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Abstract. A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores,
obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the
largest measured rotation frequency (716 Hz) and the maximum measured mass (2M ). The present status
of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity
is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations
for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems
related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting
from the mass-shedding instability and the instability with respect to the axisymmetric perturbations
are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail.
Metastability and instability of a neutron star core in the case of a first-order phase transition, both between
pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of
rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered

by the instabilities are considered.

1 Introduction

The determination of radii R?*® of neutron stars (NS) of
known masses MM, (i = 1,2,...) would allow us to un-
veil the equation of state (EOS) of neutron-star cores of
density significantly higher than normal nuclear density
po = 2.7 x 10" gem™3 (corresponding to baryon number
density ng = 0.16 fm~2). To be useful, however, the un-
certainties in the values MPP R9PS should be sufficiently
small (at the level of a few percent) and the maximum
MPPs should be close to an (unknown) maximum allow-
able mass of NS. For the time being, a set of unevenly
spaced MPP® was determined! [1], with a maximum value
MePs = 2.0140.04M;, [2] being a very strong constraint
on the EOS. The precise measurement of R is still a chal-
lenge for observers (see sect. 2).

For p < po constituents of matter are well established:
nucleons and electrons, with a small admixture of muons
at the upper subnuclear density segment where the Fermi
energy of electrons exceeds the muon rest energy. However,
we expect that the central density of neutron stars with

* Contribution to the Topical Issue on “Exotic matter in neu-
tron stars” edited by David Blaschke, Jiirgen Schaffner-Bielich,
Hans-Josef Schulze.

# e-mail: fortin@camk.edu.pl

! see http://stellarcollapse.org/nsmasses.

M > 1Mg is larger than 1.5p9—2pg. For M = 2Mg, the
star’s central density may be as high as ~ 7pg. For p 2 2p
even the actual hadronic constituents of the NS core are
uncertain: are they just nucleons (zero strangeness), or
more generally baryons, 4.e. nucleons and hyperons (non-
zero strangeness)? Maybe the density realized there is suf-
ficient for a phase transition to quark matter? Finally,
maybe in addition to baryons, real kaons or pions form-
ing a boson condensate are present there? The uncer-
tainty grows with increasing p, which is expected to be
as high as 8py—10py at the center of the most massive NS.
This uncertainty results from the lack of precise knowl-
edge of strong interactions and the approximations (of-
ten uncontrollable) of the many-body theories of super-
dense hadronic matter. The uncertainty in the structure
and composition of super-dense matter implies an even
larger uncertainty in the EOS of NS cores.

All neutron stars rotate and there are many millisec-
ond pulsars (MSP) with rotation frequency f > 500 Hz
(10 accreting X-ray pulsars and 14 radio/gamma-ray pul-
sars), and a radio MSP with 716 Hz is observed (sect. 2).
In the present paper we restrict ourselves to rigid rotation
and axisymmetric approximation for rotating NS models,
nevertheless for the completeness sake we briefly recall
the general picture. The approximation of rigid, axisym-
metric rotation holds extremely well already a few min-
utes after the NS is born in the supernova core collapse.
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Prior to that one expects a differentially rotating, hot and
lepton-rich proto-NS with high entropy, which cannot be
properly described by a cold, catalyzed matter EOS. Dur-
ing this period dynamo mechanism and convection may
operate, increasing the interior magnetic field and lead-
ing to magneto-hydrodynamical instabilities [3]. Shortly
after the birth, rigid rotation sets in due to the presence
of viscosity. However, for sufficiently high rotation rates,
parametrized by the kinetic energy 1" to potential energy
W ratio, 8 = T/|W|, a dynamical triaxial bar-mode insta-
bility may arise in rigidly rotating stars; relativistic calcu-
lations indicate critical # ~ 0.24. Substantial differential
rotation facilitates the onset of these dynamical instabili-
ties —they may occur at a low § = 0.01. Another, secular
bar-mode instability, driven by the dissipation due to vis-
cosity or the emission of gravitational waves sets in at
B ~ 0.14 (for a review see [4]). We also expect that ac-
creting NSs may be prone to the Rossby-type instabilities
(r-modes), driven by the Coriolis force [5].

The dependence of the radius of a NS with an exotic
core on its mass and the imprint of rotation on the mass-
equatorial radius relation and the stability of rotating NS
configurations is the main topic of the present paper. In
our review we try to present some generic features of ro-
tating NS with exotic (E) cores, with E being: hyperon
matter, quark matter, or a baryon phase with a boson
(pion or kaon) condensate. NS with E-core will be com-
pared with standard nucleon NS models, hoping that the
differences between theoretical models, confronted with
observations, will help to unveil the true EOS of NS.

In order to study axisymmetric hydrostatic equilibria
of rotating NS in general relativity (GR), approximate,
as well as exact numerical methods of solving Einstein’s
equation were developed; we briefly discuss them in sect. 3.
We discuss the precision which should be reached in the
2D calculations to study the mass shedding limit, the spin
evolution and stability with respect to axisymmetric per-
turbations of rotating NS models.

We consider a relativistic star in the perfect fluid ap-
proximation. In general, the metric of space-time around
a rotating NS is essentially different from that around a
static star (f = 0). For f =0 the metric depends only on
the NS mass M and it is the Schwarzschild metric. For
f > 0 the metric depends explicitly on the matter and
pressure distribution inside a rotating star, which makes
it dependent on the EOS; it also depends on f through
the effect of the dragging of the inertial frames. In partic-
ular, this refers to the innermost stable orbit around an
accreting MSP (sect. 3). Some properties of the circular
orbits around NS and their relation to the Keplerian limit
are reviewed in sect. 6.

The EOS of dense matter with a transition from a
normal (N) phase to an exotic (E) one has some particu-
larities. Generic features of such an EOS are reviewed in
sect. 4. We start with the simplest case of N-E transition
in full thermodynamic equilibrium, reviewed in sect. 4.1.
Then we consider a more complicated case including the
possibility of a metastable state and nucleation of the E-
phase in the N-one in sect. 4.2.
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The theoretical M-R relation (here R is the equato-
rial radius) depends on the rotation frequency. The re-
gion in the M-R plane allowed for rotating configurations
is affected by the presence of an exotic core in massive
NS. The maximum allowable NS mass is a functional of
the EOS. Its value for non-rotating stars, M3t has to
satisfy MERE[EOS] > 2Mg, the largest observed mass.
Rotation increases M, only by a few percent even at
716 Hz, but for the minimum mass Mr{ﬂn (which for f =0
is M3 ~ 0.1Mg), see [6] and references therein), the ef-
fect of rotation is dramatic and depends indirectly also
on the phase transition to an exotic high density phase
(sect. 5). This property of Mf;in can be used to derive the
EOS dependent lower bound on the mass of the fastest
716 Hz pulsar (sect. 6.3). We present in detail examples
of families of rotating NS models with nucleon, hyperon,
and quark cores, showing the differences between these
families.

Limits on the frequency of rotation of NS are reviewed
in sect. 6. There is an upper bound for the frequency of
rotation for each given baryon (rest) mass of a NS Mj,, cor-
responding to a non-rotating (static) mass M. It results
from the mass-shedding instability at the equator and is
called Keplerian frequency fx(M;). This bound is quite
sensitive to the EOS, because it depends on the radius of
non-rotating configuration (sect. 6.1). There is also a the-
oretical maximum frequency for all stably rotating config-
urations of NS, fiax = 1500 Hz—2000 Hz which depends
on the EOS (sect. 6.2). The highest measured frequency
of a pulsar which as for today is 716 Hz, results in an EOS
dependent constraint on the mass of this fastest pulsar
(sect. 6.3).

In sect. 7 we review various aspects of the spin evolu-
tion, dynamics, and stability of rotating NS with exotic
cores. The softening of the EOS associated with a tran-
sition to an exotic phase can lead to a phenomenon of
back bending (spin-up induced by an angular momentum
loss), reviewed in sect. 7.1. In particular, we point out
the possibility of the existence of unstable segments of
configuration sequences, splitting the stable back bend-
ing fragment of the spin evolution track into two separate
branches.

The instability induced by the softening of the EOS
due to a first order phase transition into an exotic phase
is discussed in sect. 7.2. A sufficiently strong softening of
the EOS can lead to splitting a single one-parameter fam-
ily of hydrostatic configurations of NS into two separate
(disjoint) families. This feature is valid not only for static
NS, but also for rotating NS models with constant f. The
static criterion for the split into two branches is valid also
for rigidly rotating configurations (sect. 7.2). We then re-
view, in sect. 8, the possibility of a minicollapse of a NS
due to the nucleation of the E-phase at its center during
the NS evolution, and the role of metastability of the N-
phase core in this process. The astrophysical signatures
of a mini-collapse are described in sect. 9. In sect. 10 we
review the effect of the crust formation scenario on the
M-R relation.

Our conclusions are summarized in the final sect. 11.
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2 Observational constraints from spin
frequency and radius measurements

The recent discovery of two 2Mg pulsars [7,2] provides
an important constraint on the poorly known equation of
state at supra-nuclear density. In this section we summa-
rize the current status of measurements of radius and spin
frequency of NS.

2.1 Radius

The radius of a NS can in principle be extracted from the
analysis of X-ray spectra emitted by the NS atmosphere
(see [8] for a review). However even in the case of a non-
rotating NS, due to the space-time curvature, only the
apparent radius,

[ S— (1)

V1 —=2GM/Re?’

is constrained by the modelling. It actually depends on
both the radius and the mass. Measurements are compli-
cated since they depend on the distance to the NS, its
magnetic field, the composition of its atmosphere and the
interstellar absorption (see e.g. [9]). On the one hand,
the magnetic field of isolated NS is likely to be large
(B > 10°G) and thus will affect their spectra, and the
chemical composition of their atmosphere is unknown and
difficult to determine. On the other hand, NS that undergo
periods of accretion of matter from their binary compan-
ion are believed to have a low magnetic field (due to
accretion-induced decay), and an atmosphere likely to be
composed of light elements (H, possibly He [10,9]). Among
such objects one can distinguish quiescent X-ray tran-
sients (QXT), NS in a binary system observed when the
accretion has stopped or is strongly reduced, and bursting
NS (BNS) i.e. NS from which recurring and very power-
ful bursts, so-called photospheric radius expansion (PRE)
bursts, are observed. These sources are even more promis-
ing when they are located in globular clusters whose dis-
tance is likely to be accurately measured. R, can also be
constrained by the modelling of the shape of the X-ray
pulses observed from rotation-powered radio millisecond
pulsars (RP-MSP) in particular if their mass is known
from radio observations.

Figure 1 shows the most recent constraints on the ra-
dius Ry 4 of a 1.4Mg NS obtained for various types of
sources (see details in [11]). The constraints QXT-1 and
RP-MSP being mutually exclusive, so far no consensus on
Ry 4 can be reached. However, the determination of the
radius of a NS is subject to many assumptions, uncer-
tainties and systematics effects, (see e.g. table 1 in [8]).
Obtaining constraints from the PRE bursts of BNS is still
subject to uncertainties and debates in particular concern-
ing the modelling of the phenomenon itself, the selection
of bursts to be used (hard state X-ray bursts vs. soft state
ones) and the composition of the atmosphere (see [12—
17]). As far as QXT in globular clusters are concerned, the
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Fig. 1. (Colour on-line) Constraints on the radius Ri.4 of a
1.4M¢ NS from different types of NS: a RP-MSP [22], BNS-
1 [12], BNS-2 [15], QXT-1 [23], BNS+QXT [14]. Constraints
QXT-2 and QXT-2" are included for discussion only, see text
for details. The constraints correspond to 2-o error bars.

composition of the atmosphere and the amount of inter-
stellar absorption, quantified by the so-called “equivalent
hydrogen column density” Ny, are unknown and signifi-
cantly affect results [18,19,9]. For example among the five
QXT studied in [18] (constraint QXT-2 in fig. 1), one of
them: NGC 6397, has a substantially smaller R,, com-
pared to the value obtained for the four other sources. As
a consequence the constraint QXT-2 that is derived from
these five sources suggests a small NS radius. However,
while for one of the five sources observations suggest a
hydrogen composition for the atmosphere: w Cen [20], the
composition of the atmosphere of the four other sources,
including NGC 6397, is still unknown. Using a helium at-
mosphere instead a hydrogen one, a larger R, is obtained
for NGC 6397 [9]. The constraint QXT-2' corresponds to
the QXT-2 one when NGC 6397 is not included: it then
favours larger radii. The quantity Ny can in principle be
constrained thanks to observations in various wavelengths
or derived when fitting the X-ray spectra. Large discrep-
ancies between the values derived for Ny using these two
approaches are however observed and as a consequence
the constraint on R., can vary by as much as a factor
2 (for wCen in [18]). Finally, the uncertainty on the dis-
tance to globular clusters can be as large as 25% [19] and
further affects the constraint on the radii (see, e.g., [18,
19,9]). Last but not least, taking into account NS ro-
tation strongly complicates the analysis of the collected
X-ray spectra. Both QXT and BNS are likely to rotate
at a frequency of few hundreds of Hz which is expected
to affect the radius determination by ~ 10% according
to [13,21].

Due to uncertainties in both the observations and the
modelling of QXT, BNS and RP-MSP, no stringent con-
straint on the radius of NS can currently be derived.
However the next generation of X-ray telescopes such as
NICER [24], Athena [25] and, possibly, a LOFT-like [26]

missions promise measurements of radii with an accuracy
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of few percents. Together with a constraint on the maxi-
mum observed NS mass, a simultaneous measurement of
NS mass and radius with such a precision could enable to
constrain the NS EOS.

2.2 Spin frequency

Since the discovery of the first pulsar in 1967 [27], later
identified as being a NS [27,28], ~ 3000 NS have been ob-
served in all wavelengths, most of them as radio pulsars
(see [29] for a review). Among those one can distinguish
two populations: the so-called “normal pulsars” with pe-
riods of the order of few seconds and the “millisecond pul-
sars” (MSP) which as their name indicate have a period
of the order of few milliseconds [30]. These are believed to
be old NS that have been “recycled” i.e. spun-up to mil-
lisecond periods by the accretion of matter from a binary
companion [31,32].

During the recycling process, a binary system can be
observed as an X-ray source and its pulsar as an X-ray mil-
lisecond pulsar (XMSP). The spin frequency can be deter-
mined or estimated for three different types of XMSP [33]:

— Accreting X-ray millisecond pulsars (AXMSP): X-ray
pulsations due the presence of hotspots at the surface
of the rotating neutron star have been observed from
these sources. The spin frequency of 15 AXMSP has
been measured with a great accuracy (see [34] for a
review).

— Nuclear X-ray millisecond pulsars (NXMSP): they ex-
hibit oscillations during thermonuclear X-ray bursts.
The frequency of the oscillations is thought to be at or
close to the pulsar spin frequency, though there are still
some uncertainties on the physical process that trig-
gers the oscillations [35]. Therefore for these sources,
the measurement of the spin frequency is indirect and
has an uncertainty of few hertz. The spin frequency of
10 NXMSP has been determined so far;

— Twin kilohertz quasi-periodic oscillations have been
observed in several systems. However, their interpre-
tation and the precise link with the rotation of the
neutron star is still unclear (see, e.g., [35]).

Figure 2 shows the frequencies of currently observed
radio and gamma-ray pulsars (data from the ATNF Pulsar
Catalogue? [36]) and XMSP rotating at a frequency larger
than 100 Hz. Out of ~ 2500 radio and gamma-ray pulsars
with measured period, 11% of them have a spin frequency
larger than 100 Hz. So far, the fastest rotating XMSP is
4U1608—522 with f = 620 Hz [37] and the fastest rotating
MSP is PSR J1748—2446a in the globular cluster Terzan
5 with f = 716Hz [38]. Oscillations at a frequency of
1122 Hz in one type I X-ray burst of XTE J1739—285 were
reported [39] but not observed later [37].

Although with current observational techniques sub-
millisecond pulsars could in principle be detected, so far
all attempts were unsuccessful (see, e.g., [40-42]). Thus
this might indicate the existence of a mechanism that

2 http://www.atnf.csiro.au/people/pulsar/psrcat.
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Fig. 2. (Colour on-line) Histogram of the spin frequency of
radio/gamma-ray MSP and XMSPs.

prevents accreting NS from reaching submillisecond pe-
riods. The interaction between the NS magnetic field and
the accretion disk (see, e.g., [43]) or the loss of angular
momentum due to the emission of gravitational radiation
(see, e.g., [44,33,45]) may inhibit the recycling process and
thus the formation of submillisecond pulsars. The conse-
quences of the existence of the fastest rotating pulsar with
f =716 Hz are discussed in sect. 6.

3 Rotating stars in general relativity

After a few decades since the discovery of the spheri-
cally symmetric, static solution for matter distribution by
Tolman, Oppenheimer and Volkoff ([46,47]) —the TOV
equations— the interest of researchers on rotating, rel-
ativistic stars was revived in the 1960s Golden Era of
GR. The breakthrough came just in time for the discov-
ery of the first pulsar with the work of Hartle [48], who
devised a slow-rotation approximation to an exact solu-
tion by treating rigid rotation as a small perturbation
of the spherically symmetric TOV background solution.
In quasi-Schwarzschild coordinates (¢,7, 0, ¢), such a sta-
tionary, axisymmetric spacetime is described by a generic
metric?

ds* = —H(r,0)2dt* + Q(r,0)*dr?
+ rQK(r, 6)? (d@2 + sin? 6 (dep — w(r, 9)dt)2) , (2)

where the w function is the angular velocity of the free-
falling observers (which corresponds to the frame dragging
of inertial frames). In the first-order expansion in terms of
the star’s angular spin frequency {2, outside the star the
metric function w = 2.J/r3, i.e., it is proportional to the
total stellar angular momentum J. With respect to the

3 In this section, for brevity we adopt the geometric conven-
tion G =c=1.
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metric used in the TOV solution, the O(£2) metric differs
only by the wdt term,

-1
ds? = —e?(Ma? + <1 — 2m(7")> dr?
r
+ 72 (d92 +sin? 0 (do — w(r, 9)dt)2> +0(£2%). (3)

In addition to the usual TOV ordinary differential equa-
tions for m(r), v(r) and pressure p(r) the off-diagonal t¢
component of Einstein’s equations provides a differential
equation for w(r), or equivalently, J (which then can be
used to define the moment of inertia of the star I = J/2).

Subsequently, Hartle and Thorne [49], and Sedrakyan
and Chubaryan [50] obtained a second-order, O(£2?) solu-
tion of the slow-rotation approximation. Within this ap-
proximation, the star’s angular momentum, the fluid ve-
locity and the frame-dragging term are exactly the same
as in the O(£2) order (they are functions of odd powers
of 2). What is affected are however the diagonal metric
terms and pressure and energy density distributions. The
metric reads

ds?=—e2(") (1 4 2 (ho + haP(cos 0))) dt2
—1
o (1 2y 2t 0) ),

r r—2m(r)

+72 (1 + 2 (vy — ha) Py(cos@))
x (d92 +sin? 0 (d¢ — w(r, 9)dt)2) +O(2Y), (4

where ho(r) and mg(r) describe the monopole deforma-
tions, and ha(r), ma(r) and vy (r) describe the quadrupole
deformations (the dipole term is identically zero). The
function Ps(cosf) is the Legendre polynomial. The pres-
sure inside the star is modified as follows:

p(r,0) = p(r) + (p +p) (po + p2Pa(cos0)),  (5)

with p denoting the energy density. Similarly to the first-
order expansion, the solution consists of the TOV back-
ground solution, supplemented with an additional set of
first-order ordinary differential and algebraic equations for
the monopole and quadrupole terms. The gravitational
mass M of a star with angular momentum J is

M = M+ mo(R) + J?/R> + O(02%), (6)

where M and R are the mass and radius of a non-rotating
configuration with the same p.. Rotational corrections de-
form the star to a spheroid shape. The 6 dependence of
the radius is

R(0) =R +&(R) + &(R) Pa(cos ), (7)
with & and & being functions of po(r), p2(r), va(r), ha(r),

as well as the equation of state and structure. The equa-
torial circumferential radius equals

R = \Jgoo(Re 0 = 7/2). ®)
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for which one can evaluate the exterior solution of gs4
at the surface; R, is the coordinate equatorial radius ob-
tained by integrating the equations of structure.

A second-order slow-rotation approximation allows for
defining the star’s quadrupole moment ) by comparison
of the metric terms with their Newtonian analogues. Con-
sequently it allows to characterize the exterior metric of
a rotating object using its multipole moments: gravita-
tional mass M, angular momentum J and quadrupole
moment (. This, together with the fact that slow-rotation
approximation offers a direct and intuitive link to a spher-
ically symmetric Schwarzschild configurations (by using
the same system of coordinates), as well as a relative sim-
plicity of the set of ordinary differential equations to solve
is its biggest advantage.

There are drawbacks of this approach, however. Slow-
rotation approximation cannot be applied to all rotation
rate: by definition 2/ < 1, where 2x = 27 fk is the
Keplerian (mass-shedding) angular frequency. Moreover,
the very definition of a spheroid shape in eq. (7) prevents
the star to accurately reproduce the mass-shedding limit.
Thirdly, O(£2?) definitions of the gravitational mass M
and angular momentum J are in general not accurate
enough to robustly indicate an instability (by means, for
example, the arguments based on the turning-point theo-
rem of [51-53], which is a sufficient condition for instabil-
ity).

To obtain accurate results for any rotation rate, one
needs to change the way the problem is posed. On these
grounds highly accurate numerical schemes like [54-56]
were developed. Among other things, it is useful to aban-
don the Schwarzschild coordinates in favor of e.g., quasi-
isotropic coordinates. The metric is then expressed as

d82 — _62u(r,0)dt2 + e?,u(rﬁ) (d?"Q + 7"2d02)
+e 00 (dp — wdt)?, 9)

where the v potential is as previously related to the grav-
itational potential of the source, and e* and e?¥ are called
conformal factors. Note the different relation between the
r and 6 coordinates with respect to, e.g., eq. (3). The Ein-
stein equations to be solved can be derived in a number of
ways. A particularly interesting, widely accepted and suc-
cessful approach in numerical relativity is the 3+1 decom-
position of spacetime i.e., a specific “slicing” of the four-
dimensional spacetime into spacelike three-dimensional
hypersurfaces in order to deal with the three-dimensional
tensor fields to obtain solutions (see, e.g., [57,58] as well
as [59] and [60] for the specialized case of rotating rela-
tivistic stars). In the quasi-isotropic gauge with a choice
of slicing (maximal slicing), the Einstein equations for
a stationary, axisymmetric star are expressed as a sys-
tem of four coupled non-linear elliptic partial differential
(Poisson-like) equations:

Ae” = oy, Aw = o9,
Ae"t = o3, Ae"V = oy, (10)

where the right-hand sides of each equation, o;, are the
source terms describing non-linear metric terms and mat-
ter via the energy-momentum tensor, usually assumed to
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describe the perfect fluid. The only boundary condition
for this system exists in spatial infinity and is provided by
the asymptotically flat metric. Global quantities, such as
gravitational mass M are formulated as surface or vol-
ume integrals using the asymptotic behavior of appro-
priate metric functions far from the source (the so-called
ADM mass [61]), or by exploiting the symmetries of the
problem (the so-called Komar mass for stationary space-
times by taking into account the existence of a time Killing
vector, [62]). Similar reasoning applies to the angular mo-
mentum J. Redefining e¥ as Brsinf, one can get the re-
lation between the coordinate and the circumferential ra-
dius. Analogous to eq. (8), the circumferential equatorial
radius of the star, i.e., the length of the equator divided
by 2w, is simply

RS = BR,, (11)

with R, being the coordinate equatorial radius. In what
follows we will denote the circumferential equatorial radius
of the rotating star by Req.

3.1 Accuracy of solutions

An additional important aspect of solving numerically the
Einstein equations is the choice of numerical methods. In
some applications the spectral methods prove to be supe-
rior over traditionally more widely used finite-differences
methods. With the spectral decomposition, functions are
expanded in terms of adequately chosen basis functions,
and resulting algebraic equations for the expansion coef-
ficients are solved. When properly implemented, the dif-
ference between the series expansion and the real solution
vanishes like eV, where N is the number of expansion co-
efficients (the evanescent error). As an example of a real
implementation, the formulation of [54] is using spectral
methods in a numerical library LORENE* in a nrotstar
code; other highly accurate implementations can easily
reach machine precision [56]. Note also that numerical rel-
ativity with spectral methods is particularly suitable for
precision studies of instabilities, due to very low numer-
ical viscosity of spectral methods (see e.g., [65-68] and
sect. 7.1 of this article).

The accuracy of a numerical solution may be checked
in a number of ways. For example, for stationary asymp-
totically flat spacetime, the Komar mass is in principle
equal to the ADM mass —their difference expresses thus
the imperfection of numerical solution and is proportional
to the accuracy achieved. A very sensible and widely used
accuracy indicator is a relativistic generalization of the
classical virial theorem by [69,70], applicable in case of
asymptotically flat four-dimensional spacetimes such as
in the case of rotating relativistic stars.

As an example, figs. 3 and 4 show the effect of rigid
rotation on the mass-radius M (R) sequences for two re-
cent EOS —a “standard” nucleonic DH EOS of [63] and
stiff TM1C EOS that includes hyperons. The latter is a
non-unified EOS (see discussion in sect. 5.1) where the

4 http://lorene.obspm.fr.
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R, [km)]

Fig. 3. Gravitational mass M-equatorial radius Req plane for
rotating stars. The figure shows two sets of curves: for the DH
EOS ([63], red lines) and TM1C EOS ([64], black lines): solid
lines marked with the S symbol denote static (non-rotating)
sequences, dotted lines are constant spin frequency 716 Hz se-
quences, dash-dotted lines marked with the K symbol are the
mass-shedding configurations, and dashed lines mark the suffi-
cient conditions for the instability with respect to the axisym-
metric perturbations. Stars denote the configurations depicted
on fig. 4. The physical reason for high stiffness of the TM1C
EOS for M < 1.4Mg, leading to large radii of NS models for
this mass range, is explained in sect. 5.1.

)

Fig. 4. Non-spherical shapes of NS deformed due to rapid
rotation. Isocontours denote constant fluid proper energy den-
sity; vertical direction is aligned with star’s angular momen-
tum. Thicker line correspond to the surface. Upper slice cor-
responds to the TM1C EOS NS with M = 1.4Mg, rotating
at 716 Hz which for this configuration is the mass-shedding
limit (Keplerian rotation; note the cusp at the equator). Lower
slice corresponds to the DH EOS with the same mass and
spin frequency. The configurations correspond to stars marked
on fig. 3. The circumferential radius of TM1C NS is 20.9 km,
whereas for DH NS it is 12.9km. The results were obtained
using the LORENE/nrotstar code.

DH EOS is used for the crust and the model by [64] for
the core. Configurations were obtained with the use of
LORENE/nrotstar. Specifically, fig. 4 shows how strongly
the shape of a rapidly rotating relativistic star depends
on the EOS. Note that the configuration at the verge of a
breakup (mass-shedding limit, which is related to a cusp
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on the stellar surface at the equator) cannot be accurately
simulated with the slow-rotation approximation.

Apart from the shape, rigid rotation changes the values
of global parameters of a star; it increases its equatorial ra-
dius Req and also the maximum gravitational mass Myax
with which the star can still be stable for a given central
EOS parameters. The maximum increase of M. is, with
respect to the non-rotating configurations, about 15-20%
for dense matter described by realistic hadronic EOSs.
Note that the mass increase caused by rotation cannot
be therefore proposed as a general solution to the prob-
lem of maximum mass decrease caused by a substantial
phase transition/softening in some exotic EOS, in order
to reconcile their inconsistency with recent observational
data. The maximal increase of Req is about 30-40% for
the mass-shedding configurations (see sect. 6 for more de-
tails).

Exact numerical solutions were compared with the
slow-rotation approximation in a number of articles. No-
tably, differences between the results obtained using the
early implementation of LORENE/nrotstar [54] and the
results obtained by [71] are described in [72]; the differ-
ences in mass for rotating maximum mass models is re-
ported to be of about 5%, whereas the differences in radii
about 15%. The slow-rotation approximation is particu-
larly sensitive to quantities that depend on the derivatives
of the metric functions, e.g. the radius or the innermost
stable circular orbit around a rotating compact star. In
a comparison performed in [73], where the radii of orbits
around strange quark stars were studied, the difference be-
tween the slow-rotation approximation and exact results
for moderately rotating stars (f ~ 500 Hz) at the canoni-
cal mass of 1.4M is of the order of 1 km. The discrepancy
grows with stellar mass and spin frequency.

4 Transition to an exotic core: equilibrium,
metastability, and instability

4.1 Thermodynamic equilibrium considerations

Some theories predict that with increasing density the NS
core undergoes a transition from a normal (N) state to
a new exotic (E) phase. Some of these predicted phase
transitions are second-order ones (e.g. kaon condensation,
pion condensation), so that density and composition of the
matter are continuous at the transition point P;, ny, while
the speed of sound drops discontinuously cg < cn. How-
ever, for many models the softening in the E-phase just
after threshold is so strong that it results in dP/dn < 0,
and therefore induces a density jump between the N- and
E-phases, coexisting at some Pyg (see fig. 5). In this way,
we have effectively a first order phase transition at con-
stant P = Pyg between the N-phase and the E-phase.
This occurs for instance for a sufficiently strong pion or
kaon condensation in nucleon matter. Another example of
a genuine first order phase transition is quark deconfine-
ment in dense hadronic matter. In general, in the first or-
der phase transition at constant pressure, N- and E-phases
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Fig. 5. Possible EOS in the n-P plane with various types of
transition between the N- and E-phases. If the surface tension
at the N-F interface is large: a mixed state is not present, and
the N-phase is stable up to Pyg (solid N-line). For P > Pxg
and n > ny the N-phase is metastable with respect to the
nucleation of the E-phase (dotted line). The rate of nucle-
ation grows rapidly with overcompression P — Pyg, and at
P = P§% n = ng¢" the E-phase nucleates. After equilibration
we get the E-phase coexisting with the N-phase at pressure
Pxg, with the density jump nx — ng (thin dotted line hori-
zontal segment, constant pressure). After further compression
the EOS continues in a pure E-phase (thick solid line). If the
surface tension at the N-E interface is small: the equilibra-
tion produces a mixed state of the E- and N-phases, starting
at Plgm) (infinitesimal fraction of the E-phase) and ending at
PE(m> with a vanishingly small fraction of the N-phase. The
thick dot-dashed line m is the mixed-phase segment of the
EOS. For P > Pém) we are dealing with a pure E segment
of the EOS. The continuous line N-m-E corresponds to the
EOS of matter in full thermodynamic equilibrium (see fig. 6).
The small dotted bottom segment of the E-line corresponds to
the metastable (with respect to the nucleation of the N-phase)
undercompressed E-phase.

are separated by a surface with a surface tension o > 0. We
define the baryon chemical potential in a given phase as
wp = d€/dny, = (P+E)/ny, where € is the energy density
(including rest mass energy of particles). Thermodynamic
equilibrium at a given P is realized by a state (phase) of
the dense matter with a minimum value of w,. However,
it has been shown by Glendenning [74], that if the surface
contribution to the energy is sufficiently small, the state
of thermodynamic equilibrium (i.e. with minimum gy, (P))
is actually a mixture of coexisting phases E and N (mixed

m state) in the pressure interval Plgm) <P< Pém). Such
a mixed-phase state can be realized only for o < opax.
Schematic plots of the EOS for the N — m — E and
N — E realizations of the first-order phase transitions to
the exotic core are shown in figs. 5 and 6.
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Fig. 6. Notation as in fig. 5 but EOS in the up-P plane.

4.2 Central compression, metastability, and nucleation
of the exotic phase

Consider an element of matter at the center of a NS, con-
sisting of the N-phase at density n. close to, but smaller

than n&m). The value of n, can change due to the NS
evolution induced by: 1) angular momentum loss due to
dipole radiation from the radio pulsar; 2) mass gain in the
process of matter accretion from a companion in a close bi-
nary system. In most cases it is an increase of n. (compres-
sion) that proceeds on a certain timescale Teomp = nc /M.
The increase of n. during the spinning-down of an isolated
pulsar depends on the mass of the star and reaches 5—
30% for evolution from the Keplerian to the non-rotating
configuration [75]. This increase however is proportional
to the square of finitial/ fKepler, and for an initial period
~ 10ms it is less than 1%. The timescales involved are
longer than 1 Gyr. In accreting NS the crucial parameter
is the total angular momentum transferred to the star and
the magnetic torque due to the interaction with an accre-
tion disk (for details see [75]). The central compression is
small (few percent) in the absence of a magnetic torque
and for accretion from the marginally stable orbit, but
could be as large as 10% for B ~ 5 x 108 G after accretion
of 0.1Mg. It would take 10 Myr for a NS accreting at the

rate 1078My /yr in a low mass X-ray binary. The com-
pression timescale becomes rather short (years) for a very
specific class of young magnetars (see [76] and references
therein).

In scenarios (1) and (2) the temperature at the NS
center is < 10° K and therefore thermal contributions to
thermodynamic quantities are small: matter is strongly
degenerate, and thermal fluctuations are negligibly small
compared to the energy barriers separating the N and m
states. In any case, the transition to the m state has to be
initiated by a droplet of the E-phase. Even neglecting the
surface tension contribution to the energy of an E-drop
(o = 0), it is energetically possible only for n, > ny (at
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lower ny, the drop decays back into the N-phase). However,
to nucleate the E-phase in the N-medium, an energy bar-
rier, created actually by the surface contribution, has to be
quantum-mechanically penetrated with the energy supply
coming from quantum fluctuations. After an E-drop nu-
cleates, it grows into a bulk E-phase which coexists stably
with the N-phase at Pyg, with a density jump ny — ng
at the phase interface.

Sometimes it may be convenient to visualize the evo-
lution of the NS center in the P-up plane, fig. 6. As-
sume that the central core is being compressed, so that
P, grows in one of the astrophysical processes described
in the first paragraph of the present section. Compression
corresponds to a trajectory in the P-uy, plane. Even af-
ter passing P. = Plgm), the core with P, > P > Plslm)
consists of a pure N-phase and grows in time, because
the mixed state m cannot be reached due to the impossi-
bility of nucleation of the E-phase because of the energy
barriers (resulting from surface tension and Coulomb in-
teraction). After reaching P. = Py, the star’s center en-
ters the metastable (overcompressed) segment P > Pyg
of the N-phase EOS. The lifetime with respect to nucle-
ation of the E-phase 7, decreases rapidly with growing
overpressure AP = P, — Pyg. Nucleation of quark mat-
ter in dense baryon cores was studied in [77-79], while
the nucleation of the pion-condensed state was discussed
in [80-82]. As soon as Tyuel ~ Teomp (Which takes place at
P, = P.it), droplets of the E-phase appear spontaneously
and grow into regions of the E-phase coexisting with the
N-phase. This kinetic (non-equilibrium) process implies a
local pressure deficit and a collapse of the central core. If
the heat release is sufficiently large, one can contemplate
a redistribution and coagulation of the E-droplets in the
N-phase, creating a m-state core, larger than a uniform
E-core could have been.

Such a situation is schematically depicted in fig. 7.
The central core is being compressed while still in the N-
phase, until at P. = P.;;; the E-phase nucleates in the N-
medium. Assuming that thermodynamic fluctuations are
sufficiently strong, one gets a mixed m state extending
down to the (Plém), P1(\1m)) point. This corresponds to a full
thermodynamic equilibrium in the core. However, before
this final state has been reached, nucleation of the E-phase
at P implied a local pressure deficit, and a collapse of
a NS into a new more compact configuration took place.
After the E- and N-phases mix, a large m core is formed
in configuration C*, with a mean central density p; > perit
and P < Pet. The dynamics of this minicollapse process
induced by a core-quake is discussed in sect. 8.

5 Exotic cores and NS parameters

5.1 Hyperonic cores

Hyperons (baryons containing at least one strange quark)
were discovered in laboratory in the early 1950s and are

studied experimentally since then. In the late 1950s it was
suggested that hyperons could also be present in NS cores



Eur. Phys. J. A (2016) 52: 59

A(Ccrit) — A(C*)
: 'Cfcm't

(m) . 7%
PN Perit - Pec

Fig. 7. Trajectory of the neutron-star center in the p.-P. plane
during spin-down or accretion, leading to a core-quake after the
nucleation of the E phase (configuration C®'*) which implies a
collapse into a configuration C* with a mixed-phase core. The
baryon number A is conserved in the collapse process. Cp is
the last strictly stable configuration with a N-phase core. For
further explanation see the text.

Pc —>

(see [6,83] for a historical perspective). Indeed, although
hyperons are unstable under terrestrial conditions, at den-
sities typical for the NS centers, the Pauli exclusion prin-
ciple prevents them from decaying into nucleons.

Relatively little is known about the properties of the
interactions of hyperons with other baryons from hyperon
scattering (see discussion in [84,85]). On the one hand,
thanks to the study of A-hypernuclei and =Z-hypernuclear
states in laboratory, the potential for the A and = hy-
perons in symmetric nuclear matter at saturation density
is found to be attractive. But on the other hand, contra-
dicting results were found for the X' potential. Moreover,
only few double-A hypernuclei were studied indicating an
attractive A-/A potential and no other pairs of hyperons as
A-Z or E-= were observed.

Allowing for a possible transition to hyperonic mat-
ter results in a softening of the EOS at densities ny, > 2ng
and, as a consequence in a decrease of the maximum mass.
This is illustrated in fig. 8, where M-R relations at various
spin frequencies are plotted for the DH EOS and for the
EOS obtained within the RMF (relativistic mean field)
approach with the TM1 model [86], as an example. For
the latter four different EOS for the core are shown. The
first model noY corresponds to a purely nucleonic compo-
sition. Three models allowing for a transition to hyperonic
matter at high density are plotted. In the Y model, the
vector-isoscalar hidden-strangeness ¢ mesons is included
and vector-mesons couplings to baryons are given by the
SU(6) symmetry following [87]. The ¢ meson which is cou-
pled to hyperons only, yields an additional repulsion be-
tween hyperons and thus leads to a stiffening of the EOS
and an increase of the maximum mass. The Yss includes
in addition to the ¢ meson, the scalar-isoscalar hidden-
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Fig. 8. (Colour on-line) M-Req relations for non-rotating and
rotating stars, at 700 and 900 Hz. Results are shown for the DH
(unified) EOS and various versions of the TM1 one, with three
different composition in the inner core. See text for details.

strangeness ¢* meson in SU(6) symmetry following [87].
This meson which also couples to hyperons only, enables
reproducing a weakly attractive A-A potential [88]. The
consequence of its inclusion is a mild softening of the EOS
and thus a slight decrease of the maximum mass as can be
seen from fig. 8 for non-rotating stars. Finally, the Yssz
model corresponds to the Yss one except that SU(6) sym-
metry is broken following [64]. The effect of this breaking
is studied in detail in, e.g., [89]. The specific choice of
parameters in the Yssz model, results in a stiffening of
the EOS, which becomes even stiffer than the Y model
although ¢* mesons are included. As a consequence the
maximum mass is the highest of all the hyperonic models
but nevertheless lower than the one for a purely nucleonic
star.

Observations of massive neutron stars with a mass
2Myg [7,2] are therefore challenging for hyperonic EOS.
Reconciling the possibility of a transition to hyperonic
matter at high density with observations of massive NS
requires solving the so-called “hyperon puzzle”. In [11], a
systematic study of all EOS for hyperonic matter, consis-
tent with a 2Mg maximum mass, available at the time
of publication, was conducted (14 EOS, all but one being
RMF models). It was shown that all of them give pressures
in pure neutron matter at densities close to ng which are
too large compared with recent precise many-body calcu-
lations for pure neutron matter. These calculations were
performed using two different approaches: quantum Monte
Carlo method [90] and chiral effective field theory [91],
and are in a remarkable mutual agreement. A large pres-
sure for n, < ng < 2ng in fact is needed to balance
the hyperon softening at higher density, and is correlated
with large radii: R > 13km for neutron stars with masses
M = 1.0-1.6Mg. Hyperonic EOS consistent with a 2M,
maximum mass and with a pressure close to ng consistent

with [90,91] are obtained in e.g. [85,92]. In [93] a RMF
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model, so-called KVOR, where hadron masses and cou-
pling constants are scaled by functions depending on the
scalar field is formulated. Hyperonic NS with M > 2M,
are obtained in two versions of this model. The MKVORH
one [94] assumes a relatively low value of the nucleon ef-
fective mass at saturation and yields My = 2.2-2.3M¢
and Rj 4 = 12.2km while the KVORcut3 version [95] has
higher effective mass at ng and My, = 2.0-2.3M, for
Ri4 = 13.0km. However, even at maximum mass the
strangeness per baryon is very small: <3 x 1072, A solu-
tion to the “hyperon puzzle” is therefore reached in [94,
95] when there are nearly no hyperons.

Figure 8 also presents M-R relations for NS rotating
at 700 and 900 Hz together with M-R relation for NS ro-
tating at the mass-shedding limit fx. Let us now compare
results for the DH and TM1 EOS. On the one hand, the
increase of the maximum mass due to rotation is larger
for the TM1 EOS, with larger radii for non-rotating con-
figurations, than for the DH EOS. On the other hand,
the increase of the minimum mass, which is located at
the intersection between the fx curve and the M-R one,
is larger for the TM1 EOS, for a given rotation rate. In
other words the DH EOS, which has smaller radii for non-
rotating models than the TMI1 one, has for a given rota-
tion rate a broader range of masses than TM1. Under the
effect of rotation the M-R relation for TM1 become flat-
ter than the DH EOS. The property that M-R relations
become flatter for EOS with larger radii for non-rotating
configurations than for those with smaller radii is even
more dramatic for very high spin frequency, close to the
Keplerian frequency [96]. For the TM1 model, the softer
the high density part (e.g. when comparing the Yss EOS
to the Y one), the smaller the increase of M,.x and the
larger the increase of R(Myax) with rotation. As a conse-
quence for a given rotation rate, the M-R curve is flatter
for the softer TM1 EOS and the narrower is the stellar
mass range.

There exists very few unified EOS, in the sense that the
same nuclear interaction model is used to describe both
the clusterized matter in the crust and the homogeneous
one in the core [63,97]. Two non-unified EOS for the crust
and the core are usually “glued” together by ensuring that
the pressure P(ny,) and energy density p(ny,) are increas-
ing functions of the baryon number density n;,. However
there is no unique prescription for the transition between
two different EOS [92]. For example in fig. 9 three possi-
ble choices of “gluing” for the same crust and core EOS:
the DH [63] and NL3 RMF models [98] are shown. The
NL31 EOS corresponds to gluing DH and NL3 at the den-
sity at which the P(ny,) relations for the two EOS cross:
n, = 0.046 fm~3. For the NL3h EOS, the core EOS is
glued to the crust at n, = 0.16 fm=3. Finally, the EOS
NL3u corresponds to using the same nuclear model for
both the crust and the core for the NL3 parametrization.
The crust model is taken from [99], where the Thomas-
Fermi approach is used to describe the clusterized matter
in the crust. Similarly, unified EOS for the TM1 model
are shown in fig. 8. Figure 9 shows the M-R relations
obtained for the three NL3 EOS: for non-rotating stars
the difference in the equatorial radii between the EOS de-
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Fig. 9. (Colour on-line) M-Rq relations for non-rotating and
rotating stars, at 700 and 900 Hz. The NL3 EOS is used for the
core. Three different core-crust matchings are used: one using
a unified crust (NL3u) and two using the DH EOS for the crust
(NL3I and NL3h). See text for details.

creases when the mass increases but can be as large as
4% of the radius for a 1.4Mg NS and 3% for a 1.6Mg
NS. For a given mass the difference in radii between vari-
ous matching prescriptions increases with spin frequency.
For example for a NS rotating at 700 Hz the difference in
radii increases to 13% and 6% of the radii for a 1.4 and
1.6 Mg NS, respectively. Therefore calculations of unified
EOS is of great importance in order to properly describe
the macrophysical properties of NS [92].

5.2 Hybrid stars

Some theories of dense hadronic matter predict a decon-
finement of quarks at densities achievable in the cores of
massive NS. The phase transition from the baryon phase
of matter (N) to the deconfined quark matter (Q) is usu-
ally assumed to be of first order. It softens the EOS due
to the density jump at constant Pxq (transition between
pure N and Q phases with a density jump at the interface
A = pq/pN), or via a mixed-phase region. In spite of this
softening, the existence of 2M pulsars does not exclude
quark cores in NS, but imposes rather tight constraints
on the EOS with N-Q transition [100,101]. Two subse-
quent phase transitions through the intermediate quark
phase energetically preferred in a rather narrow range of
densities were also considered [102-105].

In all these cases the density jump (or two jumps) is
the main source of softening of matter at the transition
pressure Pyg determining M (F.), the M(R) dependence
in the vicinity of the configuration Cy with central pressure
equal to the phase transition pressure P. = Pxg.

It should be mentioned that the baryon-quark phase
transition between two phases can proceed through a
mixed phase [106,74] in which the condition of local charge
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neutrality (for the two phases separately) is relaxed. Al-
though the properties of stars (mass-radius relation) are
not the same for an EOS with phase transition involv-
ing a mixed or pure phases, significant differences are
observed for a rather small region of central pressures
(close to the transition pressure). Global properties such
as the existence of instability regions, “twins” and maxi-
mum mass of hybrid star are very similar [107].

The conditions for the quark EOS resulting from the
maximum mass constraint (Mpyax > 2Mg) are the follow-
ing: the softening effect of the first order phase transition
has to be compensated by a stiff quark EOS (larger A
corresponds to a larger sound velocity cq of the quark
phase, [104]). The EOS for the baryon phase should also
be relatively stiff —the configuration Cy cannot be too
compact and close to the maximum mass for the N-phase
stars. If the latter requirement is not fulfilled, the phase
transition at the center leads almost immediately to the
dynamical instability and gravitational collapse of a hy-
brid star. For phase transitions to quark matter at den-
sities 2.5-3.5n9, the sound velocity in the quark phase®
should be larger than 0.6c¢.

Benic et al. [109] presented the possibility of the exis-
tence of high-mass twins —two families of dense objects
(baryon and hybrid stars) with masses about 2M. In
their model two conditions discussed before are fulfilled:
the matter in the NJL8 quark phase is stiff (¢s ~ 0.6-0.9¢),
and the compactness of the Cy configuration for ~ 2Mg
is not large, but comparable with the compactness of a
typical nucleon NS with M = 1.4M; and R ~ 11km.

In fig. 10 we present the M-R.q relations for the model
with a first order phase transition to quark matter (Q, the
black curve). The effect of rotation for hybrid stars is sim-
ilar to that of hyperon stars (fig. 8), although in this case
the relatively large stiffness of the quark matter EOS leads
to the maximum mass larger than for a baryon star. The
minimum mass of the hybrid star rotating with f = 700 Hz
is larger than 1My, much larger than for the DH EOS, and
comparable to the hyperon stars discussed in sect. 5.1. We
should stress however that this minimum mass (Keplerian
configuration for f = 700 Hz) corresponds to the star com-
posed entirely of non-strange, nucleon matter (P, < Pyg).
The large value of M, is an indirect consequence of the
EOS softening at high density and the M. > 2Mg re-
quirement, which results in a large radius (i.e., small com-
pactness) of the Cp configuration.

6 Limits on rigid rotation

6.1 Keplerian (mass-shedding) limit

Consider a static (f = 0) NS of gravitational mass M
and baryon mass My,. Then construct a sequence of rigidly

5 These results were obtained for a simplified quark EOS
with constant sound velocity. It was shown however, that this
form of P(p) dependence approximates well the EOSs ob-
tained for more sophisticated, microscopic models of quark
matter [108,104].
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Fig. 10. (Colour on-line) DH (unified) EOS and BM165 [110]
with and without phase transition to quark matter. Quark
phase is approximated by linear dependence P = a - (p — b)
with @ = 0.5¢* and the density jump at the phase transition
A = 1.2. For details see [108,104].

rotating configurations with the same M), and increasing
f- This sequence will terminate at the mass-shedding limit
with the Keplerian frequency fk. At this limit the spin
frequency of the NS is equal to the orbital frequency of a
test particle on a circular orbit corresponding to the NS
equator. For f > fk hydrostatic equilibria of a NS with
baryon mass M}, do not exist.

As we have seen in sect. 5, the EOS that predicts hy-
peronization and therefore a softening after the hyperon
threshold at p ~ 2pg, has to contain a sufficiently stiff nu-
cleon segment pg < p < 2pp, in order to get Myax > 2Mg
in spite of the hyperon softening. This implies that the
radii of the pre-hyperonic NS with pg < p. < 2p¢, and in
particular the radius of 1.4Mg NS with this EOS, R{"),
are expected to be larger than those of “standard” NS

with nucleon cores, Rﬂ). A rough Newtonian argument
about the centrifugal force o qu, predicts therefore that
for the same moderate Mg mass: 1) the Keplerian fre-
quency for EOS with hyperonization is smaller than for
purely nucleonic EOS, 2) the difference R((;I;) — Rg(\;) grows

with increasing f (see fig. 11). It should be stressed that
both properties are valid for M < 0.9 Mrﬁfgit) [11].

The results reviewed above can be corroborated quan-
titatively by theoretical considerations. For a non-rotating
spherically symmetric NS of gravitational mass M and
circumferential radius R the orbital frequency of a test
particle in a circular orbit of radius 7o, > R is [111]

1 (GM\'?
forb = 5 () .

3
2w \ 7o

(12)

According to the Birkhoff theorem the formula is the same
as for a central point mass M. For a static, spherically
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Fig. 11. (Colour on-line) For a given mass, as a function of
the spin frequency f, difference in Req between configurations
for the DH EOS and different matchings for the NL3 EOS. See
fig. 9 and sect. 5.1 for details.

symmetric NS of mass M we therefore get

f B sphii GM 1/2
orb — JK *271_ R3 )

which is identical with the Newtonian formula for a mass-
shedding limit for a spherically symmetric self-gravitating
star.

It has been shown, with a precision of a few percent,
that the formula for fx, eq. (13) holds also for realistic
NS at the Keplerian limit provided we replace R by the
equatorial radius at the Keplerian limit Rk [96]. The high
precision comes as a surprise, because a NS at the Keple-
rian limit is strongly flattened and rapid rotation produces
strong frame-dragging effects in the exterior space-time.

The formula
o i GM\ V2
K= or Rf’( ’

which is (surprisingly) so precise for NS, but not close to
maximum allowable mass: My < 0.9 M52t holds strictly
for the relativistic Roche model with extreme central con-
densation of mass [112-114]. It should be stressed that
validity of this model breaks down near M52t Moreover,
the formula (14) is much less precise for strange quark
stars built of self-bound quark matter which are charac-
terized by a rather uniform density [114].

For practical applications, one can use the empirical
formula of ref. [114], valid for NS with and without an

exotic core:

M, 1/2 R, —3/2
fK(MS)~1.08kHz(M®) (mm) , (15)

(13)

(14)

where Mg and Ry are mass and radius of a static config-
uration of the same baryon mass as the Keplerian config-
uration. It holds for 0.5Mg < Mg < 0.9M52t and implies

max
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I(<H)(MS) < fI((N)(MS) for M < 1.6My. Note that the em-
pirical prefactor 1.08 kHz is larger than 1.00kHz which
corresponds to the relativistic Roche model.

6.2 Maximum frequency of stable rotation

The empirical formula for the absolute maximum of f for
stably rotating configurations with a given EOS, fiax ([6]
and references therein), is of a different character than
eq. (15). Namely, the formula for fp,.x results from an ap-
proximate but quite precise correspondence between two
extremal configurations: the static configuration with a
maximum allowable mass, M32%, Ryzseae, and another ex-
tremal configuration, which is stably rotating with a max-
imum allowed frequency (called maximally rotating con-
figuration). This extremal configuration is stable with re-
spect to mass-shedding and stable with respect to axisym-
metric perturbations (large filled dots in fig. 3),

M Y2 Raggeas \

(16)
The prefactor 1.22 kHz is significantly larger than 1.08 kHz
in eq. (15). Moreover, in contrast to eq. (15), the for-
mula for fax is valid for both NS and self-bound quark
matter stars. However, it can be used to constrain only
static configuration with the maximum allowable mass.
Assuming M52 = 2.0Mg and Rpgsee = 10km one gets

max

Frnax = 1725 Hz.

fmax[EOS] ~ 1.22kHz (

6.3 Constraint from f°> = 716 Hz

Figures 3, 8 and 10 readily illustrate that the minimum
mass of a rotating NS, Mr{lin, is sensitive both to f and
to the EOS. This is to be contrasted with the minimum
mass of a static NS, which is rather weakly dependent
on the EOS (provided it is a unified EOS, so that the
crust and liquid core are calculated using the same nuclear
interaction model). We get M2t ~ (0.1M (see [6] and
references therein).

In fig. 12 the relations My, (f) obtained for two uni-
fied EOS: TM1 and DH are plotted against the frequency
and mass® of observed NS with f > 100Hz, together
with the maximum observed frequency. This figure, figs. 8
and 10 show how sensitive M716H% is to the nucleonic
segment of the EOS for ny < 2ng. For the DH EOS,
M > M8z — 0.75M while for the stiff TM1 EOS:

min
M > MT6H2 — 1.99)M. As a consequence, the observa-

tion of a fast-rotating NS with a low mass could poten-
tially constrain the EOS. For example if a NS is observed
with M < 1.5Mg and f = 800Hz, then the TM1 EOS
would be ruled out. Nevertheless, for the time being, no
current observation provides such a constraint, as shown
in fig. 12.

5 See, e.g., http://stellarcollapse.org/nsmasses, www3.
mpifr-bonn.mpg.de/staff/pfreire/NS masses.html or [115].
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Fig. 12. (Colour on-line) Observed frequency f vs. measured
mass M of radio MSP (with f > 100 Hz). Observational data:
see table 1 in the appendix. Black up-pointing triangles: NS
in Galactic binaries with a white dwarf (WD); blue down-
pointing triangles: NS in a binary with a WD in a globular
cluster (GC); red squares: NS in Galactic binaries with a
main-sequence star; green dot: NS in a binary with a NS in a
GC. No NS with measured mass in a Galactic NS-NS binary
rotates with f > 100 Hz. The grey line indicates the measured
frequency of the fastest rotating NS, PSR J1748—2446a. The
dashed lines correspond to the relation between the minimum
mass of rotating NS and the frequency for the DH EOS (in
black) and the TM1 EOS (in red).

7 Rotation, stability and dynamics
7.1 Back-bending and stability of rotating stars

The appearance of a new phase at the center of a NS re-
sults always in a softening of the EOS. For the global prop-
erties of NS the consequence of this softening is a slower
increase of the stellar mass and total baryon mass as cen-
tral pressure increases. For significantly strong softening
of the EOS and sufficiently large star mass this feature
can be observed in the case of the evolution of an isolated
pulsar as the so-called back-bending phenomenon —the
epoch at which the angular momentum loss due to the
evolutionary processes leads to the spin up of the star. As
a rigidly rotating star of a fixed total baryon mass Mj,
loses its angular momentum J, the central pressure and
density increase. For a strong softening of the equation of
state above a critical density it is possible (for some range
of My) that for a slowing-down star the central density
crosses this critical value and the core of a new, dense
phase develops in the center. Then the star shrinks with
a significant decrease of the moment of inertia I and this
has to be compensated by the increase of rotational fre-
quency {2 to fulfill the equality §J = 261 + 15f2. The
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Fig. 13. The back-bending phenomenon for an EOS softened
by a mixed phase at high density. Shown are evolutionary
tracks for an isolated NS losing its energy and angular mo-
mentum J (the total baryon mass is fixed along each curve,
M1 < Mpa < Mys). For a sufficiently large mass (M > Myz2),
spin-up due to angular momentum loss is observed.

back-bending phenomenon (associated in fig. 13 with an
“S” shape of the J(f) curve) was proposed in [116] as a
signature of a phase transition to an exotic state of matter
in the center of a spinning-down pulsar (for example the
appearance of a mixed-phase core at the star center). It
should be however mentioned that a similar behavior can
be also caused by hyperonization of dense matter, pro-
vided that the EOS softening above the hyperon threshold
is strong enough [117].

The back-bending phenomenon is not the only conse-
quence of the softening of the dense matter EOS. For a
significant softening the result could be even more spec-
tacular —a region of configurations which are dynamically
unstable appears. Increasing the softening of the EOS fi-
nally results in a non-monotonic behavior of J along an
evolutionary track with a fixed M. Configurations in a
region where J increases with increasing p. are unstable
with respect to small axisymmetric perturbations (fig. 14).

The discussion of the existence of the back-bending
phenomenon or the stability of the rigidly rotating config-
urations can be performed by the analysis of the extrema
of three basic, macroscopic parameters of the rotating star
that are well defined in GR —M, My, and J as functions of
any variable which parametrizes stationary rotating stel-
lar configurations, for example central density p., pressure
P, or equatorial radius Req.

The change in stability of a rigidly rotating configura-
tion (from stable to unstable or vice versa) corresponds to
an extremum of the two parameters from the {M, M, J}
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Fig. 14. Total stellar angular momentum J as a function of
rotational frequency f for evolutionary tracks of an isolated NS
with fixed baryon mass. The softening of the EOS is stronger
than in the case presented in fig. 13, which results in unsta-
ble region where J increases with increasing central density
(dotted line).

set, with the third parameter fixed [53]. According to the
turning-point theorem, the stability of a rotating configu-
ration can be stated by checking that

oM OM,, oJ
(aR>J>O’ (aR>J>°’ <&&)Mb<&

(17)
The back-bending phenomenon corresponds to the exis-
tence of a region in which, due to some evolutionary pro-
cesses, the rotational frequency f increases with a decreas-
ing total angular momentum J. It can be written as

aJ
— <0, 18
(3., 1)
or, equivalently,
oM,
. 1
( op. )f <0 (19)

The condition for the back-bending phenomenon in
eq. (19) is similar to the second relation in eq. (17) with
J replaced by f. The back-bending manifests itself in the
existence of a local minimum of the My(z) curves plot-
ted for fixed frequency f. However in order to decide if
the configurations which are subject to back-bending are
stable one has to analyze M, (x) relations for fixed total
angular momentum J.

In fig. 15 rotating configurations exhibit back-bending
for frequencies f > fo and baryon masses larger than
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Fig. 15. Baryon mass vs. central baryon density for a
schematic EOS softened by a mixed phase. The rotational fre-
quency is fixed along black, thick curves. Blue (thin) lines cor-
respond to the fixed total angular momentum.

~ 1.91 M marked by a thin, red horizontal line. All con-
figurations presented in fig. 15 are dynamically stable,
(6Mb/anc)J > 0.

In fig. 16 the case of strong softening is presented.
There exists a region of dynamically unstable configura-
tions defined by the condition (9My,/dn.) s < 0.

The decreasing parts of My (n.) relations, marked
by dotted lines in fig. 16, which correspond to unsta-
ble configurations define the instability strip separating
two branches of stable, rotating configurations —one, less
compact, with maximum mass defined by the onset of in-
stability due to the softening of EOS and the second one
with maximum mass corresponding to the threshold for
the collapse to black hole. The analysis of the large set of
EOS with softening through a mixed phase or first-order
phase transition at constant pressure indicates that the
existence of these two families does not depend on the ro-
tational frequency (however, the width of the instability
strip does depend on f). Equivalently the instability strip
starts at non-rotating configurations and continues up to
the Keplerian limit— these two families are disjoint in the
M (Req) or M(P.) plane.

The turning-point theorem is a sufficient condition.
Recent numerical simulations by [118] study the onset of
the dynamical instability for rotating stars and obtain it
slightly below the maximum mass (at fixed angular mo-
mentum J). The relative difference of M is of the order of
103 for rapidly rotating configurations; for most astro-
physical purposes the turning-point theorem is therefore
precise enough to locate the instability regions by means
of stationary calculations.
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Fig. 16. Baryon mass vs. central density for the schematic
EOS softened by a mixed phase. Strong softening results in
the existence of unstable configurations (dotted lines).

7.2 First-order phase transition and instability

For a continuous EOS (P(p) with hyperonization or with
a mixed-phase segment) all macroscopic parameters (M,
My, J) are smooth functions of a central pressure P, or
central density p.. As a consequence all derivatives in
eq. (17) exist and extremal configurations corresponding
to the onset of instability are defined by the vanishing of
these derivatives:

oM\ oM, ary\
(aPc>J‘°’ (aPc)J‘O’ (aPc)Mb‘O'

(20)
However, if the EOS exhibits a first-order phase transition
(e.g. the Maxwell construction and phase transition to a
new phase at fixed pressure Pyg, see sect. 4.1) the P(p)
relation is discontinuous at P = Pyg with a density jump
pN — pE. Let us stress that in the present section we as-
sume full thermodynamic equilibrium (no metastability).

In this case an increase of the central pressure due to
evolutionary processes, resulting in P, > Py, leads to the
appearance of a small core of the dense phase at the center
of a star with a density jump (pn — pr) at the boundary
separating the two phases. For a non-rotating star this
density jump results in the non-continuous change of the
derivatives of the main global parameters of a star (X =
M, My,) with respect to the central pressure [119]:

(j})){) _ (3—2X2 4 3an)(L + 2n) (j;() R
c/ R ¢/ N

(A +3zn)(A + zN)
where A = pg/px is the density jump and o5 = Pxg/pnc?.
The derivatives with subscript N and E are taken, respec-
tively, at a pressure infinitesimally smaller and larger than
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Pxg. The direct consequence of eq. (21) is the stability cri-
terion for a stellar configurations with a small core of the
new, dense phase. The stability condition is given by the
inequality [120,121]:

3

A< it = 5(1 + aN). (22)

We define a “weak” first-order phase transition with a
relatively small density jump for which the condition in
eq. (22) is fulfilled. This case is presented in fig. 10 with a
phase transition to quark matter with A = 1.2. The soft-
ening of the EOS manifests itself as a sudden change of the
slope of the M (R) curve as a new phase of matter appears
at the center. For a “strong” first-order phase transition
(A > Aait) the derivatives dM /d P., d M, /d P, change their
sign at P, = Pyg and stellar configurations with a small
core of dense phase in the center are dynamically unsta-
ble. The oscillatory mode (radial) which is in this case
unstable has no counterpart for one-phase configurations.
The main feature of this oscillations is the flow of a matter
through the pulsating boundary between two phases —the
frequency of this mode is proportional to v/3 — 2\ + 3z,
which directly means instability for A > At and collapse
into a new configuration with a sizeable E-core [122].

8 Modeling of minicollapse
8.1 Dynamics

The existence of two disjoint families has important conse-
quences for the evolutionary tracks of isolated and accret-
ing NS. The loss of angular momentum moves an isolated
NS leftwards along constant My, lines on the M, (Req)
plane (fig. 17). Once it reaches the instability strip, it col-
lapses into a more compact counterpart with the same
total angular momentum J (arrows in fig. 17). The dy-
namical properties of this minicollapse were studied using
general-relativistic (GR) numerical codes [76,123]. The
prefix mini is reflecting the fact that the changes of stellar
parameters (radius, moment of inertia, frequency of rota-
tion) associated with collapse under consideration are usu-
ally small. However, for a strong first-order phase transi-
tion the radius can shrink by ~ 10% (see figs. 17, 18). The
distribution of a specific angular momentum in a collaps-
ing star differs from those in the rigidly rotating initial and
final configurations, because a differential rotation profile
develops during collapse. However, the degree of differ-
ential rotation is found to be small and the assumption
about the conservation of the total angular momentum
of the collapsing star J seems to be justified. The energy
release in the minicollapse turned out to depend weakly
on J. However, it strongly depends on parameters of the
EOS and of the phase transition itself. The formation of
an E-core is followed by NS pulsations and the generation
of gravitational waves, as described in more detail in the
following subsections.
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Fig. 17. Total baryon mass My, vs. circumferential equatorial
radius Req for stationary non-rotating NS (thick line), and NS
rotating at fixed angular momenta J. Dotted segments denote
the unstable configurations. The minicollapses are marked by
arrows.
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Fig. 18. Total baryon mass M), vs. circumferential equatorial
radius Req for stationary non-rotating NS (thick lines) and NS
rotating at a fixed angular momentum J, for two models of the
phase transition weak and strong. Dotted segments correspond
to unstable configurations. The minicollapses are marked by
arrows. The arrows above the Cjy configuration correspond to
a minicollapse from the metastable (overcompressed) phase N.
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8.2 Metastability, rotation, and the total energy
release

The metastability of the N phase at the center of evolv-
ing NS can be parametrized by the overpressure AP =
P..it — Pxg at which the E-phase nucleates in the N-
phase triggering a minicollapse from the initial configu-
ration with central pressure P. = P..;; > Pyg.
Mini-collapses for different AP are schematically pre-
sented in fig. 18 in the case of weak and strong phase tran-
sition and for rotating and non-rotating stars. Because for
a strong phase transition two branches of stable configura-
tions are separated, the minicollapse is possible even with-
out a overpressure AP = 0 (thick arrows in fig. 18) with a
total energy release (difference) of the order of ~ 10%! erg.
For a weak first order phase transition the overcompres-
sion and the existence of a metastable core is the only
cause of a minicollapse and without overpressure the en-
ergy release is AE(AP = 0) = 0. An overcompression of
the order of 5-10% leads to a AE ~ 10°° erg for a weak
phase transition and to an increase of AE by ~ 10°! erg
for a strong one [67,68]. The dependence of the energy
release on AP is very weakly affected by the rotation rate
and can be approximated with a very high accuracy by
the values obtained for non-rotating stars (see [67,68]).

9 Astrophysical signatures of a minicollapse
of neutron star

A phase transition in a NS core, that induces a dynamical
minicollapse of NS, is associated with heating of stellar
interior, matter flow, and NS pulsations. It is important
to remind, that the very essential dynamical character of
minicollapse is based on the assumption that the conver-
sion of the matter into an exotic phase is of a detona-
tion type. We assume that the N — E conversion front
moves at supersonic speed, driving a shock wave in the
N-envelope.

9.1 Surface glowing, and a delayed re-brightening

The dynamical and thermal effects were studied in hydro-
dynamical simulations of spherically symmetric minicol-
lapses induced by pion-condensation in hadronic matter
in [124], where the references to previous works can be
found. The Newtonian approximation was used, and ther-
mal effects, such as heating and cooling, were considered.
The initial temperature of the NS interior was assumed to
be 108 K. For an assumed model of pion-condensation, the
total energy release AE was typically ~ 10%" erg (notice
that this quantity is strongly dependent on the phase-
transition model). This energy was liberated in ~ 0.4 ms,
and split into heating of the exotic core due to a latent
heat and matter compression, and into heating of the N-
matter outside the E-core due to the compression. The ki-
netic energy of the matter flow was mostly imparted into
the NS pulsations. The exotic (inner) core was heated to
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~ 10" K, and the outer core and crust to some 10" K.
We expect that the shock wave strongly heated the NS
surface [125-127] albeit this was not modelled in [124]
due to a too low spatial grid resolution. The NS-core
was rapidly cooled by neutrino radiation, so that after
few hours most energy generated by the minicollapse has
been carried out by neutrinos. By that time NS pulsations
have been damped. The heat content in the N-envelope,
with cooling timescale orders of magnitude longer than
for the E-core, was diffusing to the NS surface, leading
to its delayed brightening. This brightening was associ-
ated with surface X-luminosity Ly increasing during 30 yr
after minicollapse. Then Lyx dropped by many orders of
magnitude, on a much shorter timescale, because the heat
content of the N-envelope had been exhausted.

9.2 A gamma-ray burst?

A minicollapse due to pion condensation was proposed to
explain a famous very energetic burst of gamma rays of
5th March 1979, coming from supernova remnant N49 in
the Large Magellanic Cloud [125,126]. The initial gamma-
ray pulse had a very short rise time of < 0.4 ms, indicating
a dynamical character of the burst mechanism. It was then
followed by a pulsed decaying photon flux, suggesting NS
rotation (8s period was however a puzzle at that time).
A shock wave sent from the collapsed pion-condensed core
propagated towards the NS surface, heating it to high tem-
perature and allowing for an energetic burst of gamma
rays. The model was further elaborated in [127]. These
authors used the minicollapse parameters following the
models of [128] as far as the energetics of the burst was
concerned. The minicollapse scenario for the source of the
5th March 1979 event was further studied in [82].

An essential progress in the gamma-ray astronomy,
started in 1990s, led to a conclusion that the source of
5th March 1979 was not a typical gamma-ray burster. It
was actually an exceptionally strong outburst from a soft-
gamma ray repeater (SGR). SGRs belong to a subpop-
ulation of magnetars, slowly rotating (rotation period of
several seconds, consistent with 8 s period of pulsations
in the tail of the 5th March 1979 burst) and highly mag-
netised (10'4-10'5 G) NS. A SGR emits GRB at irregular
intervals, from hours to years and longer. The bursts from
SGR are powered by magnetic field, and they are triggered
by crust-quakes and are associated with magnetic field an-
nihilation and reconfiguration. Only seven SGR are known
today, and they are obviously not related to minicollapse
which occurs only once in a NS lifetime.

Can a minicollapse due to a phase transition in NS
core produce a class of regular non-repetitive GRBs that
occur at cosmological distances larger than 100 Mpc, thou-
sands of which were detected since 1990s? Unfortunately,
here the minicollapse and shock heating model faces a
very basic problem, pointed out using detailed numerical
simulations in [129]. Consider a hot layer of relativistic
plasma created by the shock wave at NS surface. It is an
element of a fireball which is a precursor of GRB. In order
to produce a typical GRB at cosmological distance such
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shock-produced fireball has not only to be sufficiently en-
ergetic (E'P > 105 erg) but should also contain a not
too large amount of baryons (MP < 107°Mg), so that
the so-called Lorenz factor I'** = Eb-/MEPc? > 100
(see, e.g., [130]). In other words, the initial fireball should
contain a nearly pure mixture of photons, neutrinos, and
ete™ pairs that make it opaque: the contribution from the
kinetic energy of baryons should be negligibly small. Un-
fortunately, even for the most optimistic models of the
shock-wave propagation (no neutrino losses, no photo-
disintegration of nuclei) the best one can get is EfP =
1046 erg for I'"P* = 40, which is only 10~° of the required
energy [129].

9.3 A burst of gravitational waves

Such astrophysical signature of a minicollapse was stud-
ied in [76,123], which give also references to the previous
work. The phase transitions considered were associated
with quark deconfinement and kaon condensation. GR hy-
drodynamics was used in the 3+1 formulation, but ther-
mal effects were not included. Both studies were concen-
trated on dynamics of minicollapse of a rotating neutron
star and on the potential importance of minicollapse as a
detectable source of gravitational waves (GW). The degree
of differential rotation due to a minicollapse was found to
be small. Pulsations induced by a minicollapse, when cou-
pled to rotation, break the axial symmetry. This opens the
possibility of a GW radiation in a burst (10-100 ms long),
which if occurred at 10kpc, could be detectable by the
current second-generation interferometric detectors, like
the Advanced LIGO (back online since September 2015),
the Advanced Virgo (which will resume operations in the
middle of 2016) [76,123], and the planned Einstein Tele-
scope, a third-generation underground detector [131].

10 Effect of the crust formation scenario on
the M-R relation

It is usually assumed that the NS crust is composed of
cold, catalyzed matter. This is a good approximation when
the outer layers of a NS are formed at the birth in a stellar
core collapse, when T > 109K allows for nuclear equi-
librium in dense matter. However, for a NS that passed
through the long stage of accretion of matter from a stel-
lar companion in a binary system (e.g. NS recycled to mil-
lisecond pulsars in low-mass X-ray binaries) the crust is
formed from the accreted layers of matter and its composi-
tion is widely different from that of catalyzed matter [132,
133]. In view of these two possible formation scenarios we
have different EOS of NS crust, composed of catalyzed or
accreted matter. The latter EOS is stiffer than the for-
mer, which results in a different thickness of the crust and
different radii, Race(M) > Reas(M) [132,134].

The formation of a fully accreted crust would take
~ 107 yr for a mean accretion rate 1079Mg yr~—! typi-
cal of low-mass X-ray binaries. For a 1.4Ms star and
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Re.t = 12km one gets Race — Reat =~ 100m. The difference
in the equatorial radius grows faster than quadratically
with the rotation frequency and depends quite strongly on
Rear(f = 0). For 716 Hz, 1.4Mg and Reat(f = 0) = 12km
the difference in equatorial radii is 140 m [134]. This means
that the effect of the formation scenario is significantly
smaller than the uncertainties in the measurements of R
(sect. 2).

11 Discussion and conclusions

In order to unveil the structure of dense matter of density
up to ten nuclear densities, we confront theoretical mod-
els with measured NS parameters. Theoretical models are
legion. The discovery of two radio pulsars of 2M, resulted
in an essential progress by putting strong constraints on
the EOS, but did not produce a satisfactory answer to
our fundamental question: do massive NS contain exotic
cores? Crucial for solving this problem are precise mea-
surements of NS radii with known masses. As for today,
the determinations of radii are neither sufficiently precise
nor reliable to give a definite answer. Hopefully, the sit-
uation may change in the future, thanks to the progress
in X-ray astronomy. The task is very challenging, and re-
quires, e.g., knowledge of distances to NS with precision of
the order of two percent. It is regrettable that the LOFT
mission will not fly in the near future, because it was of-
fering some very special opportunities for NS radii mea-
surements [26]. We can only hope that other missions like
NICER [24] and Athena [25] will be successful in this re-
spect.

All NS rotate, and many of those which are good tar-
gets for radius measurement are millisecond pulsars rotat-
ing at more than 400 Hz. There is a rather strong interplay
between the rotation and the NS EOS, and therefore for
both principal and practical reasons it is advantageous
and very often mandatory to use accurate GR formal-
ism, with a consistent choice of space-time coordinates, to
calculate 2D hydrostatic equilibrium of rotating NS. The
slow-rotation approximation is not suitable for checking
stability, and does not allow the correct description of pro-
cesses where fulfilling conservation laws is crucial. There-
fore we encourage to use public domains precise 2D codes
such as LORENE/nrotstar or RNS” in the studies that will
eventually determine the true EOS of NS.

The use of precise 2D codes is particularly important
for studying phenomena associated with softening of the
EOS due to the appearance of the exotic phase. In par-
ticular, we explained this using the example of the back-
bending phenomenon and the loss/gain of stability in the
spin evolution of NS.

Since the discovery of 2Mg pulsars, there were nu-
merous works showing the possibility of the existence of
hyperonic matter models that yield Myax > 2Mg. As we
showed in the present review, these dense matter models
had a rather stiff pre-hyperon segment of the EOS, result-
ing in rather large radii of stars with M ~ 1.4Mg, usually

" http://www.gravity.phys.uwn.edu/rns/ .
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R4 > 12km. We argue that this EOS feature is ampli-
fied by rotation, and leads also to a rather high minimum
mass of rotating NS.

A fully consistent calculation of the NS radius should
in principle be performed for a unified EOS, where the
crust and the outer layer of the core are described using
the same nuclear model. Besides, “gluing” two different
EOS based on different nuclear models is, to a large extent,
arbitrary and unphysical.

The scenario for the formation of the crust (accretion
in a close binary system or cooling down after the NS
birth in supernova explosion) has a small effect on the
M-R relation. The accreted crust is thicker by ~ 100m
at 1.4Mg . Rotation at 716 Hz increases this difference by
some 50%.

The presence of a quark core in NS is not excluded by
observations of 2M, pulsars. However, if a quark core in
such hybrid stars contains a sizeable fraction of the star’s
mass, quark matter has to be stiff enough (sound speed
> 0.6¢) and deconfinement should occur at not too low
density (2.5n¢0—3.5n9, and the density jump at the core
edge should be small). Finally, the last purely hadronic
star should have a rather large radius > 12km and a mass
not much higher than 1.5Mg [104,135]. Response to rota-
tion is strong, with My, (716 Hz) > 1M,

For a strong first-order phase transition to quark mat-
ter (large density jump at the quark core edge) we obtain
a family of very massive 2 2Ms hybrid stars separated
from less compact massive hadron stars; in this way one
finds massive configurations of hadron and hybrid stars of
the same M ~ 2Mg but with a different structure and
radius (hybrid and hadron twins; the hadron twin has a
significantly larger radius > 14km than the quark-core
twin [109]). We may expect that the M-R curve of these
disjoint families will be quite sensitive to rotation.

Generally, phase transitions in NS cores can have
a strong effect on the M-R relation for NS. Our dis-
cussion in the case of the first-order phase transitions
studied in the past was actually very general. As we
stressed, one has to separate two aspects of the phase
transition N — E. A crucial parameter for the M-
R relation for hydrostatic equilibrium configurations is
the energy density ratio at the phase coexistence point
P = Py, A = pe/p~. Consider first non-rotating NS.
For A\ < Awrit = % - (14 Pxg/prc?) equilibrium configura-
tions form a continuous family with M3t < M < pstat

min max’

with M52t ~ (0.1Mg, and M52 > 2M,. This continuous
character is conserved for configurations rotating rigidly
at f, with M!S increasing a few percent at 716 Hz while
M2 (716 Hz) ~ 0.7-1Mg. For A > At the family of
stable configurations of NS splits into two disjoint fam-
ilies, separated by a segment of unstable configurations
(instability with respect to spherically symmetric pertur-
bations) that cannot exist in Nature. It has been checked
that this topological feature is conserved for rotating con-
figurations, with the instability being induced by axially
symmetric perturbations.

Transitions between two stable segments of the M-

R curve are associated with NS minicollapse, with energy
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release weakly depending on the angular momentum of the
collapsing configuration, but strongly depending on the
degree of metastability of the core undergoing the phase
transition.

We reviewed various aspects of a minicollapse due to
the formation of an exotic core. The most spectacular as-
trophysical signatures are associated with a minicollapse
induced by a N — E conversion of detonation type. We
described the history of the famous gamma-ray burst on
March 5, 1979 and its initial explanation by a minicollapse
in the core of NS in N49 supernova remnant in Large Mag-
ellanic Cloud. The source of this burst turned out to be
a soft-gamma repeater, a magnetar emitting repetitively
gamma and X-ray flares powered by the huge magnetic
field. Finally, a positive message from recent numerical
simulations of minicollapses of rotating NS was that they
could produce a burst of gravitational waves detectable in
the Galaxy and its close vicinity by the network of Ad-
vanced Virgo and Advanced LIGO detectors and in the
future by the planned Einstein Telescope underground in-
terferometric detector.

This work was partially supported by the Polish NCN grants
no. 2014/13/B/ST9/02621 and 2013/01/ASPERA/ST9/
00001.

Appendix A.

Table 1. Masses and spin frequency of radio MSP (with f >
100 Hz). Masses are reported with a 1o uncertainty except for
masses indicated by an * symbol; 95% confidence in this case.

Object Mass (Mg)  f (Hz) References
Galactic NS+WD
J1804—2717 < 1.73" 107.03 [136]
J1045—-4509 < 1.48" 133.79 [136]
J1738+0333 1471508 170.94 [137]
J0437—4715 1.447007 173.69 [138]
B1855+09 1571013 186.49 [139]
J10124-5307 1.647032 190.27 [140]
J171340747 L3140 218.81 [141]
J2019+2425 < 1.51* 254.16 [142]
JO7514-1807 1.26%0 1% 287.46 [143]
J1614—2230 1974504 317.38 [144]
J1909—3744 1471003 339.32 [138]
JO3374+1715  1.437875:001%  365.95 [145]
NS+WD in a GC
J1748—24461 1.9179:9% 104.49 [146]
B1516+02B 2.0870 19 125.83 [147]
J0514—4002A 1.4975:51 200.38 [146]
J1910—5959A 1.337511 306.17 [148]
J0024—7204H 1.4815:93 311.49 [146]
Galactic NS+MS
J1903+0327 1.66770051  465.14 [149]
J102340038 L7140 70 592.42 [150]
NS+NS in GC
J1807—2500B  1.3655700057  238.88 [151]
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