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To diagnose rotating machinery fault for imbalanced data, a method based on fast clustering algorithm (FCA) and support vector
machine (SVM) was proposed. Combined with variational mode decomposition (VMD) and principal component analysis (PCA),
sensitive features of the rotating machinery fault were obtained and constituted the imbalanced fault sample set. Next, a fast
clustering algorithm was adopted to reduce the number of the majority data from the imbalanced fault sample set. Consequently,
the balanced fault sample set consisted of the clustered data and the minority data from the imbalanced fault sample set. A�er that,
SVM was trained with the balanced fault sample set and tested with the imbalanced fault sample set so the fault diagnosis model
of the rotating machinery could be obtained. Finally, the gearbox fault data set and the rolling bearing fault data set were adopted
to test the fault diagnosis model. �e experimental results showed that the fault diagnosis model could e	ectively diagnose the
rotating machinery fault for imbalanced data.

1. Introduction

With the development of modern large-scale production
and the progress of science and technology, the structure of
mechanical equipment has become more complex. During
equipment operation, sudden failure of the equipment would
lead to the loss of service ability or may even cause a serious
disastrous accident [1, 2]. To ensure the reliability of the
equipment to obtain greater economic and social bene
ts,
the timely and accurate diagnosis of the equipment’s failure
mode is particularly signi
cant to guarantee the normal
operation of the equipment. Rotating machinery, such as
bearings and gears, has been widely used in numerical
control machine tools, aeroengine, electric power system,
agricultural machinery, transport machinery, metallurgical
machinery, and other modern industrial equipment [3–5]. In
recent years, new technologies and theories such as arti
cial
neural networks have been widely applied in mechanical

equipment fault diagnosis, which greatly improves the accu-
racy of fault diagnosis. For rotating machinery, there are
various kinds of faults; however, samples of some typical
faults are dicult to obtain [6, 7].�erefore, it is necessary to
study rotating machinery fault diagnosis technology for the
condition of imbalanced data.

At present, SVM-based fault diagnosis is one of the most
widely used fault diagnosis methods for mechanical equip-
ment [8, 9]. �is method learns the process data of di	erent
operating states of the equipment and then classi
es the data
into di	erent faults by constructing classi
cation hyperplanes
in high-dimensional space. Imbalanced data means that out
of the data used in training classi
ers, the number of some
fault data is larger than other types. Adopting the imbalanced
data as the training set, the classi
cation hyperplane would
be o	set from the real one, thus reducing the validity of
fault diagnosis. In SVM, the penalty factor indicates the error
sensitivity of the classi
er. Currently, one of the methods
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used to solve the imbalanced data problems de
nes di	erent
penalty factors as positive and negative samples to increase
the penalty factor of the disadvantage samples so the classi
er
is sensitive to them [10, 11]. However, during the process of
setting penalty factors, it is dicult to choose suitable penalty
factors for di	erent faults. Di	erent values will directly
a	ect the performance of the classi
er, and small penalty
factors o�en result in no obvious suppression e	ect while
larger penalty factors weaken the generalization ability of
the classi
er. Another method to solve the imbalanced data
problems is to conduct preprocessing for data [12, 13] by
reducing the number of the majority data to balance the data.
�erefore, the selection of core data is the key in determining
the performance of the SVM classi
er for imbalanced data.

�e purpose of the cluster algorithm is to classify the
data according to their similarity. �erefore, we proposed
an approach based on a fast clustering algorithm to reduce
the number of the majority data from the imbalanced data.
�is fast clustering algorithm was proposed by Rodriguez
and Laio in 2014 based on the idea that cluster centers are
characterized by a higher density than their neighbors and by
a relatively large distance from points with higher densities
[14–17]. Based on these two assumptions, the fast clustering
algorithm can be used to dispose of di	erent clusters.

To diagnose rotating machinery fault for imbalanced
data, a kind of method based on fast clustering algorithm
and SVM was proposed. According to the proposed method,
original features of di	erent faults are constructed by VMD.
Next, PCA is applied to reduce the dimension of the original
features so that sensitive features can be obtained. A�er that,
the fast clustering algorithm is adopted to reduce the number
of the majority data from the imbalanced sensitive features.
Finally, SVM is trained with the data clustered by the fast
clustering algorithm, so that the fault diagnosis model for
imbalanced data can be obtained.

2. SVM and Imbalanced Data Classification

2.1. SVM. As a machine learning algorithm developed from
statistical learning theory, SVM maps inseparable learning
samples from low-dimensional space into high-dimensional
space through a kernel function to obtain an optimal hyper-
plane [18]. If training set {(��, ��), � = 1, 2, . . . , �} consists of
two categories, then the computational goal can be expressed
as

min
‖�‖22 + � �∑

�=1

�

s.t. �� (��� + �) ≥ 1 − 
�
� > 0, � = 1, 2, . . . , �,
(1)

where � is the penalty factor and 
� is the slack variable.
�e constraint conditions can be de
ned as

�∑
�=1
���� = 0 0 ≤ �� ≤ �, � = 1, 2, . . . , �. (2)

�en, the Lagrange function is constructed as

Φ(�, �, ��) = 12 ‖�‖2 + �
�∑
�=1

�

− �∑
�=1
�� [�� (��� + �) − 1 + 
�] − �∑

�=1
��
�,

(3)

where �� and �� are the Lagrange operators.
�en, the classi
cation function can be formed as

� (�) = sgn[ �∑
�=1
�∗� ���(��, �) + �∗] , (4)

where�(��, �) is the kernel function.
2.2. Classi�cation Boundary Migration of SVM. SVM clas-
si
cation algorithm assumes that the number of each class
is approximately equal. In fact, for rotating machinery, the
acquisition of fault samples is full of randomness, so it
is dicult to guarantee the balance among di	erent fault
samples. Figure 1 shows the skewing of hyperplane.

From Figure 1, it can be seen that the hyperplane could
easily distinguish two types of classes from the balanced
data set. However, the hyperplane obviously shi�ed towards
the minority class if the data set was imbalanced. Since the
number of class 2 was small and two classes adopted the
same penalty factor, the overall error caused by class 2 was
also small. �e result was that the hyperplane was easily
a	ected by the outlier and moved to the direction of class
2, which caused a large classi
cation error of the minority
class. �erefore, to improve the classi
cation performance
of the SVM classi
er for imbalanced data, a fast clustering
algorithm was adopted to balance the data set.

3. Imbalanced Data Classification Based on
Fast Clustering Algorithm and SVM

3.1. Fast Clustering Algorithm. In this paper, a type of fast
clustering algorithm was used as the theoretical basis of
balancing the original data set as the basic idea of this
clustering algorithm is novel and simple and is very suitable
for searching the core samples from the imbalanced data set.
�is fast clustering algorithm assumes that cluster centers
are surrounded by neighbors with lower local densities;
meanwhile, they are at a relatively large distance from the
points with a higher local density [16, 17]. �ere are two
ways to calculate local density, including cut-o	 kernel and
Gaussian kernel. With cut-o	 kernel, the local density �� of
data point � can be calculated as

�� = ∑
�
� (��� − ��)

� (�) = {{{
0, � ≥ 0
1, � < 0,

(5)
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Figure 1: Hyperplane of SVM. (a) Balance data set and (b) imbalance data set.

where ��� is the distance between data point � and data point! and �� is the cut-o	 distance.
With Gaussian kernel, the local density �� of data point �

can be calculated as

�� = ∑
�
"−(���/��)2 . (6)

From (5) to (6), the local density �� means the number of
the data points that are closer to data point � compared with��.

Distance #� is de
ned as

#� = {{{
min
�∈	
(���) , $ ̸= ⌀

max
�∈	
(���) , $ = ⌀, (7)

where set $ = {�� > ��}.
From (7), we know that distance #� is the minimum

distance between point � and the point with higher density,
except that point � has the highest density.

For each data point, we can calculate its local density ��
and distance #�. �en, the weight of clustering center '� is
constructed as '� = ��#�. (8)

Obviously, points with larger weights are clustering cen-
ters. �e sequence *� is constructed as

*
� = argmin�
�
� (-�) , � ≥ 2, � > !, (9)

where sequence -� is the index number of local density ��
sorted in descending order. �e sequence *� represents the
index number of the point closest to point �, while the local
density of this point is larger than point �.

�en, the nonclustering center points can be categorized
as /
� = /��� , (10)

where / is the label of the clustering centers.

For each cluster, the mean local density of this cluster is
calculated. By comparing the mean local density, the points
of this cluster can be divided into core points or halo points.

�e synthetic point distributions data set [16] was
adopted to test the e	ectiveness of the algorithm. Figure 2(a)
shows the distribution before clustering, while Figure 2(b)
shows the distribution a�er clustering. It is clear that core
points of 
ve class data were correctly chosen from the raw
synthetic point distributions data set and showed that the fast
clustering algorithm could be well applied to eliminate the
halo points of the raw data.

3.2. Imbalanced Data Classi�cation. With the fast clustering
algorithm, the imbalanced data set was preprocessed and
the number of the majority classes reduced. �erefore, the
raw data set was reassembled into a balanced data set. �en,
the SVM classi
cation algorithm was adopted to learn the
balanced data set. �e movement of the SVM hyperplane
during the process of clustering is shown in Figure 3.

As shown in Figure 3, a	ected by the number of the data
sets, the hyperplane was obviously biased to the minority
class. �e purpose of the fast clustering algorithm was to
search the core points of the majority class and reconstruct
a balanced data set so that the hyperplane could return to
the side of the majority class. �erefore, the classi
cation
accuracy of the SVM classi
er could be improved.

3.3. Evaluation of Imbalanced Data Classi�cation. For imbal-
anced data, the proportion of minority samples was not
large, so the classi
cation results of the minority samples had
little e	ect on overall accuracy of classi
cation. �erefore,
there were some unique classi
cation evaluation indexes for
imbalanced data [19, 20]. Based on the confusion matrix,
we de
ned the positive class (minority class) as P and the
negative class (majority class) as N in the imbalanced data. As
shown in Figure 4, TP and TN denote the correctly identi
ed
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Figure 2: Synthetic point distributions data set: (a) before clustering and (b) a�er clustering.
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Figure 3: Schematic diagram of SVM hyperplane movement.

positive and negative samples, respectively. FP indicates that
the negative samples are misclassi
ed into positive class,
while FN indicates that the positive samples are misclassi
ed
into negative class.

�e recall of the positive class can be de
ned as

TPR = TP(TP + FN) . (11)

�e recall of the negative class is

TNR = TN(TN + FP) . (12)
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Figure 4: Confusion matrix of the imbalanced data.

�e precision of the positive class can be formed as

precision = TP(TP + FP) . (13)

�en 3-mean can be constructed as

3 = √TPR ∗ TNR. (14)

6-mean can be constructed as

6 = 2 ∗ TPR ∗ precision
TPR + precision . (15)

As the evaluation index, 3-mean takes into account the
classi
cation performance of both positive and negative class.
If the classi
cation of the classi
er is biased towards one class,
it will directly a	ect the classi
cation accuracy of another
class where the 3 value will be very small. From (15), we
can see that 6-mean considers the recall and precision of
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the positive class. �erefore, 6-mean can comprehensively
show the classi
cation e	ect of the classi
er on positive class
(minority class).

4. Rotating Machinery Fault Diagnosis
for Imbalanced Data

4.1. Feature Extraction. For rotatingmachinery, the vibration
signal is composed of multiple components. VMD, a novel
adaptive signal decomposition method, was adopted to con-
struct the original features in this study. �e target of the
VMD was to decompose the original signal � into a number
of IMFs (Intrinsic Mode Functions), 7�, that had speci
c
sparse properties while reproducing the original signal �
[21, 22]. Since the decomposition of VMDwas sparse, it could
be considered as a constrained variational problem as follows:

min
{�},{��}

{∑
�

99999999:� [(# (@) + !A@) ∗ 7� (@)] "−����
99999999
2

2
}

s.t. ∑
�
7� = �,

(16)

where {7�} are shorthand notations of themodes and {��} are
center frequencies of the modes.

To solve this constrained variational problem, the aug-
mented Lagrange function is introduced as

E ({7�} , {��} , H)
fl �∑
�

99999999:� [(# (@) + !A@) ∗ 7� (@)] "−����
99999999
2

2

+ 9999999999� (@) −∑� 7� (@)
9999999999
2

2

+⟨H (@) , � (@) −∑
�
7� (@)⟩ ,

(17)

where � is the penalty factor and H is the Lagrange multiplier.
�e process of decomposing was as follows. First, {7�},{��},H, and *were all initialized as 0.�en, 7�,��, andHwere

updated through the circulative iteration. 7� was updated as

7�+1�
= argmin
�∈�

{� 99999999:� [(# (@) + !A@) ∗ 7� (@)] "−����
99999999
2

2

+ 9999999999� (@) −∑� 7� (@) +
H (@)2

9999999999
2

2
} .

(18)

�e center frequencies �� can be calculated as

��+1�
= argmin
��

{99999999:� [(# (@) + !A@) ∗ 7� (@)] "−����
99999999
2

2
} . (19)

�e condition for convergence is the following:

∑
�

999997�+1� − 7��999992299997��999922 < 
, (20)

where 
 is the discriminant accuracy.
Finally, the original signal � was decomposed into a

number of IMFs, 7�. �en, the energy of each IMF was
calculated to constitute original feature vector, which was
used to distinguish the original signal.

To test the validity of VMD, a pure harmonic signal
a	ected by noise was adopted. Furthermore, we also con-
ducted a comparison with empirical mode decomposition
(EMD) based on the exact same testing signal. Here, the pure
harmonic signal was the following:

�1 = 2 sin(58.2A@ + A7 ) . (21)

�e noisy input signal was the pure harmonic signal
a	ected by noise with the expression as follows:� = �1 + 0.3 cos (1400A@) + 0.36 cos (576A@) + 0.7S, (22)

where S ∼ U(0, V) represents the Gaussian additive noise.
�e signal waveforms of the pure harmonic signal and the

noisy input signal are shown in Figure 5.
Figure 6 shows the decomposition of the noisy input sig-

nal. It was clear that the VMD algorithm correctly extracted
the pure harmonic signal from the noisy input signal and
that the EMD algorithm extracted seven IMFs from the noisy
input signal. �ere was no pure harmonic signal in the seven
IMFs.

WithVMD, the vibration signal of the rotatingmachinery
was decomposed into a number of IMFs. �en, the energy of
each IMF was calculated to constitute original feature vector.
Since these original feature vectors were high-dimensional
features, dimensionality reduction algorithm was applied to
reduce the computational complexity.

4.2. Feature Dimension Reduction. A kind of traditional
dimensionality reduction algorithm, PCA, was adopted to
reduce the dimension of the original feature vectors. PCA is
a statistical method which adopts orthogonal transformation
to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables.X =[�1, �2, . . . , ��] expresses the *-dimensional original features,
while Y = [�1, �2, . . . , ��] is used to express the linearly
uncorrelated sensitive features. With PCA, the contribution
of the �th component S� can be de
ned as follows:

S� = H�∑��=1 H� , (23)

where H� means the variance of the ��.
�en, the contributions of the 
rst X principal compo-

nent S�� can be calculated as follows:

S�� = ∑��=1 H�∑��=1 H� . (24)

Finally, the principal componentswith high contributions
can be chosen as the sensitive features.
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Figure 5: Signal waveforms. (a) Pure harmonic signal and (b) the noisy input signal.
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Figure 6: Decomposition of the noisy input signal: (a) IMFs extracted by VMD and (b) IMFs extracted by EMD.

4.3. Sample Selection and Fault DiagnosisModel. �erotating
machinery fault sample set (an imbalanced data set) is made
up of several kinds of faults. Some faults are majority class
while others are minority class. Each fault sample contains
a number of sensitive features. �e distance between the �th
fault sample and the jth fault sample can be calculated as

��� = √ �∑
�=1
(@�� − @��)2, (25)

where @�� are the sensitive features of the �th fault sample and@�� are the sensitive features of the jth fault sample. K is the
number of sensitive features for each fault sample.

According to (5)–(7), the local density �� and the distance#� were obtained. �en, based on (8), the weight '� of each

fault sample was calculated. With reference to the number
of samples of the minority class, the same number of fault
samples with higher weight '� were selected from themajority
class. Whole samples of the minority class and selected
samples of the majority class constructed balanced fault
sample sets. Finally, the SVM classi
cation algorithm was
adopted to learn the balanced fault sample set. �e �owchart
of building fault diagnosis model is shown in Figure 7.

From Figure 7, it can be seen that the training samples
chosen from the balanced fault sample set were used to
train SVM, while the imitative testing samples chosen from
the imbalanced fault sample set were applied to test the
identi
cation accuracy of the trained SVM. �e SVM would
be retrained until the classi
cation accuracy of the trained
SVMwas acceptable; then this trained SVMcould be adopted
as the fault diagnosis model.
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5. The Experimental Results

To verify the viability and e	ectiveness of the proposed
algorithm, the gearbox fault data set and the rolling bearing
fault data set were adopted to test the proposed fault diagnosis
model.

5.1. Gearbox Fault Diagnosis. A wind turbine transmission
chain fault simulation test bed is shown in Figure 8. �e test
bed mainly consisted of a motor driver, motor, gearbox, wind
wheel, sensors, and data acquisition system. �e wind wheel
was driven by the motor through the gearbox and the motor
speed was controlled by the motor driver. An acceleration
sensor was installed on the top of the gearbox while the
signal was acquired by the data acquisition system.�e tested
gearbox was a kind of single-stage planetary transmission,
while the number of the planetary gear teeth was 20. In this
test, two faults of gearbox were simulated: half fracture and
full fracture for planetary gear. To simulate the real working
condition of the wind turbine transmission chain, di	erent

Table 1: �ree kinds of condition modes for gearbox.

Planetary gear Wind wheel speed (r/min)

Condition mode 1 Normal 197/237/277

Condition mode 2 Half fracture 197/237/277

Condition mode 3 Full fracture 197/237/277

wind wheel speeds were also considered. For each fault, three
kinds of working conditions (wind wheel speed: 197 r/min,
237 r/min, and 277 r/min) were simulated. �erefore, as is
shown in Table 1, the gearbox fault data set consisted of three
condition modes. Figure 9 shows the pictures of planetary
gears.

As is shown in Figure 10, the vibration signal of the
gearbox can be decomposed into a number of IMFs by VMD.
�en, the original features can be obtained by calculating the
energy of each IMF.

With PCA, the original features are mapped to another
plane and replaced with the sensitive features. In the sensitive
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Figure 9: Pictures of planetary gears: (a) half fracture and (b) full fracture.

features, feature is sorted according to its contribution degree.
Figure 11 shows the 
rst 
ve principal component contribu-
tions of PCA. It is clear that the accumulated contribution of
the 
rst three sensitive features was 89.28%; thus, sensitive
feature 1, sensitive feature 2, and sensitive feature 3 were
selected as the sensitive features.

Figure 12 was obtained by drawing three kinds of condi-
tion modes in a space formed by sensitive feature 1, sensitive
feature 2, and sensitive feature 3. From Figure 12, it was clear
that the distribution area of the normal planetary gear had
been distinguished fromhalf fracture and full fracture, but for
half fracture and full fracture, an aliasing region exists in the
distribution areas where it is dicult to make a distinction.
�e aliasing region can easily lead to the miscarriage of
di	erent failures, especially for the imbalanced failure data
set. �us, half fracture data and full fracture data were used
to construct an imbalanced data set to test the classi
cation
of the proposed fault diagnosis model.

�e imbalanced data sets under di	erent proportions
were constructed, while the distributions of imbalanced data
sets are shown in Figure 13. Full failure was de
ned as
the positive class (minority class) while half failure was the

negative class (majority class). �e number of the positive
classes varied from 10 to 100. In the meantime, the number
of the negative classes was 150. 3-mean and 6-mean were
adopted as the evaluation indexes.

�e proposed fault diagnosis model was adopted to
classify the imbalanced data sets under di	erent proportions.
To test the validity of the proposed fault diagnosis model,
the random undersampling (RU) algorithm, the synthetic
minority oversampling technique (SMOTE) algorithm, the
backpropagation (BP) neural network, and the radial basis
function (RBF) neural network were introduced simulta-
neously. Table 2 and Figure 14 show a comparison of the
evaluation indexes of the fault diagnosis model and other
models. It is clear that the fault diagnosis model obtained
good classi
cation performances in di	erent data sets. It is
particularly worth mentioning that the fault diagnosis model
was less a	ected by the proportion of the data set. A good
classi
cation e	ect could still be obtained with even less
samples of the positive class (small class).

�e testing samples consisted of 300 samples of which 150
samples were fromhalf failure data while another 150 samples
were from the full failure data. �e classi
cation accuracy
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Figure 10: VMD decomposition of vibration signal (wind wheel speed: 237 r/min): (a) normal; (b) half fracture; and (c) full fracture.

comparisons of the fault diagnosis model and other models
are shown in Table 3 and Figure 15, where it was obvious
that the fault diagnosis model achieved good classi
cation
results.�e classi
cation accuracies in di	erent data sets were
all more than 80%.

5.2. Rolling Bearing Fault Diagnosis Based on Casing Vibra-
tion. In the case of gearbox fault diagnosis, the gearbox fault
data set was used to test the performance of the fault diagnosis
model when the model was applied to distinguish two failure
modes. In this case, the fault diagnosis model was applied to
distinguishmultiple failuremodes in the imbalanced data set.

�e rolling bearing fault simulation test bed is shown in
Figure 16.�emotor was connected to the axis by a coupling,

while the other end of the axis 
ts together with blades and
the testing rolling bearing. �e motor was responsible for
driving blades and a casing was installed around the blades.
Two one-way accelerometers were installed on the surface of
the casing at a 90-degree angle. A data acquisition system
was used to acquire the accelerometers’ signals. �e rotating
speed was 1800 rpm and the sampling frequency was 16 kHz.
�e rolling bearing data set consisted of four modes such as
normal, rolling element failure, inner race failure, and outer
race failure.

Table 4 shows the composition of the rolling bearing data
set where it was clear that the inner race failure and outer race
failure were positive classes (small classes) in this imbalanced
rolling bearing data set.
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Figure 12: Distribution of three condition modes a�er VMD and PCA.

Table 2: Evaluation indexes comparisons of fault diagnosis model and other models.

Proportion of the data set 10 : 150 15 : 150 40 : 150 50 : 150 80 : 150 100 : 1503-mean of fault diagnosis model 0.94 0.95 0.96 0.94 0.92 0.886-mean of fault diagnosis model 0.54 0.65 0.86 0.85 0.88 0.863-mean of FCA + BP 0.61 0.69 0.68 0.87 0.89 0.876-mean of FCA + BP 0.16 0.28 0.48 0.77 0.86 0.843-mean of FCA + RBF 0.92 0.93 0.92 0.90 0.91 0.896-mean of FCA + RBF 0.47 0.59 0.78 0.79 0.87 0.863-mean of RU + SVM 0.93 0.91 0.90 0.91 0.91 0.906-mean of RU + SVM 0.50 0.54 0.75 0.81 0.86 0.883-mean of SMOTE + SVM 0.85 0.91 0.92 0.92 0.92 0.916-mean of SMOTE + SVM 0.36 0.55 0.78 0.83 0.88 0.893-mean of SVM 0.60 0.68 0.85 0.87 0.92 0.896-mean of SVM 0.16 0.28 0.69 0.77 0.88 0.87
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Figure 13: Distributions of the imbalanced data set under di	erent proportions: (a) 10 : 150; (b) 15 : 150; (c) 40 : 150; (d) 50 : 150; (e) 80 : 150;
and (f) 100 : 150.
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cation accuracy comparisons.

With the proposed approach, the fault diagnosis model
was obtained from the imbalanced rolling bearing data set. To
test the classi
cation accuracy of the model, testing samples
consisting of 400 samples (100 samples from eachmode)were
constructed.

Figure 17 shows the confusion matrixes of the fault diag-
nosis model and other models. From Figure 17(a), the clas-
si
cation accuracy of the fault diagnosis model was 93.25%.
Obviously, Figure 17(b) shows that the FCA + BP model
was unable to identify the inner race and outer race failures.
FromFigure 17(c), the classi
cation accuracy of the SMOTE+
SVMmodel was 90.25%, less than the fault diagnosis model.
Figure 17(d) shows the confusionmatrix of the SVMmodel as
the SVMmodel is confused with inner race failure and outer
race failure. �e reason for this situation was that the SVM

model was trained by the imbalanced data set. Since the inner
race and outer race failures were small classes, the hyperplane
of the SVMmodel was biased to small classes. �erefore, the
trained SVMmodel found it dicult to identify the inner race
and outer race failures from the testing samples. In conclu-
sion, the fault diagnosis model could distinguish the mode of
the rolling bearing and obtain good classi
cation accuracy,
which proved the validity of the proposed approach.

6. Conclusions

In this paper, a kind of data-based approach was proposed.
�e experiment results showed that our proposed approach
achieved better classi
cation accuracy when compared to the
other models. Some conclusions were obtained:
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Table 3: Classi
cation accuracy comparisons of fault diagnosis model and other models.

Proportion of the data set 10 : 150 15 : 150 40 : 150 50 : 150 80 : 150 100 : 150

Fault diagnosis model 85.33% 81.67% 85.00% 87.67% 89.33% 88.67%

FCA + BP 74.00% 76.67% 80.67% 83.33% 81.33% 85.33%

FCA + RBF 73.67% 73.00% 74.67% 75.67% 80.33% 88.33%

RU + SVM 79.67% 78.67% 80.00% 82.00% 84.00% 86.00%

RU + BP 71.00% 70.33% 82.33% 86.67% 87.33% 87.33%

RU + RBF 76.33% 75.67% 79.33% 78.67% 85.33% 85.00%

SMOTE + SVM 75.67% 77.67% 78.67% 82.00% 83.33% 85.67%

SMOTE + BP 72.00% 79.67% 82.33% 84.33% 85.33% 87.33%

SMOTE + RBF 76.00% 78.67% 78.67% 80.00% 83.67% 82.33%

SVM 68.00% 71.67% 76.33% 79.00% 83.00% 84.67%

BP 66.00% 70.67% 81.00% 83.00% 82.00% 84.33%

RBF 53.67% 65.33% 78.00% 81.67% 82.67% 84.67%

Table 4: Composition of the rolling bearing data set.

Mode Processing method Fault size (width × depth) (mm) Sample size

Normal ∼ ∼ 100

Rolling element failure Line cutting 0.3 × 1 100

Inner race failure Line cutting 0.3 × 0.5 5

Outer race failure Line cutting 0.3 × 0.5 5
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Figure 17: Confusion matrix comparisons: (a) fault diagnosis model; (b) FCA + BP; (c) SMOTE + SVM; (d) SVM.

(1) �e signals of the accelerometers could be acquired to
diagnose the rotating machinery fault.

(2) By combining VMD and PCA, sensitive features of
the rotating machinery fault could be extracted.

(3) To diagnose the rotating machinery fault for imbal-
anced data, a kind of data-based approach was pro-
posed in this paper. �e fast clustering algorithm
was adopted to reduce the number of the majority
data from the imbalanced sensitive features.�en, the
SVM was trained and tested with the data clustered
by the fast clustering algorithm so the fault diagnosis
model for the imbalanced datawas obtained.�e fault
diagnosis model showed a very good classi
cation
capability in both the gearbox fault data set and rolling
bearing fault data set. �erefore, our approach was
suitable to the rotating machinery fault diagnosis for
imbalanced data.
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