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Remaining useful life (RUL) prediction plays a significant role in developing the condition-based maintenance and improving the
reliability and safety of machines. *is paper proposes a remaining useful life prediction scheme combining deep-learning-based
health indicator and a new relevance vector machine. First, both one-dimensional time-series information and two-dimensional
time-frequency maps are input into a hybrid deep-learning structure network consisting of convolutional neural network (CNN)
and long short-term memory network (LSTM) to construct health indicator (HI). *en, the prediction results and confidence
interval are calculated by a new RVM enhanced by a polynomial regression model. *e proposed method is verified by the public
PRONOSTIA bearing datasets. Experimental results demonstrate the effectiveness of the proposed method in improving the
prediction accuracy and analyzing the prediction uncertainty.

1. Introduction

Rotating machinery has played an essential role in industrial
applications. However, most rotating machinery operates
under severe working conditions which may cause different
types of faults. *erefore, timely maintenance is vital for the
reliability of the rotating machinery [1–4]. Industrial In-
ternet of *ings (IoT) and data-driven techniques have been
transforming the scheduled maintenance into predictive
maintenance. Remaining useful life (RUL) prediction is a
critical component of a predictive maintenance scheme,
which will reduce the cost of unplanned maintenance and
enhance the reliability, safety, and availability of the rotating
machinery [5].

*e data-driven techniques for RUL of machinery
mainly consist of two steps: health indicator (HI) con-
struction and remaining useful life prediction based on the
constructed HI [6–10]. *e HI is a quantitative value that
represents the degradation process of the monitored ma-
chinery, including root mean square (RMS) [11], kurtosis
[12], and entropy [13]. However, many traditional HIs have
poor monotonic trend, which is against the prediction ac-
curacy. For example, the HI curve with an excellent

monotonic trend will be well correlated with the degradation
process, making the RUL able to be predicted by extrapo-
lating the historical data. However, most HI curves do not
show an evident trend until severe degradation starts, which
is terrible to make maintenance scheme and reduce the
prediction accuracy. Besides, many HI construction
methods do not consider the historical data of similar
machinery that contains tremendous degradation
information.

Recently, the deep-learning network has shown great
potential in dealing with big data [14–16]. Motivated by the
strong power of the deep learning, researchers have done
many related works about remaining useful life prediction
based on deep-learning method. Zhu et al. [17] presented a
deep-learning method for RUL through a multiscale con-
volutional neural network, the input of which was time-
frequency maps. Liao et al. [18] proposed an enhanced
restricted Boltzmann machine with a novel regularization
term to construct a new HI that is suitable for RUL. *e
input data of the network was time-series features. Xia et al.
[19] presented a two-stage automated approach to estimate
the RUL, in which the autoencoded deep neural networks
were used to classify different degradation stages and a
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shallow neural-networks-based regression model was used
to predict the remaining useful life. Zhang et al. [20] con-
structed a new HI called “waveform entropy.”*en, the new
HI and some traditional HIs were input into the long short-
term memory network to identify the bearing remaining
useful life. Al-Dulaimi et al. [21] proposed a hybrid deep
neural network framework for RUL estimation. *is
framework used an end-to-end RUL prediction scheme, the
output of which was the RUL value. Although these deep-
learning-based RUL prediction methods have shown great
performance, they still may be confronted with some
problems: (1) *e deep-learning-based RUL prediction
scheme does not provide any confidence limit, which is not
beneficial for people to make a maintenance scheme. (2)
Most of the deep-learning networks process only one-type
input data, missing some important degradation
information.

Relevance vector machine (RVM) is an artificial intel-
ligence method to learn the machinery degradation patterns
from available data instead of building statistical models. It
can deal with the prognostic issues of sophisticated ma-
chinery whose degradation process is challenging to be
interrelated by the statistical model [22]. What is more, the
RVM-based RUL prediction method also gives a confidence
interval to provide uncertainty estimation and probability
significance. *erefore, the RVM has been attracting more
and more attention in the RUL prediction of machinery
[23–25]. *e relevance vector of RVM is sparsity and the
hyperparameters are simple, which is beneficial for the
online remaining useful life prediction [26]. However, the
long-term prediction accuracy of RVM is poor. *erefore, a
new RVM prediction method with the sparsity characteristic
and the accurate long-term prediction ability has been
proposed.

*ere are many sources of uncertainty in RUL predic-
tion, such as measurement error, randomness of load,
degradation feature extraction error, and modeling error,
which need to be quantified and managed during the pre-
diction process, and the confidence interval of forecast re-
sults is given to facilitate the planning of maintenance. At
present, the research on the uncertainty of RUL mainly
focuses on statistical data-driven methods. *e statistical
data-driven method is based on the theory of probability and
statistics. *rough statistical or random model, the proba-
bility distribution of the remaining life can be solved nat-
urally, which is easy to quantify the uncertainty of the
prediction results of the remaining useful life. Liao et al. [27]
constructed a multiphase degradation model with jumps
based on Wiener process, which is formulated to describe
the multiphase degradation pattern. All the parameters of
the model were assumed to be random variable, which led to
the uncertainty of the final remaining useful life. Gao et al.
[28] proposed a right-time prediction method to reduce the
prognostics uncertainty of mechanical systems under un-
observable degradation. Wang et al. [29] presented a
probabilistic framework for remaining useful life prediction
of bearings. In the proposedmodel, theMarkov chainMonte
Carlo method is investigated in posterior sampling for
predicting RUL and outputting uncertainty. Most of the

existing deep-learning methods can only achieve point
prediction and cannot provide uncertainty of prediction
results, which greatly limits the practical application of deep
learning in RUL prediction field [30]. Some researchers tried
to establish RUL prediction model based on Bayesian neural
network to solve the uncertainty problem [30, 31]. Although
Bayesian neural network can be used to solve the uncertainty
problem of RUL prediction, the disadvantage of high
training cost limits the practical application of Bayesian
neural network.

Although the deep-learning-based HI construction
methods and RVM-based RUL prediction methods have
been widely studied, the methods combining them are
relatively lacking. To fill the research gap, a new RUL
prediction scheme that combines a new deep-learning
structure-based HI construction method and a new RVM-
based RUL prediction method is proposed. *e new RUL
prediction scheme can not only learn the degradation
process features from different types of data and get RUL
prediction result automatically but also provide a confidence
interval (CI).

*e contributions of this paper can be summarized as
follows:

(1) A new deep-learning structure that can deal with
one-dimensional time-series data and two-dimen-
sional image data simultaneously is proposed to
construct HI. *e constructed HI has better per-
formance compared with other deep-learning-based
HI construction methods.

(2) *e proposed systematic approach integrates deep-
learning-based HI and a new RVM-based prediction
method into a framework to realize the goal of es-
timating RUL automatically and provide a confi-
dence interval.

(3) A new RVM model is proposed by combining tra-
ditional RVM and polynomial regression model,
improving the long-term prediction accuracy.

*e paper is organized as follows: Section 2 provides the
theoretical backgrounds. Section 3 introduces a new RUL
prediction scheme combining deep-learning-based HI and a
new RVM. Section 4 demonstrates the effectiveness of the
presented RUL estimation scheme with an experimental
bearing dataset. *e conclusions are presented in Section 5.

2. Theoretical Background

*e proposed RUL prediction scheme mainly consists of
four functional layers, which are time-series information
learning layer, time-frequency map information learning
layer, fully connected layer, and RUL prediction layer. *e
hybrid deep-learning structure consists of two parallel paths
followed by a fully connected multilayer neural network to
use the information contained in the original data fully. *e
two parallel paths are time-series information learning layer
constructed by long short-term memory (LSTM) neural
network and time-frequency map information layer made
up of convolutional neural network (CNN), respectively.
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*e LSTM is used to extract temporal features, while the
CNN is utilized to extract spatial features, which are then
fused by fully connected layer to construct an HI. Finally, the
HI is put into RUL prediction layer to get the remaining
useful time and its confidence intervals. *e theoretical
background of each layer is introduced as follows.

2.1. Time-Series Information Learning Layer. *e time-series
information learning layer mainly consists of the long short-
term memory network. *e long short-term memory net-
work is a state-of-the-art sequence data processing method.
It develops from the recurrent neural network with a
memory cell, which overcomes the problem of gradient
vanishing or exploding. Figure 1 represents the hidden layer
replaced by memory cells in LSTM network.

*e memory cell of LSTM mainly consists of an input
gate, output gate, and forget gate. Equations (1)–(6) rep-
resent the network update process at time t [32]:

it � σ Wix
t + Uih

t− 1 + bi( ), (1)

ot � σ Wox
t + Uoh

t− 1 + bo( ), (2)

ft � σ Wfx
t + Ufh

t− 1 + bf( ), (3)

at � tanh Wcx
t + Uch

t− 1 + bc( ), (4)

ct � ft ⊗ ct− 1 + it ⊗ at, (5)

ht � ot ⊗ tanh ct( ). (6)

In the above equations, i, o, f, a, c, and h represent input
gate, output gate, forget gate, the output value of input gate,
the state value of memory cell, and the output value of
hidden layer, respectively.Wi, Ui,Wo, Uo,Wf, Uf,Wc, and
Uc are the weights matrices. bi, bo, bf, and bc are the bias
values. ⊗ is point multiplication operation.

2.2. Time-Frequency Map Information Learning Layer.
*e time-frequency map information learning layer is made
up of a deep convolutional neural network, consisting of a
convolutional layer and a pooling layer.

In the convolutional layer, local features are generated by
convolutional kernels from the feature maps. *en, the
convolutional results are input into the activation layer to
construct the feature maps of the current layer, whose
equation process is as follows [33]:

xlj � f ∑
i∈Mj

xl− 1i ∗ k
l
ij + b

l
j

 . (7)

In the above equation, xlj is the jth feature map of the lth
layer. xl− 1i is the ith feature map of the (l − 1)-th layer. klij is
the convolutional kernel with size of S × S. blj is the bias of
the lth layer. Mj is the feature map of the convolutional
layer. f is the activation function.

In the pooling layer, the feature is extracted from feature
maps with the subsampling method to increase computa-
tional efficiency. *e max-pooling method is given as

xl+1j (c, d) � max
0≤p,q<m

xlj(c∗m + p, d∗m + q){ }. (8)

In the above equation, xlj and xl+1j are the jth input
feature map of layer l and the jth output feature map of layer
l+ 1. m is the pooling filter size, c and d are the value after
convolution, and p and q are the moving step length.

2.3. Fully Connected Layer. *e fully collected layer is added
after the time-series information learning layer and time-
frequency map information learning layer. *e features
leaning from the above two layers are flattened to construct
the fully connected layer, which can be represented by the
following equation:

O � f ∑d
j�1
xFjωj + b . (9)

In the above equation, O is the final output value. xFj is
the jth neuron. ωj represents the weights between the jth
neuron and the output node. b is the bias. f is the activation
function.

2.4. RUL Prediction Layer. *is layer can filer the unwanted
measurement noise and manage the uncertainty in prog-
nostics. *e RUL prediction layer is constructed with a new
relevance vector machine (RVM) combining the traditional
RVM method with polynomial models.

RVM is a kernel function algorithm based on Bayesian
inference framework [29]. *e RVM model of the given
dataset xi, ti{ }Ni�1, xi ∈ Rd, ti ∈ R, is

t � Φω + ε, (10)

where ω � (ω0, . . . ,ωN)T, and ω is the weight of the RVM
model; Φ � [ϕ1,ϕ2, . . . , ϕN]T is the design matrix;
ϕi(xi) � [1, K(xi, x1), . . . , K(xi, xN)], i � 1, 2, . . . , N, and
N is sample number;K is the kernel function; ε ∼ N(0, σ2) is
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Figure 1: Structure of LSTM.

Shock and Vibration 3



the Gaussian distributed random error with the mean of 0
and the variance of σ2.

According to the Bayesian inference, the likelihood of
the dataset p(t|x) satisfiesN(t|y(x), σ2) distribution, which
can be written as

p t|ω, σ2( ) � 2πσ2( )− (N/2)
exp

− ‖t − Φω‖2

2σ2( ) . (11)

Maximum-likelihood estimation of ω and σ2 from (11)
will generally lead to severe overfitting, so a Gaussian prior
over the weights is defined to smooth the functions as

p(ω|α) �∏N
i�0
N ωi|0, α

− 1( ) � ∏N
i�0

αi���
2π

√ exp
ω2
i αi
2

( ). (12)

In the above equation, p(ω|α) is the Gaussian prior
probability over the weights, ω is the weight of the RVM
model, and α � α0, α1, . . . , αN{ } is a vector of N + 1
hyperparameters corresponding with weights ω. *ese
hyperparameters are the critical features of the model and
are ultimately responsible for the sparsity properties.

*e posterior over the unknowns could be computed
with Bayes’ rule, given the defined noninformative prior
distribution.

p ω, α, σ2|t( ) � p t|ω, α, σ2( )p ω, α, σ2( )
∫p t|ω, α, σ2( )p ω, α, σ2( )dωdαdσ2. (13)

Equation (13) cannot be computed directly, but it can be
decomposed as

p ω, α, σ2|t( ) � p ω|t, α, σ2( )p α, σ2|t( ). (14)

*e posterior distribution of the weights is

p ω|t, α, σ2( ) � p t|ω, σ2( )p(ω, α)
p t|α, σ2( ) . (15)

*e posterior covariance and the mean of equation (15)
are

Σ � A + σ
− 2
Φ
T
Φ( )− 1, (16)

μ � σ2
ΣΦ

T
t, (17)

where A � diag(α0, α1, . . . , αN).
As can be seen from equations (16) and (17), the values of

the hyperparameter α and noise variance σ2 need to be
obtained in order to get the values of μ and ∑ . *e max-
imum-likelihood estimation method is used to obtain the
estimated values of α and σ2. *e probability distribution of
the output value t∗ is calculated by the new input value x∗ as

p t∗|t, α, σ2( ) � N t∗|y∗, σ2
∗( ), (18)

where

y∗ � μ
T
Φ x∗( ), (19)

σ2
∗ � σ2 +Φ x∗( )TΣΦ x∗( ). (20)

In the training process, most αvalues tend to be infinite,
so the corresponding weights have posterior distributions,
whose mean and variance are both zero, suggesting that
those parameters and corresponding kernel functions play
no role in regression analysis, which represents the sparsity
of the RVM. *e inputs data corresponding to the nonzero
weights is called relevance vector (RV). *e 95% upper and
lower confidence interval can be calculated as

t∗upper � t
∗ + 1.96

�����������������������
σ2
∗ +K x, x∗( )T∑K x, x∗( )√

, (21)

t∗lower � t
∗ − 1.96

�����������������������
σ2
∗ +K x, x∗( )T∑K x, x∗( )√

. (22)

where t∗upper and t
∗
lower are the upper bound and lower bound

of the predicted value t∗, respectively. Kis the kernel
function; x � xi{ }mi�1 represents the set of the relevance
vectors, x represents the relevance vector, and x∗ is the input
data.

*e polynomial models are suitable for long-term RUL
prediction. Polynomial regression belongs to the least-
square curve fitting family. Specifically speaking, it estimates
the coefficients of a polynomial function to approximate the
curve closely. *e mathematical expression of polynomial
regression is as follows:

y � a0 + a1x + a2x
2 + · · · + anx

n, (23)

where y is the response variable, x is the predictor variable,
and a0, a1, a2, . . . , an are model coefficients that can be es-
timated by curve fitting methods.

In this paper, we take advantage of the RVM and
polynomial model, the response variable y is RV, and x is the
corresponding running time. *e coefficients of the poly-
nomial model a0, a1, a2, . . . , an are determined by x and
relevance vector y of the test bearing. *en the predicted
value is calculated by equation (23). *e variance value σ2

∗ is
calculated by equation (20) and the 95% upper and lower
confidence interval can be calculated by equations (21) and
(22).

2.5. Time-FrequencyAnalysis. In the process of performance
degradation of rolling bearings, vibration acceleration sig-
nals have nonstationary characteristics. Time-frequency
analysis includes both time-domain information and fre-
quency-domain information, which can effectively charac-
terize the characteristics of nonstationary signals.
Continuous wavelet transform is a time-frequency analysis
method commonly used in state monitoring of rotating
machinery. *e calculation formula is as follows:

U(α, β) �〈x(t),ψα,β〉,

� ∫∞
− ∞

x(t)ψα,β(t)dt

� ∫∞
− ∞

x(t) 1��
α

√ ψ
t − β

α
( )d,

(24)
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where α is the scale parameter; β is the transformation
parameter; x(t) is the original vibration acceleration signal;
ψ(t) ∈ L2(R) is the mother wavelet function; ψ(t) is the
complex conjugate of ψ(t). *ere is a standard or universal
method for the selection of the mother wavelet function. In
this paper, Morlet wavelet, which is similar to the impact
signal of rolling bearing, is chosen as the mother wavelet.
After the continuous wavelet transform, the one-dimen-
sional vibration acceleration signal is mapped to the two-
dimensional coefficient matrix, and the time-frequency di-
agram of the vibration signal is obtained.

3. RUL Scheme Combining Deep-Learning-
Based HI and a New RVM

A hybrid deep-learning structure that can learn temporal
features and spatial features simultaneously is proposed to
take advantage of mutual information from multidimen-
sional features for degradation assessment and RUL pre-
diction. What is more, the training set is constructed with
historical whole lifetime monitoring data. *en the training
set consisting of different HI curves is used to train the RVM.
*e sparsity of RVM regression is highly dependent on the
choice of kernel functions.*e common kernel functions are
classified into local kernels and global kernels. In local
kernels, only the data points that are close or in proximity of
each other have an effect on the kernel values.

In contrast, a global kernel allows data points that are far
away from each other to affect the kernel values as well.
Furthermore, the common global kernels are polynomial
function, spline function, and so forth [34]. Different types
of kernels perform distinctly in the interpolation and ex-
trapolation ability. A multikernel RVM-based prediction
method is proposed to make full use of the superiorities of
different kernels by combining them with the particle swarm
optimization (PSO) algorithm. Figure 2 shows the proposed
RUL scheme.

First, the time-series information including time-do-
main features, frequency-domain features, and time-fre-
quency map information of the whole lifetime is extracted
from the original vibration signal. Different information is
processed by different information learning layer. *en, a
fully connected layer is used to combine different features
learned from the time-series information leaning layer and
time-frequency map information learning layer together.
*e HI is constructed by a three-layer neural network using
combined information. Finally, the constructed HI curve is
used to predict the RUL with the RUL prediction layer,
which is constructed by the RVM and polynomial model.

At the inspection time Tk, the future HI can be predicted
with the constructed polynomial curve. When the polyno-
mial curve reached the failure threshold, the bearing is
considered to fail. According to the concept of the first
hitting time [31], the RUL of the bearing can be defined as

RUL Tk( ) � inf t: f t + Tk( )≥ θ{ }. (25)
In the above equation, RUL(Tk) is the remaining useful

life at inspection time Tk,f(t + Tk) is the predicted HI at the
time t + Tk, and θ is the failure threshold.

4. Experimental Results and Analysis

In this section, the run-to-failure data acquired from
accelerated degradation tests of rolling element bearings are
used to verify the effectiveness and superiority of the proposed
RUL scheme in practical applications. *e experimental data
comes from PROGNOSTIA in the IEEE PHM 2012 Data
Challenge [35]. *e experimental platform mainly consists of
three parts, a rotatory part, a degradation generation part, and
a signal acquisition part, which is shown in Figure 3.

4.1. Data Description. In this experiment, 17 rolling element
bearings working under three different conditions are tested.
*e experimental conditions are listed in Table 1. Under
each condition, two bearings’ data are used as a training
dataset, while others are testing datasets, which are listed in
Table 2. *e acceleration sensor is installed in the outer layer
of the rolling element bearing. *e sampling frequency is
25.6 kHz and every sampling process includes 2560 points.
*e sampling process is repeated every 10 s.

4.2. HI Construction. *e whole lifetime data of the first
bearing is selected to be analyzed. *e acceleration signal on
the horizontal direction shown in Figure 4 shows that the
vibration amplitude increases as the experiment cycle in-
creases, but it is hard to determine accurately when the
incipient fault occurred. *erefore, different features are
extracted from the original signal including 10 time-domain
features, 12 frequency-domain features, and 1 time-fre-
quency domain feature, which are listed in Table 3.

*e training data can be presented by Itrain � xt, yt{ }, in
which xt ∈ RN×N is the time-frequency map with sizeN ×N
at time t. yt ∈ [0, 1] represents the performance degradation
degree of bearing at time period t, yt � (t/T), and T is the life
cycle period of bearing for training. It was verified that the
relationship between training data label and running cycle
does not affect the final result of health indicator con-
struction. *erefore, the linear model is selected here to
construct the training dataset label. Here, bearing 1_1 is
taken as an example. *e time period when the bearing fails
completely is 2800 period, and the degradation degree
corresponding to the 1400 period is yt � (1400/2800) � 0.5.

In the proposed deep learning network, the convolution
structure mainly refers to classical AlexNet network and
time-series information learning layer constructed by
stacking three-LSTM-layer network. *e literature shows
that the network structure can effectively extract the char-
acteristics of time-series data. *e CNN and LSTM con-
nected layer is used to connect the information extracted by
time-series information learning layer and time-frequency
map information learning layer together, which can get
degradation information comprehensively. Finally, a fully
connected layer is constructed to output the final result.
Detailed network parameters can be seen in Table 4.

4.3. RUL Prediction. *e HI constructed in Section 3 is used
to predict the remaining useful life by the RUL prediction
layer. Figure 5 shows the complete degradation prediction
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process of bearing1_5 at inspection time T � 2302 running
period to describe the prognostics procedure in detail. First, all
the HIs constructed with hybrid deep-learning networks,
which are shown by hollow blue dots in Figure 5, are input into
RVM to perform regression analyses with different kernel
parameter values. Next, the kernel parameter value is selected
by the PSO algorithm. As is shown in Figure 5, the relevance

vector is calculated by RVM with the optimized kernel pa-
rameter value. *e polynomial model is constructed by fitting
the RVs. Subsequently, the HI values at the future running

Vibration data

Time-series
information

Time-frequency map
information

Deep learning network with hybrid structure

Training dataset

Health indicator curve

Time-series
information

Time-frequency map
information

Testing dataset

New RVM model

RUL prediction results with con�dence interval

To train the network To construct HI

PSO for optimization

Figure 2: *e proposed RUL scheme.

NI DAQ card Pressure regulator Cylinder pressure Force sensor

Tested bearingAccelerometersTorquemeterSpeed sensorAC motor

Figure 3: *e experiment platform.

Table 1: *e experimental conditions.

Working condition Rotate speed (rpm) Load (N)

1 1800 4000
2 1650 4200
3 1500 5000

Table 2: Dataset.

Dataset Condition 1 Condition 2 Condition 3

Training set
Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2

Testing set

Bearing1_3 Bearing2_3

Bearing3_3
Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7
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periods are predicted with the constructed polynomial model.
When the predicted HI values reached the predefined failure
threshold, the bearing is considered to be a failure. *e RUL
and the confidence interval can be computed by equation (22).

5. Results and Analysis

Figure 6 represents the HIs of bearing 1_3 constructed with
the different methods to illustrate the superiority of the
proposed method compared with the deep-learning method

of single-structure network and traditional HI. Figures 6(a)–
6(d) are traditional HIs, which are commonly used in the
RUL prediction domain. It can be seen in Figure 6(a) that the
RMS increases significantly at the end of the experiment.*e
kurtosis and crest factor are sensitive to the incipient deg-
radation process with more background noise, which cannot
present the degradation process of the whole lifetime clearly
as shown in Figures 6(b) and 6(c). In Figure 6(d), the peak-
peak-value-based HI has similar trends to RMS, which is
insensitive to the incipient degradation process. RUL

Running period
M

ag
n

it
u

d
e 

(g
)

20

–20

0

40

1200800400 1600 2000

–40

2400

60

–60
2800

Figure 4: *e acceleration signal on the horizontal direction.

Table 3: Features extracted from the vibration signal.

Type Feature

Time-domain features

A1: root mean square A2: kurtosis
A3: peak-peak value A4: shape factor

A5: peak factor A6: impulse factor
A7: clearance factor A8: mean absolute

A9: standard deviation A10: crest factor

Frequency-domain features
B1: mean value B2: standard deviation
B3: skewness

B4: kurtosisB5–B12: entropy of different frequency band
Time-frequency features C1: time-frequency map

Table 4: Parameters of hybrid deep learning network.

Network layer
Parameters

Input picture size Number of channels Convolution kernel size Step size Number of nodes

Input layer [100×100] 3 — — —
Convolutional layer 1 — 96 [11× 11] 4 —
Pooling layer 1 — 96 [3× 3] 2 —
Convolutional layer 2 — 256 [5× 5] 1 —
Pooling layer 2 — 256 [3× 3] 2 —
Convolutional layer 3 — 384 [3× 3] 1 —
Convolutional layer 4 — 384 [3× 3] 1 —
Convolutional layer 5 — 256 [3× 3] 1 —
Pooling layer 5 — 256 [3× 3] 2 —
CNN flatten layer — 7424 (6400 + 1024) — — —
LSTM layer 1 — — — 80
LSTM layer 2 — — — — 60
LSTM layer 3 — — — — 30
LSTM flatten layer — — — — 30
CNN+LSTM connected layer — — — 7454 (7424 + 30)
Fully connected layer 1 — 4096 — — —
Fully connected layer 2 — 1000 — — —
Output layer — 1 — — —
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Figure 6: Continued.
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prediction based on these HIs cannot provide timely
maintenance suggestions.

Figures 6(e)–6(g) described the deep-learning-based HI
suggesting better monotonicity and trendability than the
traditional HI. However, the single deep-learning structure
cannot fully utilize the information contained in the original
acceleration signal. It can be seen in Figure 6(e) that the HI
constructed by the deep CNN could present the degradation
process, but there exists too much background noise at the
earlier stage, since the single CNN structure cannot learn
and distinguish the time-frequency picture effectively at the
earlier degradation stage. From Figure 6(f ), it can be con-
cluded that the HI constructed with LSTM is almost con-
stant at the earlier degradation stage because the single
LSTM structure is unable to learn the difference of the earlier
degradation features between the training set and testing set.
Figure 6(g) is the HI curve constructed with the proposed
method, suggesting that the HI constructed with deep hybrid
structure has better linearity and less background noise,
which are beneficial to promoting prognostic accuracy.

Figure 7 shows the RUL prediction results of bearing 1_3
to illustrate the influence of different deep learning structure

on the predicted results further. Figure 7(a) shows the RUL
prediction results of LSTM-based HI, where the predicted
RUL time is 4800 s and the 95% confidence interval is [2510,
7090] s. It can be seen in Figure 7(a) that the relevance vector
in the earlier stage affects the polynomial type, which lowers
the prediction accuracy. Figure 7(b) shows the RUL pre-
diction results of CNN-based HI, where the predicted RUL
time is 5190 s and the 95% confidence interval is [0, 10830] s.
A larger confidence interval brings about too much un-
certainty to the RUL results, which is terrible for making
maintenance plan. *e RVs in the middle period influence
affect confidence interval. Figure 7(c) shows the RUL pre-
diction results of hybrid-structure-based HI, where the
predicted RUL time is 5600s, and the 95% confidence in-
terval is [5398, 5803] s. *e actual RUL time is 5730 s, which
has been included in the confidence interval. What is more,
the confidence interval is narrow, leading to the low un-
certainty of the prediction results.

*e RUL prediction results of all the test bearings are
shown in Figure 8. It can be seen from Figure 8 that the
method proposed in this paper can effectively predict the
performance degradation trend and obtain a relatively
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Figure 6:*e HI curve constructed by different method. (a) Root-mean-square-based HI. (b) Kurtosis-based HI. (c) Crest-factor-based HI.
(d) Peak-peak-based HI. (e) CNN-based HI. (f ) LSTM-based HI. (g) Hybrid-structure-based HI.
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narrow confidence interval. It can be concluded from Fig-
ure 8 that there exist 3 types of degradation curve: linear type
(such as bearing1_3, beaing1_4, bearing1_7, bearing2_4,
and bearing2_5), exponential type (such as bearing2_2), and
S-shape type (such as bearing1_5, bearing1_6, bearing2_1,
bearing2_3, and bearing2_6). *e polynomial model can
effectively fit different types of degradation curve.

Different RUL prediction methods are compared with
six other studies with the same dataset to illustrate the
superiority of the proposed scheme, which are listed in
Table 4. Column 1 shows the testing bearings.*e prediction
starting time is shown in column 2. For each testing bearing,
the actual and predicted RUL times are displayed in columns
3 and 4, respectively. *e predicted errors of the proposed
method are shown in the final column, and the six com-
parative studies are shown in columns 5 to 10.*emean and
SD of the percent errors and the scoring metrics are shown

in the last three rows. A scoring function to evaluate the final
prediction results is defined as follows:

Score � 1

11
∑11
i�1
Ai, (26)

where

Ai �

exp − ln(0.5)∗ Eri
5

( )( ), if Eri ≤ 0,

exp +ln(0.5)∗ Eri
20

( )( ) if Eri > 0.


(27)

Ai is the prediction score of the ith test bearing and Eri is the
percent error of RUL prediction results for the ith testing
dataset, and it can be calculated as

Running period

L
ST

M
-H

I

0.8

0.6

1.0

0.2

2000
0.0

0

0.4

500 1000 1500 2500 3000

1.2

(a)

Running period

C
N

N
-H

I

0.8

0.6

1.0

0.2

2000
0.0

0

0.4

500 1000 1500 2500 3000

1.2

(b)

Running period

H
Y

B
-H

I

0.8

0.6

1.0

0.2

2000
0.0

0

0.4

500 1000 1500 2500 3000

1.2

(c)

Figure 7: *e RUL prediction results of bearing1_3. (a) LSTM-based HI for RUL. (b) CNN-based HI for RUL. (c) Hybrid-structure-based
HI for RUL.
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Eri �
ActRULi − RULi

ActRULi
× 100%, (28)

where ActRULi represents the actual RUL of test bearing i
and RULi represents the predicted RUL results of test
bearing i.

*e RUL prediction method proposed by Sutrisno et al.
[36] has predicted the RUL based on vibration frequency
signature anomaly detection and survival time ratio.
However, the anomaly detection time point is decided by
subjective criteria, and the prediction errors are large in the
table. Hong et al. [37] have constructed the packet-EMD and
SOM-based HI to predict RUL to improve the RUL accuracy
compared to the previous work. However, it requires
extracting more than 100 features to construct the HI, which
is time-consuming. Lei et al. [38] have proposed a new HI
construction method based on weighted minimum quan-
tization error (WMQE) to predict RUL of bearings. *ese
three methods use feature extraction, selection, and fusing,
which rely on manual experience and time consumption.

Guo et al. [40] constructed a deep-learning-based
method to construct HI with multiple features from the time
domain, frequency domain, and time-frequency domain.
*is method showed superiority over SOM-based HI con-
struction method, but it has a lower accuracy than Lei et al.’s.
Yoo [41] has proposed a new method to construct the HI
with CNN and the Gaussian process regression method for
RUL prediction. *is method improves the prediction ac-
curacy and efficiency. Si et al. [42] has constructed HI with
wavelet packet decomposition, empirical mode decompo-
sition, and self-organizing map and used RVM combined
with exponential degradation model to predict RUL, which
improves the RUL accuracy effectively. However, the HI
construction process is complicated and time-consuming.

In Table 5, the proposed method shows the lowest
percent errors and low deviation, proving that the model is
accurate and reliable on every tested bearing. What is more,
this method does not design a sophisticated feature ex-
traction algorithm based on human experience and realizes
the intelligent RUL prediction. *e performance
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Figure 8: *e RUL prediction results of all the test bearings. (a) Bearing 1_3 performance degradation trend prediction. (b) Bearing
1_4 performance degradation trend prediction. (c) Bearing 1_5 performance degradation trend prediction. (d) Bearing 1_6 per-
formance degradation trend prediction. (e) Bearing 1_7 performance degradation trend prediction. (f ) Bearing 2_3 performance
degradation trend prediction. (g) Bearing 2_4 performance degradation trend prediction. (h) Bearing 2_5 performance degradation
trend prediction. (i) Bearing 2_6 performance degradation trend prediction. (j) Bearing 2_7 performance degradation trend pre-
diction. (k) Bearing 3_3 performance degradation trend prediction.

Table 5: *e RUL prediction results of different methods.

Current time (s) Actual RUL (s) Predicted RUL (s)
Er (%)

Sutrisno Hong Lei Guo Yoo Wang Proposed method

1_3 18010 5730 5600 37 − 1.04 − 0.35 43.28 1.05 − 1.05 2.27
1_4 11380 339 320 80 − 20.94 5.6 67.55 20.35 − 17.99 5.60
1_5 23010 1610 1410 9 − 278.26 100 − 22.98 11.18 21.74 12.42
1_6 23010 1460 1300 − 5 19.18 28.08 21.23 34.93 6.16 10.96
1_7 15010 7570 9270 − 2 − 7.13 − 19.55 17.83 29.19 7.79 -22.46
2_3 12010 7530 7460 64 10.49 − 20.19 37.84 57.24 43.03 0.99
2_4 6110 1390 1310 10 51.8 8.63 − 19.42 − 1.44 1.44 5.76
2_5 20010 3090 2290 − 440 28.8 23.3 54.37 -0.65 18.77 25.89
2_6 5710 1290 1430 49 − 20.93 58.91 − 13.95 -42.64 2.33 -10.85
2_7 1710 580 570 − 317 44.83 5.17 − 55.17 8.62 -3.45 1.72
3_3 3510 820 850 90 − 3.66 40.24 3.66 − 1.22 13.41 -3.66
Mean 100.27 44.28 28.18 32.48 18.96 12.47 9.32
SD 173.28 90.29 35.41 37.57 25.59 15.90 12.57
Score 0.31 0.36 0.43 0.26 0.57 0.62 0.64
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degradation processes of the test bearings are not consistent.
Compared with the other methods, the prediction accuracy
of the proposed method is not the highest in all test bearings,
but the average error and score of the prediction results are
the best. In the next step, the performance degradation
process of different test bearings will be studied in depth to
further improve the prediction accuracy of the remaining
useful life of each type of test bearings.

6. Conclusions

*is paper proposes a new RUL prediction scheme com-
bining deep learning and a new RVM method. Firstly,
different types of degradation data are input into the deep-
learning network with a hybrid structure to construct the
health indicator. *en the new RVM model consisting of
RVM and a polynomial model is used to predict the RUL
and calculate confidence interval. Finally, the proposed
method is compared with different RUL prediction methods
to verify the effectiveness.

*e proposed deep-learning network with a hybrid
structure could learn from different types of degradation
data. *e constructed health indicator curve has better
monotonicity and trendability than the single-structure
deep-learning network, such as CNN and LSTM. *e RVM
is widely used in RUL prediction. On the one hand, the RVM
could reduce the redundancy of the degradation curve to
enhance the prediction accuracy. On the other hand, the
prediction results of RVM are profoundly affected by kernel
function and the long-term prediction ability is reduced.*e
proposed method retains the advantage of RVM and
overcomes the disadvantage by combining the polynomial
model with RVM.*e final RUL prediction results show that
the proposed method can enhance prediction accuracy and
narrow down the confidence interval.

Although the proposed RUL scheme improves the
prediction results, it is time-consuming. In future work, it is
expected to raise the computational efficiency by researching
a better deep-learning structure.
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