ϕ), c2), where

p(ϕ) is a supermomentum (it is a function on the circle) and c2 is a central charge taking

the value c2 = 3/G in Einstein gravity [28] (see the bms3 Lie algebra (3.4)). Each induced

representation of BMS3 is associated with the orbit of such a pair (p(ϕ), c2) under the

action of Diff(S1), i.e. with a coadjoint orbit of the Virasoro group [59, 60]. The states

of a BMS3 particle are wavefunctions in supermomentum space, and given any (quasi-

invariant) measure on the orbit, the corresponding representation is unitary (see e.g. [49]).

The associated character is given by the Frobenius formula (2.51), with the subtlety that

the supermomentum integral is taken over an infinite-dimensional manifold. However, as

recalled in section 2.4, the character vanishes whenever the element of the group which is

used to determine the character in the pair (f, α) is not conjugate to an element of the

little group. When f is (conjugate to) a rotation by some non-zero angle θ, the integral

in (2.51) localises, so that one can compute the character explicitly [49]. For a massive

BMS3 particle with mass M and spin s, i.e. for a representation whose orbit contains a

constant supermomentum p0 =M − c2/24 with M > 0, the character is given by

χM,s[(f = rotθ, α = iβ)] = e−βM+iθs 1

|1− q|2 · eβc2/24 1∏∞
n=2 |1− qn|2 , (3.2)

where q = ei(θ+iǫ) with a factor iǫ added to ensure convergence of the infinite product.

This expression is the product of the massive Poincaré character (2.56) with the vacuum

BMS3 character

χBMS
vac [(rotθ, iβ)] = eβc2/24

1∏∞
n=2 |1− ein(θ+iǫ)|2 , (3.3)

which coincides with the one-loop partition function of gravitons given by eq. (2.31) for

s = 2 [35].

The main lessons to be drawn from the previous considerations are that (i) represen-

tations of the BMS3 group are labelled by orbits of supermomenta and (ii) even if the

classification of such orbits requires a detailed knowledge of the finite (as opposed to in-

finitesimal) transformation laws of supermomenta under superrotations, these details are

not relevant for evaluating the characters of the corresponding representations in all cases

in which the integral localises. We focused here on representations of the BMS3 group, but

by differentiating them at the identity one can gain insights on the corresponding repre-

sentations of the bms3 algebra. By suitably generalising the notion of coadjoint orbit to

the higher-spin context, in section 3.2 we will indeed propose a (partial) classification of

unitary representations of certain flat W algebras and compute the associated characters,

which are to be matched with the one-loop partition functions computed in section 2. We

are now going to investigate the structure of bms3 representations in order to simplify the

comparison between our group-inspired classification and previous proposals [38].

Induced bms3 modules. The bms3 algebra is generated by two infinite families of super-

rotation and supertranslation generators Jm and Pm (where m is an integer) corresponding

to Fourier modes of vector fields on the circle, together with two central charges Z1 and

Z2. In any irreducible representation of the algebra, these charges are proportional to the
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identity operator, so from now on we will replace Z1 and Z2 by numbers c1, c2. In terms

of these quantities, the commutation relations of the bms3 algebra read [28, 29, 61]

[Jm, Jn] = (m− n)Jm+n +
c1
12
m(m2 − 1) δm+n,0 , (3.4a)

[Jm, Pn] = (m− n)Pm+n +
c2
12
m(m2 − 1) δm+n,0 , (3.4b)

[Pm, Pn] = 0 . (3.4c)

Note that this algebra is a semi-direct sum

bms3 = vir AAd (vir)Ab, (3.5)

where vir is the Virasoro algebra and (vir)Ab denotes an Abelian Lie algebra isomorphic, as

a vector space, to vir; the action of the Virasoro algebra on its Abelian counterpart is the

adjoint action, as indicated by the subscript “Ad”. One way to obtain the algebra (3.4) is

to take an İnönü-Wigner contraction [62] of two commuting copies of the Virasoro algebra,

which can be physically interpreted as a flat/ultrarelativistic limit (see eq. (3.11)). One

can indeed define

Pn ≡ 1

ℓ

(
Ln + L̄−n

)
, Jn ≡ Ln − L̄−n , c1 ≡ c− c̄ , c2 ≡

c+ c̄

ℓ
, (3.6)

where Ln and L̄n denote the generators of the two Virasoro algebras with central charges

c and c̄ and ℓ is a length scale. In the limit ℓ→ ∞ one recovers (3.4).

The unitary representations of the group corresponding to the algebra (3.4) are in-

duced, in the sense explained above. Here we wish to understand the differential of these

representations at the identity, that is, the associated representations of bms3. For defi-

niteness, let us consider a massive BMS3 particle, whose orbit contains a constant super-

momentum p0 = M − c2/24 with M > 0. A convenient basis of the particle’s Hilbert

space consists of plane waves, that is, wavefunctions with definite supermomentum (see

e.g. section 2.3 of [48]). In particular, there is a wavefunction whose supermomentum is

the constant p0, representing the state of the particle at rest. We will call this particu-

lar wavefunction the rest-frame state of the representation and denote it by |M, s〉, where
s ∈ R is the spin of the particle, i.e. the eigenvalue of the J0 generator. By construction,

it transforms as follows under a finite supertranslation α:

U(α)|M, s〉 = eiMα0 |M, s〉 , U(α) = exp

[
i
∑

n∈Z

Pn α
n

]
. (3.7)

Here α(ϕ) =
∑

n∈Z e
inϕαn is a real function on the circle and U(α) is a unitary operator,

so that P †
n = P−n. By differentiating with respect to α, one obtains

P0|M, s〉 =M |M, s〉 , Pn|M, s〉 = 0 for n 6= 0 , J0|M, s〉 = s|M, s〉 , (3.8)

where the last condition comes from the definition of |M, s〉. The remaining superrotation

generators Jm (with m 6= 0), when acting on the rest-frame state, produce new states of

the form

Jn1 · · · Jnk
|M, s〉, (3.9)
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where n1, . . . , nk are arbitrary non-zero integers such that n1 ≥ . . . ≥ nk, and k = 0, 1, 2, . . .

These additional states arise because finite superrotations act on wavefunctions as unitary

operators

U(ω) = exp

[
i
∑

n∈Z

Jn ω
n

]
(3.10)

where the complex coefficients ωn = (ω−n)∗ are generalizations of the rapidity parameter

of special relativity, and J†
n = J−n. In particular, in contrast to Virasoro representations,

the rest-frame state does not satisfy any highest-weight condition, reflecting the fact that

it can be boosted in any direction.

We will call states of the form (3.9) boosted states. We also call induced module (with

massM and spin s) the spaceHbms whose basis consists of the rest-frame state |M, s〉 and its

boosted counterparts (3.9); it forms an irreducible representation of the bms3 algebra (3.4),

and it is unitary by construction, since it arises from a unitary representation of the BMS3
group. Similarly, the rest-frame state |0〉 of the vacuum induced module satisfies (3.8) with

M = s = 0 together with the additional condition J±1|0〉 = 0, ensuring Lorentz-invariance.

Boosted vacua are again of the form (3.9), but with all ni’s different from −1, 0 and 1.

Since the algebra (3.4) emerges from the İnönü-Wigner contraction of the conformal

algebra via the redefinitions (3.6) and the limit ℓ→ ∞, one can also motivate the represen-

tations above by a limiting procedure. For instance, in [49] it has been shown that one can

recover the character (3.2) as a flat limit of characters of non-degenerate highest-weight

representations of the Virasoro algebras generated by the Ln and L̄n of (3.6). To this end,

one has to write the modular parameter as τ = 1
2π (θ+ iβ/ℓ) and let the highest weights h

and h̄ depend on ℓ in such a way that the parameters

M = lim
ℓ→∞

1

ℓ

(
h+ h̄

)
, s = lim

ℓ→∞

(
h− h̄

)
− c1

24
(3.11)

be finite. The conditions (3.8) on the rest-frame state |M, s〉 can be seen to emerge from

this limit as well, since the Virasoro highest-weight conditions translate into

1

ℓ
Ln|h, h̄〉 =

1

2

(
Pn +

1

ℓ
Jn

)
|h, h̄〉 = 0

ℓ→∞−−−→ Pn|M, s〉 = 0 for n > 0 , (3.12)

1

ℓ
L̄n|h, h̄〉 =

1

2

(
P−n − 1

ℓ
J−n

)
|h, h̄〉 = 0

ℓ→∞−−−→ P−n|M, s〉 = 0 for n > 0 , (3.13)

i.e. in the second condition in (3.8), while no constraints are imposed on the Jn. Thus,

in the limit one does not keep the full Virasoro highest-weight conditions, but only their

leading term in a large ℓ expansion. This is analogous to what one does at the level of

the algebra: after the redefinition (3.6) the commutator of two Pn’s would be proportional

to ℓ−2, but in the limit ℓ → ∞ one omits the right-hand side to get (3.4c). We stress,

however, that the definition of the rest-frame state holds independently of the limit and

follows from the theory of induced representations applied to the BMS3 group. In this

sense the difference between highest-weight and rest-frame conditions reflects the very

different structure of bms3 and Virasoro representations, generalising the difference between

Poincaré and so(2, 2) representations. For a detailed analysis see [63].
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To complete the characterisation of the induced module one would like to recover the

character (3.2) by computing the trace of e−βH+iθJ over the space defined by (3.8) and (3.9).

In spite of the link between (3.2) and the flat limit of Virasoro characters recalled above, it

is however not clear to us how to define a trace over induced modules that produces the de-

sired result. This is not completely surprising since the character formula (3.2) entails the

ad hoc regularisation obtained by adding a small imaginary part to each angle. A natural

counterpart of the divergence of the infinite product in (3.2) is the infinite multiplicity of

each eigenvalue of P0 and J0 in the induced module, that should be regularised in some way.

One should keep in mind, however, that induced modules do not capture all the features of

induced representations. This is mainly due to the fact that the energy spectrum of a BMS3
particle is continuous, so that, for instance, one cannot expect to be able to compute the

characters of a pure supertranslation solely from the infinitesimal picture. To avoid patholo-

gies one should stick to the characterisation of the Hilbert space of each representation in

terms of wavefunctions on orbits of supermomenta rather than in terms of induced modules.

In spite of its limitations, the previous infinitesimal picture is useful to understand how

the representations of the bms3 algebra discussed in [38, 64] fit within the classification

which emerges from that of induced representations of the BMS3 group. As discussed

above, unitary BMS3 representations are labelled by orbits of pairs (p(ϕ), c2), where c2 is

non-zero in Einstein gravity. Nevertheless, one may consider the induced representation

associated with the trivial orbit of p(ϕ) = c2 = 0, whose little group is the whole Virasoro

group generated by superrotations. In that representation, all supermomenta are set to

zero, and the only non-trivial piece comes from the representation of the little group,

which is just a standard Virasoro highest-weight representation obtained by starting from

a highest-weight state |s〉 such that

J0|s〉 = s|s〉, Jm|s〉 = 0 for m > 0 . (3.14)

In the Poincaré group, the analogue of this construction would consist in building a uni-

tary representation where all translations act trivially, while Lorentz transformations are

represented in a non-trivial, unitary way. It turns out that all unitary representations of

bms3 (and its higher-spin extensions) considered in [38, 64] were of this type. The authors

attempted to build representations by enforcing the conditions (3.14) while replacing |s〉
by a state |M, s〉, withM the energy of the state. Upon switching on the central charge c2,

they concluded that unitary representations arise only if M = c2 = 0. But as we can see

from our earlier considerations, this had to be so: the highest-weight conditions (3.14) rely

on the assumption that superrotations are represented as in a usual CFT, which occurs

only for M = c2 = 0. By contrast, for non-zero c2, the suitable conditions are not (3.14),

but the rest-frame conditions (3.8).

3.2 Characters of flat WN algebras

We now move to the asymptotic symmetry algebras that arise at null infinity for higher-spin

theories in flat space. We propose a way to characterise their unitary representations and

compute the associated characters, showing in particular that vacuum characters match
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certain combinations of the one-loop partition functions displayed in section 2.2. The

coadjoint representation of standard WN algebras [65–67] plays a key role in our analysis,

so we start by first reviewing results from the AdS context.

Higher spins in AdS3 and the W3 algebra. Asymptotic symmetries of higher-spin

theories in three dimensions were first studied in AdS3 [23–26], where they typically span

the direct sum of two non-linear W algebras. Here we focus on models including fields with

spin ranging from 2 to N .6 When N = 3, the asymptotic symmetries are generated by

gauge transformations specified by four arbitrary, 2π-periodic functions (X(x+), ξ(x+)) and

(X̄(x−), ξ̄(x−)) of the light-cone coordinates x± on the boundary of AdS3. In particular,

the functions X(x+) and X̄(x−) generate conformal transformations [21, 22]. Since the

results are left-right symmetric, we focus on the left-moving sector. The surface charge

associated with a transformation (X, ξ) then takes the form [24]

Q(X,ξ)[p, ρ] =
1

2π

∫ 2π

0
dϕ [X(ϕ)p(ϕ) + ξ(ϕ)ρ(ϕ)] , (3.15)

where ϕ = (x+ − x−)/2, while p(ϕ) and ρ(ϕ) are two arbitrary, 2π-periodic functions

specifying a solution of the field equations at fixed time. In fact, if we think of the pair

(X, ξ) as being an element of the W3 algebra, the charge (3.15) is the pairing between W3

and its dual space. Accordingly, (p, ρ) may be seen as a coadjoint vector of the W3 algebra.

Its infinitesimal transformation law is given by [24]

δ(X,ξ)p = Xp′ + 2X ′p− c

12
X ′′′ + 2 ξρ′ + 3 ξ′ρ , (3.16a)

δ(X,ξ)ρ = Xρ′ + 3X ′ρ+
σ

3

[
− 2 ξp′′′ − 9 ξ′p′′ − 15 ξ′′p′ − 10 ξ′′′p+

+
c

12
ξ(5) +

192

c

(
ξ pp′ + ξ′p2

) ]
, (3.16b)

where σ is an irrelevant normalisation factor, prime denotes differentiation with respect to

x+, and c = 3ℓ/2G is the Brown-Henneaux central charge [22] (with ℓ the AdS radius).

The infinitesimal transformations generated by X imply that p is a quasi-primary field

with weight 2 with respect to conformal transformations, while ρ is a primary field with

weight 3. Together with the surface charges (3.15), these transformation laws yield the

Poisson bracket
{
Q(X,ξ)[p, π], Q(Y,ζ)[p, π]

}
= − δ(X,ξ)Q(Y,ζ)[p, π] , (3.17)

which coincides with the non-linear bracket of a W3 algebra with central charge c. Similar

considerations apply to models including fields with spin ranging from 2 to N [24, 26]. The

resulting asymptotic symmetry algebra is the direct sum of two copies of WN .

6In AdS3 this setup can be described by an sl(N,R)⊕ sl(N,R) Chern-Simons action with a principally

embedded sl(2,R)⊕ sl(2,R) gravitational subalgebra.
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Flat W3 algebra. The asymptotic symmetries of higher-spin theories at null infinity in

three-dimensional flat space were discussed in [30, 31, 38]. For the model describing the

gravitational coupling of a field of spin 3,7 it was found that symmetry transformations are

labelled by four arbitrary, 2π-periodic functions X(ϕ), ξ(ϕ), α(ϕ) and a(ϕ) on the celestial

circle at null infinity. Of these, X(ϕ) and α(ϕ) generate standard BMS3 superrotations

and supertranslations (respectively), while ξ and a are their higher-spin extensions. The

corresponding surface charges read

Q(X,ξ,α,a)[j, κ, p, ρ] =
1

2π

∫ 2π

0
dϕ [X(ϕ)j(ϕ) + ξ(ϕ)κ(ϕ) + α(ϕ)p(ϕ) + a(ϕ)ρ(ϕ)] , (3.18)

where the 2π-periodic functions j, κ, p and ρ determine a solution of the equations of

motion. p(ϕ) is the standard Bondi mass aspect (supermomentum), while j(ϕ) is the

angular momentum aspect (angular supermomentum); the functions ρ and κ generalise

these quantities for a spin-3 field. As in the AdS case, the quadruple (j, κ, p, ρ) may be

seen as an element of the dual space of the asymptotic symmetry algebra. In particular,

the higher-spin supermomentum (p, ρ) transforms under higher-spin superrotations (X, ξ)

as a coadjoint vector of the W3 algebra, that is, according to (3.16), albeit with a central

charge c2 = 3/G instead of c = 3ℓ/2G.

Inspection of the Poisson brackets satisfied by the surface charges (3.18), as displayed

for instance in [30, 31], reveals that, in analogy with (3.5), the asymptotic symmetry algebra

is a semi-direct sum

“flat W3 algebra” ≡ FW3 = W3 AAd (W3)Ab , (3.19)

where W3 is the standard W3 algebra and (W3)Ab denotes an Abelian Lie algebra isomor-

phic, as a vector space, to W3. This algebra is centrally extended, as the bracket between

generators of W3 and those of (W3)Ab includes a central charge c2.

Induced representations, unitarity and characters. Since the flatW3 algebra (3.19)

has the form g A gAb, with g the standard W3 algebra, its unitary representations should

be induced representations labelled by orbits of supermomenta under the coadjoint action

of elements of a groupoid whose differentiation gives W3. However, the non-linearities that

appear in W algebras make this step subtle. In the cases where the definition of the group

is under control, as for BMS3, acting with group elements is required to specify the finite

transformation of the supermomenta. This characterises the full orbit on which to define

the wavefunctions that give a basis of the Hilbert space of each representation. Fortunately,

one can bypass the need to control the group as follows. Generic W algebras define a Pois-

son manifold through (3.17) and one can classify the submanifolds on which the Poisson

structure is invertible, called symplectic leaves [66]. In the case of the Virasoro algebra

(which corresponds to the WN algebra with N = 2) this concept coincides with that of a

coadjoint orbit of the Virasoro group. We thus propose to build unitary representations of

7Its action can be still written in a Chern-Simons form, with the gauge algebra sl(3,R) A (sl(3,R))Ab.

The latter can be obtained as the İnönü-Wigner contraction of the sl(3,R) ⊕ sl(3,R) gauge algebra of the

corresponding model in AdS3 [30].
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flat WN algebras as Hilbert spaces of wavefunctions defined on their symplectic leaves, on

which we assume that one can define a suitable (quasi-invariant) measure. (See e.g. [68] for

the construction of such a measure in the case of the Virasoro group.) One can make the

analogy between symplectic leaves and coadjoint orbits even stronger: symplectic leaves of

WN algebras can be obtained as intersections of the coadjoint orbits of sl(N)-Kac Moody al-

gebras with the constraints that implement the Hamiltonian reduction to WN algebras [67].

A complete classification of the symplectic leaves of the standard W3 algebra has been

worked out in [66, 67] and, according to our proposal, this provides the basis for a complete

classification of irreducible, unitary representations of the flat W3 algebra. Here, follow-

ing [59], we restrict instead our analysis to orbits of constant supermomenta, which can be

classified from the infinitesimal transformation laws (3.16) given by the algebra. To describe

the orbits of constant supermomenta let us pick a pair (p, ρ) where p(ϕ) = p0 and ρ(ϕ) = ρ0
are constants, and act on it with an infinitesimal higher-spin superrotation (X, ξ). Then,

all terms involving derivatives of p or ρ in the transformation law (3.16) vanish, and we find

δ(X,ξ)p0 = 2X ′p0 −
c2
12
X ′′′ + 3 ξ′ρ0 , (3.20a)

δ(X,ξ)ρ0 = 3X ′ρ0 +
σ

3

[
−10 ξ′′′p0 +

c2
12
ξ(5) +

192

c2
ξ′p20

]
. (3.20b)

The little group for (p0, ρ0) consists of higher-spin superrotations leaving it invariant.

The little algebra is therefore spanned by pairs (X, ξ) such that the right-hand sides of

eqs. (3.20) vanish:

2X ′p0 −
c2
12
X ′′′ + 3 ξ′ρ0 = 0 , (3.21a)

3X ′ρ0 +
σ

3

[
−10 ξ′′′p0 +

c2
12
ξ(5) +

192

c2
ξ′p20

]
= 0 . (3.21b)

The solutions of these equations depend on the values of p0 and ρ0. Here we will take

ρ0 = 0 for simplicity, i.e. we only consider cases where all higher-spin charges are switched

off. Then, given p0, eqs. (3.21) become two decoupled differential equations for the

functions X(ϕ) and ξ(ϕ), leading to three different cases:

• For generic values of p0, the only pairs (X, ξ) leaving (p0, 0) invariant are constants,

and generate a little group U(1)× R.

• For p0 = −n2c2/96 where n is a positive odd integer, the pairs (X, ξ) leaving (p0, 0)

invariant are of the form

X(ϕ) = A, ξ(ϕ) = B + C cos(nϕ) +D sin(nϕ), (3.22)

where A, B, C and D are real numbers. The corresponding little group is the n-fold

cover of GL(2,R).

• For p0 = −n2c2/24 = −(2n)2c2/96 where n is a positive integer, the Lie algebra of

the little group is spanned by

X(ϕ) = A+B cos(nϕ) + C sin(nϕ),

ξ(ϕ) = D + E cos(nϕ) + F sin(nϕ) +G cos(2nϕ) +H sin(2nϕ),
(3.23)
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where A,B, . . . ,H are real coefficients. The little group is thus an n-fold cover of

SL(3,R). In particular, p0 = −c2/24 realises the absolute minimum of energy among

all supermomenta belonging to orbits with energy bounded from below. It is thus

the supermomentum of the vacuum state, and indeed, upon using c2 = 3/G, the field

configuration that corresponds to it is the metric of Minkowski space (with the spin-3

field set to zero on account of ρ0 = 0).

The previous information on little groups is actually sufficient to evaluate certain

characters along the lines of [49]. For instance, consider an induced module based on the

orbit of a generic pair (p0, 0), and call (s, σ) the spins of the representation R of the little

group U(1) × R. Then take a superrotation which is an element of the U(1) subalgebra

(i.e. a rotation f(ϕ) = ϕ + θ), and whose higher-spin supertranslation is an arbitrary

combination (α(ϕ), a(ϕ)). The only point on the orbit that is left invariant by the rotation

is (p0, 0), and the whole integral over the orbit in (2.51) localises to that point. Therefore,

in analogy with the BMS3 example, the detailed knowledge of the orbit is irrelevant to

compute the character. In particular, the only components of α(ϕ) and a(ϕ) that survive

the integration are their zero-modes α0 and a0, and the character takes the form

χ[(rotθ, α, a)] = eisθeip0α
0

∫

Op0

Dµ(q) δ(q, rotθ · q) . (3.24)

In writing this we assumed the existence of a (quasi-invariant) measure µ on the orbit,

whose precise expression is unimportant since different measures give representations

that are unitarily equivalent [49]. We have manifested that the little group character

reduces to eisθ, so that this expression is an infinite-dimensional counterpart of (2.52).

Our remaining task is to integrate the delta function. To do so, we use local coordinates

on the orbit, which we choose to be the Fourier modes of higher-spin supermomenta in

analogy with (2.53). Because p0 is generic, the non-redundant coordinates on the orbit

are the non-zero modes. The integral is thus

∫

Op0

Dµ(q)δ(q, rotθ · q) =
∏

n∈Z∗

(∫
dqnδ(qn − einθqn)

) ∏

m∈Z∗

(∫
dρmδ(ρm − eimθρm)

)
,

(3.25)

where we call qn the Fourier modes of the standard (spin 2) supermomentum, while ρm are

the modes of its higher-spin counterpart. Performing the integrals over Fourier modes and

adding small imaginary parts iǫ to θ to ensure convergence of the character, one obtains

χ[(rotθ, α, a)] = eisθeip0α
0

( ∞∏

n=1

1

|1− ein(θ+iǫ)|2

)2

. (3.26)

This is a natural spin-3 extension of the spin-2 (BMS3) massive character (3.2).

A similar computation can be performed for orbits of other higher-spin supermomenta

(p0, 0). The only subtlety is that, for the values of p0 for which the little group is larger than

U(1)×R, the orbit has higher codimension in W∗
3 than the generic orbit we just discussed.

Accordingly, there are fewer coordinates on the orbit and the products of integrals (3.25)
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are truncated. For instance, when p0 = −n2c/24 with n a positive integer, the little group

is generated by pairs (X, ξ) of the form (3.23), so that the Fourier modes providing non-

redundant local coordinates on the orbit (in a neighbourhood of (p0, 0)) are the modes

qm with m /∈ {−n, 0, n} and the higher-spin modes ρm with m /∈ {−2n,−n, 0, n, 2n}.
Assuming that the representation R of the little group is trivial, this produces a character

χ[(rotθ, α, a)] = e−in2c2α0/24

( ∞∏

m=1,
m 6=n

1

|1− eim(θ+iǫ)|2

)
·
( ∞∏

m=1,
m 6=n,
m 6=2n

1

|1− eim(θ+iǫ)|2

)
. (3.27)

The choice n = 1 specifies the vacuum representation of the flat FW3 algebra; taking α to

be a Euclidean time translation by iβ, we get

χvac[(rotθ, α = iβ, a = 0)] = eβc2/24

( ∞∏

n=2

1

|1− ein(θ+iǫ)|2

)
·
( ∞∏

n=3

1

|1− ein(θ+iǫ)|2

)
. (3.28)

Comparing with eq. (2.31), we recognise the product of the rotating one-loop partition func-

tions of massless fields with spins two and three in three-dimensional flat space, including

the classical piece S(0) = −βc2/24.8 This is one of our key results, that provides a first

non-trivial check of our proposal to construct unitary representations of flat WN algebras.

All the induced representations described above are unitary by construction, provided

one can define (quasi-invariant) measures on the corresponding orbits. In analogy with

representations of the bms3 algebra, they can also be described in terms of induced modules

that generalise those discussed on page 20. Accordingly, one can again define a rest-frame

state as one that is annihilated by all non-zero Fourier modes of the supertranslation

generators p and ρ introduced in (3.18). Boosted states are obtained by acting with

all Fourier modes of the superrotation generators j and κ. Our representations thus

evade the no-go theorems of [38] that stated the absence of unitary representations of the

algebra (3.19) under certain conditions. The reason is that the representations considered

in [38] are higher spin generalisations of those described in (3.14), and as such required

c2 = 0. Since some of the non-linear terms in (3.20b) depend on inverse powers of c2
one had to first properly rescale some of the generators before taking c2 → 0, which

in turn rendered all higher-spin excitations to be null states, thus resulting in unitary

representations of FW3 without higher-spin states. This argument, however, does not

apply to the induced representations considered in this paper as these representations are

unitary and allow for c2 6= 0 without rendering all the higher-spin states unphysical.

Flat WN algebras. The considerations of the previous pages can be generalised to

higher-spin theories in flat space with spins ranging from 2 to N . In AdS3 the asymptotic

symmetries of models with this field content are given by two copies of a WN algebra

and it is natural to anticipate that the corresponding theory in flat space N will have an

8The value of the classical contribution depends on the normalisation of the Bondi mass. For example,

if the normalisation is chosen in such a way that the mass of Minkowski space-time vanishes, then the

corresponding classical action would vanish, as would the exponential prefactor of the character.
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asymptotic symmetry algebra

“flat WN algebra” ≡ FWN = WN AAd (WN )Ab , (3.29)

in analogy with (3.5) and (3.19). The surface charges generating these symmetries should

coincide with the pairing of the Lie algebra of (3.29) with its dual space, and they should

satisfy a centrally extended algebra. Since the presence of higher-spin fields does not affect

the value of the central charge in three-dimensional AdS gravity [23, 24], we expect the

central charge in this case to be the usual c2 = 3/G appearing in mixed brackets [28]. This

structure was indeed observed for N = 4 in [38]. We will now argue that this proposal

must hold for any N by showing that the vacuum character of (3.29), computed along the

lines followed above for FW3, reproduces the product of one-loop partition functions of

fields of spin 2, 3, . . . , N .

According to our proposal for the characterisation of the representations of semi-direct

sums of the type (3.29), unitary representation of flat WN algebras are classified by their

symplectic leaves, that is, by orbits of higher-spin supermomenta (p1, . . . , pN−1). (Here

p1(ϕ) is the supermomentum that we used to write as p(ϕ), while p2(ϕ) is what we called

ρ(ϕ) for N = 3.) The infinitesimal transformations that generalise (3.16) and that define

these orbits locally can be found e.g. in [26]. Here we focus on the vacuum orbit where we

set all higher-spin charges to zero and take only p1 = −c2/24 to be non-vanishing. This

particular supermomentum is left fixed by higher-spin asymptotic symmetries of the form

Xi(ϕ) = Ai +
i∑

j=1

(Bij cos(jϕ) + Cij sin(jϕ)) , i = 1, . . . , N − 1, (3.30)

where the coefficients Ai, Bij , Cij are real. In principle, one can obtain such symmetry

generators by looking for the stabiliser of the vacuum as in (3.21), using for instance the

explicit formulas of [26]. However, a much simpler way to derive the same result is to

look for the higher-spin isometries of the vacuum in the Chern-Simons formulation of the

dynamics, in which models with fields of spin ranging from 2 toN are described in flat space

by a Chern-Simons action with gauge algebra sl(N,R) A (sl(N,R))Ab (see e.g. [18, 31, 38]).

In retarded Bondi coordinates (r, u, ϕ), the vacuum field configuration takes the form

Aµ(x) = b(r)−1g(u, ϕ)−1∂µ [g(u, ϕ)b(r)] , b(r) = exp
[r
2
P−1

]
, (3.31)

where g(u, ϕ) is the SL(N,R)⋉ sl(N,R) valued field given by

g(u, ϕ) = exp

[(
P1 +

1

4
P−1

)
u+

(
J1 +

1

4
J−1

)
ϕ

]
(3.32)

in terms of generators of the Poincaré algebra satisfying the commutation relations (3.4)

with m,n = −1, 0, 1 (and of course without central extensions). The isometries of this field

configuration are generated by gauge parameters of the form (g · b)−1Ta(g · b), where Ta
is any of the basis elements of the gauge algebra. Upon expanding g−1Tag as a position-

dependent linear combination of gauge algebra generators, the function multiplying the
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lowest weight generator coincides with the corresponding asymptotic symmetry parameter

(see e.g. [24] for more details). The latter can be obtained as follows.

For convenience, let us diagonalise the Lorentz piece of the group element (3.32) as

exp

[(
J1 +

1

4
J−1

)
ϕ

]
= BeiJ0ϕB−1 (3.33)

where B is some SL(2,R) matrix. Then the gauge parameters generating the little group

of the vacuum configuration can be written as

exp

[
−
(
J1 +

1

4
J−1

)
ϕ

] ℓ∑

m=−ℓ

αmW (ℓ)
m exp

[(
J1 +

1

4
J−1

)
ϕ

]
(3.34a)

= B e−iJ0ϕ
ℓ∑

m=−ℓ

αmB−1W (ℓ)
m B eiJ0ϕB−1, (3.34b)

where the αm’s are certain real coefficients, while the W
(ℓ)
m (with 2 ≤ ℓ ≤ N and −ℓ ≤ m ≤

ℓ) are the generators of the sl(N,R) algebra (including the Jm ≡W
(2)
m ). Note that the ma-

trixB preserves the conformal weight since it is an exponential of sl(2,R) generators, so that

ℓ∑

m=−ℓ

αmBW (ℓ)
m B−1 =

ℓ∑

m=−ℓ

α̃mW (ℓ)
m (3.35)

for some coefficients α̃j obtained by acting on the αm’s with an invertible linear map.

Because each generatorW
(ℓ)
m has weight m under J0, expression (3.34b) can be rewritten as

ℓ∑

m=−ℓ

eimϕα̃mBW (ℓ)
m B−1 =

ℓ∑

m,n=−ℓ

βmnW (ℓ)
n eijϕ =

ℓ∑

m=−ℓ

eimϕβmℓW
(ℓ)
ℓ + · · · (3.36)

for some coefficients βmn. In the last step we omitted all terms proportional to W
(ℓ)
m ’s with

m < ℓ; the important piece is the term that multiplies the highest-weight generator W
(ℓ)
ℓ :

it is the function on the circle that generates the asymptotic symmetry corresponding to

the generator
∑ℓ

m=−ℓ α
mW

(ℓ)
m that we started with in (3.34a). Since the βmℓ’s are related

to the αm’s by an invertible linear map, and since there are 2ℓ + 1 linearly independent

generators of this type, the isometries of the vacuum exactly span the set of functions of

the form (3.30). This is what we wanted to prove; there are N2 − 1 linearly independent

asymptotic symmetry generators of this form, and they span the Lie algebra of SL(N,R).

The character associated with the vacuum representation of (3.29) can then be worked

out exactly as in the cases N = 2 and N = 3 discussed above: using the Fourier modes

of the N − 1 components of supermomentum as coordinates on the orbit, we need to mod

out the redundant modes. For the vacuum orbit, these are the modes ranging from −ℓ to
ℓ for the ℓth component. The integral over the localising delta function in the Frobenius

formula (2.51) then produces a character

χ[(rotθ, a1 = iβ, a2 = . . . = aN−1 = 0)] = eβc2/24
N∏

s=2

( ∞∏

n=s

1

|1− ein(θ+iǫ)|2

)
. (3.37)
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Comparing with (2.31), we recognise the product of one-loop partition functions of mass-

less higher-spin fields with spins ranging from 2 to N , including a classical contribution.

This result confirms, on the one hand, our conjecture (3.29) for the asymptotic symmetry

algebras of a generic higher-spin theory in three-dimensional flat space, and on the other

hand it provides another consistency check of our proposal for the characterisations of the

unitary representations of flat WN algebras.

3.3 Supersymmetry and super BMS3 characters

The supersymmetric BMS3 groups describe the symmetries of three-dimensional, asymp-

totically flat supergravity [32, 69–72]. Here we exhibit the classification of unitary represen-

tations of their N = 1 version and show that the corresponding vacuum character coincides

(in the Neveu-Schwarz sector) with the one-loop partition function of N = 1 supergravity.

We then extend the matching between vacuum characters and one-loop partition functions

to hypergravity theories, describing the gravitational coupling of a massless field of spin

s+1/2. We start by reviewing briefly unitary representations of supersymmetric semi-direct

products, referring to [73, 74] for details.

Supersymmetric induced representations. A super Lie group is a pair (Γ0, γ) where

Γ0 is a Lie group in the standard sense, while γ is a super Lie algebra whose even part

coincides with the Lie algebra of Γ0, and whose odd part is a Γ0-module such that the

differential of the Γ0 action be the bracket between even and odd elements of γ [75]. Then

a super semi-direct product is a super Lie group of the form [73, 74]

(G⋉σ A, g A (A+A)) , (3.38)

where G ⋉ A is a standard (bosonic) semi-direct product group with Lie algebra g A A,

and g A (A +A) is a super Lie algebra whose odd subalgebra A is a G-module such that

the bracket between elements of g and elements of A be the differential of the action of G

on A, and such that [A,A] = 0 and {A,A} ⊆ A. By virtue of this definition, the action φ

of G on A is compatible with the super Lie bracket:

{φgS, φgT} = σg {S, T} ∀S, T ∈ A, (3.39)

where σ is the action of G on A.

It was shown in [73, 74] that all irreducible, unitary representations of a super semi-

direct product are induced in essentially the same sense as for standard, bosonic groups.

In particular, they are classified by the orbits and little groups of G⋉σ A. However, there

are two important differences with respect to the purely bosonic case:

1. Unitarity rules out all orbits on which energy can be negative, so that the momentum

orbits giving rise to unitary representations of the supergroup form a subset of the

full menu of orbits available in the purely bosonic case. More precisely, given a

momentum p ∈ A∗, it must be such that

〈p, {S, S}〉 ≥ 0 ∀S ∈ A. (3.40)
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If this condition is not satisfied, the representations of (3.38) associated with the

orbit Op are not unitary. The momenta satisfying condition (3.40) are said to be

admissible. Note that admissibility is a G-invariant statement: if f ∈ G and if p is

admissible, then so is f · p, by virtue of (3.39). For example, for Poincaré, the only

admissible momenta are those of massive or massless particles with positive energy

(and the trivial momentum p = 0).

2. Given an admissible momentum p, the odd piece A of the supersymmetric translation

algebra produces a (generally degenerate) Clifford algebra

Cp = T (A)/
{
S2 − 〈p, {S, S}〉 | S ∈ A

}
, (3.41)

where T (A) is the tensor algebra of A. Quotienting this algebra by its ideal generated

by the radical of A, one obtains a non-degenerate Clifford algebra C̄p. Since A is a

G-module, there exists an action of the little group Gp on C̄p; let us denote this

action by a 7→ g · a for a ∈ C̄p and g ∈ Gp. To obtain a representation of the

full supergroup (3.38), one must find an irreducible representation τ of C̄p and a

representation R0 of Gp in the same space, that is compatible with τ in the sense that

τ [g · a] = R0[g] · τ [a] · (R0[g])
−1. (3.42)

For finite-dimensional groups, the pair (τ,R0) turns out to be unique up to multipli-

cation of R0 by a character of Gp (and possibly up to parity-reversal). Given such

a pair, we call it the fundamental representation of the supersymmetric little group.

The Clifford algebra (3.41) leads to a replacement of the irreducible, “spin” representa-

tions of the little group, by generally reducible representations R0⊗R. This is the multiplet

structure of supersymmetry: the restriction of an irreducible unitary representation of a

supergroup to its bosonic subgroup is generally reducible, and the various irreducible com-

ponents account for the combination of spins that gives a susy multiplet. In the Poincaré

group, an irreducible multiplet contains finitely many spins; by contrast, we will see below

that a super-BMS3 multiplet contains infinitely many spins. Apart from this difference, the

structure of induced representations of super semi-direct products is essentially the same

as in the bosonic case: they consist of wavefunctions on an orbit, taking their values in the

space of the representation R0⊗R. In particular, formula (2.51) for the character remains

valid, up to the replacement of R by R0 ⊗R.

Supersymmetric BMS3 groups. Before turning to super BMS3, recall first that the

N = 1 super Virasoro algebra is built by adding to Vect(S1) an odd subalgebra F−1/2(S
1)

of (−1/2)-densities on the circle [76, 77]. This produces a Lie superalgebra, isomorphic to

Vect(S1)⊕F−1/2(S
1) as a vector space, which we will write as sVect(S1). Its elements are

pairs (X,S), where X = X(ϕ)∂/∂ϕ and S = S(ϕ)(dϕ)−1/2, and the super Lie bracket is

defined as

[(X,S), (Y, T )] ≡ ([X,Y ] + S ⊗ T, φXT − φY S) . (3.43)
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Here [X,Y ] is the standard Lie bracket of vector fields and φ denotes the natural action of

vector fields on F−1/2(S
1), so that φXT is the (−1/2)-density whose component is

XT ′ − 1

2
X ′T. (3.44)

Upon expanding the functions X(ϕ) and S(ϕ) in Fourier modes, one recovers the standard

N = 1 supersymmetric extension of the Witt algebra. Choosing S(ϕ) to be periodic

or antiperiodic leads to the Ramond or the Neveu-Schwarz sector of the superalgebra,

respectively.

The central extension of sVect(S1) is the super Virasoro algebra, svir. Its elements are

triples (X,S, λ) where (X,S) ∈ sVect(S1) and λ ∈ R, with a super Lie bracket defined as

[(X,S, λ), (Y, T, µ)} ≡ ([X,Y ] + S ⊗ T, φXT − φY S,C(X,Y ) +D(S, T )) , (3.45)

where we write

C(X,Y ) ≡ − 1

48π

∫ 2π

0
dϕXY ′′′ and D(S, T ) ≡ 1

12π

∫ 2π

0
dϕS′T ′. (3.46)

Here C is the standard Gelfand-Fuchs cocycle of the Virasoro algebra, and C(X,Y ) +

D(S, T ) is its supersymmetric generalisation. Again, upon expanding the functions X and

S in Fourier modes, one obtains the usual commutation relations of the N = 1 super

Virasoro algebra, with the central charge Z = (0, 0, 1).

We can now define the N = 1 super BMS3 group [69, 70]: it is a super semi-direct

product (3.38) whose even piece is the BMS3 group (3.1), and whose odd subspace is

F−1/2(S
1) with the bracket {S, T} = S ⊗ T . In other words, the (centerless) super bms3

algebra is a super semi-direct sum

sbms3 = Vect(S1) A

(
Vect(S1)Ab ⊕F−1/2

)
, (3.47)

where Vect(S1)Ab⊕F−1/2 may be seen as an Abelian version of sVect(S1). Again, choosing

periodic/antiperiodic boundary conditions for F−1/2 yields the Ramond/Neveu-Schwarz

sector of the theory (respectively). Upon including central extensions, elements of the (now

centrally extended) super bms3 algebra become 5-tuples (X,α, S;λ, µ), where (X,α, S)

belongs to sbms3 and λ, µ are real numbers, with a super Lie bracket

[(X,α, S;λ, µ), (Y, β, T ;κ, ν)} =

=
(
[X,Y ], [X, β]− [Y, α], φXT − φY S;C(X,Y ), C(X, β)− C(Y, α) +D(S, T )

)
, (3.48)

with C(X,Y ) and D(S, T ) written in (3.46). Upon expanding all fields in Fourier modes,

one finds the brackets (3.4) where the Jm’s and Pm’s are modes of X’s and α’s (respec-

tively), supplemented with

[Jm, Qr] =
(m
2

− r
)
Qm+r , (3.49a)

[Pm, Qr] = 0 , (3.49b)
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{Qr, Qs} = Pr+s +
c2
6
r2δr+s,0 , (3.49c)

where the supercharges Qr are the modes of S’s. The indices r, s are integers/half-integers

in the Ramond/Neveu-Schwarz sector.

In the gravitational context, the functions X and α generate superrotations and su-

pertranslations, while S(ϕ) generates local supersymmetry transformations that become

global symmetries upon enforcing suitable boundary conditions on the fields. The surface

charge associated with (X,α, S) then takes the form [69]

Q(X,α,S)[j, p, ψ] =
1

2π

∫ 2π

0
dϕ [X(ϕ)j(ϕ) + α(ϕ)p(ϕ) + S(ϕ)ψ(ϕ)] , (3.50)

where j and p are the angular momentum and Bondi mass aspects that we already en-

countered in (3.18), while ψ(ϕ) is one of the subleading components of the gravitino at null

infinity. Upon using formula (3.17), these charges satisfy the algebra (3.48)–(3.49) with c2 =

3/G. Note that the gravitino naturally satisfies Neveu-Schwarz boundary conditions on the

celestial circles, as it transforms under a projective representation of the Lorentz group.

The construction of the super BMS3 group can be generalised in a straightforward way.

Indeed, let G be a (bosonic) group, g its Lie algebra, sg a super Lie algebra whose even

subalgebra is g. Then one can associate with G a (bosonic) semi-direct product G⋉ g —

the even BMS3 group is of that form, with G the Virasoro group. Now let sgAb denote the

“Abelian” super Lie algebra which is isomorphic to sg as a vector space, but where all brack-

ets involving elements of g are set to zero. One may then define a super semi-direct product

(G⋉ g, g A sgAb) (3.51)

where we use the notation (3.38). This structure appears to be ubiquitous in three-

dimensional, asymptotically flat supersymmetric higher-spin theories.

Unitary representations of the super BMS3 group can be classified along the lines

briefly explained at the beginning of this subsection. In the remainder of this section we

describe this classification in some more detail and use it to evaluate characters of the

centrally extended super BMS3 group.

Admissible super BMS3 orbits. The unitary representations of super BMS3 are clas-

sified by the same orbits as in the purely bosonic case. However, supermomenta that do

not satisfy condition (3.40) are forbidden, so our first task is to understand which orbits

are admissible. To begin, recall that the admissibility condition (3.40) is invariant under

superrotations. Thus, if we consider a supermomentum orbit containing a constant p0 say,

the supermomenta on the orbit will be admissible if and only if p0 is. Including the central

charge c2, we ask: which pairs (p0, c2) are such that

〈(p0, c2), {S, S}〉 ≥ 0 ∀S ∈ F−1/2(S
1) ? (3.52)

Here 〈., .〉 is the pairing between supermomenta and supertranslations, given by the terms

pairing p and α in the surface charges (3.18) and (3.50). Using the super Lie bracket (3.48),

we find

〈(p0, c2), {S, S}〉 =
1

2π

∫ 2π

0
dϕ
(
p0(S(ϕ))

2 +
c2
6
(S′(ϕ))2

)
. (3.53)
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Since the term involving (S′)2 can be made arbitrarily large while keeping S2 arbitrarily

small, a necessary condition for (p0, c2) to be admissible is that c2 be non-negative. The

admissibility condition on p0, on the other hand, depends on the sector under consideration:

• In the Ramond sector, S(ϕ) is a periodic function on the circle. In particular, X(ϕ) =

const is part of the supersymmetry algebra, so for expression (3.53) to be non-negative

for any S, we must impose p0 ≥ 0.

• In the Neveu-Schwarz sector, S(ϕ) is antiperiodic (i.e. S(ϕ+ 2π) = −S(ϕ)) and can

be expanded in Fourier modes as

S(ϕ) =
∑

n∈Z

sn+1/2e
i(n+1/2)ϕ. (3.54)

Then expression (3.53) becomes

〈(p0, c2), {S, S}〉 =
∑

n∈Z

[
p0 +

c2
6
(n+ 1/2)2

]
|sn+1/2|2, (3.55)

and the admissibility condition amounts to requiring all coefficients in this series to

be non-negative, which gives

p0 ≥ − c2
24
. (3.56)

These bounds are consistent with earlier observations in three-dimensional supergrav-

ity [69], according to which Minkowski space-time (corresponding to p0 = −c2/24) realises
the Neveu-Schwarz vacuum, while the Ramond vacuum is realised by the null orbifold (cor-

responding to p0 = 0). Analogous results hold in AdS3 [78]. More general admissibility

conditions can be worked out for non-constant supermomenta by adapting the proof of the

positive energy theorem in [60]; we will address this question elsewhere.

Super BMS3 multiplets. As explained around (3.41), a unitary representation of super

BMS3 based on an orbit Op comes equipped with a representation τ of the Clifford algebra

Cp = T
(
F−1/2(S

1)
)
/
{
S2 − 〈(p, c2), {S, S}〉

}
. (3.57)

Let us build such a representation. We will work in the Neveu-Schwarz sector, and we take

p to be a constant admissible supermomentum p0 = M − c2/24 with M > 0, whose little

group is U(1). Then the bilinear form (3.55) is non-degenerate and the representation τ of

the Clifford algebra (3.57) must be such that

τ [Qr] · τ [Qs] + τ [Qs] · τ [Qr] =
(c2
6
(r2 − 1/4) +M

)
δr+s,0 , r, s ∈ Z+ 1/2. (3.58)

In order to make τ irreducible, we start with a highest-weight state |0〉 such that

τ [Qr]|0〉 = 0 for r > 0, and generate the space of the representation by its “descendants”

τ [Q−r1 ] . . . τ [Q−rn ]|0〉, r1 > . . . > rn > 0. It follows from the Lie brackets (3.49) that each

descendant state has spin s+
∑n

i=1 ri, where s is the spin of the state |0〉; this observation
uniquely determines the little group representation R0 satisfying (3.42). Thus, a super

BMS3 particle consists of infinitely many particles with spins increasing from s to infinity.
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A similar construction can be carried out for the vacuum supermomentum at M = 0,

with the subtlety that the Clifford algebra (3.57) (or equivalently (3.58)) is degenerate.

As explained below (3.41), one needs to quotient (3.57) by the radical of the bilinear

form (3.55), resulting in a non-degenerate Clifford algebra C̄p. In the case at hand this

algebra is generated by supercharges Qr with |r| > 1, and the representation τ must

satisfy (3.58) with M = 0 and |r|, |s| > 1. The remainder of the construction is straight-

forward: starting from a state |0〉 with, say, vanishing spin, we generate the space of the

representation by acting on it with τ [Q−r]’s, where r > 1. The vacuum representation of

super BMS3 thus contains infinitely many “spinning vacua” with increasing spins.

Characters. The Fock space representations just described can be used to evaluate char-

acters. For example, in the massive case we find

tr
[
eiθJ0

]
= eiθs

[
1 + eiθ/2 + e3iθ/2 + e2iθ + · · ·

]
= eiθs

∞∏

n=1

(
1 + ei(n−1/2)(θ+iǫ)

)
, (3.59)

where we have added a small imaginary part to θ to ensure convergence of the product;

the trace is taken in the fermionic Fock space associated with the “highest-weight state”

|0〉. The vacuum case is similar, except that the product would start at n = 2 rather

than n = 1 (and s = 0). Note that (3.59) explicitly breaks parity invariance; this can

be fixed by replacing the parity-breaking Fock space representations τ described above by

parity-invariant tensor products τ ⊗ τ̄ , where τ̄ is the same as τ with the replacement of

Qr by Q−r. The trace of a rotation operator in the space of τ ⊗ τ̄ then involves the norm

squared of the product appearing in (3.59).

As explained on page 31, the character of an induced representation of a super semi-

direct product takes the same form (2.51) as in the bosonic case, but with the character

of R replaced by that of a (reducible) representation R0 ⊗R compatible with the Clifford

algebra representation τ . We thus find that the character of a rotation by θ (together with

a Euclidean time translation by β), in the parity-invariant vacuum representation of the

N = 1, Neveu-Schwarz super BMS3 group, reads

χsuper BMS
vac [(rotθ, iβ)] = χBMS

vac [(rotθ, iβ)] ·
∞∏

n=2

|1 + ei(n−1/2)(θ+iǫ)|2

= eβc2/24
∞∏

n=2

|1 + ei(n−1/2)(θ+iǫ)|2
|1− ein(θ+iǫ)|2 . (3.60)

Comparing with (2.31) and (2.50), we recognise the product of the partition functions of

two massless fields with spins 2 and 3/2, that is, the one-loop partition function of N = 1

supergravity in three-dimensional flat space.

Higher-spin supersymmetry and hypergravity. In [32, 71], the authors considered

a three-dimensional hypergravity theory consisting of a metric coupled to a single field

with half-integer spin s+ 1/2, with s larger than one. Upon imposing suitable asymptot-

ically flat boundary conditions, they found that the asymptotic symmetry algebra spans

a superalgebra that extends the bosonic bms3 algebra by generators Qr of spin s + 1/2.
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The one-loop partition function of that system is the product of the graviton partition

function (see eq. (2.31) for s = 2) with the fermionic partition function (2.50). We now

show that this partition function coincides with the vacuum character of the corresponding

asymptotic symmetry group (in the Neveu-Schwarz sector).

The irreducible, unitary representations of the asymptotic symmetry group of [32]

are classified by the same orbits and little groups as for the standard BMS3 group. In

particular, we can consider the orbit of a constant supermomentum p0 = M − c2/24; the

associated Clifford algebra representation τ mentioned below (3.41) then satisfies a natural

generalization of eq. (3.58) (see eq. (7.23) in [32])

τ [Qr]τ [Qℓ] + τ [Qℓ]τ [Qr] =

s−1∏

j=0

(
c2
6

(
r2 − (2j + 1)2

4

)
+M

)
δr+ℓ,0 , (3.61)

where r and ℓ are integers or half-integers, depending on the sector under consideration

(Ramond or Neveu-Schwarz, respectively). In order for the orbit to be admissible in the

sense of (3.40), the value of M must be chosen so as to ensure that all coefficients on the

right-hand side of (3.61) are non-negative. In particular, the vacuum value M = 0 is ad-

missible in the Neveu-Schwarz sector, in which case the anticommutators {τ [Qr], τ [Q−r]}
vanish for |r| = 1/2, . . . , s − 1/2. Thus, in the Neveu-Schwarz vacuum, the Clifford alge-

bra (3.61) degenerates and τ must really be seen as a representation of the non-degenerate

subalgebra generated by the Qr’s with |r| ≥ s. The corresponding Fock space represen-

tation can be built as explained below (3.58), and the spins of the basis states in this

representation are uniquely determined by the fact that the Qr’s have spin s + 1/2. The

corresponding Fock space character is thus

tr
[
eiθJ0

]
=

∞∏

n=s+1

(
1 + ei(n−1/2)(θ+iǫ)

)
, (3.62)

which generalises (3.59). The character for τ ⊗ τ̄ is the squared norm of this expression,

and the resulting vacuum character of the hypersymmetric BMS3 group is

χhyper BMS
vac [(rotθ, iβ)] = eβc2/24

∞∏
n=s

|1 + ei(n+1/2)(θ+iǫ)|2

∞∏
m=2

|1− eim(θ+iǫ)|2
. (3.63)

As announced earlier, this coincides with the one-loop partition function of asymptotically

flat gravity coupled to a massless field with spin s+ 1/2.

4 Further directions

A first, natural extension of our work will be to compute one-loop partition functions for the

missing particles in flat space, i.e. mixed-symmetry and continuous spin particles. The first

case corresponds to representations of the little groups SO(D− 1) or SO(D− 2) with arbi-

trary weights, and goes beyond our simplifying restriction to fully symmetric fields/weights
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of the form (s, 0, . . . , 0). The second case corresponds instead to generic massless particles,

associated with representations of the full little group SO(D−2)⋉R
D−2. Both setups may

be physically relevant: the vast majority of string excitations leads to mixed-symmetry

massive fields, so that any comparison between string models and higher-spin (gauge) the-

ories cannot forgo a good control over mixed symmetry particles. Continuous spin particles

are instead more elusive. For a long time, following Wigner’s intuition [50], they have been

considered as unphysical. Recent analyses have instead provided indications that these par-

ticles may even evade the standard no-go arguments against higher-spin interactions [79].

In view of our discussion at the beginning of section 1, these representations are actually

quite promising: in field theory they are realised by gauge theories [80]; nevertheless they in-

trinsically bring in a dimensionful parameter (e.g. the eigenvalue of the square of the Pauli-

Lubanski vector in D = 4). In both cases one can easily compute the associated Poincaré

characters with the techniques of section 2.4. Moreover, both Bose and Fermi mixed sym-

metry fields admit a Lagrangian description similar to the one we rely on in this paper (see

e.g. [81, 82]), so that we expect to be able to smoothly extend our considerations to this

class of fields. A Lagrangian description of continuous-spin particles has also been proposed

recently [80] and it will be interesting to test its structure by computing its one-loop par-

tition function and comparing it with the Poincaré characters of continuous spin particles.

Another possible interesting application of our results will be to study carefully the

flat-space limit of AdS partition functions. As we have discussed below (2.19) and in the

final remark of section 2.4, it is not straightforward to recover partition functions in flat

space and Poincaré characters as limits of partition functions in AdS [44, 83] and characters

of the conformal algebra [57]. Therefore, even if considering this limit for free actions is

trivial, the corresponding partition functions already give a feeling of the difficulties that

become so dramatic when interactions are switched on. Clarifying how one can properly

regularise the flat limit of one-loop partition functions may thus give insights on how to

address this pathological limit in more general terms.

In three dimensions we also just started to scratch the surface of the representation

theory of flat W algebras. It will be interesting to complete the classification of coadjoint

orbits and to interpret the role of classes of representations characterised by different little

groups. In addition, one has to systematise the construction of the Hilbert spaces of each

representation, both via the wavefunction construction that is typical of the representations

of the BMS3 group or via induced module constructions.
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A From mixed traces to bosonic characters

A.1 Mixed traces and symmetric polynomials

In this part of the appendix we prove that the mixed trace (2.20) of Iµs,αs in D dimensions

coincides with a certain difference of complete homogeneous symmetric polynomials in the

traces of Jn as given by

χs[n~θ ] = hs(J
n)− hs−2(J

n) , (A.1)

where

hs(J
n) =

∑

m1,...,ms∈N

m1+2m2+...+sms= s

[
s∏

k=1

(
Tr[(Jn)k]

)mk

mk!kmk

]
. (A.2)

By definition, the complete homogeneous symmetric polynomial of degree s in D complex

variables λ1, . . . , λD is

hs(λ1, . . . , λD) =
s∑

ℓ1,...,ℓD=0
ℓ1+...+ℓD= s

λℓ11 λ
ℓ2
2 . . . λℓDD =

∑

1≤ℓ1≤ℓ2≤...≤ℓs≤D

λℓ1λℓ2 . . . λℓs . (A.3)

Using the variant of Newton’s identities

hs(λ1, . . . , λD) =
1

s

s∑

N=1

hs−N (λ1, . . . , λD)(λ
N
1 + . . .+ λND) , (A.4)

one can show by recursion (see e.g. [84, p. 24f]) that the polynomial (A.3) can equivalently

be written as in (A.2):

hs(λ1, . . . , λD) =
∑

m1,...,ms∈N

m1+2m2+...+sms= s

s∏

k=1

(λk1 + . . .+ λkD)
mk

mk! kmk
. (A.5)

We will use this relation later. To prove (A.1), we start with the following:

Lemma. Let J be a complex D ×D matrix with eigenvalues λ1, . . . , λD. Then,

(δµα)s
1

s!
(Jµα)

s = hs(λ1, λ2, . . . , λD) , (A.6)

where we use the same notation for contracting symmetrised indices as in (2.13).
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Proof. The left-hand side of (A.6) can be seen as a trace over symmetric tensor powers

of J . Indeed, δµαJµα = Tr(J) is clear; as for 1
2 (δ

µα)2 (Jµα)
2, one gets

1

2
(δµα)2 (Jµα)

2 =
1

2

(
Tr(J)2 +Tr

(
J2
))

= Tr
(
S2(J)

)
=

1

2

2∑

i=1

Tr
(
J i
)
Tr
(
S2−i(J)

)
, (A.7)

where Sk(J) denotes the kth symmetric tensor power of J . One can then define recursively

1

s!
(δµα)s (Jµα)

s = Tr (Ss(J)) =
1

s

s∑

i=1

Tr
(
J i
)
Tr
(
Ss−i(J)

)
, (A.8)

so that 1
s! (δ

µα)s (Jµα)
s is just a trace in the sth symmetric tensor power of the D-

dimensional vector space V on which Jµα acts as a linear operator. Now consider an

eigenbasis {e1, . . . , eD} for Jµα, with J · ek = λkek. Since 1
s! (Jµα)

s is the sth symmet-

ric tensor power of Jµα one can construct an eigenbasis for 1
s! (Jµα)

s by symmetrising

ek1 ⊗ ek2 ⊗ . . . ⊗ ekD , with k1 ≤ k2 ≤ . . . ≤ kD. These eigenvectors have eigenvalues

λl1λl2 . . . λlD , and since (δµα)s 1
s! (Jµα)

s is the trace of 1
s! (Jµα)

s, relation (A.6) follows upon

using the second expression of hs(λ1, . . . , λD) in (A.3). �

We can now turn to the proof of (A.1). To this end we fix conventionally the number

of terms entering the contraction of two symmetrised expressions as follows. Objects with

lower indices are symmetrized with the minimum number of terms required and without

overall normalisation factor, while objects with upper indices are not symmetrised at

all, since the symmetrisation is induced by the contraction. This specification is needed

because terms with lower and upper indices in a contraction may have a different index

structure and therefore the number of terms needed for their symmetrisation may be

different. For instance

AµBµCµDµµEµ ≡ AµBνCρ (DµνEρ +DνρEµ +DρµEν)

=
1

2
(AµBνCρ +AνBρCµ +AρBµCν +AµBρCν +AρBνCµ +AνBµCρ)DµνEρ .

(A.9)

In order to simplify computations, we define

Tµs, αs ≡ Jµα . . . Jµα , T [s] ≡ Tµs, αs (δ
µα)s , (A.10)

which implies the contraction rules

δµµTµs, αs = 2 δααTµs−2, αs−2 , δααTµs,αs = 2 δµµTµs−2,αs−2 . (A.11)

In terms of the tensors Tµs,αs , the mixed trace (2.20) can be written as

χs[n~θ] =
1

s!
Tµs,βs




(
δµβ

)s

+

⌊ s
2
⌋∑

m=1

(−1)m s! [D + 2 (s−m− 2)]!!

2mm! (s− 2m)! [D + 2 (s− 2)]!!
(δµµ)m(δµβ)s−2m(δββ)m



 (A.12)

(A.11)
=

1

s!
T [s] +

[ s
2
]∑

m=1

(−1)m [D + 2 (s−m− 2)]!!

2m−1m! (s− 2m)! [D + 2 (s− 2)]!!
(δµµ)m(δµβ)s−2m(δββ)m−1δµµTµs−2,βs−2

.

– 39 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
4

To compute the trace of the (δµµ)m(δµβ)s−2m(δββ)m−1 terms, we first change our symmetri-

sation from δµµTµs−2,βs−2 (which contains s!
2(s−2)! terms) to the aforementioned product of

δ’s. In doing so one has to introduce a factor accounting for the number of terms in each

structure as

δµµTµs−2, βs−2  
s!

2(s− 2)!
terms, (A.13a)

(δµµ)m
(
δµβ
)s−2m (

δββ
)m−1

 
s!

2mm!
× (s− 2)!

2m−1(m− 1)!(s− 2m)!
terms, (A.13b)

which implies

χs[n~θ] =
1

s!
T [s] +

⌊ s
2
⌋∑

m=1

(−1)
m
2m−1(m− 1)! [D + 2 (s−m− 2)]!!

[(s− 2)!]
2
[D + 2 (s− 2)]!!

δmµµδ
s−2m
µβ δm−1

ββ δµµTµs−2,βs−2 .

(A.14)

Taking into account the correct combinatorial factors one obtains

δmµµδ
s−2m
µβ δm−1

ββ δµµ = [D + 2(s−m− 1)] δm−1
µµ δs−2m

µβ δm−1
ββ + 2mδmµµδ

s−2m−2
µβ δmββ , (A.15)

which then yields

χs[n~θ] =
1

s!
T [s] +




⌊ s
2
⌋∑

m=1

(−1)m 2m−1(m− 1)! [D + 2 (s−m− 1)]!!

[D + 2 (s− 2)]!!
δm−1
µµ δs−2m

µβ δm−1
ββ

+

⌊ s
2
⌋−1∑

m=1

(−1)m 2mm! [D + 2 (s−m− 2)]!!

[D + 2 (s− 2)]!!
δmµµδ

s−2m−2
µβ δmββ


 1

[(s− 2)!]2
Tµs−2,βs−2 . (A.16)

Shifting m→ m+1 in the upper sum one can see that both sums are identical apart from

the overall sign and the lower extremum. Thus (A.16) boils down to

χs[n~θ] =
1

s!
T [s] − 1

[(s− 2)!]2
δs−2
µβ Tµs−2,βs−2 =

1

s!
T [s] − 1

(s− 2)!
T [s−2] . (A.17)

Now using (A.10) and (A.6) one obtains

χs[n~θ] =
1

s!
T [s] − 1

(s− 2)!
T [s−2] = hs(λ1, λ2, . . . , λD)− hs−2(λ1, λ2, . . . , λD) , (A.18)

where λ1, . . . , λD are the eigenvalues of Jn. (These eigenvalues are e±inθj for j = 1, . . . , r,

and one or two unit eigenvalues depending on whether D is odd or even, respectively.)

This leads to the desired result: since traces of powers of Jn can be written as

Tr[(Jn)k] = λk1 + . . .+ λkD (A.19)

in terms of the eigenvalues of Jn, the complete homogeneous symmetric polynomials ex-

pressed as (A.5) exactly coincide with the combination (A.2), and equation (A.18) coincides

with (A.1).
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A.2 Symmetric polynomials and SO(D) characters

In this part of the appendix we review the relation between complete homogeneous sym-

metric polynomials and characters of orthogonal groups. Most of the explicit proofs can

be found in [85], chapter 24, to which we refer for details on the arguments exposed below.

We will study separately the cases of odd and even D, and we let r ≡ ⌊(D − 1)/2⌋, with
θ1, . . . , θr the non-vanishing angles appearing in the rotations (2.8).

Odd D. We consider the Lie algebra so(D) = so(2r + 1), with rank r. Choosing a basis

of C2r+1 such that the Lie algebra so(2r+1)C can be written in terms of complex matrices,

we may choose the Cartan subalgebra to be the subalgebra h of so(2r + 1)C consisting

of diagonal matrices. As a basis of h we choose the matrices Hi whose entries all vanish,

except the (i, i) and (r+i, r+i) entries which are 1 and −1, respectively (with i = 1, . . . , r).

In our convention (2.7), the operator Hi generates rotations in the plane (xi, yi). Then,

calling Li the elements of the dual basis (such that 〈Li, Hj〉 = δij), a dominant weight is

one of the form λ = λ1L1 + . . . λrLr ≡ (λ1, . . . , λr) with λ1 ≥ . . . ≥ λr ≥ 0.

Let λ be a dominant weight for so(2r + 1). According to formula (24.28) in [85], the

character of the irreducible representation of so(2r + 1) with highest weight λ is

χ
SO(2r+1)
λ [q1, . . . , qr] = Trλ

[
qH1
1 · · · qHr

r

]
=

∣∣∣∣q
λi+r−i+ 1

2
j − q

−(λi+r−i+ 1
2)

j

∣∣∣∣
∣∣∣∣q

r−i+ 1
2

j − q
−(r−i+ 1

2)
j

∣∣∣∣
, (A.20)

where q1, · · · qr are arbitrary complex numbers,9 Trλ denotes a trace taken in the space

of the representation, and |Aij | denotes the determinant of the matrix A with rows i and

columns j. This expression is a corollary of the Weyl character formula. Using proposition

A.60 and Corollary A.46 of [85], it can be rewritten as

χ
SO(2r+1)
λ [q1, . . . , qr] = |hλi−i+j − hλi−i−j | , (A.21)

where hj = hj
(
q1, . . . , qn, q

−1
1 , . . . , q−1

n , 1
)
is a complete homogeneous symmetric polyno-

mial of degree j in 2r + 1 variables. In particular, for a highest weight λs = (s, 0, . . . , 0)

(where s is a non-negative integer), the matrix appearing on the right-hand side of (A.21) is

upper triangular, with the entry at i = j = 1 given by hs−hs−2 and all other entries on the

main diagonal equal to one. Accordingly, the determinant in (A.21) boils down to hs−hs−2

in that simple case. For the rotation (2.8) we may identify qj = einθj , and we conclude that

χ
SO(2r+1)
λs

[n~θ] =

∣∣sin
[(
λi + r − i+ 1

2

)
nθj
]∣∣

∣∣sin
[(
r − i+ 1

2

)
nθj
]∣∣ = hs(J

n)− hs−2(J
n) , (A.22)

where λi = s δi1. Thus for odd D the difference of symmetric polynomials in (A.1) is just

a character of SO(D).

9Eventually these numbers will be exponentials of angular potentials, so they are fugacities associated

with the rotation generators Hi.
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Even D. We now turn to the Lie algebra so(2r+2), with rank r+1. As in the odd case we

choose a basis of C2r+2 such that we can write the Lie algebra so(2r+2) in terms of complex

matrices and the Cartan subalgebra is generated by r+1 diagonal matricesHi whose entries

all vanish, except (Hi)ii = 1 and (Hi)r+1+i,r+1+i = −1. We call Li the elements of the dual

basis, and with these conventions a weight λ = λ1L1 + . . . + λr+1Lr+1 ≡ (λ1, . . . , λr+1) is

dominant if λ1 ≥ λ2 ≥ . . . ≥ λr ≥ |λr+1|.
Let λ be a dominant weight for so(2r + 2). Then formula (24.40) in [85] gives the

character of the associated highest-weight representation as

χ
SO(2r+2)
λ [q1, . . . , qr+1] = Trλ

[
qH1
1 · · · qHr+1

r+1

]

=

∣∣∣qλi+r+1−i
j + q

−(λi+r+1−i)
j

∣∣∣+
∣∣∣qλi+r+1−i

j − q
−(λi+r+1−i)
j

∣∣∣
∣∣∣qr+1−i

j + q
−(r+1−i)
j

∣∣∣
,

(A.23)

where we use the same notations as in (A.20), except that now i, j = 1, . . . , r + 1. Note

that the second term in the numerator of this expression vanishes whenever λr+1 = 0

(because the (r + 1)th row of the matrix qλi+r+1−i
j − q

−(λi+r+1−i)
j vanishes). Since this is

the case that we will be interested in, we may safely forget about that second term from

now on. Alternatively, for the mixed traces (2.20) that we need, we may take qj = einθj

for j = 1, . . . , r and qr+1 = 1 without loss of generality, so that this second term vanishes

again. Using proposition A.64 of [85], one can then rewrite (A.23) as

χ
SO(2r+2)
λ [q1, . . . , qr, 1] = |hλi−i+j − hλi−i−j | , (A.24)

where hj = hj
(
q1, . . . , qr, 1, q

−1
1 , . . . , q−1

r , 1
)
. Finally, using the same arguments as for odd

D, one easily verifies that the determinant on the right-hand side of (A.24) reduces once

more to hs − hs−2 for a highest weight λs = (s, 0, . . . , 0). Writing again qj = einθj , one

concludes that, for even D,

χ
SO(2r+2)
λs

[nθ1, . . . , nθr, nθr+1 = 0] =
|cos [(λi + r + 1− i)nθj ]|

|cos [(r + 1− i)nθj ]|

∣∣∣∣∣
θr+1=0

= hs(J
n)−hs−2(J

n),

(A.25)

where λi = s δi1. This concludes the proof of (2.21). Note that, for non-vanishing

θr+1, the quotient of denominators in the middle of (A.25) is actually the character

χ
SO(2r+2)
λs

(nθ1, . . . , nθr, nθr+1). This detail will be useful in appendix A.3.

A.3 Differences of SO(D) characters

In this part of the appendix we prove the following relations between characters of orthog-

onal groups:

χ
SO(2r+1)
λs

[~θ]− χ
SO(2r+1)
λs−1

[~θ] = χ
SO(2r)
λs

[~θ] , (A.26a)

χ
SO(2r)
λs

[~θ]− χ
SO(2r)
λs−1

[~θ] =

r∑

k=1

Ar
k[
~θ]χ

SO(2r−1)
λs

[θ1, . . . , θ̂k, . . . , θr] . (A.26b)
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Here ~θ = (θ1, . . . , θr), λs is the weight with components (s, 0, . . . , 0) in the basis defined

above equations (A.20) and (A.23), and the hat denotes omission of an argument, while

the coefficients Ar
k are the quotients of determinants defined in (2.29). Note that, when one

of the angles θ1, . . . , θr vanishes, say θℓ = 0, then Ar
k = δkℓ and relation (A.26b) reduces to

χ
SO(2r)
λs

[~θ]
∣∣∣
θℓ=0

− χ
SO(2r)
λs−1

[~θ]
∣∣∣
θℓ=0

= χ
SO(2r−1)
λs

[θ1, . . . , θ̂ℓ, . . . , θr] . (A.27)

Proof of (A.26). We start by defining the matrices

(Ar)ij = sin
[
(r − i+ 1

2)θj
]
, (Br)ij = cos [(r − i)θj ] , (A.28)

so that in particular

Ar
k(
~θ) =

|Br|θk=0

|Br| . (A.29)

We will also use the shorthand notation

M r[θk] ≡ |Mij(θ1, . . . , θk−1, θk+1, . . . , θr+1)| (A.30)

to denote the determinant of the r × r matrix missing the angle θk of any of the matrices

defined in (A.28). As a preliminary step towards the proof, we list the four following

identities:

|Ar|∏r
j=1 sin (θj/2)

= 2r−1|Br| , (A.31a)

| cos [(r − i)θj ] | = 2
(r−1)(r−2)

2

∏

1≤i<j≤r

(cos(θi)− cos(θj)) , (A.31b)

|Br|θk=0

Ar−1[θk]
= 2r−1(−1)k+1

r∏

j=1
j 6=k

sin (θj/2) , (A.31c)

|Br| =
r∑

k=1

|Br|θk=0 . (A.31d)

Here (A.31a) can be proven by induction on r upon expanding the determinant |Ar(~θ)|
along the first line of the matrix Ar. Property (A.31b) can be shown by observing that

cos[(r − i)θj ] = 2r−i−1 cosr−i(θj) +
r−i−1∑

k=1

ck cos(kθj) (A.32)

with some irrelevant real coefficients ck, and that the contribution of the second term of

this expression to the determinant | cos[(r − i)θj ]| vanishes by linear dependence. Equa-

tion (A.31c) then follows from (A.31a) and (A.31b), while property (A.31d) can again be

proved by induction on r.

Equipped with eqs. (A.31), we can tackle the proof of (A.26). Equation (A.26a) is

easy: using expression (A.22) for the character χ
SO(2r+1)
λs

, we can write the difference of
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characters on the left-hand side of (A.26a) as

χ
SO(2r+1)
λs

− χ
SO(2r+1)
λs−1

=

r∑
k=1

(−1)k+12 cos[(s+ r − 1)θk] sin (θk/2)A
r−1[θk]

|Ar| . (A.33)

Property (A.31a) then allows us to reduce this expression to the quotient of denominators

appearing in the middle of eq. (A.25) (with the replacement of r + 1 by r and all angles

non-zero), which is indeed the sought-for character χ
SO(2r)
λs

[~θ].

Equation (A.26b) requires more work. Using once more the expression in the middle

of (A.25), we first rewrite the left-hand side of (A.26b) as

χ
SO(2r)
λs

− χ
SO(2r)
λs−1

=

r∑
k=1

(−1)k+1(−2 sin[(s+ r − 3
2)θk] sin (θk/2)B

r−1[θk]

|Br| . (A.34)

Let us now recover this expression as a combination of characters SO(2r − 1): using for-

mula (A.22) and the identities (A.31), one finds
r∑

k=1

χ
SO(2r−1)
λs

[θ1, . . . , θ̂k, . . . , θr]|B
r|θk=0

(A.31c)
=

r∑

k=1

(−1)k+12r−1
r∏

j=1
j 6=k

sin (θj/2)×

×




k−1∑

j=1

(−1)j+1 sin[(s+ r − 3
2
)θj ]A

r−2[θj , θk] +
r∑

j=k+1

(−1)j sin[(s+ r − 3
2
)θj ]A

r−2[θj , θk]





(A.31a)
=

r∑

k=1

(−1)k+122r−4 sin[(s+ r − 3
2
)θk] sin (θk/2)×

×




k−1∑

j=1

(−1)jBr−2[θj , θk]

r∏

i=1
i/∈{j,k}

sin2 (θi/2) +

r∑

j=k+1

(−1)j+1Br−2[θj , θk]

r∏

i=1
i/∈{j,k}

sin2 (θi/2)





(A.31b)
=

r∑

k=1

(−1)k+1(−2) sin[(s+ r − 3
2
)θk] sin (θk/2)




k−1∑

j=1

(−1)j Br−1[θk]
∣∣
θj=0

+
r∑

j=k+1

Br−1[θk]
∣∣
θj=0





(A.31d)
=

r∑

k=1

(−1)k+1(−2) sin[(s+ r − 3
2
)θk] sin (θk/2)B

r−1[θk]. (A.35)

This coincides with the numerator of the right-hand side of (A.34), so identity (A.26b)

follows with Ar
k given by (A.29). �

A.4 From SO(D) to SO(D − 1)

In this appendix we prove relation (2.32) between characters of SO(D) and SO(D − 1):

Lemma.

χ
SO(2r+1)
λs

[θ1, . . . , θr] =
s∑

j=0

χ
SO(2r)
λj

(θ1, . . . , θr), (A.36a)
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χ
SO(2r)
λs

[θ1, . . . , θr] =

s∑

j=0

r∑

k=1

Ar
k(
~θ)χ

SO(2r−1)
λj

[θ1, . . . , θ̂k, . . . , θr]. (A.36b)

Here λj is the weight (j, 0, . . . , 0) as explained above (2.21) or below (A.21), and Ar
k(
~θ) is

the quotient (2.29) or (A.29). Since the proofs of these two identities are very similar, we

will only display the proof of (A.36a).

Proof of (A.36a). Eq. (A.36a) can be written as

r∑
k=1

(−1)k+1 sin[(s+ r − 1
2 )θk]A

r−1[θk]

|Ar|
(A.31a)&(A.31c)

=

s∑

j=0

r∑
k=1

(−1)k+1 cos[(j + r − 1)θk]B
r−1[θk]

|Br| ,

(A.37)

where we used formulas (A.22) and (A.25) for the characters, as well as the definition (A.28)

of Ar and Br. One can then use identities (A.31a) and (A.31c) to match the right-hand

side of this expression with the left-hand side, proving the desired identity. �

B From mixed traces to fermionic characters

B.1 Mixed traces and symmetric polynomials

Our goal here is to prove the first equality of (2.48), following the same method as in

appendix A.1 for the bosonic case. First, using the definition (2.43) of U and the contraction

rules (A.11), one can write (2.47) as

χ(F )
s [n~θ]=



1

s!
T [s]+

⌊ s
2
⌋∑

m=1

(−1)m[D+2(s−m−1)]!!

2m−1m!(s−2m)![D+2(s−1)]!!
(δµµ)m(δµβ)s−2m(δββ)m−1δµµTµs−2,βs−2



Tr[Un]

+

⌊ s−1

2
⌋∑

m=0

(−1)m+1[D + 2(s−m− 2)]!!

2mm!(s− 2m− 1)![D + 2(s− 1)]!!
Tr[Tµs−1,βs−1

γµγ
µ(δµµ)m(δµβ)s−2m−1(δββ)mUn], (B.1)

where T [s] is the notation (A.10). In the first term of this expression, we shift the sym-

metrisation on the δ’s i.e. we exchange upper and lower indices while taking into account

the change in multiplicities of the terms involved; in all other terms, we compute one

contraction with δββ. Eq. (B.1) then simplifies to

χ(F )
s [n~θ] =

1

s!
T [s]Tr[Un]− 1

[(s− 1)!]2[D + 2(s− 1)]
Tr[Tµs−1,βs−1γµγ

µδs−1
µβ Un] (B.2)

+

⌊ s
2
⌋∑

m=1

[
(−1)m2m−1(m− 1)![D + 2(s−m− 1)]!!

[(s− 2)!]2[D + 2(s− 1)]!!
Tµs−2,βs−2δµµδmµµδ

s−2m
µβ δm−1

ββ Tr[Un]

+
(−1)m+12m− 1(m− 1)![D + 2(s−m− 2)]!!

[(s− 2)!]2[D + 2(s− 1)]!!
Tr[Tµs−2,βs−2δµµδmµµδ

s−2m−1
µβ δmββγµγβU

n]

]
.

The γ traces and mixed traces can now be evaluated using

γµγµδ
s−1
µβ = [D + 2(s− 1)]δs−1

µβ − γµγβδ
s−2
µβ , (B.3a)

δµµδmµµδ
s−2m
µβ δm−1

ββ = [D + 2(s−m− 1)]δm−1
µµ δs−2m

µβ δm−1
ββ
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+ 2mδmµµδ
s−2m−2
µβ δmββ, (B.3b)

δµµδmµµδ
s−2m−1
µβ δm−1

ββ γµγβ = [D + 2(s−m− 1)]δm−1
µµ δs−2m−1

µβ δm−1
ββ γµγβ

+ 4mδmµµδ
s−2m−2
µβ δmββ + 2mδmµµδ

s−2m−3
µβ δmββγµγβ , (B.3c)

which yields

χ(F )
s [n~θ] =

[
1

s!
T [s] −

1

(s− 1)!
T [s−1]

]
Tr[Un] +

1

[(s− 1)!]2[D + 2(s− 1)]
Tr[Tµs−1,βs−1δs−2

µβ γµγβU
n]

−
D + 2(s− 2)

[(s− 2)!]2[D + 2(s− 1)]
Tµs−2,βs−2δs−2

µβ Tr[Un]

+
1

[(s− 2)!]2[D + 2(s− 1)]
Tr[Tµs−2,βs−2δs−3

µβ γµγβU
n]. (B.4)

Using (A.18) and the definition (2.43) of U , together with some careful counting, one verifies

that this expression matches [hs(J
n)− hs−1(J

n)] Tr[Un], which was to be proven.

B.2 Symmetric polynomials and SO(D) characters

In this part of the appendix we prove the second equality in (2.48), following essentially

the same steps as in appendix A.2. We refer again to [85] for details, and we write the

components of weights in the dual basis of the Cartan subalgebra described above (A.20)

and (A.23). We will consider separately odd and even space-time dimensions.

Odd D. The character of a half-spin representation of so(2r+1) with a dominant highest

weight λ = (λ1 +
1
2 , λ2 +

1
2 , . . . , λr +

1
2) is [86, p.258f]

χ
SO(2r+1)
λ [θ1, . . . , θr] =

|sin [(λi + r − i+ 1) θj ]|∣∣sin
[(
r − i+ 1

2

)
θj
]∣∣ =

(
r∏

i=1

2 cos
(
θi
2

)
)

|sin [(λi + r − i+ 1) θj ]|
|sin [(r − i+ 1) θj ]|

.

(B.5)

Owing to expression (2.45) for the trace of Un, the second equality in (2.48) is equivalent to

hs(J)− hs−1(J) =
|sin [(λi + r − i+ 1) θj ]|

|sin [(r − i+ 1) θj ]|
(B.6)

for λi = sδi1. To prove this, consider the difference of the bosonic character (A.22) and

the right-hand side of (B.6):

∣∣sin[(λi + r − i+ 1
2)θj ]

∣∣
∣∣sin[(r − i+ 1

2)θj ]
∣∣ − |sin[(λi + r − i+ 1)θj ]|

|sin[(r − i+ 1)θj ]|
. (B.7)

Introducing the notation

(Ar)ij = 2 sin [(r − i+ 1)θj ] , (Br)ij = 2 cos
[
(r − i+ 1

2)θj
]

(B.8)

and in terms of (A.28), this difference can be written as

∑r
k=1(−1)k+1 sin[(s+ r − 1

2)θk]A
r−1[θk]

|Ar| −
∑r

k=1(−1)k+12 sin[(s+ r)θk]Ar−1[θk]

|Ar| (B.9)
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upon expanding the determinants along the first row. Now it turns out that10

2r |Ar|
r∏

i=1

2 cos (θi/2) = |Ar|, 2r−1 |Br|
r∏

i=1

2 cos (θi/2) = |Br|, (B.10)

and plugging this property in (B.9) one sees that (B.7) is just hs−1(J) − hs−2(J). Since

the first term of (B.7) equals hs(J)− hs−2(J) by virtue of (A.22), this proves (B.6).

Even D. The character of an irreducible representation of so(2r + 2) with (dominant)

highest-weight λ = (λ1 + 1/2, . . . , λr+1 + 1/2) can be written as [86, p.258-259]

χ
SO(2r+2)
λ [θ1, . . . , θr] =

∣∣cos
[(
λi + r − i+ 3

2

)
θj
]∣∣

|cos [(r − i+ 1) θj ]|
=

r+1∏

i=1

2 cos
(
θi
2

)
∣∣cos

[(
λi + r − i+ 3

2

)
θj
]∣∣

∣∣cos
[(
r − i+ 3

2

)
θj
]∣∣ ,

(B.11)

where we are including the possibility of a non-zero angles θr+1 (while in (2.48) we take

θr+1 = 0). Taking into account (2.45), proving the second equality in (2.48) amounts to

showing that

hs(J)− hs−1(J) =

∣∣cos
[(
λi + r − i+ 3

2

)
θj
]∣∣

∣∣cos
[(
r − i+ 3

2

)
θj
]∣∣

∣∣∣∣∣
θr+1=0

(B.12)

for λi = sδi1. To prove this we proceed as in the odd-dimensional case: the difference of

the bosonic character (A.25) and the right-hand side of (B.12),

|cos[(λi + r − i+ 1)θj ]|
|cos[(r − i+ 1)θj ]|

∣∣∣∣
θr+1=0

−
∣∣cos[(λi + r − i+ 3

2)θj ]
∣∣

∣∣cos[(r − i+ 3
2)θj ]

∣∣

∣∣∣∣∣
θr+1=0

, (B.13)

can be written as



r+1∑
k=1

(−1)k+1 cos[(s+ r)θk]B
r[θk]

|Br+1| −

r+1∑
k=1

(−1)k+12 cos[(s+ r + 1
2)θk]Br[θk]

|Br+1|



θr+1=0

(B.14)

upon expanding the determinants along the first row and using the notation (A.28)–(B.8).

One can then verify that this reduces to hs−1(J) − hs−2(J) by the same argument as in

the odd-dimensional case. By virtue of the second equality in (A.25), this proves (B.12).
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