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Abstract Rotating relativistic stars have been studied extensively in recent years,
both theoretically and observationally, because of the information they might yield
about the equation of state of matter at extremely high densities and because they
are considered to be promising sources of gravitational waves. The latest theoretical
understanding of rotating stars in relativity is reviewed in this updated article. The sec-
tions on equilibrium properties and on nonaxisymmetric oscillations and instabilities
in f -modes and r -modes have been updated. Several new sections have been added
on equilibria in modified theories of gravity, approximate universal relationships, the
one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating
stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity
including both hydrodynamic and magnetohydrodynamic studies of these objects.
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1 Introduction

Rotating relativistic stars are of fundamental interest in physics. Their bulk properties
constrain the proposed equations of state for densities greater than the nuclear satu-
ration density. Accreted matter in their gravitational fields undergoes high-frequency
oscillations that could become a sensitive probe for general relativistic effects. Tem-
poral changes in the rotational period of millisecond pulsars can also reveal a wealth
of information about important physical processes inside the stars or of cosmological
relevance. In addition, rotational instabilities can result in the generation of copious
amounts of gravitational waves the detection of which would initiate a new field of
observational asteroseismology of relativistic stars. The latter is of particular impor-
tance because with the first direct detections of gravitational waves by the LIGO and
VIRGO collaborations (Abbott et al. 2016a, b) the era of gravitational wave astronomy
has arrived.

There exist several independent numerical codes for obtaining accurate models of
rotating neutron stars in full general relativity, including two that are publicly avail-
able. The uncertainty in the high-density equation of state still allows numerically
constructed maximum mass models to differ by more than 50% in mass, radius and
angular velocity, and by a larger factor in the moment of inertia. Given these uncer-
tainties, an absolute upper limit on the rotation of relativistic stars can be obtained by
imposing causality as the only requirement on the equation of state. It then follows
that gravitationally bound stars cannot rotate faster than 0.41 ms.

In rotating stars, nonaxisymmetric oscillations have been studied in various approxi-
mations (the Newtonian limit and the post-Newtonian approximation, the slow rotation
limit, the Cowling approximation, the spatial conformal flatness approximation) as
an eigenvalue problem. Normal modes in full general relativity have been obtained
through numerical simulations only. Time evolutions of the linearized equations have
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improved our understanding of the spectrum of axial and hybrid modes in relativistic
stars.

Nonaxisymmetric instabilities in rotating stars can be driven by the emission of
gravitational waves [Chandrasekhar–Friedman–Schutz (CFS) instability] or by vis-
cosity. Relativity strengthens the former, but weakens the latter. Nascent neutron stars
can be subject to the l = 2 bar mode CFS instability, which would turn them into a
strong gravitational wave source. Axial fluid modes in rotating stars (r -modes) have
received considerable attention since the discovery that they are generically unstable to
the emission of gravitational waves. The r -mode instability could slow down newly-
born relativistic stars and limit their spin during accretion-induced spin-up, which
would explain the absence of millisecond pulsars with rotational periods <∼ 1.5 ms.
Gravitational waves from the r -mode instability could become detectable if the ampli-
tude of r -modes is sufficiently large, however, nonlinear effects seem to set a small
saturation amplitude on long timescales. Nevertheless, if the signal persists for a long
time, even a small amplitude could become detectable. Highly differentially rotating
neutron stars are also subject to the development of a one-arm (m = 1) instability, as
well as to the development of a dynamical bar-mode (m = 2) instability which both
act as emitters of potentially detectable gravitational waves.

Recent advances in numerical relativity have enabled the long-term dynamical evo-
lution of rotating stars. Several interesting phenomena, such as dynamical instabilities,
pulsation modes, and neutron star and black hole formation in rotating collapse have
now been studied in full general relativity. The latest studies include realistic equations
of state and also magnetic fields.

The aim of this article is to present a summary of theoretical and numerical methods
that are used to describe the equilibrium properties of rotating relativistic stars, their
oscillations and dynamical evolution. The focus is on the most recently available
publications in the field, in order to rapidly communicate new methods and results. At
the end of some sections, the reader is directed to papers that could not be presented in
detail here, or to other review articles. As new developments in the field occur, updated
versions of this article will appear. Another review on rotating relativistic stars has
appeared by Gourgoulhon (2010), while monographs appeared by Meinel et al. (2008)
and Friedman and Stergioulas (2013). In several sections, our Living Review article
updates and extends previous versions (Stergioulas 1998, 2003) using also abridged
discussions of topics from Friedman and Stergioulas (2013).

Notation and conventions Throughout the article, gravitational units, where G =
c = 1 (these units are also referred to as geometrized), will be adopted in writing
the equations governing stellar structure and dynamics, while numerical properties of
stellar models will be listed in cgs units, unless otherwise noted. We use the conventions
of Misner et al. (1973) for the signature of the spacetime metric (− + ++) and for
signs of the curvature tensor and its contractions. Spacetime indices will be denoted
by Greek letters, α, β, . . ., while Latin a, b, . . . characters will be reserved to denote
spatial indices. (Readers familiar with abstract indices can regard indices early in the
alphabet as abstract, while indices μ, ν, λ and i, j, k will be concrete, taking values
μ = 0, 1, 2, 3, i = 1, 2, 3.) Components of a vector uα in an orthonormal frame,

123



Rotating stars in relativity Page 5 of 169 7

{e0̂, . . . , e3̂}, will be written as {u0̂, . . . , u3̂}. Parentheses enclosing a set of indices
indicate symmetrization, while square brackets indicate anti-symmetrization.

Numbers that rely on physical constants are based on the values c = 2.9979 ×
1010 cm s−1, G = 6.670×10−8 g−1 cm3 s−2, h̄ = 1.0545×10−27 g cm2 s−1, baryon
mass m B = 1.659 × 10−24 g, and M⊙ = 1.989 × 1033 g = 1.477 km.

2 The equilibrium structure of rotating relativistic stars

2.1 Assumptions

A relativistic star can have a complicated structure (such as a solid crust, magnetic field,
possible superfluid interior, possible quark core, etc.). Depending on which phase in
the lifetime of the star one wants to study, a number of physical effects can be ignored,
so that the description becomes significantly simplified. In the following, we will take
the case of a cold, uniformly rotating relativistic star as a reference case and mention
additional assumptions for other cases, where necessary.

The matter can be modeled as a perfect fluid because observations of pulsar glitches
are consistent with departures from a perfect fluid equilibrium (due to the presence
of a solid crust) of order 10−5 (see Friedman and Ipser 1992). The temperature of a
cold neutron star has a negligible affect on its bulk properties and can be assumed to
be 0 K, because its thermal energy (≪ 1 MeV ∼ 1010 K) is much smaller than Fermi
energies of the interior (> 60 MeV). One can then use a one-parameter, barotropic

equation of state (EOS) to describe the matter:

ε = ε(P), (1)

where ε is the energy density and P is the pressure. At birth, a neutron star is expected
to be rotating differentially, but as the neutron star cools, several mechanisms can act
to enforce uniform rotation. Kinematical shear viscosity is acting against differential
rotation on a timescale that has been estimated to be (Flowers and Itoh 1976, 1979;
Cutler and Lindblom 1987)

τ ∼ 18

(

ρ

1015 g cm−3

)−5/4 (
T

109 K

)2 (
R

106 cm

)

yr, (2)

where ρ, T and R are the central density, temperature, and radius of the star. It has also
been suggested that convective and turbulent motions may enforce uniform rotation on
a timescale of the order of days (Hegyi 1977). Shapiro (2000) suggested that magnetic
braking of differential rotation by Alfvén waves could be the most effective damping
mechanism, acting on short timescales, possibly of the order of minutes.

Within a short time after its formation, the temperature of a neutron star becomes
less than 1010 K (due to neutrino emission). When the temperature drops further, below
roughly 109 K, its outer core is expected to become superfluid (see Mendell 1998 and
references therein). Rotation causes superfluid neutrons to form an array of quantized
vortices, with an intervortex spacing of
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dn ∼ 3.4 × 10−3Ω
−1/2
2 cm, (3)

where Ω2 is the angular velocity of the star in 102 s−1. On scales much larger than
the intervortex spacing, e.g., of the order of centimeters or meters, the fluid motions
can be averaged and the rotation can be considered to be uniform (Sonin 1987). With
such an assumption, the error in computing the metric is of order

(

1 cm

R

)2

∼ 10−12, (4)

assuming R ∼ 10 km to be a typical neutron star radius.
The above arguments show that the bulk properties of a cold, isolated rotating rela-

tivistic star can be modeled accurately by a uniformly rotating, one-parameter perfect
fluid. Effects of differential rotation and of finite temperature need only be considered
during the first year (or less) after the formation of a relativistic star. Furthermore,
magnetic fields, while important for high-energy phenomena in the magnetosphere
and for the damping of differential rotation and oscillations, do not alter the struc-
ture of the star, unless one assumes magnetic field strengths significantly higher than
typical observed values.

2.2 Geometry of spacetime

In general relativity, the spacetime geometry of a rotating star in equilibrium can be
described by a stationary and axisymmetric metric gαβ of the form

ds2 = −e2ν dt2 + e2ψ (dφ − ω dt)2 + e2μ(dr2 + r2dθ2), (5)

where ν, ψ , ω and μ are four metric functions that depend on the coordinates r and θ

only (see, e.g., Bardeen and Wagoner 1971). For a discussion and historical overview
of other coordinate choices for axisymmetric rotating spacetimes see Gourgoulhon
(2010), Friedman and Stergioulas (2013). In the exterior vacuum, it is possible to
reduce the number of metric functions to three, but as long as one is interested in
describing the whole spacetime (including the source-region of nonzero pressure),
four different metric functions are required. It is convenient to write eψ in the form

eψ = r sin θ Be−ν, (6)

where B is again a function of r and θ only (Bardeen 1973).
One arrives at the above form of the metric assuming that

1. The spacetime is stationary and axisymmetric: There exist an asymptotically time-
like symmetry vector tα and a rotational symmetry vector φα .
The spacetime is said to be strictly stationary if tα is everywhere timelike. (Some
rapidly rotating stellar models, as well as black-hole spacetimes, have ergospheres,
regions in which tα is spacelike.)
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2. The Killing vectors commute,

[t, φ] = 0, (7)

and there is an isometry of the spacetime that simultaneously reverses the direction
of tα and φα ,

tα → −tα, φα → −φα. (8)

3. The spacetime is asymptotically flat, i.e., ta ta = −1, φaφa = +∞ and taφa = 0
at spatial infinity

4. The spacetime is circular (there are no meridional currents in the fluid).

If the spacetime is strictly stationary, one does not need (7) as a separate assumption:
A theorem by Carter (1970) shows that [t, φ] = 0. The Frobenius theorem now implies
the existence of scalars t and φ (Kundt and Trümper 1966; Carter 1969) for which
there exists a family of 2-surfaces orthogonal to tα and φα , the surfaces of constant t

and φ; and it is natural to choose as coordinates x0 = t and x3 = φ. In the absence
of meridional currents, the 2-surfaces orthogonal to tα and φα can be described by
the remaining two coordinates x1 and x2 (Carter 1970). Requiring that these are Lie
derived by tα and φα , we have

tα = ∂ t , (9)

φα = ∂φ . (10)

With coordinates chosen in this way, the metric components are independent of t and
φ.

Because time reversal inverts the direction of rotation, the fluid is not invariant
under t → −t alone, implying that tα and φα are not orthogonal to each other. The
lack of orthogonality is measured by the metric function ω that describes the dragging

of inertial frames.
In a fluid with meridional convective currents one loses both time-reversal invari-

ance and invariance under the simultaneous inversion t → −t, φ → −φ, because
the inversion changes the direction of the circulation. In this case, the spacetime met-
ric will have additional off-diagonal components (Gourgoulhon and Bonazzola 1993;
Birkl et al. 2011).

A common choice for x1 and x2 are quasi-isotropic coordinates, for which grθ = 0
and gθθ = r2grr (in spherical polar coordinates), or g̟ z = 0 and gzz = r2g̟̟ (in
cylindrical coordinates). In the nonrotating limit, the metric (5) reduces to the metric
of a nonrotating relativistic star in isotropic coordinates (see Weinberg 1972 for the
definition of these coordinates). In the slow rotation formalism by Hartle (1967), a
different form of the metric is used, requiring gθθ = gφφ/ sin2 θ , which corresponds
to the choice of Schwarzschild coordinates in the vacuum region.

The three metric functions ν, ψ and ω can be written as invariant combinations of
the two Killing vectors tα and φα , through the relations

tαtα = gt t = −e2ν + ω2e2ψ , (11)
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φαφα = gφφ = e2ψ , (12)

tαφα = gtφ = −ωe2ψ , (13)

The corresponding components of the contravariant metric are

gt t = ∇αt∇αt = −e−2ν, (14)

gφφ = ∇αφ∇αφ = e−2ψ − ω2e−2ν, (15)

gtφ = ∇αt∇αφ = −ωe−2ν . (16)

The fourth metric function μ determines the conformal factor e2μ that characterizes
the geometry of the orthogonal 2-surfaces.

There are two main effects that distinguish a rotating relativistic star from its non-
rotating counterpart: The shape of the star is flattened by centrifugal forces (an effect
that first appears at second order in the rotation rate), and the local inertial frames are
dragged by the rotation of the source of the gravitational field. While the former effect
is also present in the Newtonian limit, the latter is a purely relativistic effect.

The study of the dragging of inertial frames in the spacetime of a rotating star is
assisted by the introduction of the local Zero-Angular-Momentum-Observers (ZAMO)
(Bardeen 1970, 1973). These are observers whose worldlines are normal to the t =
const. hypersurfaces (also called Eulerian or normal observers in the 3+1 formalism
Arnowitt et al. 2008). Then, the metric function ω is the angular velocity dφ/dt of
the local ZAMO with respect to an observer at rest at infinity. Also, e−ν is the time
dilation factor between the proper time of the local ZAMO and coordinate time t

(proper time at infinity) along a radial coordinate line. The metric function ψ has a
geometrical meaning: eψ is the proper circumferential radius of a circle around the
axis of symmetry.

In rapidly rotating models, an ergosphere can appear, where gt t > 0 (as long as we
are using the Killing coordinates described above). In this region, the rotational frame-
dragging is strong enough to prohibit counter-rotating time-like or null geodesics to
exist, and particles can have negative energy with respect to a stationary observer at
infinity. Radiation fields (scalar, electromagnetic, or gravitational) can become unsta-
ble in the ergosphere (Friedman 1978), but the associated growth time is comparable
to the age of the universe (Comins and Schutz 1978).

The lowest-order asymptotic behaviour of the metric functions ν and ω is

ν ∼ − M

r
, (17)

ω ∼ 2J

r3 , (18)

where M and J are the total gravitational mass and angular momentum (see Sect. 2.5
for definitions). The asymptotic expansion of the dragging potential ω shows that it
decays rapidly far from the star, so that its effect will be significant mainly in the
vicinity of the star.
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2.3 The rotating fluid

When sources of non-isotropic stresses (such as a magnetic field or a solid state of
parts of the star), viscous stresses, and heat transport are neglected in constructing an
equilibrium model of a relativistic star, then the matter can be modeled as a perfect
fluid, described by the stress-energy tensor

T αβ = (ε + P)uαuβ + Pgαβ , (19)

where uα is the fluid’s 4-velocity. In terms of the two Killing vectors tα and φα , the
4-velocity can be written as

uα = e−ν

√
1 − v2

(tα + Ωφα), (20)

where v is the 3-velocity of the fluid with respect to a local ZAMO, given by

v = (Ω − ω)eψ−ν, (21)

and Ω ≡ uφ/ut = dφ/dt is the angular velocity of the fluid in the coordinate frame,
which is equivalent to the angular velocity of the fluid as seen by an observer at rest at

infinity. Stationary configurations can be differentially rotating, while uniform rotation
(Ω = const.) is a special case (see Sect. 2.5).

The covariant components of the 4-velocity take the form

ut = − eν

√
1 − v2

(1 + eψ−νωv), uφ = eψv√
1 − v2

. (22)

Notice that the components of the 4-velocity are proportional to the Lorentz factor

W := (1 − v2)−1/2.

2.4 Equations of structure

Having specified an equation of state of the form ε = ε(P), the structure of the star is
determined by solving four components of Einstein’s gravitational field equation

Rαβ = 8π

(

Tαβ − 1

2
gαβT

)

, (23)

(where Rαβ is the Ricci tensor and T = Tα
α) and the equation of hydrostationary

equilibrium. Setting ζ = μ+ν, one common choice (Butterworth and Ipser 1976) for
the components of the gravitational field equation are the three equations of elliptic
type
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∇ · (B∇ν) = 1

2
r2 sin2 θ B3e−4ν

∇ω · ∇ω

+ 4π Be2ζ−2ν

[

(ε + P)(1 + v2)

1 − v2 + 2P

]

, (24)

∇ · (r2 sin2 θ B3e−4ν
∇ω) = −16πr sin θ B2e2ζ−4ν (ε + P)v

1 − v2 , (25)

∇ · (r sin θ∇B) = 16πr sin θ Be2ζ−2ν P, (26)

supplemented by a first order differential equation for ζ

1

̟
ζ,̟ + 1

B
(B,̟ ζ,̟ −B,z ζ,z ) = 1

2̟ 2 B
(̟ 2 B,̟ ),̟ − 1

2B
B,zz +(ν,̟ )2

−(ν,z )2 − 1

4
̟ 2 B2e−4ν

[

(ω,̟ )2 − (ω,z )2
]

.

(27)

Above, ∇ is the 3-dimensional derivative operator in a flat 3-space with spherical
polar coordinates r , θ , φ. The remaining nonzero components of the gravitational
field equation yield two more elliptic equations and one first order partial differential
equation, which are consistent with the above set of four equations.

The equation of motion (Euler equation) follows from the projection of the conser-
vation of the stress-energy tensor orthogonal to the 4-velocity (δγ

β +uγ uβ)∇αT αβ =
0

∇α p

(ǫ + p)
= −uβ∇βuα

= ∇α ln ut − ut uφ∇αΩ. (28)

In the r − θ subspace, one can find the following equivalent forms

∇ p

(ǫ + p)
= − 1

1 − v2

(

∇ν − v2∇ψ + eψ−νv∇ω

)

, (29)

= ∇ ln ut − ut uφ∇Ω, (30)

= ∇ ln ut − l

1 − Ωl
∇Ω, (31)

= −∇ ln(−ut ) + Ω

1 − Ωl
∇l, (32)

= −∇ν + 1

1 − v2

(

v∇v − v2∇Ω

Ω − ω

)

, (33)

where l := −uφ/ut is conserved along fluid trajectories (since hut and huφ are
conserved, so is their ratio and l is the angular momentum per unit energy).
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For barotropes, one can arrive at a first integral of the equations of motion in the
following way. Since ǫ = ǫ(p), one can define a function

H(p) :=
∫ p

0

dp′

ǫ(p′) + p′ , (34)

so that (28) becomes

∇(H − ln ut ) = −F∇Ω, (35)

where we have set F := ut uφ = l/(1 − lΩ). For homentropic stars (stars with a
homogeneous entropy distribution) one obtains H = ln h (where h is the specific

enthalpy) and the equation of hydrostationary equilibrium takes the form

∇
(

ln
h

ut

)

= −F∇Ω. (36)

Taking the curl of (35) one finds that either

Ω = constant, (37)

(uniform rotation), or

F = F(Ω), (38)

in the case of differential rotation. In the latter case, (35) becomes

H − ln ut +
∫ Ω

Ωpole

F(Ω ′)dΩ ′ = ν|pole, (39)

where the lower limit, Ω0 is chosen as the value of Ω at the pole, where H and v

vanish. The above global first integral of the hydrostationary equilibrium equations is
useful in constructing numerical models of rotating stars.

For a uniformly rotating star, (39) can be written as

H − ln ut = ν|pole, (40)

which, in the case of a homentropic star, becomes

h

ut
= E, (41)

with E = eν |pole constant over the star (E has the meaning of the injection energy

(Friedman and Stergioulas 2013), the increase in a star’s mass when a unit mass of
baryons is injected at a point in the star).
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In the Newtonian limit eψ = ̟ + O(λ2), eν = 1 + O(λ2), so to Newtonian
order we have

ut uφ = v̟ = ̟ 2Ω, (42)

and the functional dependence of Ω implied by Eq. (38) becomes the familiar require-
ment that, for a barotropic equation of state, Ω be stratified on cylinders,

Ω = Ω(̟), (43)

where ̟ = r sin(θ). The Newtonian limit of the integral of motion (39) is

hNewtonian − 1

2
v2 + Φ = constant, (44)

where, in the Newtonian limit, hNewtonian = h−1 differs from the relativistic definition
by the rest mass per unit rest mass.

2.5 Rotation law and equilibrium quantities

A special case of rotation law is uniform rotation (uniform angular velocity in the
coordinate frame), which minimizes the total mass–energy of a configuration for a
given baryon number and total angular momentum (Boyer and Lindquist 1966; Hartle
and Sharp 1967). In this case, the term involving F(Ω) in (39) vanishes.

More generally, a simple, one-parameter choice of a differential-rotation law is

F(Ω) = A2(Ωc − Ω) = (Ω − ω)r2 sin2 θ e2(β−ν)

1 − (Ω − ω)2r2 sin2 θ e2(β−ν)
, (45)

where A is a constant (Komatsu et al. 1989a, b). When A → ∞, the above rotation
law reduces to the uniform rotation case. In the Newtonian limit and when A → 0,
the rotation law becomes a so-called j-constant rotation law (with specific angular
momentum j , angular momentum per unit mass, being constant in space), which
satisfies the Rayleigh criterion for local dynamical stability against axisymmetric dis-
turbances ( j should not decrease outwards, d j/dΩ < 0). The same criterion is also
satisfied in the relativistic case, but with j → j̃ = uφ(ε + P)/ρ (Komatsu et al.
1989b), where ρ is the fluid rest-mass density. It should be noted that differentially
rotating stars may also be subject to a shear instability that tends to suppress differential
rotation (Zahn 1993).

The above rotation law is a simple choice that has proven to be computationally
convenient. A new, 3-parameter generalization of the above rotation law was recently
proposed in Galeazzi et al. (2012) and is defined by

F(Ω) =
R2

0
Ωα

c
Ω(Ωα − Ωα

c )

1 − R2
0

Ωα
c
Ω2(Ωα − Ωα

c )

(46)
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Table 1 Equilibrium properties

Circumferential radius R = eψ

Gravitational mass M = −2
∫

(Tα
β − 1

2 δ
β
α T )tα n̂β dV

Baryon mass M0 =
∫

ρuβ n̂β dV

Internal energy U =
∫

uuβ n̂β dV

Proper mass Mp = M0 + U

Gravitational binding energy W = M − Mp − T

Angular momentum J =
∫

Tαβφα n̂β dV

Moment of inertia (uniform rotation) I = J/Ω

Kinetic energy T = 1
2 JΩ

where α, R0 and Ωc are constants. The specific angular momentum corresponding to
this law is

l = R2
0

Ωα
c

Ω(Ωα − Ωα
c ). (47)

The Newtonian limit for this law yields an angular frequency of

Ω = Ωc

[

1 +
(

̟

R0

)2
]

1
α

, (48)

thus, for ̟ ≪ R0, Ω ∼ Ωc, whereas for ̟ ≫ R0, Ωc ∼ Ω(̟/R0)
2/α . A more

recent 4-parameter family of rotation laws was proposed in (Mach and Malec 2015)
mainly for accretion tori (it has not yet been applied to models of rotating neutron
stars). It remains to be seen how well the above laws can match the angular velocity
profiles of proto-neutron stars and remnants of binary neutron star mergers formed in
numerical simulations.

Equilibrium quantities for rotating stars, such as gravitational mass, baryon mass,
or angular momentum, for example, can be obtained as integrals over the source of
the gravitational field. A list of the most important equilibrium quantities that can
be computed for axisymmetric models, along with the equations that define them, is
displayed in Table 1. There, ρ is the rest-mass density, u = ε − ρc2 is the internal

energy density, n̂a = ∇a t/|∇bt∇bt |1/2 is the unit normal vector to the t = const.
spacelike hypersurfaces, and dV =

√

|3g| d3x is the proper 3-volume element (with
3g being the determinant of the 3-metric of spacelike hypersurfaces). It should be noted
that the moment of inertia cannot be computed directly as an integral quantity over the
source of the gravitational field. In addition, there exists no unique generalization of
the Newtonian definition of the moment of inertia in general relativity and I = J/Ω

is a common choice.
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2.6 Equations of state

2.6.1 Relativistic polytropes

Because old neutron-stars have temperatures much smaller than the Fermi energy of
their constituent particles, one can ignore entropy gradients and assume a uniform
specific entropy s. The increase in pressure and density toward the star’s center are
therefore adiabatic, if one neglects the slow change in composition. That is, they are
related by the first law of thermodynamics, with ds = 0,

dǫ = ǫ + p

ρ
dρ, (49)

with p given in terms of ρ by

ρ

p

dp

dρ
= ǫ + p

p

dp

dǫ
= Γ1. (50)

Here Γ1 is the adiabatic index, the fractional change in pressure per fractional change in
comoving volume, at constant entropy and composition. In an ideal degenerate Fermi
gas, in the nonrelativistic and ultrarelativistic regimes, Γ1 has the constant values 5/3
and 4/3, respectively. Except in the outer crust, neutron-star matter is far from an ideal
Fermi gas, but models often assume a constant effective adiabatic index, chosen to
match an average stellar compressibility. An equation of state of the form

p = KρΓ , (51)

with K and Γ constants, is called polytropic; K and Γ are the polytropic constant

and polytropic exponent, respectively. The corresponding relation between ǫ and p

follows from (49)

ǫ = ρ + p

Γ − 1
. (52)

The polytropic exponent Γ is commonly replaced by a polytropic index N , given by

Γ = 1 + 1

N
. (53)

For the above polytropic EOS, the quantity c(Γ −2)/(Γ −1)
√

K 1/(Γ −1)/G has units
of length. In gravitational units one can thus use K N/2 as a fundamental length scale
to define dimensionless quantities. Equilibrium models are then characterized by the
polytropic index N and their dimensionless central energy density. Equilibrium prop-
erties can be scaled to different dimensional values, using appropriate values for K .
For N < 1.0 (N > 1.0) one obtains stiff (soft) models, while for N ∼ 0.5–1.0, one
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obtains models whose masses and radii are roughly consistent with observed neutron-
star masses and with the weak constraints on radius imposed by present observations
and by candidate equations of state.

The definition (51), (52) of the relativistic polytropic EOS was introduced by Tooper
(1965), to allow a polytropic exponent Γ that coincides with the adiabatic index of a
relativistic fluid with constant entropy per baryon (a homentropic fluid). A different
form, p = K ǫΓ , previously also introduced by Tooper (1964), does not satisfy Eq. (49)
and therefore it is not consistent with the first law of thermodynamics for a fluid with
uniform entropy.

2.6.2 Hadronic equations of state

Cold matter below the nuclear saturation density, ρ0 = 2.7 × 1014 g/cm3 (or
n0 = 0.16 fm−3), is thought to be well understood. A derivation of a sequence of
equations of state at increasing densities, beginning with the semi-empirical mass
formula for nuclei, can be found in Shapiro and Teukolsky (1983) (see also Haensel
et al. 2007). Another treatment, using experimental data on neutron-rich nuclei was
given in Haensel and Pichon (1994). In a neutron star, matter below nuclear density
forms a crust, whose outer part is a lattice of nuclei in a relativistic electron gas. At
4 × 1011 g/cm3, the electron Fermi energy is high enough to induce neutron drip:
Above this density nucleons begin leaving their nuclei to become free neutrons. The
inner crust is then a two-phase equilibrium of the lattice nuclei and electrons and a
gas of free neutrons. The emergence of a free-neutron phase means that the equa-
tion of state softens immediately above neutron drip: Increasing the density leads to
an increase in free neutrons and to a correspondingly smaller increase in pressure.
Melting of the Coulomb lattice, marking the transition from crust to a liquid core of
neutrons, protons and electrons occurs between 1014 g/cm3 and ρ0.

A review by Heiselberg and Pandharipande (2000) describes the partly phenomeno-
logical construction of a primarily nonrelativistic many-body theory that gives the
equation of state at and slightly below nuclear density. Two-nucleon interactions are
matched to neutron–neutron scattering data and the experimentally determined struc-
ture of the deuteron. Parameters of the three-nucleon interaction are fixed by matching
the observed energy levels of light nuclei.

Above nuclear density, however, the equation of state is still beset by substantial
uncertainties. For a typical range of current candidate equations of state, values of
the pressure differ by more than a factor of 5 at 2ρ0 ∼ 5 × 1014 g/cm3, and by at
least that much at higher densities (Haensel 2003). Although scattering experiments
probe the interactions of nucleons (and quarks) at distances small compared to the
radius of a nucleon, the many-body theory required to deduce the equation of state
from fundamental interactions is poorly understood. Heavy ion collisions do produce
collections of nucleons at supranuclear densities, but here the unknown extrapolation
is from the high temperature of the experiment to the low temperature of neutron-star
matter.

Observations of neutron stars provide a few additional constraints, of which, two
are unambiguous and precise: The equation of state must allow a mass at least as large
as 1.97 M⊙, the largest accurately determined mass of a neutron star. (The observation
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by Antoniadis et al. (2013) is of a 2.01±0.04 neutron star. There is also an observation
by Demorest et al. (2010) of a 1.97 ± 0.04 M⊙ neutron star). The equation of state
must also allow a rotational period at least as small as 1.4 ms, the period of the fastest
confirmed millisecond pulsar (Hessels et al. 2006). Observations of neutron star radii
are much less precise, but a large number of observations of type I X-ray bursts or
transient X-ray binaries may allow for the reconstruction of the neutron star equation
of state (Özel and Psaltis 2009; Özel et al. 2010; Steiner et al. 2010).

The uncertainty in the equation of state above nuclear density is dramatically seen
in the array of competing alternatives for the nature of matter in neutron star cores:
Cores that are dominantly neutron matter may have sharply different equations of
state, depending on the presence or absence of pion or kaon condensates, of hyper-
ons, and of droplets of strange quark matter (described below). The inner core of the
most massive neutron stars may be entirely strange quark matter. Other differences
in candidate equations of state arise from constructions based on relativistic and on
nonrelativistic many-body theory. A classic collection of early proposed EOSs was
compiled by Arnett and Bowers (1977), while reviews of many modern EOSs have
been compiled by Haensel (2003) and Lattimer and Prakash (2007). Detailed descrip-
tions and tables of several modern EOSs, especially EOSs with phase transitions,
can be found in Glendenning (1997); his treatment is particularly helpful in showing
how one constructs an equation of state from a relativistic field theory. The review by
Heiselberg and Pandharipande (2000), in contrast, presents a more phenomenological
construction of equations of state that match experimental data. Detailed theoretical
derivations of equations of state are presented in the book by Haensel et al. (2007).
For recent reviews on nuclear EOSs see Sagert et al. (2010), Lattimer (2012), Fischer
et al. (2014), Lattimer and Prakash (2016), Oertel et al. (2017).

Candidate EOSs are supplied in the form of an energy density versus pressure table
and intermediate values are interpolated. This results in some loss of accuracy because
the usual interpolation methods do not preserve thermodynamic consistency. Swesty
(1996) devised a cubic Hermite interpolation scheme that does preserve thermodynam-
ical consistency and the scheme has been shown to indeed produce higher-accuracy
neutron star models (Nozawa et al. 1998).

High density equations of state with pion condensation were proposed in Migdal
(1971) and Sawyer and Scalapino (1972) (see also Kunihiro et al. 1993). Beyond
nuclear density, the electron chemical potential could exceed the rest mass of π−

(139 MeV) by a margin large enough to overcome a pion-neutron repulsion and thus
allow a condensate of zero-momentum pions. The critical density is thought to be 2ρ0
or higher, but the uncertainty is greater than a factor of 2; and a condensate with both
π0 and π− has also been suggested. Because the s-wave kaon-neutron interaction is
attractive, kaon condensation may also occur, despite the higher kaon mass, a possibil-
ity suggested in Kaplan and Nelson (1986) (for discussions with differing viewpoints
see Brown and Bethe 1994; Pandharipande et al. 1995; Heiselberg and Pandharipande
2000). Pion and kaon condensates lead to significant softening of the equation of state.

As initially suggested in Ambartsumyan and Saakyan (1960), when the Fermi
energy of the degenerate neutrons exceeds the mass of a Λ or Σ , weak interactions
convert neutrons to these hyperons: Examples are 2n ↔ p +Σ−, n + p+ → p+ +Λ.
Reviews and further references can be found in Glendenning (1997), Balberg and Gal
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(1997), Prakash et al. (1997), and more recent work, spurred by the r -mode instability
(see Sect. 4.5.3), is reported in Lindblom and Owen 2002; Haensel et al. 2002; Lackey
et al. 2006. The critical density above which hyperons appear is estimated at 2 or
3 times nuclear density. Above that density, the presence of copious hyperons can
significantly soften the equation of state. Because a softer core equation of state can
support less mass against collapse, the larger the observed maximum mass, the less
likely that neutron stars have cores with hyperons (or with pion or kaon condensates).
In particular, a measured mass of 1.97±0.04 M⊙ for the pulsar PSR J1614-2230 with
a white dwarf companion (Demorest et al. 2010) limits the equation of state parameter
space (Read et al. 2009), ruling out several candidate equations of states with hyperons
(Özel et al. 2010). Whether a hyperon core is consistent with a mass this large remains
an open question (Stone et al. 2010).

A new hadron-quark hybrid equation of state was recently introduced by Benić
et al. (2015) (see also Bejger et al. 2016 for potential observational signatures of
these objects). The quark matter description is based on a quantum chromodynamics
approach, while the hadronic matter is modeled by means of a relativistic mean-field
method with an excluded volume correction at supranuclear densities to treat the finite
size of the nucleons. The excluded volume correction in conjunction with the quark
repulsive interactions, result in a first-order phase transition, which leads to a new
family of compact stars in a mass-radius relationship plot whose masses can exceed
the 2 M⊙ limit that is set by observations. These new stars are termed “twin” stars.
The twin star phenomenon was predicted a long time ago by Gerlach (1968) (see
also Kampfer 1981; Schertler et al. 2000; Glendenning and Kettner 2000). Twin stars
consist of a quark core with a shell made of hadrons and a first-order phase transition
at their interface. Recently, rotating twin star solutions were constructed by Haensel
et al. (2016).

2.6.3 Strange quark equations of state

Before a density of about 6ρ0 is reached, lattice QCD calculations indicate a phase
transition from quarks confined to nucleons (or hyperons) to a collection of free quarks
(and gluons). Heavy ion collisions at CERN and RHIC show evidence of the formation
of such a quark-gluon plasma. A density for the phase transition higher than that needed
for strange quarks in hyperons is similarly high enough to give a mixture of up, down
and strange quarks in quark matter, and the expected strangeness per unit baryon
number is ≃ −1. If densities become high enough for a phase transition to quark
matter to occur, neutron-star cores may contain a transition region with a mixed phase
of quark droplets in neutron matter (Glendenning 1997).

Bodmer (1971) and, later, Witten (1984) pointed out that experimental data do
not rule out the possibility that the ground state of matter at zero pressure and large
baryon number is not iron but strange quark matter. If this is the case, all “neutron
stars” may be strange quark stars, a lower density version of the quark-gluon plasma,
again with roughly equal numbers of up, down and strange quarks, together with
electrons to give overall charge neutrality (Bodmer 1971; Farhi and Jaffe 1984). The
first extensive study of strange quark star properties is due to Witten (1984) (but, see
also Ipser et al. 1975; Brecher and Caporaso 1976), while hybrid stars that have a
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mixed-phase region of quark and hadronic matter, have also been studied extensively
(see, e.g., the review by Glendenning 1997).

The strange quark matter equation of state can be represented by the following
linear relation between pressure and energy density

p = a(ǫ − ǫ0), (54)

where ǫ0 is the energy density at the surface of a bare strange star (neglecting a possible
thin crust of normal matter). The MIT bag model of strange quark matter involves three
parameters, the bag constant, B = ǫ0/4, the mass of the strange quark, ms , and the
QCD coupling constant, αc. The constant a in (54) is equal to 1/3 if one neglects the
mass of the strange quark, while it takes the value of a = 0.289 for ms = 250 MeV.
When measured in units of B60 = B/(60 MeV fm−3), the constant B is restricted to
be in the range

0.9821 < B60 < 1.525, (55)

assuming ms = 0. The lower limit is set by the requirement of stability of neutrons with
respect to a spontaneous fusion into strangelets, while the upper limit is determined
by the energy per baryon of 56Fe at zero pressure (930.4 MeV). For other values of ms

the above limits are modified somewhat (see also Dey et al. 1998; Gondek-Rosińska
et al. 2000 for other attempts to describe deconfined strange quark matter).

2.7 Numerical schemes

All available methods for solving the system of equations describing the equilibrium
of rotating relativistic stars are numerical, as no self-consistent solution for both the
interior and exterior spacetime in an algebraic closed form has been found. The first
numerical solutions were obtained by Wilson (1972) and by Bonazzola and Schneider
(1974). In the following, we give a description of several available numerical methods
and their various implementations (codes) and extensions.

2.7.1 Hartle

To order O(Ω2), the structure of a star changes only by quadrupole terms and the
equilibrium equations become a set of ordinary differential equations. Hartle’s (1967;
1968) method computes rotating stars in this slow rotation approximation, and a review
of slowly rotating models has been compiled by Datta (1988). Weber and Glendenning
(1991) and Weber et al. (1991) also implement Hartle’s formalism to explore the
rotational properties of four new EOSs.

Weber and Glendenning (1992) improve on Hartle’s formalism in order to obtain
a more accurate estimate of the angular velocity at the mass-shedding limit, but their
models still show large discrepancies compared to corresponding models computed
without the slow rotation approximation (Salgado et al. 1994a). Thus, Hartle’s formal-
ism is appropriate for typical pulsar (and most millisecond pulsar) rotational periods,
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but it is not the method of choice for computing models of rapidly rotating relativistic
stars near the mass-shedding limit. An extension of Hartle’s scheme to 3rd order was
presented by Benhar et al. (2005).

2.7.2 Butterworth and Ipser (BI)

The BI scheme (Butterworth and Ipser 1976) solves the four field equations following
a Newton–Raphson-like linearization and iteration procedure. One starts with a nonro-
tating model and increases the angular velocity in small steps, treating a new rotating
model as a linear perturbation of the previously computed rotating model. Each lin-
earized field equation is discretized and the resulting linear system is solved. The four
field equations and the hydrostationary equilibrium equation are solved separately and
iteratively until convergence is achieved.

Space is truncated at a finite distance from the star and the boundary conditions there
are imposed by expanding the metric potentials in powers of 1/r . Angular derivatives
are approximated by high-accuracy formulae and models with density discontinuities
are treated specially at the surface. An equilibrium model is specified by fixing its rest
mass and angular velocity.

The original BI code was used to construct uniform density models and polytropic
models (Butterworth and Ipser 1976; Butterworth 1976). Friedman et al. (1986, 1989)
(FIP) extend the BI code to obtain a large number of rapidly rotating models based on a
variety of realistic EOSs. Lattimer et al. (1990) used a code that was also based on the
BI scheme to construct rotating stars using “exotic” and schematic EOSs, including
pion or kaon condensation and strange quark matter.

2.7.3 Komatsu, Eriguchi, and Hachisu (KEH)

In the KEH scheme (Komatsu et al. 1989a, b), the same set of field equations as in BI
is used, but the three elliptic-type field equations are converted into integral equations
using appropriate Green’s functions. The boundary conditions at large distance from
the star are thus incorporated into the integral equations, but the region of integration is
truncated at a finite distance from the star. The fourth field equation is an ordinary first
order differential equation. The field equations and the equation of hydrostationary
equilibrium are solved iteratively, fixing the maximum energy density and the ratio
of the polar radius to the equatorial radius, until convergence is achieved. In Komatsu
et al. (1989a, b) and Eriguchi et al. (1994), the original KEH code is used to construct
uniformly and differentially rotating stars for both polytropic and realistic EOSs.

Cook, Shapiro, and Teukolsky (CST) improve on the KEH scheme by introducing
a new radial variable that maps the semi-infinite region [0,∞) to the closed region
[0, 1]. In this way, the region of integration is not truncated and the model converges to
a higher accuracy. Details of the code are presented in Cook et al. (1992) and polytropic
and realistic models are computed in Cook et al. (1994b) and Cook et al. (1994a).

Stergioulas and Friedman (SF) implement their own KEH code following the CST
scheme. They improve on the accuracy of the code by a special treatment of the second
order radial derivative that appears in the source term of the first order differential
equation for one of the metric functions. This derivative was introducing a numerical
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error of 1–2% in the bulk properties of the most rapidly rotating stars computed in the
original implementation of the KEH scheme. The SF code is presented in Stergioulas
and Friedman (1995) and in Stergioulas (1996). It is available as a public domain code,
named RNS, and can be downloaded from Stergioulas (1999).

A generalized KEH-type numerical code, suitable also for binary compact objects,
was presented by Uryū and Tsokaros (2012); Uryū et al. (2012). The COCAL code has
been applied to black hole models, and was recently extended to neutron star models,
either in isolation (Uryū et al. 2014, 2016b) or in binaries (Tsokaros et al. 2015). The
extended COCAL code allows for the generation of (quasi)equilribrium, magnetized,
and rotating axisymmetric neutron star models, as well as quasiequilibrium corota-
tional, irrotational, and spinning neutron star binaries. The code can also build models
of isolated, quasiequilibrium, triaxial neutron stars (Uryū et al. 2016b, a)—a gener-
alization of Jacobi ellipsoids in general relativity. Such configurations were recently
studied dynamically in Tsokaros et al. (2017) and were found to be dynamically stable,
though their secular stability still remains an open question.

2.7.4 Bonazzola et al. (BGSM)

In the BGSM scheme (Bonazzola et al. 1993), the field equations are derived in the
3+1 formulation. All four chosen equations that describe the gravitational field are
of elliptic type. This avoids the problem with the second order radial derivative in the
source term of the ODE used in BI and KEH. The equations are solved using a spectral
method, i.e., all functions are expanded in terms of trigonometric functions in both
the angular and radial directions and a Fast Fourier Transform (FFT) is used to obtain
coefficients. Outside the star a redefined radial variable is used, which maps infinity
to a finite distance.

In Salgado et al. (1994a, b), the code is used to construct a large number of mod-
els based on recent EOSs. The accuracy of the computed models is estimated using
two general relativistic virial identities, valid for general asymptotically flat space-
times (Gourgoulhon and Bonazzola 1994; Bonazzola and Gourgoulhon 1994) (see
Sect. 2.7.8).

While the field equations used in the BI and KEH schemes assume a perfect fluid,
isotropic stress-energy tensor, the BGSM formulation makes no assumption about the
isotropy of Tab. Thus, the BGSM code can compute stars with a magnetic field, a solid
crust, or a solid interior, and it can also be used to construct rotating boson stars.

2.7.5 LORENE/rotstar

Bonazzola et al. (1998) have improved the BGSM spectral method by allowing for
several domains of integration. One of the domain boundaries is chosen to coincide
with the surface of the star and a regularization procedure is introduced for the divergent
derivatives at the surface (that appear in the density field when stiff equations of state are
used). This allows models to be computed that are nearly free of Gibbs phenomena at
the surface. The same method is also suitable for constructing quasi-stationary models
of binary neutron stars. The new method has been used in Gourgoulhon et al. (1999)
for computing models of rapidly rotating strange stars and it has also been used in 3D
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computations of the onset of the viscosity-driven instability to bar-mode formation
(Gondek-Rosińska and Gourgoulhon 2002).

The LORENE library is available as public domain software (Gourgoulhon et al.
2008). It has also been used to construct equilibrium models of rotating stars as initial
data for a fully constraint evolution scheme in the Dirac gauge and with maximal
slicing (Lin and Novak 2006).

2.7.6 Ansorg et al. (AKM)

Another multi-domain spectral scheme was introduced in Ansorg et al. (2002, 2003).
The scheme can use several domains inside the star, one for each possible phase tran-
sition in the equation of state. Surface-adapted coordinates are used and approximated
by a two-dimensional Chebyshev-expansion. Transition conditions are satisfied at the
boundary of each domain, and the field and fluid equations are solved as a free bound-
ary value problem by a full Newton–Raphson method, starting from an initial guess.
The field-equation components are simplified by using a corotating reference frame.
Applying this new method to the computation of rapidly rotating homogeneous rela-
tivistic stars, Ansorg et al. achieve near machine accuracy, when about 24 expansion
coefficients are used (see Sect. 2.7.9). For configurations near the mass-shedding limit
the relative error increases to about 10−5, even with 24 expansion coefficients, due to
the low differentiability of the solution at the surface. The AKM code has been used
in systematic studies of uniformly rotating homogeneous stars (Schöbel and Ansorg
2003) and differentially rotating polytropes (Ansorg et al. 2009). A detailed descrip-
tion of the numerical method and a review of the results is given in Meinel et al.
(2008).

A public domain library which implements spectral methods for solving nonlin-
ear systems of partial differential equations with a Newton–Rapshon method was
presented by Grandclément (2010, 2009). The KADATH library could be used to con-
struct equilibrium models of rotating relativistic stars in a similar manner as in Ansorg
et al. (2002, 2003).

2.7.7 IWM-CFC approximation

The spatial conformal flatness condition (IWM-CFC) (Isenberg 2008; Wilson et al.
1996) is an approximation, in which the spatial part of the metric is assumed to be
conformally flat. Computationally, one has to solve one equation less than in full GR,
for isolated stars. The accuracy of this approximation has been tested for uniformly
rotating stars by Cook et al. (1996) and it is satisfactory for many applications. Nonax-
isymmetric configurations in the IWM-CFC approximation were obtained in Huang
et al. (2008). The accuracy of the IWM-CFC approximation was also tested for ini-
tial data of strongly differentially rotating neutron star models (Iosif and Stergioulas
2013).

The conformal flatness approach has been extended to avoid non-uniqueness issues
arising in the solution of the standard CFC equations by Cordero-Carrión et al. (2009).
This method has also been termed the “extended CFC” approach (Bucciantini and Del
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Zanna 2011) and has been applied to the construction of general relativistic magne-
todydrodynamic equilibria (Pili et al. 2014, 2017).

2.7.8 The virial identities

Equilibrium configurations in Newtonian gravity satisfy the well-known virial relation
(assuming a polytropic equation of state)

2T + 3(Γ − 1)U + W = 0. (56)

This can be used to check the accuracy of computed numerical solutions. In general
relativity, a different identity, valid for a stationary and axisymmetric spacetime, was
found in Bonazzola (1973). More recently, two relativistic virial identities, valid for
general asymptotically flat spacetimes, have been derived by Gourgoulhon and Bonaz-
zola (1994); Bonazzola and Gourgoulhon (1994). The 3-dimensional virial identity
(GRV3) (Gourgoulhon and Bonazzola 1994) is the extension of the Newtonian virial
identity (56) to general relativity. The 2-dimensional (GRV2) (Bonazzola and Gour-
goulhon 1994) virial identity is the generalization of the identity found in Bonazzola
(1973) (for axisymmetric spacetimes) to general asymptotically flat spacetimes. In
Bonazzola and Gourgoulhon (1994), the Newtonian limit of GRV2, in axisymme-
try, is also derived. Previously, such a Newtonian identity had only been known for
spherical configurations (Chandrasekhar 1939).

The two virial identities are an important tool for checking the accuracy of numerical
models and have been repeatedly used by several authors (see, e.g., Bonazzola et al.
1993; Salgado et al. 1994a, b; Nozawa et al. 1998; Ansorg et al. 2002).

2.7.9 Direct comparison of numerical codes

The accuracy of the above numerical codes can be estimated, if one constructs exactly
the same models with different codes and compares them directly. The first such com-
parison of rapidly rotating models constructed with the FIP and SF codes is presented
in Stergioulas and Friedman (1995). Rapidly rotating models constructed with several
EOSs agree to 0.1–1.2% in the masses and radii and to better than 2% in any other
quantity that was compared (angular velocity and momentum, central values of metric
functions, etc.). This is a very satisfactory agreement, considering that the BI code
was using relatively few grid points, due to limitations of computing power at the time
of its implementation.

In Stergioulas and Friedman (1995), it is also shown that a large discrepancy
between certain rapidly rotating models (constructed with the FIP and KEH codes)
that was reported by Eriguchi et al. (1994), resulted from the fact that Eriguchi et al.
and FIP used different versions of a tabulated EOS.

Nozawa et al. (1998) have completed an extensive direct comparison of the BGSM,
SF, and the original KEH codes, using a large number of models and equations of state.
More than twenty different quantities for each model are compared and the relative
differences range from 10−3 to 10−4 or better, for smooth equations of state. The
agreement is also excellent for soft polytropes. These checks show that all three codes
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Table 2 Detailed comparison of the accuracy of different numerical codes in computing a rapidly rotating,
uniform density model

AKM Lorene/rotstar SF (260 × 400) SF (70 × 200) BGSM KEH

p̄c 1.0

rp/re 0.7 1 × 10−3

Ω̄ 1.41170848318 9 × 10−6 3 × 10−4 3 × 10−3 1 × 10−2 1 × 10−2

M̄ 0.135798178809 2 × 10−4 2 × 10−5 2 × 10−3 9 × 10−3 2 × 10−2

M̄0 0.186338658186 2 × 10−4 2 × 10−4 3 × 10−3 1 × 10−2 2 × 10−3

R̄circ 0.345476187602 5 × 10−5 3 × 10−5 5 × 10−4 3 × 10−3 1 × 10−3

J̄ 0.0140585992949 2 × 10−5 4 × 10−4 5 × 10−4 2 × 10−2 2 × 10−2

Zp 1.70735395213 1 × 10−5 4 × 10−5 1 × 10−4 2 × 10−2 6 × 10−2

Z f
eq −0.162534082217 2 × 10−4 2 × 10−3 2 × 10−2 4 × 10−2 2 × 10−2

Zb
eq 11.3539142587 7 × 10−6 7 × 10−5 1 × 10−3 8 × 10−2 2 × 10−1

|GRV3| 4 × 10−13 3 × 10−6 3 × 10−5 1 × 10−3 4 × 10−3 1 × 10−1

The absolute value of the relative error in each quantity, compared to the AKM code, is shown for the
numerical codes Lorene/rotstar, SF (at two resolutions), BGSM, and KEH (see text). The resolutions for
the SF code are (angular × radial) grid points. See Nozawa et al. (1998) for the definition of the various
equilibrium quantities

are correct and successfully compute the desired models to an accuracy that depends
on the number of grid points used to represent the spacetime.

If one makes the extreme assumption of uniform density, the agreement is at the
level of 10−2. In the BGSM code this is due to the fact that the spectral expansion in
terms of trigonometric functions cannot accurately represent functions with discon-
tinuous first order derivatives at the surface of the star. In the KEH and SF codes, the
three-point finite-difference formulae cannot accurately represent derivatives across
the discontinuous surface of the star.

The accuracy of the three codes is also estimated by the use of the two virial iden-
tities. Overall, the BGSM and SF codes show a better and more consistent agreement
than the KEH code with BGSM or SF. This is largely due to the fact that the KEH
code does not integrate over the whole spacetime but within a finite region around the
star, which introduces some error in the computed models.

A direct comparison of different codes is also presented by Ansorg et al. (2002).
Their multi-domain spectral code is compared to the BGSM, KEH, and SF codes for
a particular uniform density model of a rapidly rotating relativistic star. An extension
of the detailed comparison in Ansorg et al. (2002), which includes results obtained by
the LORENE/rotstar code in Gondek-Rosińska and Gourgoulhon (2002) and by the
SF code with higher resolution than the resolution used in Nozawa et al. (1998), is
shown in Table 2. The comparison confirms that the virial identity GRV3 is a good
indicator of the accuracy of each code. For the particular model in Table 2, the AKM
code achieves nearly double-precision accuracy, while the Lorene/rotstar code has a
typical relative accuracy of 2 × 10−4–7 × 10−6 in various quantities. The SF code at
high resolution comes close to the accuracy of the Lorene/rotstar code for this model.
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Lower accuracy is obtained with the SF, BGSM, and KEH codes at the resolutions
used in Nozawa et al. (1998).

The AKM code converges to machine accuracy when a large number of about 24
expansion coefficients are used at a high computational cost. With significantly fewer
expansion coefficients (and comparable computational cost to the SF code at high
resolution) the achieved accuracy is comparable to the accuracy of the LORENE/rotstar
and SF codes. Moreover, at the mass-shedding limit, the accuracy of the AKM code
reduces to about 5 digits (which is still highly accurate, of course), even with 24
expansion coefficients, due to the nonanalytic behaviour of the solution at the surface.
Nevertheless, the AKM method represents a great achievement, as it is the first method
to converge to machine accuracy when computing rapidly rotating stars in general
relativity.
Going further A review of spectral methods in numerical relativity can be found
in Grandclément and Novak (2009). Pseudo-Newtonian models of axisymmetric,
rotating relativistic stars are treated in Kim et al. (2009), while a formulation for
nonaxisymmetric, uniformly rotating equilibrium configurations in the second post-
Newtonian approximation is presented in Asada and Shibata (1996). Slowly-rotating
models of white dwarfs in general relativity are presented in Boshkayev et al. (2013).
The validity of the slow-rotation approximation is examined in Berti et al. (2005).
A minimal-surface scheme was presented in Neugebauer and Herold (1992). The
convergence properties iterative self-consistent-field methods when applied to stellar
equilibria are investigated in Price et al. (2009).

2.8 Analytic approximations to the exterior spacetime

The exterior metric of a rapidly rotating neutron star differs considerably from the Kerr
metric. The two metrics agree only to lowest order in the rotational velocity (Hartle
and Thorne 1969). At higher order, the multipole moments of the gravitational field
created by a rapidly rotating compact star are different from the multipole moments
of the Kerr field. There have been many attempts in the past to find analytic solutions
to the Einstein equations in the stationary, axisymmetric case, that could describe a
rapidly rotating neutron star.

In the vacuum region surrounding a stationary and axisymmetric star, the spacetime
only depends on three metric functions (while four metric functions are needed for
the interior). The most general form of the metric was given by Papapetrou (1953)

ds2 = − f (dt − ωdφ)2 + f −1
{

e2γ (d ˜̟ 2 + dz̃2) + ˜̟ 2dφ2
}

. (57)

Here f , ω and γ are functions of the quasi-cylindrical Weyl–Lewis–Papapetrou coor-
dinates ( ˜̟ , z̃). Starting from this metric, one can write the vacuum Einstein–Maxwell
equations as two equations for two complex potentials E and Φ, following a procedure
due to Ernst Ernst (1968a, b). Once the potentials are known, the metric can be recon-
structed. Sibgatullin and Queen (1991) devised a powerful procedure for reducing the
solution of the Ernst equations to simple integral equations. The exact solutions are
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generated as a series expansion, in terms of the physical multipole moments of the
spacetime, by choosing the values of the Ernst potentials on the symmetry axis.

An interesting exact vacuum solution, given in a closed, algebraic form, was found
by Manko et al. (2000a, b). For non-magnetized sources of zero net charge, it reduces
to a 3-parameter solution, involving the gravitational mass, M , the specific angular
momentum, a = J/M , and a third parameter, b, related to the quadrupole moment of
the source. The Ernst potential E on the symmetry axis is

e(z) = (z − M − ia)(z + ib) + d − δ − ab

(z + M − ia)(z + ib) + d − δ − ab
, (58)

where

δ = −M2b2

M2 − (a − b)2 , (59)

d = 1

4

[

M2 − (a − b)2
]

. (60)

Since a and b are independent parameters, setting a equal to zero does not automati-
cally imply a vanishing quadrupole moment. Instead, the nonrotating solution (a = 0)
has a quadrupole moment equal to

Q(a = 0) = − M

4

(

M2 + b2
)2

(

M2 − b2
) , (61)

and there exists no real value of the parameter b for which the quadrupole moment
vanishes for a nonrotating star. Hence, the 3-parameter solution by Manko et al. does
not reduce continuously to the Schwarzschild solution as the rotation vanishes and is
not suitable for describing slowly rotating stars.

For rapidly rotating models, when the quadrupole deformation induced by rotation
roughly exceeds the minimum nonvanishing oblate quadrupole deformation of the
solution in the absence of rotation, the 3-parameter solution by Manko et al. is still
relevant. A matching of the vacuum exterior solution to numerically-constructed inte-
rior solutions of rapidly rotating stars (by identifying three multipole moments) was
presented by Berti and Stergioulas (2004). For a wide range of candidate EOSs, the
critical rotation rate Ωcrit/ΩK above which the Manko et al. 3-parameter solution is
relevant, ranges from ∼ 0.4 to ∼ 0.7 for sequences of models with M = 1.4 M⊙, with
the lower ratio corresponding to the stiffest EOS. For the maximum-mass sequence the
ratio is ∼ 0.9, nearly independent of the EOS. In Manko et al. (2000a), the quadrupole
moment was also used for matching the exact vacuum solution to numerical interior
solutions, but only along a different solution branch which is not a good approximation
to rotating stars.

A more versatile exact exterior vacuum solution found by Manko et al. (1995)
involves (in the case of vanishing charge and magnetic field) four parameters, which
can be directly related to the four lowest-order multipole moments of a source (mass,
angular momentum, quadrupole moment and current octupole moment). The advan-
tage of the above solution is that its four parameters are introduced linearly in the
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first moment it appears. For this reason, one can always match the exact solution to
a numerical solution by identifying the four lowest-order multipole moments. There-
fore, the 4-parameter Manko et al. (1995) solution is relevant for studying rotating
relativistic stars at any rotation rate. Pappas (2009) compared the two Manko et al.
solutions to numerical solutions of rapidly rotating relativistic stars, finding good
agreement. In Pappas et al. (2013), a more detailed comparison is shown, using a cor-
rected expression for the numerical computation of the quadrupole moment. Manko
and Ruiz (2016a) express the Manko et al. 4-parameter solution explicitly in terms
of only three potentials, and compare the multipole structure of the solution with
physically realistic numerical models of Berti and Stergioulas (2004).

Another exact exterior solution (that is related to the 4-parameter Manko et al.
solution) was presented by Pachón et al. (2006) and was applied to relativistic pre-
cession and oscillation frequencies of test particles around rotating compact stars.
Furthermore, an exact vacuum solution (constructed via Bäcklund transformations),
that can be matched to numerically constructed solutions with an arbitrary number of
constants, was presented by Teichmüller et al. (2011), who found very good agreement
with numerical solutions even for a small number of parameters.

A very recent analytic solution for the exterior spacetime is provided by Pappas
(2017). The metric is constructed by adopting the Ernst formulation, it is written as
an expansion in Weyl–Papapetrou coordinates and has 3 free parameters—multipole
moments of the NS. The metric compares favourably with numerically computed
general relativistic neutron star spacetimes. An extension of the approximate metric
to scalar–tensor theories with massless fields is also provided.

2.9 Properties of equilibrium models

2.9.1 Bulk properties and sequences of equilibrium models

Neutron star models constructed with various realistic EOSs have considerably dif-
ferent bulk properties, due to the large uncertainties in the equation of state at high
densities. Very compressible (soft) EOSs produce models with small maximum mass,
small radius, and large rotation rate. On the other hand, less compressible (stiff) EOSs
produce models with a large maximum mass, large radius, and low rotation rate. The
sensitivity of the maximum mass to the compressibility of the neutron-star core is
responsible for the strongest astrophysical constraint on the equation of state of cold
matter above nuclear density. With the mass measurement of 1.97 ± 0.04 M⊙ for
PSR J1614-2230 (Demorest et al. 2010) and of 2.01 ± 0.04 for PSR J0348+0432
(Antoniadis et al. 2013), several candidate EOSs that yielded models with maximum
masses of nonrotating stars below this limit are ruled out, but the remaining range
of candidate EOSs is still large, yielding compact objects with substantially different
properties.

Not all properties of the maximum mass models between proposed EOSs differ
considerably, at least not within groups of similar EOSs. For example, most realistic
hadronic EOSs predict a maximum mass model with a ratio of rotational to gravita-
tional energy T/|W | of 0.11 ± 0.02, a dimensionless angular momentum cJ/G M2
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Fig. 1 The radius R of a uniformly rotating star increases sharply as the Kepler (mass-shedding) limit
(Ω = ΩK ) is approached. The particular sequence of models shown here has a constant central energy
density of ǫc = 1.21 × 1015 g cm−3 and was constructed with EOS L. (Image reproduced with permission
from Stergioulas and Friedman 1995, copyright by AAS)

Fig. 2 Representative sequences of rotating stars with fixed baryon mass, for EOS WFF3 (Wiringa et al.
1988). Above a rest mass of M0 = 2.17 M⊙ only supramassive stars exist, which reach the axisymmetric
instability limit when spun down. The onset of axisymmetric instability approximately coincides with
the minima of the constant rest mass sequences. (Image reproduced with permission from Friedman and
Stergioulas 2013, copyright by the authors)

of 0.64 ± 0.06, and an eccentricity of 0.66 ± 0.04 (Friedman and Ipser 1992). Hence,
within the set of realistic hadronic EOSs, some properties are directly related to the
stiffness of the EOS while other properties are rather insensitive to stiffness. On the
other hand, if one considers strange quark EOSs, then for the maximum mass model,
T/|W | can become more than 60% larger than for hadronic EOSs.

Compared to nonrotating stars, the effect of rotation is to increase the equato-
rial radius of the star and also to increase the mass that can be sustained at a given
central energy density. As a result, the mass of the maximum-mass rigidly rotating
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model is roughly 15–20% higher than the mass of the maximum mass nonrotating
model (Morrison et al. 2004), for typical realistic hadronic EOSs. The corresponding
increase in radius is 30–40%. Figure 1 shows an example of a sequence of uniformly
rotating equilibrium models with fixed central energy density,1 constructed with EOS
L (Pandharipande and Smith 1975; Pandharipande et al. 1976). Near the Kepler (mass-
shedding) limit (Ω = ΩK ), the radius increases sharply. This leads to the appearance
of a cusp in the equatorial plane. The effect of rotation in increasing the mass and
radius becomes more pronounced in the case of strange quark EOSs (see Sect. 2.9.8).

For a given zero-temperature EOS, the uniformly rotating equilibrium models form
a two-dimensional surface in the three-dimensional space of central energy density,
gravitational mass, and angular momentum (Stergioulas and Friedman 1995). The
surface is limited by the nonrotating models and by the models rotating at the mass-
shedding (Kepler) limit. Cook et al. (1992, 1994b, a) have shown that the model with
maximum angular velocity does not coincide with the maximum mass model, but is
generally very close to it in central density and mass. Stergioulas and Friedman (1995)
showed that the maximum angular velocity and maximum baryon mass equilibrium
models are also distinct. The distinction becomes significant in the case where the
EOS has a large phase transition near the central density of the maximum mass model;
otherwise the models of maximum mass, baryon mass, angular velocity, and angular
momentum can be considered to coincide for most purposes.

In the two-dimensional parameter space of uniformly rotating models one can con-
struct different one-dimensional sequences, depending on which quantity is held fixed.
Examples are sequences of constant central energy density, constant angular momen-
tum or constant rest mass. Figure 2 displays a representative sample of fixed rest mass
sequences for EOS WFF3 (Wiringa et al. 1988) in a mass versus central energy density
graph, where the sequence of nonrotating models and the sequence of models at the
mass-shedding limit are also shown.2 The rest mass of the maximum-mass nonrotating
model is 2.17 M⊙. Below this value, all fixed rest mass sequences have a nonrotating
member. Along such a sequence, the gravitational mass increases somewhat, since it
also includes the rotational kinetic energy. Above M0 = 2.17 M⊙ none of the fixed
rest mass sequences have a nonrotating member. Instead, the sequences terminate at
the axisymmetric instability limit (see Sect. 4.3.1). The onset of the instability occurs
just prior to the minimum of each fixed rest mass sequence, and models to the right of
the instability line are unstable.

Models with M0 > 2.17 M⊙ have masses larger than the maximum-mass nonrotat-
ing model and are called supramassive (Cook et al. 1992). A millisecond pulsar spun up
by accretion can become supramassive, in which case it would subsequently spin down
along a sequence with approximately fixed rest mass, finally reaching the axisymmet-
ric instability limit and collapsing to a black hole. Some relativistic stars could also
be born supramassive or become so as the result of a binary merger; here, however,
the star would be initially differentially rotating, and collapse would be triggered by

1 Following the standard convention, we report numerical values of ǫc as ǫc/c2.
2 Notice that, although this particular EOS does not satisfy the current observational constraint of a 2 M⊙
maximum-mass nonrotating model, the qualitative features of all sequences of models discussed here are
generic for practically all EOSs.
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a combination of spin-down and by viscosity (or magnetic-field braking) driving the
star to uniform rotation. The maximum mass of differentially rotating supramassive
neutron stars can be significantly larger than in the case of uniform rotation (Lyford
et al. 2003) and typically 50% or more than the TOV limit (Morrison et al. 2004).

A supramassive relativistic star approaching the axisymmetric instability will actu-
ally spin up before collapse, even though it loses angular momentum (Cook et al.
1992, 1994b, a). This potentially observable effect is independent of the equation of
state and it is more pronounced for rapidly rotating massive stars. Similarly, stars can
be spun up by loss of angular momentum near the mass-shedding limit, if the equation
of state is extremely stiff or extremely soft.

2.9.2 Multipole moments

The deformed shape of a rapidly rotating star creates a non-spherical distortion in
the spacetime metric, and in the exterior vacuum region the metric is determined
by a set of multipole moments, which arise at successively higher powers of r−1.
As in electromagnetism, the asymptotic spacetime is characterized by two sets of
multipoles, mass multipoles and current multipoles, analogs of the electromagnetic
charge multipoles and current multipoles.

The dependence of metric components on the choice of coordinates leads to the
complication that in coordinate choices natural for a rotating star (including the quasi-
isotropic coordinates) the asymptotic form of the metric includes information about
the coordinates as well as about the multipole structure of the geometry. Because
the metric potentials ν, ω and ψ are scalars constructed locally from the metric and
the symmetry vectors tα and φα , as in Eqs. (11–13), their definition is in this sense
coordinate-independent. But, the functional forms, ν(r, θ), ω(r, θ), ψ(r, θ), depend
on r and θ and one must disentangle the physical mass and current moments from the
coordinate contributions.

Up to O(r−3), the only contributing multipoles are the monopole and quadrupole
mass moments and the l = 1 current moment. Two approaches to asymptotic multi-
poles of stationary systems, developed by Thorne (1980) and by Geroch (1970b) and
Hansen (1974) yield identical definitions for l ≤ 2, while higher multipoles differ only
in the normalization chosen. Ryan (1995) and Laarakkers and Poisson (1999) provide
coordinate invariant definitions of multiple moments.

In the nonrotating limit, the quasi-isotropic metric (5) takes the isotropic form

ds2 = −
(

1 − M/2r

1 + M/2r

)2

dt2 +
(

1 + M

2r

)4

(dr2 + r2 sin2 θdφ2 + r2dθ2), (62)

with asymptotic form

ds2 = −
[

1 − 2M

r
+ 2

M2

r2 − 1

4

M3

r3 + O(r−5)

]

dt2

+
[

1 + 2M

r
+ 3

2

M2

r2 + O(r−3)

]

(dr2 + r2 sin2 θdφ2 + r2dθ2), (63)
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Thus, the metric potentials ν, μ and ψ have asymptotic behavior

ν = − M

r
− 1

12

M3

r3 + O(r−5), (64)

μ = M

r
− 1

4

M2

r2 + 1

12

M3

r3 + O(r−4), (65)

ψ = log(r sin θ) + μ. (66)

For a rotating star, the asymptotic metric differs from the nonrotating form already
at O(r−2). Through O(r−3) there are three corrections due to rotation: (i) the frame

dragging potential ω ∼ 2J

r3 ; (ii) a quadrupole correction to the diagonal metric coeffi-

cients at O(r−3) associated with the mass quadrupole moment Q of the rotating star;
and (iii) coordinate-dependent monopole and quadrupole corrections to the diagonal
metric coefficients (reflecting the asymptotic shape of the r - and θ - surfaces) which
can be described by a dimensionless parameter a.

For convenience, one can define a dimensionless qudrupole moment parameter
q := Q/M3. Then, Friedman and Stergioulas (2013) show that the asymptotic form
of the metric is given in terms of the parameters M , J , q and a by:

ν = − M

r
− 1

12

M3

r3 + (a − 4a P2 − q P2)
M3

r3 + O(r−4), (67)

μ = M

r
− 1

4

M2

r2 + 1

12

M3

r3 − (a − 4a P2)
M2

r2 − (a − 4a P2 − q P2)
M3

r3

+O(r−4), (68)

ψ = log(r sin θ) + μ + O(r−4), (69)

ω = 2J

r3 + O(r−4), (70)

where P2 is the Legendre polynomial P2(cos θ). The coefficient of −P2/r3 in the
expansion of the metric potential ν is thus Q + 4aM3, from which the quadrupole
moment Q can be extracted, if the parameter a has been determined from the coefficient
of P2/r2 in the expansion of the metric potential μ. Notice that sometimes the coeffient
of −P2/r3 in the expansion of ν is identified with Q (instead of Q + 4aM3), which
can lead to a deviation of up to about 20% in the numerical values of the quadrupole
moment. Pappas and Apostolatos (2012) have independently verified the correctness
of the identification in Friedman and Stergioulas (2013) and also provide the correct
identification of the current-octupole moment.

Laarakkers and Poisson (1999) found that along a sequence of fixed gravitational
mass M , the quadrupole moment Q scales quadratically with the angular momentum,
as

Q = −a2
J 2

Mc2 = −a2χ
2 M3, (71)
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where a2 is a dimensionless coefficient that depends on the equation of state, and
χ := J/M2. In Laarakkers and Poisson (1999), the coefficient a2 varied between
a ∼ 2 for very soft EOSs and a ∼ 8 for very stiff EOSs, for sequences of M = 1.4 M⊙,
but these values were computed with the erroneous identification of Q discussed above.
Pappas and Apostolatos (2012) verify the simple form of (71) and provide corrected
values for the parameter a2 as well as similar relations for other multipole moments.
Pappas and Apostolatos (2014) and Yagi et al. (2014) have further found that in addition
to Q, the spin octupole S3 and mass hexadecapole M4 also have scaling relationships
for realistic equations of state as follows

S3 = −β3χ
3 M4, (72)

M4 = γ4χ
4 M5, (73)

where β3 and γ4 are dimensionless constants.

2.9.3 Mass-shedding limit and the empirical formula

Mass-shedding occurs when the angular velocity of the star reaches the angular veloc-
ity of a particle in a circular Keplerian orbit at the equator, i.e., when

Ω = ΩK, (74)

where

ΩK = ω′

2ψ ′ + eν−ψ

[

c2 ν′

ψ ′ +
(

ω′

2ψ ′ eψ−ν

)2
]1/2

+ ω, (75)

(a prime indicates radial differentiation). In differentially rotating stars, even a small
amount of differential rotation can significantly increase the angular velocity required
for mass-shedding. Thus, a newly-born, hot, differentially rotating neutron star or a
massive, compact object formed in a binary neutron star merger could be sustained
(temporarily) in equilibrium by differential rotation, even if a uniformly rotating con-
figuration with the same rest mass does not exist.

In the Newtonian limit, one can use the Roche model to derive the maximum angular
velocity for uniformly rotating polytropic stars, finding ΩK ≃ (2/3)3/2(G M/R3)1/2

(see Shapiro and Teukolsky 1983). An identical result is obtained in the relativistic
Roche model of Shapiro et al. (1983). For relativistic stars, the empirical formula
(Haensel and Zdunik 1989; Friedman et al. 1989; Friedman 1990; Haensel et al.
1995)

ΩK = 0.67

√

√

√

√

G Mmax
sph

(Rmax
sph )3 , (76)

gives the maximum angular velocity in terms of the mass and radius of the maximum
mass nonrotating (spherical) model with an accuracy of 5–7%, without actually having
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to construct rotating models. Expressed in terms of the minimum period Pmin =
2π/ΩK , the empirical formula reads

Pmin ≃ 0.82

(

M⊙
Mmax

sph

)1/2 (
Rmax

sph

10 km

)3/2

ms. (77)

The empirical formula results from universal proportionality relations that exist
between the mass and radius of the maximum mass rotating model and those of the
maximum mass nonrotating model for the same EOS. Lasota et al. (1996) found that,
for most EOSs, the numerical coefficient in the empirical formula is an almost linear
function of the parameter

χs =
2G Mmax

sph

Rmax
sph c2 . (78)

The Lasota et al. empirical formula

ΩK = (0.468 + 0.378χs)

√

√

√

√

G Mmax
sph

(Rmax
sph )3 , (79)

reproduces the exact values with a relative error of only 1.5%. The corresponding
formula for Pmin is

Pmin ≃ 0.187

(χs)3/2(1 + 0.808χs)

(

M⊙
Mmax

sph

)

ms. (80)

The above empirical relations are specifically constructed for the most rapidly rotating
model for a given EOS.

Lattimer and Prakash (2004) suggest the following empirical relation

Pmin ≃ 0.96

(

M⊙
M

)1/2 ( Rsph

10 km

)3/2

ms, (81)

for any neutron star model with mass M and radius Rsph of the nonrotating model
with same mass, as long as its mass is not close to the maximum mass allowed by
the EOS. Haensel et al. (2009) refine the above formula, giving a factor of 0.93 for
hadronic EOSs and 0.87 for strange stars. A corresponding empirical relation between
the radius at maximal rotation and the radius of a nonrotating configuration of same
mass also exists.

Using the above relation, one can set an approximate constraint on the radius of
a nonrotating star with mass M , given the minimum observed rotational period of
pulsars.
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2.9.4 Upper limits on mass and rotation: theory versus observation

Maximum mass: Candidate EOSs for high density matter predict vastly different max-
imum masses for nonrotating models. One of the stiffest proposed EOSs (EOS L) has
a nonrotating maximum mass of 3.3 M⊙. Some core-collapse simulations suggest a
bi-modal mass distribution of the remnant, with peaks at about 1.3 M⊙ and 1.7 M⊙
(Timmes et al. 1996).

Observationally, the masses of a large number of compact objects have been deter-
mined, but, in most cases, the observational error bars are still large. A recent review
of masses and spins of neutron stars as determined by observations was presented
by Miller and Miller (2015). The heaviest neutron stars with the most accurately
determined masses ever observed are PSR J1614-2230, with M = 1.97 ± 0.04 M⊙
(Demorest et al. 2010) and PSR J0348+0432, with 2.01 ± 0.04 (Antoniadis et al.
2013), and there are indications for even higher masses (see Haensel et al. 2007 for a
detailed account). Masses of compact objects have been measured in different types of
binary systems: double neutron star binaries, neutron star-white dwarf binaries, X-ray
binaries and binaries composed of a compact object around a main sequence star. For
most double neutron star binaries, masses have already been determined with good
precision and are restricted to a narrow range of about 1.2 − 1.4 M⊙ (Thorsett and
Chakrabarty 1999). This narrow range of relatively small masses is probably associ-
ated with an upper mass limit on iron cores, which in turn is related to the stability of
the core of each progenitor star. Masses determined for compact stars in X-ray binaries
still have large error bars, but are consistently higher than 1.4 M⊙, which is probably
the result of mass-accretion. A similar finding seems to apply to white dwarf–neutron
star binaries (see Paschalidis et al. 2009 and references therein).

Minimum period: When magnetic-field effects are ignored, conservation of angular
momentum can yield very rapidly rotating neutron stars at birth. Simulations of the
rotational core collapse of evolved rotating progenitors (Heger et al. 2000; Fryer and
Heger 2000) have demonstrated that rotational core collapse could result in the creation
of neutron stars with rotational periods of the order of 1 ms (and similar initial rotation
periods have been estimated for neutron stars created in the accretion-induced collapse
of a white dwarf, Liu and Lindblom 2001). However, magnetic fields may complicate
this picture. Spruit and Phinney (1998) have presented a model in which a strong
internal magnetic field couples the angular velocity between core and surface during
most evolutionary phases. The core rotation decouples from the rotation of the surface
only after central carbon depletion takes place. Neutron stars born in this way would
have very small initial rotation rates, even smaller than the ones that have been observed
in pulsars associated with supernova remnants. In this model, an additional mechanism
is required to spin up the neutron star to observed periods. On the other hand, Livio and
Pringle (1998) argue for a much weaker rotational coupling between core and surface
by a magnetic field, allowing for the production of more rapidly rotating neutron stars
than in Spruit and Phinney (1998). In Heger et al. (2004), intermediate initial rotation
rates were obtained. Clearly, more detailed studies of the role of magnetic fields are
needed to resolve this important question.

Independently of their initial rotation rate, compact stars in binary systems are spun
up by accretion, reaching high rotation rates. In principle, accretion could drive a com-
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pact star to its mass-shedding limit. For a wide range of candidates for the neutron-star
EOS, the mass-shedding limit sets a minimum period of about 0.5–0.9 ms (Friedman
1995). However, there are a number of different processes that could limit the max-
imum spin to lower values. In one model, the minimum rotational period of pulsars
could be set by the occurrence of the r -mode instability in accreting neutron stars
in LMXBs (Bildsten 1998; Andersson et al. 2000), during which gravitational waves
carry away angular momentum. Other models are based on the standard magneto-
spheric model for accretion-induced spin-up (White and Zhang 1997), or on the idea
that the spin-up torque is balanced by gravitational radiation produced by an accretion-
induced quadrupole deformation of the deep crust (Bildsten 1998; Ushomirsky et al.
2000), by deformations induced by a very strong toroidal field Cutler (2002) or by
magnetically confined “mountains” (Melatos and Payne 2005; Vigelius and Melatos
2008). With the maximum observed pulsar spin frequency at 716 Hz (Hessels et al.
2006) and a few more pulsars at somewhat lower rotation rates (Chakrabarty 2008),
it is likely that one of the above mechanisms ultimately dominates over the accretion-
induced spin-up, setting an upper limit that may be somewhat dependent on the final
mass, the magnetic field or the spin-up history of the star. This is consistent with the
absence of sub-millisecond pulsars in pulsar surveys that were in principle sensitive
down to a few tenths of a millisecond (Burderi and D’Amico 1997; D’Amico 2000;
Crawford et al. 2000; Edwards et al. 2001).

EOS constraints: One can systematize the observational constraints on the neutron-star
EOS by introducing a parameterized EOS above nuclear density with a set of param-
eters large enough to encompass the wide range of candidate EOSs and small enough
that the number of parameters is smaller than the number of relevant observations.
Read et al. (2009) found that one can match a representative set of EOSs to within
about 3% rms accuracy with a 4-parameter EOS based on piecewise polytropes.

Using spectral modeling to simultaneously estimate the radius and mass of a
set of neutron stars in transient low-mass X-ray binaries, Özel et al. (2010) and
Steiner et al. (2010) find more stringent constraints. They also adopt piecewise-
polytropic parametrizations to find the more restricted region of the EOS space.
Future gravitational-wave observations of inspiraling neutron-star binaries (Flanagan
and Hinderer 2008; Read et al. 2009; Markakis et al. 2009, 2012; Duez et al. 2010;
Bernuzzi et al. 2012; Damour et al. 2012) and of oscillating, post-merger remnants
(Shibata et al. 2005; Bauswein et al. 2012; Bauswein and Janka 2012; Bauswein et al.
2014, 2016; Clark et al. 2016) may yield comparable or more accurate constraints
without the model-dependence of the current electromagnetic studies.

The existence of 2.0 M⊙ neutron stars in conjunction with nuclear physics place
constraints on the neutron star EOS. For example, Hebeler et al. (2013) use micro-
scopic calculations of neutron matter based on nuclear interactions derived from chiral
effective field theory to constrain the equation of state of neutron-rich matter at sub-
and supranuclear densities, arriving at a range of 9.7−13.9 km for the radius of non-
rotating neutron stars, which is somewhat smaller than the range that a large sample
of various proposed EOSs allow (the authors use a piecewise polytropic approach to
derive the constraints). The corresponding range of compactness is 0.149–0.213.
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A review of efforts to observationally constrain the EOS is given by Lattimer (2001).
For recent reviews and the most up-to-date constraints on the neutron star radii and
masses from electromagnetic observations see Lattimer (2012) and Özel and Freire
(2016) and references therein. Future observations with missions such as NICER
(Gendreau et al. 2012) and the proposed LOFT (Feroci and Stella 2012) have the
potential to determine the neutron star radius with ∼ 5−10% uncertainty, which will
be useful in placing stringent (albeit model dependent) constraints on the EOS (see
Psaltis et al. 2014).

2.9.5 Maximum mass set by causality

If one is interested in obtaining an upper limit on the mass, independent of the current
uncertainty in the high-density part of the EOS for compact stars, one can construct
a schematic EOS that satisfies only a minimal set of physical constraints and which
yields a model of absolute maximum mass. The minimal set of constraints are

(0) A relativistic star is described as a self-gravitating, uniformly rotating perfect

fluid with a one-parameter EOS, an assumption that is satisfied to high accuracy
by cold neutron stars.

(1) Matter at high densities satisfies the causality constraint cs ≡
√

dp/dǫ < 1,
where cs is the sound speed. Relativistic fluids are governed by hyperbolic
equations whose characteristics lie inside the light cone (consistent with the
requirement of causality) only if cs < 1 Geroch and Lindblom (1991).

(2) The EOS is known at low densities One assumes that the EOS describing the crust
of cold relativistic stars is accurately known up to a matching energy density ǫm .

For nonrotating stars, Rhoades and Ruffini (1974) showed that the EOS that satisfies
the above constraints and yields the maximum mass consists of a high density region at
the causal limit, dp/dǫ = 1 (as stiff as possible), that matches directly to the assumed
low density EOS at ǫ = ǫm

p(ǫ) =

⎧

⎨

⎩

pcrust(ǫ) ǫ < ǫm,

pm + ǫ − ǫm ǫ > ǫm,

(82)

where pm = pcrust(ǫm). For this maximum mass EOS and a specific value of the
matching density, they computed a maximum mass of 3.2 M⊙. More generally, Mmax
depends on ǫm as (Hartle and Sabbadini 1977; Hartle 1978)

Mmax = 4.8

(

2 × 1014 g/cm3

ǫm/c2

)1/2

M⊙. (83)

In the case of uniformly rotating stars, one obtains the following limit on the mass,
when matching to the FPS EOS at low densities

M rot
max = 6.1

(

2 × 1014 g/cm3

ǫm/c2

)1/2

M⊙, (84)

(see Friedman and Ipser 1987; Koranda et al. 1997).
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2.9.6 Minimum period set by causality

A rigorous limit on the minimum period of uniformly rotating, gravitationally bound
stars, allowed by causality, has been obtained in Koranda et al. (1997) (hereafter KSF),
extending previous results by Glendenning (1992). The same three minimal constraints
(0), (1) and (2) of Sect. 2.9.5, as in the case of the maximum mass allowed by causality,
yield the minimum period. However, the minimum period EOS is different from the
maximum mass EOS (82). KSF found that just the two constraints (0), (1) (without
matching to a known low-density part) suffice to yield a simpler, absolute minimum

period EOS and an absolute lower bound on the minimum period.

Absolute minimum period, without matching to low-density EOS: Considering only
assumptions (0) and (1), so that the EOS is constrained only by causality, the minimum
period EOS is simply

p(ǫ) =

⎧

⎨

⎩

0 ǫ ≤ ǫC ,

ǫ − ǫC ǫ ≥ ǫC ,

(85)

describing a star entirely at the causal limit dp/dǫ = 1, with surface energy density
ǫC . This is not too surprising. A soft EOS yields stellar models with dense central
cores and thus small rotational periods. Soft EOSs, however, cannot support massive
stars. This suggests that the model with minimum period arises from an EOS which
is maximally stiff (dp/dǫ = 1) at high density, allowing stiff cores to support against
collapse, but maximally soft at low density (dp/dǫ = 0), allowing small radii and
thus fast rotation, in agreement with (85). The minimum period EOS is depicted
in Fig. 3 and yields an absolute lower bound on the period of uniformly rotating
stars obeying the causality constraint, independent of any specific knowledge about
the EOS for the matter composing the star. Choosing different values for ǫC , one
constructs EOSs with different Mmax

sph . All properties of stars constructed with EOS
(85) scale according to their dimensions in gravitational units and thus, the following
relations hold between different maximally rotating stars computed from minimum-
period EOSs with different ǫC :

Pmin ∝ Mmax
sph ∝ Rmax

sph , (86)

ǫmax
sph ∝ 1

(

Mmax
sph

)2 , (87)

Mmax
rot ∝ Mmax

sph , (88)

Rmax
rot ∝ Rmax

sph , (89)

ǫmax
rot ∝ ǫmax

sph . (90)

A fit to the numerical results, yields the following relation for the absolute minimum
period

Pmin

ms
= 0.196

(

Mmax
sph

M⊙

)

. (91)
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p=0

Fig. 3 Schematic representations of the minimum-period EOSs (85) and (92). For the minimum-period
EOS (85) the pressure vanishes for ǫ < ǫC . The minimum-period EOS (92) matches the FPS EOS to
a constant pressure region at an energy density ǫm . For ǫ > ǫC both EOSs are at the causal limit with
dp/dǫ = 1. (Image reproduced with permission from Koranda et al. 1997, copyright by AAS)

Thus, for Mmax
sph = 2 M⊙ the absolute minimum period is 0.39 ms.

Minimum period when low-density EOS is known: Assuming all three constraints (0),
(1) and (2) of Sect. 2.9.5 (so that the EOS matches to a known EOS at low density),
the minimum-period EOS is

p(ǫ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

pcrust(ǫ) ǫ ≤ ǫm,

pm ǫm ≤ ǫ ≤ ǫC ,

pm + ǫ − ǫC ǫ ≥ ǫC .

(92)

Between ǫm and ǫC the minimum period EOS has a constant pressure region (a first
order phase transition) and is maximally soft, while above ǫC the EOS is maximally
stiff, see Fig. 3. For a matching number density of nm = 0.1 fm−3 to the FPS EOS,
the minimum period allowed by causality is shown as a function of Mmax

sph in Fig. 4. A
quite accurate linear fit of the numerical results is

Pmin

ms
= 0.295 + 0.203

(

Mmax
sph

M⊙
− 1.442

)

. (93)

Thus, if Mmax
sph = 2 M⊙, the minimum period is Pmin = 0.41 ms. This result is rather

insensitive to nm , for nm < 0.2 fm−3, but starts to depend significantly on nm for
larger matching densities.
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Fig. 4 Minimum period Pmin allowed by causality for uniformly rotating, relativistic stars as a function
of the mass Mmax

sph of the maximum mass nonrotating model. Lower curve: constructed using the absolute
minimum-period EOS (85), which does not match at low densities to a known EOS. Upper curve: constructed
using the minimum-period EOS (92), which matches at low densities to the FPS EOS. Due to the causality
constraint, the region below the curves is inaccessible to stars. (Image reproduced with permission from
Koranda et al. 1997, copyright by AAS)

Comparing (93)–(91) it is evident that the currently trusted part of the nuclear EOS
plays a negligible role in determining the minimum period due to causality. In addition,
since matching to a known low-density EOS raises Pmin, (91) represents an absolute

minimum period.

2.9.7 Moment of inertia and ellipticity

The scalar moment of inertia of a neutron star, defined as the ratio I = J/Ω , has been
computed for polytropes and for a wide variety of candidate equations of state (see,
e.g., Stergioulas et al. 1999; Cook et al. 1994a, b; Friedman et al. 1986). For a given
equation of state the maximum value of the moment of inertia typically exceeds its
maximum value for a spherical star by a factor of 1.5–1.6. For spherical models, Bejger
et al. (2005) obtain an empirical formula for the maximum value of I for a given EOS
in terms of the maximum mass for that EOS and the radius of that maximum-mass
configuration,

Imax,Ω=0 ≈ 0.97 × 1045
(

Mmax

M⊙

)(

RMmax

10 km

)2 g cm2

. (94)
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Neutron-star moments of inertia can in principle be measured by observing the peri-
astron advance of a binary pulsar (Damour and Schäfer 1988). Because the mass of
each star can be found to high accuracy, this would allow a simultaneous measurement
of two properties of a single neutron star (Morrison et al. 2004; Lattimer and Schutz
2005; Bejger et al. 2005; Read et al. 2009).

The departure of the shape of a rotating neutron star from axisymmetry can be
expressed in terms of its ellipticity ε, defined in a Newtonian context by

ε := Ixx − Iyy

I
=
√

8π

15

Q22

I
, (95)

where I = Izz is the moment of inertia about the star’s rotation axis and the m = 2
part of a neutron star’s quadrupole moment is given by

Q22 := Re
∫

ρY22r2 dV, (96)

where Y22 is the l = 2, m = 2 spherical harmonic.
Following Ushomirsky et al. (2000), Owen (2005) finds for the maximum value of

a neutron star’s ellipticity the expression

εmax = 3.3 × 10−7 σmax

10−2

(

1.4 M⊙
M

)2.2 (
R

10 km

)4.26

×
[

1 + 0.7

(

M

1.4 M⊙

)(

10 km

R

)]−1

, (97)

where σmax is the breaking strain of the crust, with an estimated value of order 10−2

for crusts below 108 K (Chugunov and Horowitz 2010).

2.9.8 Rotating strange quark stars

Most rotational properties of strange quark stars differ considerably from the properties
of rotating stars constructed with hadronic EOSs. First models of rapidly rotating
strange quark stars were computed by Friedman et al. (1989) and by Lattimer et al.
(1990). Nonrotating strange stars obey relations that scale with the constant B in the
MIT bag-model of the strange quark matter EOS. In Gourgoulhon et al. (1999), scaling
relations for the model with maximum rotation rate were also found. The maximum
angular velocity scales as

Ωmax = 9.92 × 103
√

B60 s−1, (98)

while the allowed range of B implies an allowed range of 0.513 ms < Pmin <

0.640 ms. The empirical formula (76) also holds for rotating strange stars with an
accuracy of better than 2%. Rotation increases the mass and radius of the maximum
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mass model by 44 and 54%, correspondingly, significantly more than for hadronic
EOSs.

Accreting strange stars in LMXBs will follow different evolutionary paths in a
mass versus central energy density diagram than accreting hadronic stars (Zdunik
et al. 2002). When (and if) strange stars reach the mass-shedding limit, the ISCO
still exists (Stergioulas et al. 1999) (while it disappears for most hadronic EOSs). In
Stergioulas et al. (1999) it was shown that the radius and location of the ISCO for the
sequence of mass-shedding models also scales as B−1/2, while the angular velocity
of particles in circular orbit at the ISCO scales as B1/2. Additional scalings with the
constant a in the strange quark EOS (54) (that were proposed in Lattimer et al. 1990)
were found to hold within an accuracy of better than ∼ 9% for the mass-shedding
sequence:

M ∝ a1/2, R ∝ a1/4, Ω ∝ a−1/8. (99)

In addition, it was found that models at the mass-shedding limit can have T/|W | as
large as 0.28 for M = 1.34 M⊙.

If strange stars have a solid normal crust, then the density at the bottom of the crust
is the neutron drip density ǫND ≃ 4.1 × 1011 g cm−3, as neutrons are absorbed by
strange quark matter. A strong electric field separates the nuclei of the crust from the
quark plasma. In general, the mass of the crust that a strange star can support is very
small, of the order of 10−5 M⊙. Rapid rotation increases by a few times the mass of
the crust and the thickness at the equator becomes much larger than the thickness at
the poles (Zdunik et al. 2001). The mass Mcrust and thickness tcrust of the crust can be
expanded in powers of the spin frequency ν3 = ν/(103 Hz) as

Mcrust = Mcrust,0(1 + 0.24ν2
3 + 0.16ν8

3), (100)

tcrust = tcrust,0(1 + 0.4ν2
3 + 0.3ν6

3), (101)

where a subscript “0” denotes nonrotating values (Zdunik et al. 2001). For ν ≤ 500 Hz,
the above expansion agrees well with a quadratic expansion derived previously in
Glendenning and Weber (1992). The presence of the crust reduces the maximum
angular momentum and ratio of T/|W | by about 20%, compared to corresponding
bare strange star models.

2.9.9 Rotating magnetized neutron stars

The presence of a magnetic field has been ignored in the models of rapidly rotating
relativistic stars that were considered in the previous sections. The reason is that the
inferred surface dipole magnetic field strength of pulsars ranges between 108 and
2 × 1013 G. These values of the magnetic field strength imply a magnetic field energy
density that is too small compared to the energy density of the fluid, to significantly
affect the structure of a neutron star. However, there exists another class of compact
objects with much stronger magnetic fields than normal pulsars—magnetars, that
could have global fields up to the order of 1015 G (Duncan and Thompson 1992),
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possibly born initially with high spin (but quickly spinning down to rotational periods
of a few seconds). In addition, even though moderate magnetic field strengths do not
alter the bulk properties of neutron stars, they may have an effect on the damping or
growth rate of various perturbations of an equilibrium star, affecting its stability. For
these reasons, a fully relativistic description of magnetized neutron stars is necessary.
However, for fields < 1015 G a passive description, where one ignores the influence
of the magnetic field on the equilibrium properties of the fluid and the spacetime is
sufficient for most practical purposes.

The equations of electromagnetism and magnetohydrodynamics (MHD) in general
relativity have been discussed in a number of works; see, e.g., Lichnerowicz (1967),
Misner et al. (1973), Bekenstein and Oron (1978), Anile (1989), Gourgoulhon et al.
(2011) and references therein. The electromagnetic (E/M) field is described by a
vector potential Aα , from which one constructs the antisymmetric Faraday tensor
Fαβ = ∇α Aβ − ∇β Aα, satisfying Maxwell’s equations

∇β
∗Fαβ = 0, (102)

∇β Fαβ = 4π Jα, (103)

where ∗Fαβ = 1
2ǫαβγ δ Fγ δ , with ǫαβγ δ the totally antisymmetric Levi-Civita tensor.

In (103), Jα is the 4-current creating the E/M field and the Faraday tensor can be
decomposed in terms of an electric 4-vector Eα = Fαβuβ and a magnetic 4-vector
Bα = ∗Fβαuβ which are measured by an observer comoving with the plasma and
satisfy Eαuα = Bαuα = 0.

The stress–energy tensor of the E/M field is

T
(em)
αβ = 1

4π

(

Fαγ Fβ
γ − 1

4
Fγ δ Fγ δgαβ

)

, (104)

and the conservation of the total stress–energy tensor leads to the Euler equation in
magnetohydrodynamics

(ǫ + p)uβ∇βuα = −qαβ∇β p + qα
δ Fδ

γ J γ , (105)

where qαβ := gαβ + uαuβ . In the ideal MHD approximation, where the conductivity
(σ ) is assumed to be σ → ∞, the MHD Euler equation takes the form

(

ǫ + p + Bγ Bγ

4π

)

uβ∇βuα = −qα
β

[

∇β

(

p + Bγ Bγ

8π

)

− 1

4π
∇γ (Bβ Bγ )

]

.

(106)

In general, a magnetized compact star will possess a magnetic field with both poloidal
and toroidal components. Then its velocity field may include non-circular flows that
give rise to the toroidal component. In such case, the spacetime metric will include
additional non-vanishing components. The general formalism describing such a space-
time has been presented by Gourgoulhon and Bonazzola (1993), but no numerical
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solutions of equilibrium models have been constructed, so far. Instead, one can look
for special cases, where the velocity field is circular or assume that it is approximately
so.

If the current is purely toroidal, i.e., of the form (Jt , 0, 0, Jφ), then a theorem by
Carter (1973) allows for equilibrium solutions with circular velocity flows and a purely
poloidal magnetic field, of the form (0, Br , Bθ , 0). In ideal MHD, a purely toroidal
magnetic field, (Bt , 0, 0, Bφ), is also allowed, generated by a current of the form
(0, Jr , Jθ , 0) (Oron 2002).

For purely poloidal magnetic fields, rotating stars must be uniformly rotating in
order to be in a stationary equilibrium and the Euler equation becomes

∇(H − ln ut ) − 1

ǫ + p
( jφ − Ω j t )∇ Aφ = 0, (107)

where jα is the conduction current (the component of Jα normal to the fluid 4-
velocity). The hydrostationary equilibrium equation has a first integral in three different
cases. These are (a) ( jφ − Ω j t ) = 0, (b) (ǫ + p)−1( jφ − Ω j t ) = const., and (c)
(ǫ+ p)−1( jφ−Ω j t ) = f (Aφ). The first case corresponds to a vanishing Lorentz force
and has been considered in Bekenstein and Oron (1979), Oron (2002) (force-free field).
The second case is difficult to realize, but has been considered as an approximation
in, e.g., Colaiuda et al. (2008). The third case is more general and was first considered
in Bonazzola et al. (1993); Bocquet et al. (1995). After making a choice for the
current and for the total charge, the system consisting of the Einstein equations, the
hydrostationary equilibrium equation and Maxwell’s equations can be solved for the
spacetime metric, the hydrodynamical variables and the vector-potential components
At and Aφ , from which the magnetic and electric fields in various observer frames are
obtained.

For a purely toroidal magnetic field, the only non-vanishing component of the
Faraday tensor is Frθ . Then, the ideal MHD condition does not lead to a restriction
on the angular velocity of the star. For uniformly rotating stars, the Euler equation
becomes (Kiuchi and Yoshida 2008; Gourgoulhon et al. 2011)

∇(H − ln ut ) + 1

4π(ǫ + p)g2

√

g2

g1
Frθ∇
(√

g2

g1
Frθ

)

= 0, (108)

where g1 = grr gθθ − (grθ )
2, g2 = −gt t gφφ + (gtφ)2, which implies the existence

of solutions for which
√

g2
g1

Frθ is a function of (ǫ + p)g2 (see Kiuchi and Yoshida

2008; Kiuchi et al. 2009 for representative numerical solutions). A detailed study of
rapidly rotating equilibrium models with purely toroidal fields (in uniform rotation)
was recently presented by Frieben and Rezzolla (2012) and Fig. 5 shows the isocon-
tours of magnetic field strength in the meridional plane, for a representative case.

Gourgoulhon et al. (2011) find a general form of stationary axisymmetric magnetic
fields, including non-circular equilibria.

Equilibria with purely toroidal or purely poloidal magnetic fields are unstable in
nonrotating stars (and likely unstable in rotating stars), see, e.g., Wright (1973), Tayler
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Fig. 5 Isocontours of magnetic field strength in the meridional plane, for a rapidly rotating model with a
purely toroidal magnetic field. (Image from Frieben and Rezzolla 2012, copyright by the authors)

(1973a), Markey and Tayler (1973), Lasky et al. (2011), Ciolfi and Rezzolla (2012) and
Lasky et al. (2012). Some mixed poloidal/toroidal configurations seem more promising
for stability (see, e.g., Duez et al. 2010, who infer stability of mixed equilibria in a
Newtonian context from numerical evolutions).

A poloidal magnetic field in a differentially rotating star will be wound up, lead-
ing to the appearance of a toroidal component. This has several consequences, such
as magnetic braking of the differential rotation, amplification of the magnetic field
through dynamo action and the development of the magnetorotational instability see
Sect. 2.12.

2.10 Approximate universal relationships

Yagi and Yunes (2013b, a) recently discovered a set of universal relationships that
relate the moment of inertia, the tidal love number and the (spin-induced) quadrupole
moment for slowly rotating neutron stars and quark stars (for another review of the
I -Love-Q relations see also Yagi and Yunes 2017 where applications of these relations
are also presented). The word “universal” in this context means within the framework
of a particular theory of gravitation, but independent of the equation of state, provided
the equation of state belongs to the class of cold, realistic equations of state, i.e.,
those that for the most part agree below the nuclear saturation density where our
knowledge of nuclear physics is robust. More specifically, the universal relationships
were established numerically between properly defined non-dimensional versions of
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Table 3 Coefficients for the fitting formulae of the neutron star and quark star I -Love, I−Q and Love-Q

relations

yi xi ai bi ci di ei

Ī λ̄(tid) 1.47 0.0817 0.0149 2.87 × 10−4 − 3.64 × 10−5

Ī Q̄ 1.35 0.697 − 0.143 9.94 × 10−2 − 1.24 × 10−2

Q̄ λ̄(tid) 0.94 0.0936 0.0474 − 4.21 × 10−3 1.23 × 10−4

the moment of inertia, the tidal Love number and the quadrupole moment. In particular,
if M is the gravitational mass of the star, Yagi and Yunes introduced the following
dimensionless quantities: Ī ≡ I/M3, Q̄ ≡ −Q/(M3χ2), where χ ≡ J/M2 is
the dimensionless NS spin parameter, and λ̄(tid) ≡ λ(tid)/M5. Here λ(tid) is the tidal
Love number, which determines the magnitude of the quadrupole moment tensor, Qi j ,
induced on the star by an external quadrupole tidal tensor field Ei j through the relation
Qi j = − λ(tid)Ei j . The universal relations can be expressed through the following
fitting formulae (Yagi and Yunes 2013b) (see also Lattimer and Lim 2013)

ln yi = ai + bi ln xi + ci (ln xi )
2 + di (ln xi )

3 + ei (ln xi )
4, (109)

where yi and xi are a pair of two variables from the trio Ī , λ̄(tid) and Q̄, and the values
of the coefficients ai , bi , ci , di , ei are given in Table 3.

As pointed out in Yagi and Yunes (2013a) these relations could have been anticipated
because in the Newtonian limit Ī ∝ C−2, Q̄ ∝ C−1 and λ̄(tid) ∝ C−5, indicating
the existence of one-parameter relation between the trio Ī , λ̄(tid), Q̄. Here, C is the
compactness of the star. The advantage of the existence of such universal relations
is that in principle the measurement of one of the I -Love-Q parameters determines
the other two, and one can use these relations to lift quadrupole moment and spin–
spin degeneracies that arise in parameter estimation from future gravitational wave
observations of compact binaries involving neutron stars (Yagi and Yunes 2013b, a).
These relations could also help constrain modified theories of gravity (Yagi and Yunes
2013b, a) (but see below).

Shortly after the discovery of these relations, several works attempted to test the
limits of the universality of these relations. Maselli et al. (2013) relaxed the small
tidal deformation approximation assumed in Yagi and Yunes (2013b, a) and derived
universal relations for the different phases during a neutron star inspiral, conclud-
ing that these relations do not deviate significantly from those reported in Yagi and
Yunes (2013b, a). On the other hand, Haskell et al. (2014), considered neutron star
quadrupole deformations that are induced by the presence of a magnetic field. They
built self-consistent magnetized equilibria with the LORENE libraries and concluded
that the I -Love-Q universal relations break down for slowly rotating neutron stars
(spin periods > 10 s), and for polar magnetic field strengths Bp > 1012 G. Doneva
et al. (2014b) considered self-consistent, equilibrium models of spinning neutron stars
beyond the slow-rotation approximation adopted in Yagi and Yunes (2013b, a). They
use the RNS code to built rapidly rotating stars, and find that with increasing rotation
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rate, the Ī -Q̄ relation departs significantly from its slow-rotation limit deviating up
to 40% for neutron stars and up to 75% for quark stars. Moreover, they find that the
deviation is EOS dependent and for a broad set of hadronic and strange matter EOS
the spread due to rotation is comparable to the spread due to the EOS, if one considers
sequences with fixed rotational frequency. For a restricted set of EOSs, that do not
include models with extremely small or large radii, they were still able to find relations
that are roughly EOS-independent at fixed rotational frequencies. However, Pappas
and Apostolatos (2014) using the RNS code, showed that even for rapidly rotating
neutron stars universality is again recovered, if instead of the Ī -Q̄ and angular fre-
quency parameters, one focuses on the 3 dimensional parameter space spanned by the
dimensionless spin angular momentum χ , the dimensionless mass quadrupole Q̄ and
the dimensionless spin octupole moment β2 ≡ −s3/χ

3, where s3 ≡ −S3/M4, and
where, again, S3 is the spin octupole moment of the Hansen–Geroch moments (Geroch
1970a; Hansen 1974). Moreover, Pappas and Apostolatos (2014) show that if one con-
siders the parameter space (χ, Ī , Q̄), then the I−Q EOS universality is recovered, in
the sense that for each value χ there exists a unique universal Ī -Q̄ relation.

It should be pointed out (Yagi and Yunes 2013b, a; Pappas and Apostolatos 2014)
that these “universal” relations hold not among the moments themselves, but among
the rescaled, dimensionless moments, where the mass scale is factored out. Thus, the
introduction of a scale will lift the apparent degeneracy among different EOSs.

Given the existence of such universal relations relating moments of neutron and
quark stars, a fundamental question then arises: what is the origin of the universality?
Yagi et al. (2014) performed a thorough study to answer this question and concluded
that universality arises as an emergent approximate symmetry in that relativistic stars
have an approximate self-similarity in their isodensity contours, which leads to the
universal behavior observed in their exterior multipole moments. Work by Chan et al.
(2015) has explored the origin of the I -Love relation through a post-Minkowskian
expansion for the moment of inertia and the tidal deformability of incompressible
stars.

Another way deviations from universality can take place are in protoneutron stars
for which a cold, nuclear EOS in not applicable. Martinon et al. (2014) find that the I -
Love-Q relations do not apply following one second after the birth of a protoneutron
star, but that they are satisfied as soon as the entropy gradients are smoothed out
typically within a few seconds. See also Marques et al. (2017), where a new finite
temperature hyperonic equation of state is constructed and finds a similar conclusion
as Martinon et al. (2014) regarding thermal effects.

Pani and Berti (2014) have extended the Hartle–Thorne formalism for slowly rotat-
ing stars to the case of scalar tensor theories of gravity and explored the validity of the
I -Love-Q relations in scalar–tensor theories of gravity focusing on theories exhibit-
ing the phenomenon of spontaneous scalarization (Damour and Esposito-Farèse 1993,
1996). Pani and Berti find that I -Love-Q relations exist in scalar-tensor gravity and
interestingly also for spontaneously scalarized stars. Most remarkably, the relations in
scalar–tensor theories coincide with their general relativity counterparts to within less
than a few percent. This result implies that the I -Love-Q relations may not be used to
distinguish between general relativity and scalar–tensor theories. We note that a sim-
ilar conclusion was drawn by Sham et al. (2014) in the context of Eddington-inspired
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Born–Infeld gravity where the I -Love-Q relations were found to be indistinguishable
than those of GR—an anticipated result (Pani and Berti 2014). More recently, Sakstein
et al. (2017) have found the the I -C (C for compactness) in beyond Hordenski theories
are clearly distinct from those in GR.

The effects of anisotropic pressure have been explored by Yagi and Yunes (2015).
They find that anisotropy breaks the universality, but that the I -Love-Q relations
remain approximately universal to within 10%. Finally, Yagi and Yunes (2016) con-
sidered anisotropic pressure to build slowly rotating, very high compactness stars that
approach the black hole compactness limit, in order to answer the question of how
the approximate I -Love-Q relations become exact in the BH limit. While the adopted
methodology provides some hints into how the BH limit is approached, an interesting,
and perhaps, definitive way to probe this is to consider unstable rotating neutron stars
and perform dynamical simulations of neutron star collapse to black hole with full GR
simulations.

In addition to the I -Love-Q relations, Pappas and Apostolatos (2014) find that for
realistic equations of state there exists a universal relation between α2 and β3, i.e.,
β3 = β3(α2), while Yagi et al. (2014) discover a similar universal relation between
γ4 and α2, i.e., γ4 = γ4(α2). These new approximate universal relations provide a
type of “no-hair” relations among the multipole moments for neutron stars and quark
stars. Motivated by these studies, Manko and Ruiz (2016b), show that there exists an
infinite hierarchy of universal relations for neutron star multipole moments, assuming
that neutron star exterior field can be described by four arbitrary parameters as in
Manko et al. (1995).

2.11 Rapidly rotating equilibrium configurations in modified theories of

gravitation

With the arrival of “multimessenger” astronomy, gravitational wave and electromag-
netic signatures of compact objects will soon offer a unique probe to test the limits
of general relativity. Neutron stars are an ideal astrophysical laboratory for testing
gravity in the strong field regime, because of their high compactness and because of
the coupling of possible extra mediator fields with the matter.

Testing for deviations from general relativity would preferably require a general-
ized framework that parametrizes such deviations in an agnostic way as in the spirit
of the parameterized post-Newtonian approach (Will 2014) (which systematically
models post-Newtonian deviations from GR), or in the spirit of the parametrized
post-Einsteinian approach (Yunes and Pretorius 2009; Cornish et al. 2011), which
parametrizes a class of deviations from general relativistic waveforms within a certain
regime. In the absence of such a complete parameterized framework, the existence of
alternative theories of gravity are welcome not only as a means for testing for such
deviations, but also for gaining a better understanding of how to develop a generalized,
theory-agnostic framework of deviations from general relativity. Motivated by these
ideas and by observations that can be interpreted as an accelerated expansion of the
Universe (Riess et al. 1998) a number of extended theories of gravitation have been
proposed as alternatives to a cosmological constant in order to explain dark energy (see
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e.g., Tsujikawa 2010; Paschalidis et al. 2011; Bloomfield et al. 2013; de Rham 2014;
Joyce et al. 2016; Koyama 2016 for reviews and multiple aspects of such theories). The
“infrared” predictions of modified gravity theories have been investigated extensively,
and recently their strong-field predictions have attracted considerable attention (see
e.g., Berti et al. 2015 for a review). Studies of spherically symmetric and slowly rotat-
ing neutron stars in modified gravity are reviewed in Berti et al. (2015), thus we focus
here on the bulk properties of equilibrium, rapidly rotating neutron stars in modified
theories of gravity.

Doneva et al. (2013b) presented a study of rapidly rotating neutron stars in scalar-
tensor theories of gravity, by extending the RNS code to treat these theories in the
Einstein frame, while computing physical quantities in the Jordan frame. The Jordan
frame action considered in Doneva et al. (2013b) is given by

S = 1

16π

∫

d4x
√

−g̃
[

F(Φ)R̃ − Z(Φ)gμν∂μΦ∂νΦ − 2U (Φ)

]

+ Sm(Ψm; g̃μν),

(110)

where g̃μν is the Jordan frame metric, R̃ the Ricci scalar accociated with g̃μν , Φ the
scalar field, U (Φ) the potential and Sm denotes the matter action and Ψm denotes
the matter fields. The functions U (Φ), F(Φ) and Z(Φ) control the dynamics of
the scalar field. However, requiring that the gravitons carry positive energy implies
Z(Φ) > 0, and non-negativity of the scalar field kinetic energy requires 2F(Φ)Z(Φ)+
3(d F/dΦ)2 ≥ 0. Note that the matter action does not involve Φ. Via a conformal
transformation

gμν = F(Φ)g̃μν (111)

and a scalar field redefinition via
(

dφ

dΦ

)2

= 3

4

(

d ln F(Φ)

dΦ

)2

+ Z(Φ)

2F(Φ)
(112)

and letting

A(φ) = 1/
√

F(Φ), 2V (φ) = U (Φ)/F(Φ)2, (113)

one recovers the Einstein frame action

S = 1

16π

∫

d4x
√

−g
[

R − 2gμν∂μφ∂νφ − 4V (φ)
]

+ Sm(Ψm; A(φ)2gμν), (114)

where R is the Ricci scalar associated with the Einstein frame metric gμν . Variation
of this action with respect to gμν and φ yields the equations of motion for the metric
and for the scalar field, which are then cast in a convenient form and coupled to
the equilibrium fluid equations that make it straightforward to extend the general
relativistic equations solved by the RNS code. In their study, Doneva et al. (2013b) set
V (φ) = 0 and consider two choices for the function A(φ), namely ln A(φ) = k0φ
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and ln A(φ) = βφ2/2, while setting limr→∞ φ = 0 and focusing on rigidly rotating
equilibria. The former choice for A(φ) is equivalent to Brans–Dicke theory, but the
latter choice while it is indistinguishable from general relativity in the weak field
regime, leads to the emergence of new phenomenology, such as a bifurcation due to
non-uniqueness of solutions (Damour and Esposito-Farèse 1993, 1996). Observations
currently constrain k0 and β to values k0 < 4×10−3 and β � − 4.5 (Will 2014; Freire
et al. 2012; Antoniadis et al. 2013; Shibata et al. 2014). However, as pointed out in
Popchev (2015); Ramazanoǧlu and Pretorius (2016), a massive scalar field naturally
circumvents these observational bounds if the Compton wavelength of the scalar field
is small compared to the binary orbital separation. The equation of state adopted in
Doneva et al. (2013b) is a polytrope P = kρ1+1/n , with n = 0.7463 and k = 1186 in
units where G = c = M⊙ = 1.

For ln A(φ) = k0φ with the largest allowed value k0 = 4 × 10−3, Doneva et al.
(2013b) find that even for stars rotating at the mass shedding limit, their the total mass,
radius and angular momentum are practically indistinguishable from their counterparts
in general relativity. However, for ln A(φ) = βφ2/2, while all general relativity solu-
tions are also solutions of the scalar tensor theory withφ = 0, for certain values ofβ and
a certain range of neutron star densities new solutions emerge with non-trivial scalar
field values that are also energetically favored (Damour and Esposito-Farèse 1993,
1996). This phenomenon is known as spontaneous scalarization and for the equation
of state adopted in Doneva et al. (2013b), Harada has argued that the phenomenon
occurs only for β � − 4.35 (Harada 1998). One of the important findings in Doneva
et al. (2013b) is that rapid rotation extends the range of β values for which spontaneous
scalarization can take place, and in particular that along the mass-shedding limit the
bound becomes β < − 3.9. In addition, it is found that rapid rotation changes signifi-
cantly several bulk properties from their GR counterparts. Examples of such properties
include the mass, radius, angular momentum, and moment of inertia as can be seen in
Fig. 6. Of all bulk quantities those affected the most by the scalar field are the angular
momentum and the moment of inertia of the star, which can differ up to a factor of
two from their corresponding values in general relativity. It is also worth noting that
the deviation of the bulk properties from their GR values, increases further if one
considers smaller values of β, that are still in agreement with the observations. Based
on the sensitivity of the moment of inertia (even at slow rotation rates), Doneva et
al. suggested that the moment of inertia could be an astrophysical probe of theories
exhibiting spontaneous scalarization.

In a subsequent paper, Doneva et al. (2014c) extended the equilibrium solutions
of rapidly rotating compact stars for the spontaneous scalarization model ln A(φ) =
βφ2/2 with V (φ) = 0, for tabulated equations of state. For the cases when scalar-
ization occurs, they find results similar to those reported in Doneva et al. (2013b). In
addition, they compute orbital and epicyclic frequencies for particles orbiting these
neutron star models and find considerable differences of these frequencies between
the scalar tensor theory and general relativity for the maximum-mass rotating models
(but not so for models with spin frequency of ∼ 700 Hz or less, with the exception of
very stiff equations of state).

The I−Q relation for rapidly rotating stars in the model ln A(φ) = βφ2/2 was
considered by Doneva et al. (2014a). The authors find that the I−Q relation is nearly
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Fig. 6 From left to right, top to bottom the plots correspond to mass versus radius, mass vs central
energy density, angular frequency versus dimensionless angular momentum, and moment of inertia versus
angular frequency. For the plots in the top row, solid lines correspond to nonrotating stars, while dotted lines
correspond to the mass-shedding sequence. The angular frequency versus dimensionless angular momentum
has only the mass-shedding sequence, while the moment of inertia plot corresponds to models for which
the central energy density is fixed at ∼ ǫc/c2 = 1.5 × 1015 g/cm3. (Image reproduced with permission
from Doneva et al. 2013b, copyright by APS)

EOS independent for scalarized rapidly rotating stars, and that the spread of the rela-
tionship for higher rotation rates increases compared to general relativity. They also
find that smaller negative values of β lead to larger deviations from the general relativ-
itivstic I−Q relation, but the deviations (at most 5% for β = −4.5) are less than the
anticipated accuracy of the observations. These results provide, yet, another example
where the I−Q relation may not be able to provide strong constraints on deviations
from general relativity. We note that similar conclusions hold for rapidly rotating stars
in Einstein–Gauss–Bonnet-dilaton gravity (Kleihaus et al. 2014).

In a recent paper, Doneva and Yazadjiev (2016) studied rapidly rotating stars for
the model ln A(φ) = βφ2/2, but this time extending it to the case of a massive scalar
field by adding a potential V (φ) = m2

φφ2/2. In this case, In this case, the scalar field is
short-range and observations practically leave the value of β unconstrained. However,
for the spontaneous scalarization of the neutron star one must have 10−16 eV � mφ �

10−9 eV. Adopting the value β = − 6, Doneva and Yazadjiev find that the I−Q

relation remains universal, but they deviate substantially (up to ∼ 20%) from those
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in general relativity. Thus, the I−Q relation could be used to infer deviations from
general relativity.

Another modified gravity theory that has been considered in the context of rapidly
rotating stars is a particular model of f (R) gravity (Sotiriou and Faraoni 2010; de
Felice and Tsujikawa 2010) with f (R) = R + a R2 sometimes referred to as R2

gravity. It can be shown that the Einstein frame action of this particular model of
f (R) gravity can be cast in the form (114) with ln A(φ) = −φ/

√
3, but with a non-

zero potential V (φ) = (1 − exp(−2φ/
√

3))2/16a (Yazadjiev et al. 2015). Motivated
by the results found for static and slowly rotating stars in R2 gravity (Yazadjiev et al.
2014; Staykov et al. 2014), Yazadjiev et al. (2015) modified the RNS code to allow
for the construction of rapidly rotating neutron star models in R2 gravity. Adopting
different equations of state, they find that rapid rotation enhances the discrepancy in
global quantities such as mass, radius, and angular momentum between R2-gravity and
general relativistic stars. Also, the differences become larger as the coupling constant
a increases. Generically, the R2-gravity maximum neutron star mass is larger than the
corresponding limit in general relativity. Yazadjiev et al. adopted a/M2

⊙ ∈ [0, 104],
which is within the Gravity Probe B constraint a � 5×105 km2, but much larger than
the Eöt-Wash experiment constraint a � 10−16 km2 (Näf and Jetzer 2010). However,
the bound from Gravity Probe B is still relevant because the chameleon nature of f (R)

gravity can give rise to different effective values at different scales (Näf and Jetzer
2010). For the mass-shedding sequences and with a = 104 M2

⊙, they find that for the
equations of state considered, the maximum fractional differences between general
relativity and R2-gravity in maximum mass and maximum moment of inertia are 16.6
and 65.6%, respectively.

Armed with the R2-gravity code, Doneva et al. (2015b) studied the universality
of the I−Q relation. They find that R2 gravity exhibits an EOS-independent I−Q

relation, but that the differences with the Einstein gravity can be as large as ∼ 20%
for a = 104 M2

⊙, similar to the deviations found in Doneva and Yazadjiev (2016) for
a scalar–tensor model ln A(φ) = βφ2/2 and a massive scalar field. Thus, while it
would be difficult to use the I−Q relation in order to single out a specific extended
theory of gravity, this relation could potentially be used to infer deviations from general
relativity and to exclude some theories of extended gravity.

In addition to theories mentioned that can be cast in the usual form of scalar-
tensor theories of gravity, the Einstein-dilaton-Gauss–Bonet (EdGB) theory is another
example that has received attention in the context of rapidly rotating neutron stars.
EdGB is inspired by heterotic string theory (Gross and Sloan 1987; Metsaev and
Tseytlin 1987), and the effective action is given by

S = 1

16π

∫

d4x
√

−g

[

R− 1

2
gμν∂μΦ∂νΦ+αe−βΦ R2

G B

]

+Sm(Ψm; gμν), (115)

where Φ is the dilaton field, γ is a coupling constant, α is a positive coefficient and
R2

G B = Rμνρσ Rμνρσ − 4Rμν Rμν + R2 is the Gauss–Bonet term. The equations of
motion for this theory are given by (see, e.g., Kleihaus et al. 2016)

�Φ = αγ e−βΦ R2
G B (116)
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Gμν = 8πTμν + 1

2

[

∇μΦ∇νΦ − 1

2
∇ρΦ∇ρΦ

]

−αeβΦ
[

Hμν + 4(β2∇ρΦ∇σ Φ − β∇ρ∇σ Φ)Pμρνσ

]

, (117)

where

Hμν = 2
[

R Rμν − 2Rμρ Rρ
ν − 2Rμρνσ Rρσ + Rμρσλ Rν

ρσλ
]

− 1

2
gμν R2

G B, (118)

Pμνρσ = Rμνρσ + 2gμ[σ Rρ]ν + 2gν[ρ Rσ ]μ + Rgμ[ρgσ ]ν, (119)

are second-order partial differential equations because of the particular form of the
Gauss–Bonet term. In this theory black hole solutions exist only for up to a maximum
value of |α| (Kanti et al. 1996), hence rotating neutron star solutions are interesting
to find only in this regime. Pani et al. (2011) build models of slowly rotating compact
stars in this theory and find that only the product αβ matters for the structure of
compact stars in EdGB theory, whereas the larger the value of this product the smaller
the maximum neutron star mass that can be supported in this theory. They also find
that stellar solutions do not exist for arbitrarily large values of αβ (this was already
known about the existence of black hole solutions, Kanti et al. 1996, in this theory).
As a result, the maximum observed mass could be used to place constraints on αβ.

Kleihaus et al. (2016) develop a code for building rapidly rotating neutron stars
in EdGB theory. The authors consider two different equations of state, FPS and DI-
II (Diaz Alonso and Ibanez Cabanell 1985). They confirm the results of Pani et al.
(2011) and in addition find that rotation enhances the effects of deviations from GR
(see Fig. 7). Furthermore, the authors find that the quadrupole moment depends on the
value of the EdGB coupling constant and that the dependence is enhanced for larger
value of the angular velocity. Finally, Kleihaus et al. discover that the GR I−Q relation
extends to EdGB theory with weak dependence on the value of the coupling parameter
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Fig. 7 The physical regime on the mass-circumferential equatorial radius plane for neutron star solutions
in EdGB theory for the FPS (left) and DI-II (right) EOSs. The left boundary in each panel designates the
static sequence and the upper and right boundary the mass-shedding sequence. The values of the coupling
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⊙. (Image reproduced with permission from Kleihaus et al. 2016,
copyright by APS)
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α when the NS dimensionless spin is 0.4. Therefore, EdGB theory provides yet another
example where the I−Q relations cannot be utilized to constrain deviations from GR.

2.12 Differentially rotating neutron stars

The non-uniformity of rotation in the early stages of the life of a compact object (or right
after the merger of a binary system) opens another dimension in the allowed parameter
space of equilibrium models. The simplest description appropriate for neutron stars
is the 1-parameter law (45), introduced in Komatsu et al. (1989a, b); Eriguchi et al.
(1994). Relativistic models of differentially rotating stars were constructed numeri-
cally by Baumgarte et al. (2000), where it was pointed out that these configurations can
support more mass than uniformly rotating stars. The authors coined the term “hyper-
massive” neutron stars for these compact objects whose mass exceeds the supramassive
limit.

Examples of equilibrium sequences of differentially rotating polytropic models,
using the above rotation law, were constructed by Stergioulas et al. (2004). Table 4
shows the detailed properties of a fixed rest mass sequence (A), in which the central
density decreases as the star rotates more rapidly and of a sequence of fixed central
density (B), in which the mass increases significantly with increasing rotation. Ωc and
Ωe are the values of the angular velocity at the center and at the equator, respectively
while rp and re is the coordinate radius at the pole and at the equator (other quantities
shown are defined as in Table 1). While most models along these sequences are quasi-
spherical (meaning that the maximum density appears at the center), the fastest rotating
members are quasi-toroidal, with an off-center maximum density. An example is shown
in Fig. 8.

Ansorg et al. (2009) found 4 different types of differentially rotating models (which
they label as type A, B, C and D) for the same 1-parameter law (45) which exists in
parts of the allowed parameter space. For a sufficiently weak degree of differential
rotation, sequences with increasing rotation terminate at the mass-shedding limit,
but for moderate and strong rates of differential rotation equilibrium sequences can
exhibit a continuous transition to a regime of toroidal fluid bodies. Figure 9 displays
sequences of N = 1 polytropes with various values of the parameter Ã = Â−1 = re/A

and a fixed central density. In the vertical axis, the parameter β̃ is related to the
shape of the surface of the star and ranges between 0 (when rotation is limited by
mass shedding at the equator) and 1 (when the radius on the polar axis becomes 0,
indicating the transition to a toroidal configuration). As the axis ratio rp/re is varied,
type A sequences start at a nonrotating model and terminate at the mass-shedding
limit. Type B sequences have no nonrotating member, but connect models at the mass-
shedding limit to toroidal configurations. Type C sequences connect the nonrotating
limit to toroidal configurations, while type D sequences connect models at the mass-
shedding limit to other models at the mass-shedding limit. It will be interesting to
study the stability properties of models of these different types. One should keep
in mind that these different types arise for the simple 1-parameter law (45) and a
more complicated picture may arise for multi-parameter rotation laws. More recently,
Studzińska et al. (2016) thoroughly explored the parameter space for the rotation
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Table 4 Properties of two sequences of differentially rotating equilibrium models

Model εc M R re r p/re Ωc Ωe T/|W |
(×10−3) (×10−2) (×10−2)

A0 1.444 1.400 9.59 8.13 1.0 0.0 0.0 0.0

A1 1.300 1.405 10.01 8.54 0.930 2.019 0.759 0.018

A2 1.187 1.408 10.40 8.92 0.875 2.580 0.977 0.033

A3 1.074 1.410 10.84 9.35 0.820 2.944 1.125 0.049

A4 0.961 1.413 11.37 9.87 0.762 3.192 1.232 0.066

A5 0.848 1.418 12.01 10.49 0.703 3.340 1.303 0.086

A6 0.735 1.422 12.78 11.25 0.643 3.383 1.336 0.107

A7 0.622 1.427 13.75 12.21 0.579 3.339 1.337 0.131

A8 0.509 1.433 15.01 13.45 0.513 3.197 1.300 0.158

A9 0.396 1.439 16.70 15.13 0.444 2.953 1.223 0.189

A10 0.283 1.447 19.03 17.44 0.370 2.604 1.101 0.223

A11 0.170 1.456 21.92 20.30 0.294 2.184 0.944 0.260

B0 1.444 1.400 9.59 8.13 1.0 0.0 0.0 0.0

B1 1.444 1.437 9.75 8.24 0.950 1.801 0.666 0.013

B2 1.444 1.478 9.92 8.36 0.900 2.574 0.944 0.026

B3 1.444 1.525 10.11 8.49 0.849 3.189 1.160 0.040

B4 1.444 1.578 10.31 8.63 0.800 3.728 1.342 0.055

B5 1.444 1.640 10.53 8.77 0.750 4.227 1.504 0.071

B6 1.444 1.713 10.76 8.91 0.700 4.707 1.651 0.087

B7 1.444 1.798 11.01 9.05 0.650 5.185 1.789 0.105

B8 1.444 1.899 11.26 9.17 0.600 5.683 1.921 0.124

B9 1.444 2.020 11.50 9.26 0.550 6.232 2.052 0.144

B10 1.444 2.167 11.71 9.27 0.500 6.889 2.192 0.165

B11 1.444 2.341 11.80 9.13 0.450 7.770 2.357 0.187

B12 1.444 2.532 11.64 8.72 0.400 9.118 2.584 0.207

Sequence A is a sequence of fixed rest mass with M0 = 1.506 M⊙ and sequence B is a sequence of fixed
central rest mass density ρc = 1.28 × 10−3 with A/re = 1. All models are relativistic polytropes with
N = 1, K = 100 and rotation law parameter A/re = 1. The definitions of the various quantities are given
in the main text. All quantities are in dimensionless units with c = G = M⊙ = 1. (Table adapted from
Stergioulas et al. 2004)

law (45) and determined how the maximum mass depends on the stiffness, on the
degree of differential rotation and on the maximum density, taking into account all
types of solutions that were shown to exist in Ansorg et al. (2009).

A well know fact about differentially rotating neutron stars is that they can support
more mass than the supramassive limit—the maximum mass when allowing for max-
imal uniform rotation. Neutron stars with mass larger than the supramassive limit are
known as hypermassive neutron stars. Equilibrium sequences of differentially rotating
models with polytropic equations of state, and using the same differential rotation law
have been constructed by Lyford et al. (2003). There, the focus was on the effects
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Fig. 8 Density stratification for model A11 of Table 4, displaying an off-center density maximum. In
comparison, the shape of the nonrotating star of same rest mass is shown, scaled by the equatorial radius of
the rotating model (dashed line). (Image reproduced with permission from Stergioulas et al. 2004, copyright
by RAS)
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Ã = 0.4
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Fig. 9 Different types of sequences of differentially rotating equilibrium models (see text for a detailed
description). Here Ã = Â−1. (Image reproduced with permission from Ansorg et al. 2009, copyright by
the authors)

of differential rotation on the maximum mass configuration. The authors find that
differential rotation can support about 50% more mass than the TOV limit mass, as
opposed to uniform rotation that typically increases the TOV limit by about 20%. In
a subsequent paper, Morrison et al. (2004) extended this result to realistic equations
of state. However, recent calculations by Gondek-Rosinska et al. (2017) focussing on
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n = 1 polytropes, discover that the maximum mass depends not only on the degree
of differential rotation, but also on the type of solution identified in Ansorg et al.
(2009), i.e., A, B, C or D. The authors find that different classes have different maxi-
mum mass limits and even for moderate degrees of differential rotation Â−1 ∼ 1, the
maximum rest-mass configuration can be significantly higher than 2.0 times the TOV
limit. Although, masses greater than two times the TOV limit can never be achieved in
hypermassive neutron stars formed following a binary neutron star merger, it would be
interesting to investigated the dynamical stability of the maximum mass configurations
constructed in Gondek-Rosinska et al. (2017).

2.13 Proto-neutron stars

Following the gravitational collapse of a massive stellar core, a proto-neutron star
(PNS) is born with an initially large temperature of order 50 MeV and a correspond-
ingly large radius of up to 100 km. If the PNS is slowly rotating, one can study
its evolution assuming spherical symmetry (see, for example Burrows and Lattimer
1986; Burrows et al. 1995; Bombaci et al. 1995; Keil and Janka 1995; Keil et al. 1996;
Prakash et al. 1997; Pons et al. 1999, 2000; Prakash et al. 2001; Strobel et al. 1999).
Up to a time of about 100 ms after core bounce, the PNS is lepton rich and consists
of an unshocked core at densities n > 0.1 fm−3, with entropy per baryon s ∼ 1, sur-
rounded by a transition region and a low-density but high-entropy, shocked envelope
with s ∼4–10, which extends to large radii. The lepton number is roughly Yl ∼ 0.4
and neutrinos in the core and in the transition region are trapped (the PNS is opaque
to neutrinos), while at densities less than n ∼ 6 × 10−4 fm−3 the outer envelope
becomes transparent to neutrinos. Within about 0.5 s, the outer envelope cools and
contracts with the entropy per baryon becoming roughly s ∼ 2 throughout the star
(the lepton number in the outer envelope drops to Yl ∼ 0.3). Further cooling results
in a fully deleptonized, hot neutron star at several tens of seconds after core bounce,
with a roughly constant entropy per baryon of s ∼1–2. After several minutes, when
the neutron star has cooled to T < 1 MeV, the thermal effects are negligibly small
in the bulk of the star and a zero-temperature EOS can be used to describe its main
properties.

The structure of hot PNSs is described by finite-temperature EOSs, such as those
presented in Lattimer and Swesty (1991); Sugahara and Toki (1994); Toki et al. (1995);
Lalazissis et al. (1997); Strobel et al. (1999b); Pons et al. (1999); Shen et al. (1998);
Hempel and Schaffner-Bielich (2010); Typel et al. (2010); Fattoyev et al. (2010); Shen
et al. (2011b, a); Hempel et al. (2012); Steiner et al. (2013) (see also Oertel et al. 2017
for a review). These candidate EOSs differ in several respects (for example in the
thermal pressure at high densities). The sample of cold EOSs that has been extended,
so far, is quite limited and does not correspond to the wide range of possibilities
allowed by current observational constraints. Therefore, PNS models that have been
constructed only cover a small region of the allowed parameter space. Understanding
the detailed evolution of a PNS is significant, as the star could undergo transformations
that could be associated with direct or indirect observational evidence, such as the
delayed collapse of a hypermassive PNS (see Brown and Bethe 1994; Baumgarte
et al. 1996, 2000).
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If the PNS is born rapidly rotating, its evolution will sensitively depend on the
rotation rate and other factors, such as the development of the magnetorotational insta-
bility (MRI). Some partial understanding has emerged by studying quasi-equilibrium
sequences of rotating models (Hashimoto et al. 1994; Strobel et al. 1999; Sumiyoshi
et al. 1999; Villain et al. 2004). Exact equilibria can be found in the case that the model
is considered to be barotropic, where all thermodynamical quantities (energy density,
pressure, entropy, temperature) depend only on the baryon number density. Special
cases, such as homentropic or isothermal stars have also been considered. In Villain
et al. (2004) a barotropic EOS was constructed by rescaling temperature, entropy and
lepton number profiles that were obtained from detailed, one-dimensional simulations
of PNS evolutions, while the rotational properties of the models were taken from
two-dimensional core-collapse simulations.

The main conclusion from the studies of sequences of quasi-equilibrium models is
that PNSs that are born with moderate rotation, will contract and spin up during the
cooling phase (see e.g., Goussard et al. 1998; Strobel et al. 1999). This could lead to
a PNS rotating with large enough rotation rate for secular or dynamical instabilities
to become interesting. It is not clear, however, whether the quasi-stationary approxi-
mation is valid when the stars reach the mass-shedding limit, as, upon further thermal
contraction, the outer envelope could actually be shed from the star, resulting in an
equatorial stellar wind. It should be noted here that a small amount of differential
rotation significantly affects the mass-shedding limit, allowing more massive stars to
exist than uniform rotation allows.

Studies of PNSs are being extended to include additional effects, such as entropy and
lepton-driven convective instabilities and hydromagnetic instabilities (Epstein 1979;
Livio et al. 1980; Burrows and Lattimer 1986; Burrows and Fryxell 1992; Miralles et al.
2000, 2002, 2004; Dessart et al. 2006; Lasky et al. 2012), meridional flows (Eriguchi
and Müller 1991), local and mean-field magnetic dynamos (Thompson and Duncan
1993; Xu and Busse 2001; Bonanno et al. 2003; Reinhardt and Geppert 2005; Naso
et al. 2008), magnetic braking and viscous damping of differential rotation (Shapiro
2000; Liu and Shapiro 2004; Duez et al. 2004; Thompson et al. 2005; Duez et al.
2006b), and the MRI and Tayler instabilities (Akiyama et al. 2003; Kotake et al. 2004;
Thompson et al. 2005; Ardeljan et al. 2005; Masada et al. 2006; Shibata et al. 2006;
Cerdá-Durán et al. 2007; Masada et al. 2007; Stephens et al. 2007; Bisnovatyi-Kogan
and Moiseenko 2008; Spruit 2008; Kiuchi et al. 2008; Obergaulinger et al. 2009;
Siegel et al. 2013; Guilet et al. 2016). These effects will be important for the evolution
of both PNSs formed after core collapse, as well as for hypermassive or supramassive
neutron stars possibly formed after a binary neutron star merger.

3 Rotating relativistic stars in LMXBs

3.1 Particle orbits and kHz quasi-periodic oscillations

X-ray observations of accreting sources in LMXBs have revealed a rich phenomenol-
ogy that is waiting to be interpreted correctly and could lead to significant advances in
our understanding of compact objects (see Lamb et al. 1998; van der Klis 2000; Psaltis
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2001). The most important feature of these sources is the observation (in most cases)
of twin kHz quasi-periodic oscillations (QPOs) (see van der Klis 2006; Abramowicz
and Fragile 2013 for reviews on QPOs). The high frequency of these variabilities and
their quasi-periodic nature are evidence that they are produced in high-velocity flows
near the surface of the compact star. To date, there exist a large number of different
theoretical models that attempt to explain the origin of these oscillations. No con-
sensus has been reached, yet, but once a credible explanation is found, it will lead
to important constraints on the properties of the compact object that is the source of
the gravitational field in which the kHz oscillations take place. The compact stars in
LMXBs are spun up by accretion, so that many of them may be rotating rapidly; there-
fore, the correct inclusion of rotational effects in the theoretical models for kHz QPOs
is important. Under simplifying assumptions for the angular momentum and mass
evolution during accretion, one can use accurate rapidly rotating relativistic models
to follow the possible evolutionary tracks of compact stars in LMXBs (Cook et al.
1994c; Zdunik et al. 2002).

In most theoretical models, one or both kHz QPO frequencies are associated with
the orbital motion of inhomogeneities or blobs in a thin accretion disk. In the actual
calculations, the frequencies are computed in the approximation of an orbiting test
particle, neglecting pressure terms. For most equations of state, stars that are massive
enough possess an ISCO, and the orbital frequency at the ISCO has been proposed to
be one of the two observed frequencies. To first order in the rotation rate, the orbital
frequency at the prograde ISCO is given by (see Kluźniak et al. 1990)

fISCO ≃ 2210 (1 + 0.75χ)

(

1 M⊙
M

)

Hz, (120)

where χ := J/M2. At larger rotation rates, higher order contributions of χ as well as
contributions from the quadrupole moment Q become important and an approximate
expression has been derived by Shibata and Sasaki (1998), which, when written as
above and truncated to the lowest order contribution of Q and to O(χ2), becomes

fISCO ≃ 2210 (1 + 0.75χ + 0.78χ2 − 0.23Q2)

(

1 M⊙
M

)

Hz, (121)

where Q2 = −Q/M3.
Notice that, while rotation increases the orbital frequency at the ISCO, the

quadrupole moment has the opposite effect, which can become important for rapidly
rotating models. Numerical evaluations of fISCO for rapidly rotating stars have been
used in Miller et al. (1998) to arrive at constraints on the properties of the accreting
compact object.

In other models, orbits of particles that are eccentric and slightly tilted with respect
to the equatorial plane are involved (the relativistic precession model). For eccentric
orbits, the periastron advances with a frequency νpa that is the difference between the
Keplerian frequency of azimuthal motion νK and the radial epicyclic frequency νr. On
the other hand, particles in slightly tilted orbits fail to return to the initial displacement
ψ from the equatorial plane, after a full revolution around the star. This introduces a
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nodal precession frequency νpa, which is the difference between νK and the frequency
of the motion out of the orbital plane (meridional frequency) νψ . Explicit expressions
for the above frequencies, in the gravitational field of a rapidly rotating neutron star,
have been derived recently by Marković (2000), while in Marković and Lamb (2000)
highly eccentric orbits are considered. Morsink and Stella (1999) compute the nodal
precession frequency for a wide range of neutron star masses and equations of state and
(in a post-Newtonian analysis) separate the precession caused by the Lense–Thirring
(frame-dragging) effect from the precession caused by the quadrupole moment of the
star. The nodal and periastron precession of inclined orbits have also been studied
using an approximate analytic solution for the exterior gravitational field of rapidly
rotating stars (Sibgatullin 2002). These precession frequencies are relativistic effects
and have been used in several models to explain the kHz QPO frequencies (Stella
et al. 1999; Psaltis and Norman 2000; Abramowicz and Kluźniak 2001; Kluźniak and
Abramowicz 2002; Amsterdamski et al. 2002).

It is worth mentioning that it has recently been found that an ISCO also exists in
Newtonian gravity, for models of rapidly rotating low-mass strange stars. The insta-
bility in the circular orbits is produced by the large oblateness of the star (Kluźniak
et al. 2001; Zdunik and Gourgoulhon 2001; Amsterdamski et al. 2002) (see also Török
et al. 2014 for a more recent study). Epicyclic frequencies for Maclaurin spheroids in
Newtonian gravity have also been computed by Kluźniak and Rosińska (2013).

Epicyclic frequencies for rapidly rotating strange stars have been computed by
Gondek-Rosińska et al. (2014) adopting the MIT bag model for the equation of state
of quark matter. They find that the orbits around rapidly rotating strange quark stars are
mostly affected by the stellar oblateness, rather than by the effects of general relativity.

For reviews on applications of current QPO models and what one can learn about
the properties of NSs see Bhattacharyya (2010) , Török et al. (2010), Pappas (2012),
Miller and Lamb (2016) and Özel and Freire (2016).

Going further: Observations of some LMXBs finding that the difference in the fre-
quencies of the peak QPOs is equal to half the spin frequency of the star raise some
questions regarding the validity of the popular beat-frequency model (Miller et al.
1998) (but see Lamb and Miller 2003). Motivated by this tension, another model for
QPOs is suggested by Li and Narayan (2004) in which it is argued that a strong mag-
netic field may truncate the inner parts of the disk and at the interface between the
accretion disk and the magnetosphere surrounding the accreting star that gas becomes
Rayleigh–Taylor and, possible also, Kelvin–Helmholtz unstable, leading to nonax-
isymmetric structures which result in the high-frequency QPOs that can explain obser-
vations. For other studies considering the impact of magnetic fields see also Kluźniak
and Rappaport (2007), Kulkarni and Romanova (2008), Tsang and Lai (2009),
Lovelace et al. (2009), Bakala et al. (2010), Bakala et al. (2012), Fu and Lai (2012),
Romanova et al. (2012), Long et al. (2012) and references therein. Another model that
can explain the observations where the difference in the frequencies of the twin peaks is
equal to half the spin frequency of the star is the so-called non-linear resonance model
(Kluźniak et al. 2004) (see also Lee et al. 2004; Horák et al. 2009; Urbanec et al. 2010).
For a recent work investigating the compatibility of realistic neutron star equations of
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state with several QPO modes see Török (2016). Constants of motion in stationary,
axisymmetric spacetimes have been investigated recently in Markakis (2014).

3.2 Angular momentum conservation during burst oscillations

Some sources in LMXBs show signatures of type I X-ray bursts, which are ther-
monuclear bursts on the surface of the compact star (Lewin et al. 1995). Such bursts
show nearly-coherent oscillations in the range 270–620 Hz (see van der Klis 2000;
Strohmayer 2001; Strohmayer and Bildsten 2006; Watts 2012 for reviews). One inter-
pretation of the burst oscillations is that they are the result of rotational modulation of
surface asymmetries during the burst. In such a case, the oscillation frequency should
be nearly equal to the spin frequency of the star. This model currently has difficulties
in explaining some observed properties, such as the oscillations seen in the tail of the
burst, the frequency increase during the burst, and the need for two anti-podal hot
spots in some sources that ignite at the same time. Alternative models also exist (see,
e.g., Psaltis 2001).

Changes in the oscillation frequency by a few Hz during bursts have been associated
with expansion and contraction of the burning shell. Cumming et al. (2002) compute
the expected spin changes in general relativity taking into account rapid rotation.
Assuming that the angular momentum per unit mass is conserved, the change in
angular velocity with radius is given by

d ln Ω

d ln r
= −2

[(

1 − v2

2
− R

2

∂ν

∂r

)

(

1 − ω

Ω

)

− R

2Ω

∂ω

∂r

]

, (122)

where R is the equatorial radius of the star and all quantities are evaluated at the equator.
The slow rotation limit of the above result was derived previously by Abramowicz
et al. (2001). The fractional change in angular velocity can then be estimated as

ΔΩ

Ω
= d ln Ω

d ln r

(

Δr

R

)

, (123)

where Δr is the coordinate expansion of the burning shell, a quantity that depends on
the shell’s composition. Cumming et al. find that in the expansion phase the expected
spin down is a factor of two to three times smaller than observed values, if the atmo-
sphere rotates rigidly. More detailed modeling is needed to fully explain the origin
and properties of burst oscillations (see Watts 2012 for a recent review on theoretical
models of thermonuclear bursts).

A very interesting topic is modeling the expected X-ray spectrum of an accretion
disk in the gravitational field of a rapidly rotating neutron star or of the “hot spot”
on its surface as it could lead to observational constraints on the source of the gravi-
tational field. See, e.g., Thampan and Datta (1998), Sibgatullin and Sunyaev (1998),
Sibgatullin and Sunyaev (2000), Bhattacharyya (2002), Bhattacharyya (2001), where
work initiated by Kluźniak and Wilson (1991) in the slow rotation limit is extended
to rapidly rotating relativistic stars.

Following an earlier work which uses approximate spacetimes (Cadeau et al. 2005),
light curves from ray-tracing on spacetimes corresponding to realistic models of
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rapidly rotating neutron stars (generated with the RNS code) are obtained by Cadeau
et al. (2007) assuming that the X-ray photons arise from a hot spot on the NS. There it
was shown that the dominant effect due to rotation comes from the stellar oblateness,
and that approximating a rapidly rotating star as a sphere results in large errors if one
is trying to fit for the radius and mass. However, for cases with stellar spin frequencies
<∼ 300 Hz rapidly rotating spacetime models are not necessary and only the stellar
oblateness has to be taken into consideration. As a result, Morsink et al. (2007) develop
the Oblate Schwarzschild (OS) model in which photons emerge from a hot spot in
the NS oblate surface, and they reach the observer following the geodesics of a cor-
responding Schwarzschild spacetime, while doppler effects due to rotation are taken
into consideration as in the standard model of Miller and Lamb (1998). Morsink et al.
demonstrate that the OS model suffices to describe the effects due to the NS rotation.
An approximate analytic model for pulse profiles taking into account gravitational light
bending, doppler effect, anisotropic emission and time delays is presented by Poutanen
and Beloborodov (2006). Another simple model adopting the Hartle–Thorne approxi-
mation for generating pulse profiles from rotating neutron stars is developed by Psaltis
and Özel (2014). For related studies see also Lee and Strohmayer (2005), Bauböck
et al. (2012), Ck et al. (2013), Miller and Lamb (2015) and references therein.

Going further: A number of theoretical works whose aim to model atomic lines in NS
atmospheres in order to infer the NS properties from the atomic line redshift see, e.g.,
(Özel and Psaltis 2003; Bildsten et al. 2003; Chang et al. 2005, 2006; Bhattacharyya
et al. 2006; Bauböck et al. 2013; Özel 2013; Heinke 2013; Bauböck et al. 2015).

4 Oscillations and stability

The study of oscillations of relativistic stars is motivated by the prospect of detecting
such oscillations in electromagnetic or gravitational wave signals. In the same way
that helioseismology is providing us with information about the interior of the Sun,
the observational identification of oscillation frequencies of relativistic stars could
constrain the high-density equation of state (Andersson and Kokkotas 1996). The
oscillations could be excited after a core collapse or during the final stages of a neu-
tron star binary merger. Rapidly rotating relativistic stars can become unstable to the
emission of gravitational waves.

When the displacement due to the oscillations of an equilibrium star are small
compared to its radius, it will suffice to approximate them as linear perturbations. Such
perturbations can be described in two equivalent ways. In the Lagrangian approach,
one studies the changes in a given fluid element as it oscillates about its equilibrium
position. In the Eulerian approach, one studies the change in fluid variables at a fixed
point in space. Both approaches have their strengths and weaknesses.

In the Newtonian limit, the Lagrangian approach has been used to develop varia-
tional principles (Lynden-Bell and Ostriker 1967; Friedman and Schutz 1978), but the
Eulerian approach proved to be more suitable for numerical computations of mode
frequencies and eigenfunctions (Ipser and Managan 1985; Managan 1985; Ipser and
Lindblom 1990, 1991b, a). Clement (1981) used the Lagrangian approach to obtain
axisymmetric normal modes of rotating stars, while nonaxisymmetric solutions were
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obtained in the Lagrangian approach by Imamura et al. (1985) and in the Eulerian
approach by Managan (1985) and Ipser and Lindblom (1990). While a lot has been
learned from Newtonian studies, in the following we will focus on the relativistic
treatment of oscillations of rotating stars.

4.1 Quasi-normal modes of oscillation

A general linear perturbation of the energy density in a static and spherically symmetric
relativistic star can be written as a sum of quasi-normal modes that are characterized
by the indices (l, m) of the spherical harmonic functions Y m

l and have angular and
time dependence of the form

δε ∼ f (r)Pm
l (cos θ)ei(mφ+ωit), (124)

where δ indicates the Eulerian perturbation of a quantity, ωi is the angular frequency of
the mode as measured by a distant inertial observer, f (r) represents the radial depen-
dence of the perturbation, and Pm

l (cos θ) are the associated Legendre polynomials.
Normal modes of nonrotating stars are degenerate in m and it suffices to study the
axisymmetric (m = 0) case.

The Eulerian perturbation in the fluid 4-velocity δua can be expressed in terms of
vector harmonics, while the metric perturbation δgab can be expressed in terms of
spherical, vector, and tensor harmonics. These are either of “polar” or “axial” parity.
Here, parity is defined to be the change in sign under a combination of reflection in
the equatorial plane and rotation by π . A polar perturbation has parity (− 1)l , while
an axial perturbation has parity (− 1)l+1. Because of the spherical background, the
polar and axial perturbations of a nonrotating star are completely decoupled.

A normal mode solution satisfies the perturbed gravitational field equation,

δ(Gab − 8πT ab) = 0, (125)

and the perturbation of the conservation of the stress-energy tensor,

δ(∇aT ab) = 0, (126)

with suitable boundary conditions at the center of the star and at infinity. The latter
equation is decomposed into an equation for the perturbation in the energy density
δε and into equations for the three spatial components of the perturbation in the 4-
velocity δua . As linear perturbations have a gauge freedom, at most six components
of the perturbed field equation (125) need to be considered.

For a given pair (l, m), a solution exists for any value of the frequency ωi, consisting
of a mixture of ingoing and outgoing wave parts. Outgoing quasi-normal modes are
defined by the discrete set of eigenfrequencies for which there are no incoming waves
at infinity. These are the modes that will be excited in various astrophysical situations.

The main modes of pulsation that are known to exist in relativistic stars have been
classified as follows ( f0 and τ0 are typical frequencies and damping times of the most
important modes in the nonrotating limit):
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1. Polar fluid modes are slowly damped modes analogous to the Newtonian fluid
pulsations:

– f (undamental)-modes: surface modes due to the interface between the star
and its surroundings ( f0 ∼ 2 kHz, τ0 < 1 s),

– p(ressure)-modes: nearly radial ( f0 > 4 kHz, τ0 > 1 s),
– g(ravity)-modes: nearly tangential, degenerate at zero frequency in nonrotating

isentropic stars; they have nonzero frequencies in stars that are non-isentropic
or that have a composition gradient or a first order phase transition ( f0 <

500 Hz, τ0 > 5 s).
2. Axial and hybrid fluid modes:

– inertial modes: degenerate at zero frequency in nonrotating stars. In a rotating
star, some inertial modes are generically unstable to the CFS instability; they
have frequencies from zero to kHz and growth times inversely proportional to
a high power of the star’s angular velocity. Hybrid inertial modes have both
axial and polar parts even in the limit of no rotation.

– r (otation)-modes: a special case of inertial modes that reduce to the classi-
cal axial r -modes in the Newtonian limit. Generically unstable to the CFS
instability with growth times as short as a few seconds at high rotation rates.

3. Polar and axial spacetime modes:
– w(ave)-modes: Analogous to the quasi-normal modes of a black hole (very

weak coupling to the fluid). High frequency, strongly damped modes ( f0 >

6 kHz, τ0 ∼ 0.1 ms).

For a more detailed description of various types of oscillation modes, see Kokkotas
(1997b, a), McDermott et al. (1988), Carroll et al. (1986) and Kokkotas and Schmidt
(1999).

4.2 Effect of rotation on quasi-normal modes

In a continuous sequence of rotating stars that includes a nonrotating member, a quasi-
normal mode of index l is defined as the mode which, in the nonrotating limit, reduces
to the quasi-normal mode of the same index l. Rotation has several effects on the
modes of a corresponding nonrotating star:

1. The degeneracy in the index m is removed and a nonrotating mode of index l is
split into 2l + 1 different (l, m) modes.

2. Prograde (m < 0) modes are now different from retrograde (m > 0) modes.
3. A rotating “polar” l-mode consists of a sum of purely polar and purely axial terms

(Stergioulas 1996), e.g., for l = m,

P rot
l ∼

∞
∑

l ′=0

(Pl+2l ′ + Al+2l ′±1), (127)

that is, rotation couples a polar l-term to an axial l ± 1 term (the coupling to the
l + 1 term is, however, strongly favoured over the coupling to the l − 1 term,
Chandrasekhar and Ferrari 1991). Similarly, for a rotating “axial” mode with l =
m,
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Arot
l ∼

∞
∑

l ′=0

(Al+2l ′ + Pl+2l ′±1). (128)

4. Frequencies and damping times are shifted. In general, frequencies (in the inertial
frame) of prograde modes increase, while those of retrograde modes decrease with
increasing rate of rotation.

5. In rapidly rotating stars, apparent intersections between higher order modes of
different l can occur. In such cases, the shape of the eigenfunction is used in the
mode classification.

In rotating stars, quasi-normal modes of oscillation have been studied only in the
slow rotation limit, in the post-Newtonian, and in the Cowling approximations. The
solution of the fully relativistic perturbation equations for a rapidly rotating star is still
a very challenging task and only recently have they been solved for zero-frequency
(neutral) modes (Stergioulas 1996; Stergioulas and Friedman 1998). First frequencies
of quasi-radial modes have now been obtained through 3D numerical time evolutions
of the nonlinear equations (Font et al. 2002).

Going further: The equations that describe oscillations of the solid crust of a rapidly
rotating relativistic star are derived by Priou (1992). The effects of superfluid hydrody-
namics on the oscillations of neutron stars have been investigated by several authors,
see, e.g., Lindblom and Mendell (1994); Comer et al. (1999), Andersson and Comer
(2001), Andersson et al. (2002), Andersson et al. (2004), Prix et al. (2004), Sidery
et al. (2008), Samuelsson and Andersson (2009), Passamonti et al. (2009a), Ander-
sson et al. (2011), Passamonti and Andersson (2012), Passamonti et al. (2016) and
references therein.

4.3 Axisymmetric perturbations

4.3.1 Secular and dynamical axisymmetric instability

Along a sequence of nonrotating relativistic stars with increasing central energy
density, there is always a model for which the mass becomes maximum. The maximum-
mass turning point marks the onset of an instability in the fundamental radial pulsation
mode of the star.

Applying the turning point theorem provided by Sorkin (1982), Friedman et al.
(1988) provide a sufficient condition for a secular axisymmetric instability of rotat-
ing stars, when the mass becomes maximum along a sequence of constant angular
momentum. An equivalent criterion (implied in Friedman et al. 1988) is provided
by Cook et al. (1992): The secular axisymmetric instability sets in when the angular
momentum becomes minimum along a sequence of constant rest mass. The instabil-
ity first develops on a secular timescale that is set by the time required for viscosity
to redistribute the star’s angular momentum. This timescale is long compared to the
dynamical timescale and comparable to the spin-up time following a pulsar glitch.
Eventually, the star encounters the onset of dynamical instability and collapses to a
black hole (see Shibata et al. 2000a for recent numerical simulations). Thus, the onset
of the secular instability to axisymmetric perturbations separates stable neutron stars
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from neutron stars that will undergo collapse to a black hole. More recently, Takami
et al. (2011) investigated the dynamical stability of rotating stars, computing numer-
ically the neutral point of the fundamental, quasi-radial F-mode frequency, which
signals the onset of the dynamical stability. In their simulations, they found that the
F-mode frequency can go through zero before a star reaches turning point. Prabhu
et al. (2016) investigate the axisymmetric stability of rotating relativistic stars through
a variational principle and show that the sign of the canonical energy gives a necessary
and sufficient condition for dynamical instability. In addition, they determine a lower
bound for exponential growth.

Goussard et al. (1997) extend the stability criterion to hot proto-neutron stars with
nonzero total entropy. In this case, the loss of stability is marked by the configuration
with minimum angular momentum along a sequence of both constant rest mass and
total entropy. In the nonrotating limit, Gondek et al. (1997) compute frequencies and
eigenfunctions of radial pulsations of hot proto-neutron stars and verify that the secular
instability sets in at the maximum mass turning point, as is the case for cold neutron
stars.

4.3.2 Axisymmetric pulsation modes

Axisymmetric (m = 0) pulsations in rotating relativistic stars could be excited in
a number of different astrophysical scenarios, such as during core collapse, in star
quakes induced by the secular spin-down of a pulsar or during a large phase transition,
or in the merger of two relativistic stars in a binary system, among others. Due to
rotational couplings, the eigenfunction of any axisymmetric mode will involve a sum
of various spherical harmonics Y 0

l , so that even the quasi-radial modes (with lowest
order l = 0 contribution) would, in principle, radiate gravitational waves.

Quasi-radial modes in rotating relativistic stars have been studied by Hartle and
Friedman (1975) and by Datta et al. (1998) in the slow rotation approximation. Yoshida
and Eriguchi (2001) study quasi-radial modes of rapidly rotating stars in the relativis-
tic Cowling approximation and find that apparent intersections between quasi-radial
and other axisymmetric modes can appear near the mass-shedding limit (see Fig. 10).
These apparent intersections are due to avoided crossings between mode sequences,
which are also known to occur for axisymmetric modes of rotating Newtonian stars.
Along a continuous sequence of computed mode frequencies an avoided crossing
occurs when another sequence is encountered. In the region of the avoided cross-
ing, the eigenfunctions of the two modes become of mixed character. Away from the
avoided crossing and along the continuous sequences of computed mode frequencies,
the eigenfunctions are exchanged. However, each “quasi-normal mode” is character-
ized by the shape of its eigenfunction and thus, the sequences of computed frequencies
that belong to particular quasi-normal modes are discontinuous at avoided crossings
(see Fig. 10 for more details). The discontinuities can be found in numerical calcula-
tions, when quasi-normal mode sequences are well resolved in the region of avoided
crossings. Otherwise, quasi-normal mode sequences will appear as intersecting.

Several axisymmetric modes have recently been computed for rapidly rotating
relativistic stars in the Cowling approximation, using time evolutions of the nonlinear
hydrodynamical equations (Font et al. 2001) (see Font et al. 2000 for a description of
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Fig. 10 Apparent intersection (due to avoided crossing) of the axisymmetric first quasi-radial overtone (H1)
and the first overtone of the l = 4 p-mode (in the Cowling approximation). Frequencies are normalized
by

√
ρc/4π , where ρc is the central energy density of the star. The rotational frequency frot at the mass-

shedding limit is 0.597 (in the above units). Along continuous sequences of computed frequencies, mode
eigenfunctions are exchanged at the avoided crossing. Defining quasi-normal mode sequences by the shape
of their eigenfunction, the H1 sequence (filled boxes) appears to intersect with the 4 p1 sequence (triangle),
but each sequence shows a discontinuity, when the region of apparent intersection is well resolved. In the
notation l moden , the superscript indicates the l of the perturbation, while the subscript indicates the harmonic
overtone. (Image reproduced with permission from Yoshida and Eriguchi 2001, copyright by RAS)

the 2D numerical evolution scheme). As in Yoshida and Eriguchi (2001), Font et al.
(2001) find that apparent mode intersections are common for various higher order
axisymmetric modes (see Fig. 11). Axisymmetric inertial modes also appear in the
numerical evolutions.

The first fully relativistic frequencies of quasi-radial modes for rapidly rotating
stars (without assuming the Cowling approximation) have been obtained recently,
again through nonlinear time evolutions (Font et al. 2002) (see Sect. 5.2).

Going further: The stabilization, by an external gravitational field, of a relativistic star
that is marginally stable to axisymmetric perturbations is discussed in Thorne (1998).

4.4 Nonaxisymmetric perturbations

4.4.1 Nonrotating limit

Thorne, Campolattaro, and Price, in a series of papers (Thorne and Campolattaro 1967;
Price and Thorne 1969; Thorne 1969), initiated the computation of nonradial modes
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Fig. 11 Frequencies of several axisymmetric modes along a sequence of rapidly rotating relativistic poly-
tropes of N = 1.0, in the Cowling approximation. On the horizontal axis, the angular velocity of each model
is scaled to the angular velocity of the model at the mass-shedding limit. Lower order modes are weakly
affected by rapid rotation, while higher order modes show apparent mode intersections. (Image reproduced
with permission from Font et al. 2001, copyright by RAS)

by formulating the problem in the Regge–Wheeler (RW) gauge (Regge and Wheeler
1957) and numerically computing nonradial modes for a number of neutron star mod-
els. A variational method for obtaining eigenfrequencies and eigenfunctions has been
constructed by Detweiler and Ipser (1973). Lindblom and Detweiler (1983) explic-
itly reduced the system of equations to four first order ordinary differential equations
and obtained more accurate eigenfrequencies and damping times for a larger set of
neutron star models. They later realized that their system of equations is sometimes
singular inside the star and obtained an improved set of equations, which is free of
this singularity (Detweiler and Lindblom 1985).

Chandrasekhar and Ferrari (1991) expressed the nonradial pulsation problem in
terms of a fifth order system in a diagonal gauge, which is formally independent
of fluid variables. Thus, they reformulate the problem in a way analogous to the
scattering of gravitational waves off a black hole. Ipser and Price (1991) show that in
the RW gauge, nonradial pulsations can be described by a system of two second order
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differential equations, which can also be independent of fluid variables. In addition,
they find that the diagonal gauge of Chandrasekhar and Ferrari has a remaining gauge
freedom which, when removed, also leads to a fourth order system of equations (Price
and Ipser 1991).

In order to locate purely outgoing wave modes, one has to be able to distinguish the
outgoing wave part from the ingoing wave part at infinity. This is typically achieved
using analytic approximations of the solution at infinity.

W -modes pose a more challenging numerical problem because they are strongly
damped and the techniques used for f - and p-modes fail to distinguish the outgo-
ing wave part. The first accurate numerical solutions were obtained by Kokkotas and
Schutz (1992), followed by Leins et al. (1993). Andersson et al. (1995) successfully
combine a redefinition of variables with a complex-coordinate integration method,
obtaining highly accurate complex frequencies for w-modes. In this method, the ingo-
ing and outgoing solutions are separated by numerically calculating their analytic
continuations to a place in the complex-coordinate plane, where they have compara-
ble amplitudes. Since this approach is purely numerical, it could prove to be suitable
for the computation of quasi-normal modes in rotating stars, where analytic solutions
at infinity are not available.

The non-availability of asymptotic solutions at infinity in the case of rotating stars is
one of the major difficulties for computing outgoing modes in rapidly rotating relativis-
tic stars. A method that may help to overcome this problem, at least to an acceptable
approximation, has been found by Lindblom et al. (1997). The authors obtain approxi-
mate near-zone boundary conditions for the outgoing modes that replace the outgoing
wave condition at infinity and that enable one to compute the eigenfrequencies with
very satisfactory accuracy. First, the pulsation equations of polar modes in the Regge–
Wheeler gauge are reformulated as a set of two second order radial equations for two
potentials—one corresponding to fluid perturbations and the other to the perturbations
of the spacetime. The equation for the spacetime perturbation reduces to a scalar wave
equation at infinity and to Laplace’s equation for zero-frequency solutions. From these,
an approximate boundary condition for outgoing modes is constructed and imposed
in the near zone of the star (in fact, on its surface) instead of at infinity. For polytropic
models, the near-zone boundary condition yields f -mode eigenfrequencies with real
parts accurate to 0.01–0.1% and imaginary parts with accuracy at the 10–20% level,
for the most relativistic stars. If the near zone boundary condition can be applied to
the oscillations of rapidly rotating stars, the resulting frequencies and damping times
should have comparable accuracy.

4.4.2 Slow rotation approximation

The slow rotation approximation is useful for obtaining a first estimate of the effect
of rotation on the pulsations of relativistic stars. To lowest order in rotation, a polar
l-mode of an initially nonrotating star couples to an axial l ± 1 mode in the presence
of rotation. Conversely, an axial l-mode couples to a polar l ± 1 mode as was first
discussed by Chandrasekhar and Ferrari (1991).

The equations of nonaxisymmetric perturbations in the slow rotation limit are
derived in a diagonal gauge by Chandrasekhar and Ferrari (1991), and in the
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Regge–Wheeler gauge by Kojima (1992, 1993b), where the complex frequencies
σ = σR + iσI for the l = m modes of various polytropes are computed. For counter-
rotating modes, both σR and σI decrease, tending to zero, as the rotation rate increases
(when σ passes through zero, the star becomes unstable to the CFS instability). Extrap-
olating σR and σI to higher rotation rates, Kojima finds a large discrepancy between
the points where σR and σI go through zero. This shows that the slow rotation for-
malism cannot accurately determine the onset of the CFS instability of polar modes
in rapidly rotating neutron stars.

In Kojima (1993a), it is shown that, for slowly rotating stars, the coupling between
polar and axial modes affects the frequency of f - and p-modes only to second order
in rotation, so that, in the slow rotation approximation, to O(Ω), the coupling can
be neglected when computing frequencies. This result was already known from the
original work of Hartle et al. (1972), where it was noted that a reversal of the direction
of rotation cannot change the shape of the mode or its frequency.

The linear perturbation equations in the slow rotation approximation have been
derived in a new gauge by Ruoff et al. (2002). Using the Arnowitt–Deser–Misner
(ADM) formalism (Arnowitt et al. 2008), a first order hyperbolic evolution system is
obtained, which is suitable for numerical integration without further manipulations (as
was required in the Regge–Wheeler gauge). In this gauge (which is related to a gauge
introduced for nonrotating stars in Battiston et al. 1971), the symmetry between the
polar and axial equations becomes directly apparent.

The case of relativistic inertial modes is different, as these modes have both axial
and polar parts at order O(Ω), and the presence of continuous bands in the spectrum
(at this order in the rotation rate) has led to a series of detailed investigations of the
properties of these modes (see Kokkotas and Ruoff 2003 for a review). Ruoff et al.
(2003) finally show that the inclusion of both polar and axial parts in the computation
of relativistic r -modes, at order O(Ω), allows for discrete modes to be computed, in
agreement with post-Newtonian (Lockitch et al. 2001) and nonlinear, rapid-rotation
(Stergioulas and Font 2001) calculations.

4.4.3 Post-Newtonian approximation

A step toward the solution of the perturbation equations in full general relativity has
been taken by Cutler (1991), Cutler and Lindblom (1992), Lindblom (1995), who
obtain frequencies for the l = m f -modes in rotating stars in the first post-Newtonian
(1-PN) approximation. The perturbation equations are derived in the post-Newtonian
formalism (see Blanchet 2003), i.e., the equations are separated into equations of
consistent order in 1/c.

Cutler and Lindblom show that in this scheme, the perturbation of the 1-PN cor-
rection of the four-velocity of the fluid can be obtained analytically in terms of other
variables; this is similar to the perturbation in the three-velocity in the Newtonian
Ipser–Managan scheme. The perturbation in the 1-PN corrections are obtained by
solving an eigenvalue problem, which consists of three second order equations, with
the 1-PN correction to the eigenfrequency of a mode Δω as the eigenvalue.

Cutler and Lindblom obtain a formula that yields Δω if one knows the 1-PN sta-
tionary solution and the solution to the Newtonian perturbation equations. Thus, the
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frequency of a mode in the 1-PN approximation can be obtained without actually
solving the 1-PN perturbation equations numerically. The 1-PN code was checked
in the nonrotating limit and it was found to reproduce the exact general relativistic
frequencies for stars with M/R = 0.2, obeying an N = 1 polytropic EOS, with an
accuracy of 3–8%.

Along a sequence of rotating stars, the frequency of a mode is commonly described
by the ratio of the frequency of the mode in the comoving frame to the frequency
of the mode in the nonrotating limit. For an N = 1 polytrope and for M/R = 0.2,
this frequency ratio is reduced by as much as 12% (for the fundamental l = m

modes) in the 1-PN approximation compared to its Newtonian counterpart—keeping
the gravitational mass fixed—which is representative of the effect that general relativity
has on the frequency of quasi-normal modes in rotating stars.

4.4.4 Cowling approximation

In several situations, the frequency of pulsations in relativistic stars can be estimated
even if one completely neglects the perturbation in the gravitational field, i.e., if one sets
δgab = 0 in the perturbation equations (McDermott et al. 1983). In this approximation,
the pulsations are described only by the perturbation in the fluid variables, and the
scheme works quite well for f , p, and r -modes (Lindblom and Splinter 1990). A
different version of the Cowling approximation, in which δgtr is kept nonzero in the
perturbation equations, has been suggested to be more suitable for g-modes (Finn
1988), since these modes could have large fluid velocities, even though the variation
in the gravitational field is weak.

Yoshida and Kojima (1997) examine the accuracy of the relativistic Cowling
approximation in slowly rotating stars. The first order correction to the frequency
of a mode depends only on the eigenfrequency and eigenfunctions of the mode in the
absence of rotation and on the angular velocity of the star. The eigenfrequencies of
f , p1, and p2 modes for slowly rotating stars with M/R between 0.05 and 0.2 are
computed (assuming polytropic EOSs with N = 1 and N = 1.5) and compared to
their counterparts in the slow rotation approximation.

For the l = 2 f -mode, the relative error in the eigenfrequency because of the
Cowling approximation is 30% for weakly relativistic stars (M/R = 0.05) and about
15% for stars with M/R = 0.2; the error decreases for higher l-modes. For the p1 and
p2 modes the relative error is similar in magnitude but it is smaller for less relativistic
stars. Also, for p-modes, the Cowling approximation becomes more accurate for
increasing radial mode number.

As an application, Yoshida and Eriguchi (1997, 1999) use the Cowling approxima-
tion to estimate the onset of the f -mode CFS instability in rapidly rotating relativistic
stars and to compute frequencies of f -modes for several realistic equations of state
(see Fig. 12).

The effects of rotation on the frequencies of the quasi-normal modes in the case
of a proto-neutron star are studied by Ferrari et al. (2004), where the growth time of
unstable g modes is estimated based on a post-Newtonian formula.

Perturbations in Newtonian axisymmetric background configurations but account-
ing for the superfluid hydrodynamics are studied by Passamonti et al. (2009a).
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Fig. 12 Eigenfrequencies (in the Cowling approximation) of f -modes along a M = 1.8 M⊙ sequence of
models, constructed with the WFF3-NV EOS. The vertical line corresponds to the frequency of rotation of
the model at the mass-shedding limit of the sequence. (Image reproduced with permission from Yoshida
and Eriguchi 1999, copyright by AAS)

Passamonti et al. (2009b) study g-modes for stratified rapidly rotating neutrons stars
also in a Newtonian framework. In a follow-up work, Gaertig and Kokkotas (2009)
extend the latter work in general relativity finding good qualitative agreement with the
Newtonian results.

Yoshida et al. (2005) adopt the Cowling approximation to study r -mode oscilla-
tions of rapidly and rigidly rotating, barotropic, relativistic stars. Their formulation
and method is the general relativistic extension of the Yoshida and Eriguchi method
(Yoshida and Eriguchi 1997), which amounts to the solution of a second-order, time-
indepedent partial differential equation for the eigenvalue problem. Using the method
they obtain the frequencies of the r -mode oscillations as a function of T/|W |, and
find that the normalized oscillation frequencies σ/Ω (where Ω is the stellar rotation
frequency) scale almost linearly with T/|W | and decrease as T/|W | increases.

Gaertig and Kokkotas (2008, 2011) adopt the Cowling approximation to study
m = ±2 nonaxisymmetric oscillations and instabilities of rapidly rotating general
relativistic, polytropic stars using a time-dependent approach for the first time. They
introduce a formulation for the linearized equations of motion for a perfect fluid
appropriate for a rapidly rotating star in a comoving frame using surface fitted coordi-
nates. The equations of state they adopt have (Γ, K ) = (2, 100) (labeled as the EOS
BU), (Γ, K ) = (2.46, 0.00936) (labeled as the EOS A), and (Γ, K ) = (2.34, 0.0195)

(labeled as the EOS II). The values for K are in geometrized units with M⊙ = 1. From
the BU EOS they adopt a neutron star model with M = 1.4 M⊙ and circumferential

123



Rotating stars in relativity Page 71 of 169 7

radius R = 14.15 km. For the A (II) EOS they consider a model with M = 1.61 M⊙
(M = 1.91 M⊙) and R = 9.51 km (R = 11.68 km).

For l = 2 polar perturbations, Gaertig and Kokkotas find the anticipated splitting
of counter-rotating m = 2 and corotating m = −2 f modes as the star is set to rotate at
higher rates. They find that even for rapidly rotating stars the higher the compactness
of the star the higher the f -mode frequency. They also discover an equation-of-state
independent fit for the f -mode frequencies (σ0) in the corotating frame as a function
of the rotation frequency as follows

σ

σ0
= 1.0 + C

(1)
lm

(

Ω

ΩK

)

+ C
(2)
lm

(

Ω

ΩK

)2

, (129)

where σ0 is the f -mode frequency for a nonrotating star and ΩK the mass-shedding
limit rotation frequency. From the numerical calculations they find C

(1)
2−2 = −0.27,

C
(2)
2−2 = −0.34 and C

(1)
22 = 0.47, C

(2)
22 = −0.51. To transform these frequencies

to the stationary frame one must use σstat = σcorot − mΩ . Through this equation the
authors compute the stationary frame frequencies and are able to determine the critical
rotation rate at which σstat = 0 for m = 2. For rotation rates higher than the critical
one the f -mode is retrograde in the corotating frame, and prograde in the stationary
frame, hence the mode becomes unstable to the Chandrasekhar–Friedman–Schutz
instability (Chandrasekhar 1970; Friedman and Schutz 1978) (see next section). The
authors are able to also study nonaxisymmetric axial l = 2, m = 2 perturbations,
i.e., r -modes, finding results that are in excellent agreement with earlier results from
nonlinear general-relativistic simulations by Stergioulas and Font (2001).

In follow up work, Krüger et al. (2010) adopt the Cowling approximation gener-
alizing the approach of Gaertig and Kokkotas (2008) to investigate nonaxisymmetric
oscillations of rapidly and differentially rotating relativistic stars. Adopting polytropic
equations of state, the authors find that for nonaxisymmetric f -modes the higher the
degree of differential rotation the neutral point is reached at a lower value of T/|W |,
hence differential rotation favors the development of the Chandrasekhar–Friedman–
Schutz instability. Krüger et al. also study r -mode oscillations for which they find a
discrete spectrum only, in contrast to some earlier studies (Kojima 1998; Passamonti
et al. 2008) that found evidence for a continuum spectrum (see also discussion in the
next section).

A substantial step forward in the field of gravitational wave asteroseismology is
taken by the work of Doneva et al. (2013a) who extend the work by Gaertig and
Kokkotas (2008) in several different ways: (a) they consider realistic equations of
state, (b) they treat higher modes up to l = m = 4, (c) they address the problem of
inferring the properties of a neutron star from observations of observed frequencies
and damping timescales using f -modes l > 2. The authors use the rns code to build
the equilibrium rotating configurations adopting five realistic EOSs, constructing two
constant-central-density rotational sequences up to the mass-shedding limit for most
of them. For each EOS, the first sequence starts with a non-spinning star with mass
1.4 M⊙, and the second with a non-spinning star near the TOV limit. The characteristic
mode splitting of the f -modes for different values of m as the stars are spun-up can
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Fig. 13 f -mode frequencies in the inertial frame as a function of the stellar rotation angular frequency for
different EOSs labeled as A, FPS, WFF2, WFF3 and AkmalPR (see Doneva et al. 2013a for more details).
Left: l = |m| = 2. Right: l = |m| = 4. (Image reproduced with permission from Doneva et al. 2013a,
copyright by APS)

be seen in Fig. 13 with the upper branch being the stable one and the lower branch
being (potentially) unstable.

When normalizing the oscillation frequencies in the corotating frame as in Eq. (129),
they find that Eq. (129) is still a good approximation with interpolation parameters for
the unstable modes given by

– l = m = 2: C
(1)
22 = 0.402 and C

(2)
22 = −0.406,

with σ0,l=2
2π

[kHz] = 1.562 + 1.151

(

M̄0
R̄3

0

)1/2

.

– l = m = 3: C
(1)
33 = 0.373 and C

(2)
33 = −0.485,

with σ0,l=3
2π

[kHz] = 1.764 + 1.577

(

M̄0
R̄3

0

)1/2

.

– l = m = 4: C
(1)
44 = 0.360 and C

(2)
44 = −0.543,

with σ0,l=4
2π

[kHz] = 1.958 + 1.898

(

M̄0
R̄3

0

)1/2

.

In the expressions for σ0,l above the mass and radius are normalized as M̄0 =
M0/1.4 M⊙ and R̄0 = R0/10 km, and stand for the masses and radii of the nonspining
configurations, respectively. Interestingly, Doneva et al. find a universal fitting relation
for all stable-mode (l = −m = 2, l = −m = 3 and l = −m = 4) oscillation
frequencies, where the coefficients in Eq. (129) are given by C

(1)
lm = −0.235 and

C
(2)
lm = −0.358. The Kepler limit ΩK in Eq. (129) is well described (within 2%

accuracy) by (1/2π)ΩK [kHz] = 1.716(M̄0/R̄3
0)1/2 − 0.189. Finally, the authors find

that the masses and radii of the rotating configurations are well-described as functions
of the masses and radii of the non-spinning counterparts and the angular frequency by
the following expressions

M

M0
= 0.991 + 9.36 × 10−3e

3.28 Ω
ΩK (130)
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and

R

R0
= 0.997 + 2.77 × 10−3e

4.74 Ω
ΩK (131)

Doneva et al. (2013a) also provide approximate relations for the damping (growth)
timescale of the stable (unstable) modes. These are relations are approximate because
the authors adopt the Cowling approximation and as a result they can only estimate
the gravitational wave damping timescale. The expressions are given in the form

(

τl

τ0

)1/2l

=
3
∑

n=0

cln

(

σ

σ0

)n

, l = 2, 3, 4 (132)

which the authors argue will remain valid even if the Cowling approximation is
lifted because these involve properly rescaled quantities. The authors also provide
fits for non-spinning limit τ0 for the different l modes which scale as τ−1

0 =
(1/R̄0)(M̄0/R̄0)

l+1(c̄l0 + c̄l1(M̄0/R̄0). With these approximately EOS-independent
expressions for the f -mode frequencies and damping timescales, one can obtain
the mass and the radius of a rotating neutron star following a determination of the
nonrotating-limit parameters. However, as the authors point out, not all combinations
of frequencies and damping times are capable of providing information about the neu-
tron star mass and radius. For example, measuring two frequencies alone can provide
information for Ω and M/R3, but not of M and R separately. Therefore, measuring
the damping timescale of at least one f -mode is necessary to break the degeneracy
and estimate M and R separately. But, this is going to be a rather challenging task
because of the long integration times required in noisy detector data.

Going further: A new approach for performing asteroseismology for neutron stars
was introduced by Doneva and Kokkotas (2015). The f -mode oscillation frequencies
in modified gravity theories have recently been addressed by Staykov et al. (2015).
The authors adopt the Cowling approximation and treat R2 gravity as a first case.
The authors derive the R2-gravity asteroseismology relations which they find they are
approximately EOS-independent as in the case of general relativity. By varying the
R2-gravity coupling constant within the range allowed by current observations, the
authors estimate that the R2-gravity asteroseismology relations deviate from those in
general relativity by up to 10%. This implies that it will be difficult to further constrain
R2-gravity via gravitational wave asteroseismology. A study of f -modes of rapidly
rotating stars in a scalar–tensor theory of gravity are studied for the first time by
Yazadjiev et al. (2017).

4.5 Nonaxisymmetric instabilities

4.5.1 Introduction

Rotating cold neutron stars, detected as pulsars, have a remarkably stable rotation
period. But, at birth or during accretion, rapidly rotating neutron stars can be subject to
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various nonaxisymmetric instabilities, which will affect the evolution of their rotation
rate.

If a proto-neutron star has a sufficiently high rotation rate (so that, e.g., T/W >

0.27 in the case of Maclaurin spheroids), it will be subject to a dynamical instability
driven by hydrodynamics and gravity, typically referred to as the dynamical bar-
mode instability. Through the l = 2 mode, the instability will deform the star into a
bar shape. This highly nonaxisymmetric configuration will emit strong gravitational
waves with frequencies in the kHz regime. The development of the instability and
the resulting waveform have been computed numerically in the context of Newtonian
gravity by Houser et al. (1994) and in full general relativity by Shibata et al. (2000a)
(see Sect. 5.1.3).

At lower rotation rates, the star can become unstable to secular nonaxisymmet-
ric instabilities, driven by gravitational radiation or viscosity. Gravitational radiation
drives a nonaxisymmetric instability when a mode that is retrograde in a frame
corotating with the star appears as prograde to a distant inertial observer, via the
Chandrasekhar–Friedman–Schutz (CFS) mechanism (Chandrasekhar 1970; Friedman
and Schutz 1978): A mode that is retrograde in the corotating frame has negative
angular momentum, because the perturbed star has less angular momentum than the
unperturbed one. If, for a distant observer, the mode is prograde, it removes posi-
tive angular momentum from the star, and thus the angular momentum of the mode
becomes increasingly negative.

The instability evolves on a secular timescale, during which the star loses angular
momentum via the emitted gravitational waves. When the star rotates more slowly than
a critical value, the mode becomes stable and the instability proceeds on the longer
timescale of the next unstable mode, unless it is suppressed by viscosity.

Neglecting viscosity, the CFS instability is generic in rotating stars for both polar
and axial modes. For polar modes, the instability occurs only above some critical
angular velocity, where the frequency of the mode goes through zero in the inertial
frame. The critical angular velocity is smaller for increasing mode number l. Thus,
there will always be a high enough mode number l for which a slowly rotating star
will be unstable. Many of the hybrid inertial modes (and in particular the relativistic r -
mode) are generically unstable in all rotating stars, since the mode has zero frequency
in the inertial frame when the star is nonrotating (Andersson 1998; Friedman and
Morsink 1998).

The shear and bulk viscosity of neutron star matter is able to suppress the growth of
the CFS instability except when the star passes through a certain temperature window.
In Newtonian gravity, it appears that the polar mode CFS instability can occur only in
nascent neutron stars that rotate close to the mass-shedding limit (Ipser and Lindblom
1991b, a, 1992; Yoshida and Eriguchi 1995; Lindblom and Mendell 1995), but the
computation of neutral f -modes in full relativity (Stergioulas 1996; Stergioulas and
Friedman 1998) shows that relativity enhances the instability, allowing it to occur in
stars with smaller rotation rates than previously thought.

Going further: A numerical method for the analysis of the ergosphere instability in
relativistic stars, which could be extended to nonaxisymmetric instabilities of fluid
modes, is presented by Yoshida and Eriguchi (1996).

123



Rotating stars in relativity Page 75 of 169 7

4.5.2 CFS instability of polar modes

The existence of the CFS instability in rotating stars was first demonstrated by Chan-
drasekhar (1970) in the case of the l = 2 mode in uniformly rotating, uniform
density Maclaurin spheroids. Friedman and Schutz (1978) show that this instabil-
ity also appears in compressible stars and that all rotating, self-gravitating perfect
fluid configurations are generically unstable to the emission of gravitational waves. In
addition, they find that a nonaxisymmetric mode becomes unstable when its frequency
vanishes in the inertial frame. Thus, zero-frequency outgoing modes in rotating stars
are neutral (marginally stable).

In the Newtonian limit, neutral modes have been determined for several polytropic
EOSs (Imamura et al. 1985; Managan 1985; Ipser and Lindblom 1990; Yoshida and
Eriguchi 1995). The instability first sets in through l = m modes. Modes with larger
l become unstable at lower rotation rates, but viscosity limits the interesting ones to
l ≤ 5. For an N = 1 polytrope, the critical values of T/W for the l = 3, 4, and 5
modes are 0.079, 0.058, and 0.045, respectively, and these values become smaller for
softer polytropes. The l = m = 2 “bar” mode has a critical T/W ratio of 0.14 that is
almost independent of the polytropic index. Since soft EOSs cannot produce models
with high T/W values, the bar mode instability appears only for stiff Newtonian
polytropes of N ≤ 0.808 (James 1964; Skinner and Lindblom 1996). In addition, the
viscosity-driven bar mode appears at the same critical T/W ratio as the bar mode
driven by gravitational radiation (Ipser and Managan 1985) (we will see later that this
is no longer true in general relativity).

The post-Newtonian computation of neutral modes by Cutler and Lindblom (1992),
Lindblom (1995) has shown that general relativity tends to strengthen the CFS instabil-
ity. Compared to their Newtonian counterparts, critical angular velocity ratios Ωc/Ω0
(where Ω0 = (3M0/4R3

0)1/2, and M0, R0 are the mass and radius of the nonrotating
star in the sequence) are lowered by as much as 10% for stars obeying the N = 1
polytropic EOS (for which the instability occurs only for l = m ≥ 3 modes in the
post-Newtonian approximation).

In full general relativity, neutral modes have been determined for polytropic EOSs
of N ≥ 1.0 by Stergioulas (1996), Stergioulas and Friedman (1998), using a new
numerical scheme. The scheme completes the Eulerian formalism developed by Ipser
and Lindblom (1992) in the Cowling approximation (where δgab was neglected), by
finding an appropriate gauge in which the time independent perturbation equations
can be solved numerically for δgab. The computation of neutral modes for polytropes
of N = 1.0, 1.5, and 2.0 shows that relativity significantly strengthens the instability.
For the N = 1.0 polytrope, the critical angular velocity ratio Ωc/ΩK, where ΩK
is the angular velocity at the mass-shedding limit at same central energy density, is
reduced by as much as 15% for the most relativistic configuration (see Fig. 14). A
surprising result (which was not found in computations that used the post-Newtonian
approximation) is that the l = m = 2 bar mode is unstable even for relativistic
polytropes of index N = 1.0. The classical Newtonian result for the onset of the bar
mode instability (Ncrit < 0.808) is replaced by

Ncrit < 1.3 (133)
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Fig. 14 The l = m neutral f -mode sequences for EOS A. Shown are the ratio of rotational to gravitational
energy T/W (upper panel) and the ratio of the critical angular velocity Ωc to the angular velocity at the
mass-shedding limit for uniform rotation (lower panel) as a function of gravitational mass. The solid curves
are the neutral mode sequences for l = m = 2, 3, 4, and 5 (from top to bottom), while the dashed curve
in the upper panel corresponds to the mass-shedding limit for uniform rotation. The l = m = 2 f -mode
becomes CFS-unstable even at 85% of the mass-shedding limit, for 1.4 M⊙ models constructed with this
EOS. (Image reproduced with permission from Morsink et al. 1999, copyright by AAS)

in general relativity. For relativistic stars, it is evident that the onset of the gravitational-
radiation-driven bar mode does not coincide with the onset of the viscosity-driven bar
mode, which occurs at larger T/W (Bonazzola et al. 1998). The computation of the
onset of the CFS instability in the relativistic Cowling approximation by Yoshida
and Eriguchi (1997) agrees qualitatively with the conclusions in Stergioulas (1996),
Stergioulas and Friedman (1998).

Morsink et al. (1999) extend the method presented in Stergioulas and Friedman
(1998) to a wide range of realistic equations of state (which usually have a stiff high
density region, corresponding to polytropes of index N = 0.5–0.7) and find that the
l = m = 2 bar mode becomes unstable for stars with gravitational mass as low as
1.0–1.2 M⊙. For 1.4 M⊙ neutron stars, the mode becomes unstable at 80–95% of the
maximum allowed rotation rate. For a wide range of equations of state, the l = m = 2
f -mode becomes unstable at a ratio of rotational to gravitational energies T/W ∼ 0.08
for 1.4 M⊙ stars and T/W ∼ 0.06 for maximum mass stars. This is to be contrasted
with the Newtonian value of T/W ∼ 0.14. The empirical formula
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Fig. 15 Eigenfrequencies (in the Cowling approximation) of the m = 2 mode as a function of the parameter
β = T/|W | for three different sequences of differentially rotating neutron stars (the A−1

r = 0.0 line
corresponding to uniform rotation). The filled circle indicates the neutral stability point of a uniformly
rotating star computed in full general relativity (Stergioulas and Friedman 1998). Differential rotation shifts
the neutral point to higher rotation rates. (Image reproduced with permission from Yoshida et al. 2002,
copyright by AAS)

(T/W )2 = 0.115 − 0.048
M

M
sph
max

, (134)

where M
sph
max is the maximum mass for a spherical star allowed by a given equation of

state, gives the critical value of T/W for the bar f -mode instability, with an accuracy
of 4–6%, for a wide range of realistic EOSs.

In newly-born neutron stars the CFS instability could develop while the background
equilibrium star is still differentially rotating. In that case, the critical value of T/W ,
required for the instability in the f -mode to set in, is larger than the corresponding
value in the case of uniform rotation (Yoshida et al. 2002) (Fig. 15). The mass-shedding
limit for differentially rotating stars also appears at considerably larger T/W than
the mass-shedding limit for uniform rotation. Thus, Yoshida et al. (2002) suggest that
differential rotation favours the instability, since the ratio (T/W )critical/(T/W )shedding
decreases with increasing degree of differential rotation.

Gaertig et al. (2011) perform a calculation of the CFS f -mode instability in rapidly
rotating, relativistic neutron stars employing the Cowling approximation while treating
dissipation through shear and bulk viscosity as well as superfluid mutual friction
(Lindblom and Mendell 2000) of the nuclear matter. They adopt a polytropic equation
of state and construct, self-consistent equilibria with the RNS code. The focus of the
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Fig. 16 Left: The f -mode instability window neutron star rotation angular frequency vs temperature.
Here ΩK ≃ 6868 rad/s is the angular frequency at the mass-shedding limit for a n = 0.73, and mass
M = 1.48 M⊙ model with radius R = 10.47 km (in the TOV limit). The shaded area shows the region
of superfluidity, and the dashed curves represent different values for the mutual friction drag parameter
R (shown only for the m = 4 mode). Right: The f -mode instability growth time as a function of Ω for
the same model as in the left panel. The shaded area show the range of cooling timescales from an initial
temperature T = 5×1010 K to a final T = 5−9×108 K. (Image reproduced with permission from Gaertig
et al. 2011, copyright by APS)

study is primarily on the l = 4, m = 4 mode, which is the dominant one because
it has the largest instability window. For the full dissipative system, Gaertig et al.
compute the f -mode instability growth time and instability window, i.e., the curve
Ω(T )—the angular velocity at which the growth time of the instability equals the
dissipation timescale due to viscous effects as a function of the temperature T . For the
analysis they consider one background solution which is a star with polytropic index
n = 0.73, mass M = 1.48 M⊙ and radius R = 10.47 km (in the TOV limit). The main
results are shown in Fig. 16 from which it becomes clear that the instability window
for the m = 4 mode is the widest with Ω � 0.92ΩK , where ΩK is the mass-shedding
limit angular velocity. The minimum f -mode instability growth time found is on the
order of 103 s. The authors conclude that the f -mode instability is more likely to be
excited in nascent neutron stars, spinning with Ω � 0.9ΩK and having a temperature
T � 2 × 1010 K.

Passamonti et al. (2013) adopt linear perturbation theory and the Cowling approxi-
mation to study the evolution of the f -mode instability in rapidly rotating, polytropic
relativistic neutron stars, while treating thermal effects, magnetic fields, and the impact
of unstable r -modes. The authors focus on two polytropic stars with indices n = 1 and
n = 0.62, and masses 1.4 M⊙ and 1.98 M⊙, respectively. They report that magnetic
fields affect the evolution and the gravitational waves generated during the instability,
if the strength is larger than 1012 G. An unstable r -mode dominates over the f -mode
when the r -mode reaches saturation but these conclusions are limited by the unknown
r -mode amplitudes at saturation. Finally, the authors find that the thermal evolution
suggests that heat generated by shear viscosity during the saturation phase balances
exactly cooling by neutrinos, and prevents mutual friction from ever becoming impor-
tant.
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Doneva et al. (2013a) adopt the Cowling approximation to study the f -mode
instability in rapidly rotating stars with realistic equations of state focusing on a con-
stant mass sequence with M = 2.0 M⊙. The authors confirm the earlier result that
l = m = 4 modes have a larger instability window (Gaertig et al. 2011). In addition,
the authors report that realistic EOSs have a larger instability window than polytropic
EOSs, thus, favouring the f -mode CFS instability.

4.5.3 CFS instability of axial modes

In nonrotating stars, axial fluid modes are degenerate at zero frequency, but in rotating
stars they have nonzero frequency and are called r -modes in the Newtonian limit
(Papaloizou and Pringle 1978; Saio 1982). To order O(Ω), their frequency in the
inertial frame is

ωi = −mΩ

(

1 − 2

l(l + 1)

)

, (135)

while the radial eigenfunction of the perturbation in the velocity can be determined at
order Ω2 (Kojima 1998). According to Eq. (135), r -modes with m > 0 are prograde
(ωi < 0) with respect to a distant observer but retrograde (ωr = ωi + mΩ > 0) in the
comoving frame for all values of the angular velocity. Thus, r -modes in relativistic stars
are generically unstable to the emission of gravitational waves via the CFS instability,
as was first discovered by Andersson (1998) for the case of slowly rotating, relativistic
stars. This result was proved rigorously by Friedman and Morsink (1998), who showed
that the canonical energy of the modes is negative.

Two independent computations in the Newtonian Cowling approximation (Lind-
blom et al. 1998; Andersson et al. 1999) showed that the usual shear and bulk viscosity
assumed to exist for neutron star matter is not able to damp the r -mode instability, even
in slowly rotating stars. In a temperature window of 105 K < T < 1010 K, the growth
time of the l = m = 2 mode becomes shorter than the shear or bulk viscosity damping
time at a critical rotation rate that is roughly one tenth the maximum allowed angu-
lar velocity of uniformly rotating stars. Gravitational radiation is dominated by the
mass quadrupole term. These results suggested that a rapidly rotating proto-neutron
star will spin down to Crab-like rotation rates within one year of its birth, because
of the r -mode instability. Due to uncertainties in the actual viscous damping times
and because of other dissipative mechanisms, this scenario is also consistent with
somewhat higher initial spins, such as the suggested initial spin period of several mil-
liseconds for the X-ray pulsar in the supernova remnant N157B (Marshall et al. 1998).
Millisecond pulsars with periods less than a few milliseconds can then only form after
the accretion-induced spin-up of old pulsars and not in the accretion-induced collapse
of a white dwarf.

The precise limit on the angular velocity of newly-born neutron stars will depend
on several factors, such as the strength of the bulk viscosity, the cooling process,
superfluidity, the presence of hyperons, and the influence of a solid crust. In the uniform
density approximation, the r -mode instability can be studied analytically to O(Ω2) in
the angular velocity of the star (Kokkotas and Stergioulas 1999). A study on the issue
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Fig. 17 The r -mode instability window for a strange star of M = 1.4 M⊙ and R = 10 km (solid line).
Dashed curves show the corresponding instability windows for normal npe fluid and neutron stars with a
crust. The instability window is compared to (i) the inferred spin-periods for accreting stars in LMBXs
[shaded box], and (ii) the fastest known millisecond pulsars (for which observational upper limits on the
temperature are available) [horizontal lines]. (Image reproduced with permission from Andersson et al.
2002, copyright by RAS)

of detectability of gravitational waves from the r -mode instability was presented in
Owen et al. (1998) (see Sect. 4.5.5), while Andersson et al. (1999) and Bildsten (1998)
proposed that the r -mode instability is limiting the spin of millisecond pulsars spun-up
in LMXBs and it could even set the minimum observed spin period of ∼ 1.5 ms (see
Andersson et al. 2000). This scenario is also compatible with observational data, if one
considers strange stars instead of neutron stars (Andersson et al. 2002) (see Fig. 17).

Since the discovery of the r -mode instability, a large number of authors have studied
the development of the instability and its astrophysical consequences in more detail.
Unlike in the case of the f -mode instability, many different aspects and interactions
have been considered. This intense focus on the detailed physics has been very fruit-
ful and we now have a much more complete understanding of the various physical
processes that are associated with pulsations in rapidly rotating relativistic stars. The
latest understanding of the r -mode instability is that it may not be a very promising
gravitational wave source (as originally thought), but the important astrophysical con-
sequences, such as the limits of the spin of young and of recycled neutron stars are still
considered plausible. The most crucial factors affecting the instability are magnetic
fields (Spruit 1999; Rezzolla et al. 2000, 2001a, b), possible hyperon bulk viscosity
(Jones 2001; Lindblom and Owen 2002; Haensel et al. 2002) and nonlinear satura-
tion (Stergioulas and Font 2001; Lindblom et al. 2001, 2002; Arras et al. 2003). The
question of the possible existence of a continuous spectrum has also been discussed
by several authors, but the most recent analysis suggests that higher order rotational
effects still allow for discrete r -modes in relativistic stars (Yoshida and Lee 2002;
Ruoff et al. 2003) (see Fig. 18).

Haskell and Andersson (2010) study the effects of superfluid hyperon bulk viscosity
on the r -mode instability window using a multifluid formalism. They find that although
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Fig. 18 Relativistic r -mode frequencies for a range of the compactness ratio M/R. The coupling of polar and
axial terms, even in the order O(Ω) slow rotation approximation has a dramatic impact on the continuous
frequency bands (shaded areas), allowing the r -mode to exist even in highly compact stars. The Newtonian
value of the r -mode frequency is plotted as a dashed-dotted line. (Image reproduced with permission from
Ruoff et al. 2003, copyright by RAS)

the extra bulk viscosity does not alter the instability window qualitatively, it could
become substantial and even suppress the r -mode instability altogether in a range of
temperatures and neutron star radii. However, hyperons are predicted only by certain
equations of state and the relativistic mean field theory is not universally accepted.
Thus, our ignorance of the true equation of state still leaves a lot of room for the r -
mode instability to be considered a viable mechanism for the generation of detectable
gravitational radiation.

In a subsequent paper, Andersson et al. (2013) study the superfluid r -mode insta-
bility which arises in rotating stars in which there is “differential” rotation between the
crust and the underlying superfluid, and which was first discovered by Glampedakis
and Andersson (2009) as a new mechanism for explaining the unpinning of vortices in
pulsar glitches. In Andersson et al. (2013), the analysis goes beyond the strong-drag
limit adopted in Glampedakis and Andersson (2009) and it is shown that there exist
dynamically unstable modes (growth time comparable to the stellar rotation period),
and that the r -modes undergo a secular instability.

Magnetic fields can affect the r -mode instability, as the r -mode velocity field cre-
ates differential rotation, which is both kinematical and due to gravitational radiation
reaction (see Fig. 19). Under differential rotation, an initially weak poloidal magnetic
field is wound-up, creating a strong toroidal field, which causes the r -mode amplitude
to saturate. On the other hand a more recent study of the effects of a dipole magnetic
field on r -modes of slowly rotating, relativistic neutron stars by Chirenti and Skákala
(2013) reports that magnetic fields affect the r -mode oscillation frequencies and the
r -mode instability growth time very little even for strengths as large as B ∼ 1015 G.

The detection of gravitational waves from r -modes depends crucially on the non-
linear saturation amplitude. A first study by Stergioulas and Font (2001) suggests
that r -modes can exist at large amplitudes of order unity for dozens of rotational
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Fig. 19 Projected trajectories of several fiducial fluid elements (as seen in the corotating frame) for an
l = m = 2 Newtonian r -mode. All of the fluid elements are initially positioned on the φ0 = 0 meridian at
different latitudes (indicated with stars). Blue dots indicate the position of the fluid elements after each full
oscillation period. The r -mode induces a kinematical, differential drift. (Image reproduced with permission
from Rezzolla et al. 2001a, copyright by APS)

periods in rapidly rotating relativistic stars (Fig. 20). The study used 3D relativistic
hydrodynamical evolutions in the Cowling approximation. This result was confirmed
by Newtonian 3D simulations of nonlinear r -modes by Lindblom and Owen (2002),
Lindblom et al. (2001). Lindblom et al. went further, using an accelerated radiation
reaction force to artificially grow the r -mode amplitude on a hydrodynamical (instead
of the secular) timescale. At the end of the simulations, the r -mode grew so large
that large shock waves appeared on the surface of the star, while the amplitude of the
mode subsequently collapsed. Lindblom et al. suggested that shock heating may be
the mechanism that saturates the r -modes at a dimensionless amplitude of α ∼ 3.

Other studies of nonlinear couplings between the r -mode and higher order inertial
modes (Arras et al. 2003) and new 3D nonlinear Newtonian simulations (Gressman
et al. 2002) seem to suggest a different picture. The r -mode could be saturated due
to mode couplings or due to a hydrodynamical instability at amplitudes much smaller
than the amplitude at which shock waves appeared in the simulations by Lindblom
et al. Such a low amplitude, on the other hand, modifies the properties of the r -mode
instability as a gravitational wave source, but is not necessarily bad news for gravita-
tional wave detection, as a lower spin-down rate also implies a higher event rate for the
r -mode instability in LMXBs in our own Galaxy (Andersson et al. 2002; Heyl 2002).
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Fig. 20 Evolution of the axial velocity in the equatorial plane for a relativistic r -mode in a rapidly rotating
N = 1.0 polytrope (in the Cowling approximation). Since the initial data used to excite the mode are not
exact, the evolution is a superposition of (mainly) the l = m = 2 r -mode and several inertial modes.
The amplitude of the oscillation decreases due to numerical (finite-differencing) viscosity of the code. A
beating between the l = m = 2 r -mode and another inertial mode can also be seen. (Image reproduced
with permission from Stergioulas and Font 2001, copyright by APS)

The 3D simulations need to achieve significantly higher resolutions before definite
conclusions can be reached, while the Arras et al. work could be extended to rapidly
rotating relativistic stars (in which case the mode frequencies and eigenfunctions could
change significantly, compared to the slowly rotating Newtonian case, which could
affect the nonlinear coupling coefficients). Spectral methods can be used for achiev-
ing high accuracy in mode calculations; first results have been obtained by Villain and
Bonazzola (2002) for inertial modes of slowly rotating stars in the relativistic Cowling
approximation.

More recently, Bondarescu et al. (2009) perform a study of the non-linear develop-
ment of the r -mode instability, including three-mode couplings, neutrino cooling and
viscous heating effects on rotating stars near the mass-shedding limit. In their most
optimistic scenarios, the authors conclude that gravitational waves from the r-mode
instability in young, rapidly spinning neutron stars may be detectable by advanced
LIGO out to 1 Mpc for years, and perhaps decades, after formation. In follow up
work, Bondarescu and Wasserman (2013) include interactions of the ℓ = m = 2 r -
mode with “pairs of daugther modes” close to resonance. They find that if dissipation
occurs at the crust–core boundary layer, the r -mode saturation amplitude is too large
for the star to be spun up by accretion to even 300 Hz because of angular momentum
loss to gravitational radiation. Spin up to higher frequencies seems to require that the
core–crust transition occur over a lengthscale much longer than 1 cm.

The idea of utilizing X-ray and UV observations of low-mass X-ray binaries to
constrain the physics of the r -mode instability is discussed by Haskell et al. (2012).

For a more extensive coverage of the numerous articles on the r -mode instability
that appeared in recent years, the reader is referred to several review and recent arti-
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cles (Andersson and Kokkotas 2001; Friedman and Lockitch 2002; Lindblom 2001;
Kokkotas and Ruoff 2003; Andersson 2002; Alford et al. 2015; Kokkotas and Schwen-
zer 2016; Jasiulek and Chirenti 2016).

Going further: If rotating stars with very high compactness exist, then w-modes
can also become unstable, as was found by Kokkotas et al. (2004). The possible
astrophysical implications are still under investigation.

4.5.4 Effect of viscosity on the CFS instability

In the previous sections, we have discussed the growth of the CFS instability driven
by gravitational radiation in an otherwise non-dissipative star. The effect of neutron
star matter viscosity on the dynamical evolution of nonaxisymmetric perturbations
can be considered separately, when the timescale of the viscosity is much longer than
the oscillation timescale. If τgr is the computed growth rate of the instability in the
absence of viscosity, and τs, τb are the timescales of shear and bulk viscosity, then the
total timescale of the perturbation is

1

τ
= 1

τgr
+ 1

τs
+ 1

τb
. (136)

Since τgr < 0 and τb, τs > 0, a mode will grow only if τgr is shorter than the viscous
timescales, so that 1/τ < 0.

In normal neutron star matter, shear viscosity is dominated by neutron–neutron
scattering with a temperature dependence of T −2 (Flowers and Itoh 1976), and com-
putations in the Newtonian limit and post-Newtonian approximation show that the CFS
instability is suppressed for T < 106–107 K (Ipser and Lindblom 1991b, a; Yoshida
and Eriguchi 1995; Lindblom 1995). If neutrons become a superfluid below a transi-
tion temperature Ts, then mutual friction, which is caused by the scattering of electrons
off the cores of neutron vortices could significantly suppress the f -mode instability for
T < Ts (Lindblom and Mendell 1995), but the r -mode instability remains unaffected
(Lindblom and Mendell 2000). The superfluid transition temperature depends on the
theoretical model for superfluidity and lies in the range 108–6 × 109 K (Page 1994).

In a pulsating fluid that undergoes compression and expansion, the weak interaction
requires a relatively long time to re-establish equilibrium. This creates a phase lag
between density and pressure perturbations, which results in a large bulk viscosity
(Sawyer 1989). The bulk viscosity due to this effect can suppress the CFS instability
only for temperatures for which matter has become transparent to neutrinos (Lai and
Shapiro 1995; Bonazzola et al. 1996). It has been proposed that for T > 5 × 109 K,
matter will be opaque to neutrinos and the neutrino phase space could be blocked (Lai
and Shapiro 1995; see also Bonazzola et al. 1996). In this case, bulk viscosity will be
too weak to suppress the instability, but a more detailed study is needed.

In the neutrino transparent regime, the effect of bulk viscosity on the instability
depends crucially on the proton fraction xp. If xp is lower than a critical value (∼ 1/9),
only modified URCA processes are allowed. In this case bulk viscosity limits, but does
not completely suppress, the instability (Ipser and Lindblom 1991b, a; Yoshida and
Eriguchi 1995). For most modern EOSs, however, the proton fraction is larger than
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∼ 1/9 at sufficiently high densities (Lattimer et al. 1991), allowing direct URCA
processes to take place. In this case, depending on the EOS and the central density of
the star, the bulk viscosity could almost completely suppress the CFS instability in the
neutrino transparent regime (Zdunik 1996). At high temperatures, T > 5×109 K, even
if the star is opaque to neutrinos, the direct URCA cooling timescale to T ∼ 5×109 K
could be shorter than the growth timescale of the CFS instability.

Bildsten and Ushomirsky (2000) considered the dissipation of r -modes due to the
presence of a viscous boundary layer between the oscillating fluid and the crust and
found it to be several orders of magnitude higher than the dissipation due to shear in the
neutron star interior, if the crust is rigid. Subsequently, Lindblom et al. (2000) included
the effects of the Coriolis force in more realistic neutron-star models, finding that an
r -mode amplitude value of ∼ 5 × 10−3 for maximally rotating stars would result in
sufficient heating at the crust-core boundary layer for the crust to melt. These initial
computations used a rigid crust that did not participate in the r -mode oscillation, but
the magnitude of the effect strongly depends on a slippage parameter S that measures
the fractional difference in velocity of the normal fluid between the crust and the
core and the fractional pinning of vortices in the crust (Levin and Ushomirsky 2001;
Glampedakis and Andersson 2006a, b). The dependence of the crust-core slippage on
the spin frequency is complicated, and is very sensitive to the physical thickness of
the crust.

Going further: For more recent work on viscous damping of r -modes see Alford
et al. (2012) (and references therein) who treat non-linear viscous effects in the large-
amplitude regime, as well as consider hadronic stars, strange quark stars, and hybrid
stars. See also Kolomeitsev and Voskresensky (2015) (and references therein) for a
microphysical computation of the shear and bulk viscosities from various processes
and applications to viscous damping of r -modes. For recent work on the r -mode
instability window and applications on pulsar recycling see Gusakov et al. (2014,
2016), and references therein.

4.5.5 Gravitational radiation from CFS instability

Conservation of angular momentum and the inferred initial period (assuming magnetic
braking) of a few milliseconds for the X-ray pulsar in the supernova remnant N157B
(Marshall et al. 1998) suggests that a fraction of neutron stars may be born with very
large rotational energies. The f -mode bar CFS instability thus appears as a promising
source for the planned gravitational wave detectors (Lai and Shapiro 1995). It could
also play a role in the rotational evolution of merged binary neutron stars, if the post-
merger angular momentum exceeds the maximum allowed to form a Kerr black hole
(Baumgarte and Shapiro 1998b) or if differential rotation temporarily stabilizes the
merged object.

Lai and Shapiro (1995) have studied the development of the f -mode instability
using Newtonian ellipsoidal models (Lai et al. 1993, 1994). They consider the case
when a rapidly rotating neutron star is created in a core collapse. After a brief dynamical
phase, the proto-neutron star becomes secularly unstable. The instability deforms the
star into a nonaxisymmetric configuration via the l = 2 bar mode. Since the star

123



7 Page 86 of 169 V. Paschalidis, N. Stergioulas

loses angular momentum via the emission of gravitational waves, it spins down until
it becomes secularly stable. The frequency of the waves sweeps downward from a few
hundred Hz to zero, passing through LIGO’s ideal sensitivity band. A rough estimate
of the wave amplitude shows that, at ∼ 100 Hz, the gravitational waves from the
CFS instability could be detected out to the distance of 140 Mpc by the advanced
LIGO detector. This result is very promising, especially since for relativistic stars the
instability will be stronger than the Newtonian estimate (Stergioulas and Friedman
1998). More recent work by Passamonti et al. (2013) suggests that the gravitational
wave signal generated during the f -mode instability, could potentially be detectable
by Advanced LIGO/Virgo from a source located in the Virgo cluster, as long as the
star was massive enough.

Pnigouras and Kokkotas (2015, 2016) develop a formalism to study the saturation
of the f -mode instability as a result of nonlinear coupling of modes. They find that
parent (unstable) modes couple resonantly to daughter modes which drain energy from
the parent modes leading to saturation of the instability. These results can be applicable
to neutron stars formed in core collapse and following neutron star mergers. Doneva
et al. (2015a) report that gravitational waves generated by the f -mode instability in
supramassive neutron stars (that could form following binary neutron star mergers)
could be detectable by advanced LIGO at 20 Mpc (where, however, the event rate is
very low, so that a more sensitive instrument is needed for realistic detection rates).
The stochastic gravitational wave background due to the f -mode instability in neutron
stars is estimated by in Surace et al. (2016). They find that for the l = m = 2 f -mode
ΩGW ∼ 10−9 which could be detectable through cross correlating data from pairs of
grounds based detectors.

Whether r -modes should also be considered a promising gravitational wave source
depends crucially on their nonlinear saturation amplitude (see Sect. 4.5.3). Neverthe-
less, the issues of detectability and interpretation of gravitational waves generated by
the r -mode instability is discussed by Owen (2010), and the effects of realistic equa-
tions of state and the potential for gravitational waves from the r -mode instability to
constrain the nuclear equation of state are studied by Idrisy et al. (2015). Applica-
tions of the different r -mode instability scenarios (see Fig. 21) in gravitational-wave
astronomy were recently presented by Kokkotas and Schwenzer (2016).

Going further: The possible ways for neutron stars to emit gravitational waves and
their detectability are reviewed in Bonazzola and Gourgoulhon (1996, 1997), Giazotto
et al. (1997), Flanagan (1998), Thorne (1995), Schutz (1999) and Cutler and Thorne
(2002).

4.5.6 Viscosity-driven instability

A different type of nonaxisymmetric instability in rotating stars is the instability driven
by viscosity, which breaks the circulation of the fluid (Roberts and Stewartson 1963;
James 1964). The instability is suppressed by gravitational radiation, so it cannot act
in the temperature window in which the CFS instability is active. The instability sets
in when the frequency of an l = −m mode goes through zero in the rotating frame. In
contrast to the CFS instability, the viscosity-driven instability is not generic in rotating
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Fig. 21 Different scenarios in which the r-mode instability can generate gravitational waves in the angular
velocity (Ω) - temperature (T ) plane. Top left panel: Spindown of nascent sources; Top right panel: Pulsar
recycling in LMXBs and spindown of millisecond pulsars; Lower panel: Recycling and spindown in sources
with increased damping. Each time the evolution goes through or lies at the boundary of the instability
region (region within the dotted lines) gravitational wave emission is switched on. (Image reproduced with
permission from Kokkotas and Schwenzer 2016, copyright by SIF/Springer)

stars. The m = 2 mode becomes unstable at a high rotation rate for very stiff stars,
and higher m-modes become unstable at larger rotation rates.

In Newtonian polytropes, the instability occurs only for stiff polytropes of index
N < 0.808 (James 1964; Skinner and Lindblom 1996). For relativistic models, the
situation for the instability becomes worse, since relativistic effects tend to suppress
the viscosity-driven instability (while the CFS instability becomes stronger). Accord-
ing to recent results by Bonazzola et al. (1998), for the most relativistic stars, the
viscosity-driven bar mode can become unstable only if N < 0.55. For 1.4 M⊙ stars,
the instability is present for N < 0.67.

These results are based on an approximate computation of the instability in which
one perturbs an axisymmetric and stationary configuration, and studies its evolu-
tion by constructing a series of triaxial quasi-equilibrium configurations. During
the evolution only the dominant nonaxisymmetric terms are taken into account. The
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method presented in Bonazzola et al. (1998) is an improvement (taking into account
nonaxisymmetric terms of higher order) of an earlier method by the same authors
(Bonazzola et al. 1996). Although the method is approximate, its results indicate that
the viscosity-driven instability is likely to be absent in most relativistic stars, unless
the EOS turns out to be unexpectedly stiff.

An investigation by Shapiro and Zane (1996) of the viscosity-driven bar mode
instability, using incompressible, uniformly rotating triaxial ellipsoids in the post-
Newtonian approximation, finds that the relativistic effects increase the critical T/W

ratio for the onset of the instability significantly. More recently, new post-Newtonian
(Di Girolamo and Vietri 2002) and fully relativistic calculations for uniform density
stars (Gondek-Rosińska and Gourgoulhon 2002) show that the viscosity-driven insta-
bility is not as strongly suppressed by relativistic effects as suggested in Shapiro and
Zane (1996). The most promising case for the onset of the viscosity-driven instability
(in terms of the critical rotation rate) would be rapidly rotating strange stars (Gondek-
Rosińska et al. 2003), but the instability can only appear if its growth rate is larger
than the damping rate due to the emission of gravitational radiation—a corresponding
detailed comparison is still missing.

The non-linear evolution of the bar mode instability has been studied via post-
Newtonian hydrodynamic simulations by Ou et al. (2004), and Shibata and Karino
(2004). Ou et al. find that the instability goes through a “Dedekind-like” configuration
(Chandrasekhar 1969) before becoming unstable due to a hydrodynamical shearing
instability. Shibata and Karino find that the end state of the instability is an ellipsoidal
star of ellipticity e � 0.7.

4.5.7 One-arm (spiral) instability

A remarkable feature about highly differentially rotating neutron stars is that they can
also become unstable to a dynamical one-arm (m = 1) “spiral” instability.

The one-arm instability in differentially rotating stars was discovered in Newtonian
hydrodynamic simulations with soft polytropic equations of state and a high degree
of differential rotation by Centrella et al. (2001). The instability growth occurs on a
dynamical (rotational period) timescale and saturates within a few tens of rotational
periods. During the development of the instability a perturbation displaces the stellar
core from the center of mass resulting in the core orbiting around the center of mass at
roughly constant angular frequency. The m = 1 deformation leads to a time-changing
quadrupole moment which results in the emission of gravitational waves which may
be detectable. This, in part, motivates the study of this instability and the conditions
under which it develops.

Shortly after the discovery of the m = 1 instability, Saijo et al. (2003) confirmed
its existence with further Newtonian hydrodynamic simulations and suggested that
a toroidal configuration may be necessary to trigger the one-arm instability but not
sufficient. Guided by observations reported by Watts et al. (2005) that the low-T/|W |
dynamical (bar-mode) instability (discovered by Shibata et al. 2002, 2003 for highly
differentially rotating stars, see also Saijo and Yoshida 2006; Cerdá-Durán et al. 2007;
Passamonti and Andersson 2015) develops near the corotation radius, i.e., the radius
where the angular frequency of the unstable mode matches the local angular velocity
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of the fluid, Saijo and Yoshida (2006) argue that the one-arm spiral instability is also
excited near the corotation radius. Hydrodynamic simulations of differentially rotating
stars by Ou and Tohline (2006) in Newtonian gravity, and by Corvino et al. (2010) in
general relativity seem to confirm this picture, although Ou and Tohline also point to
the significance of the existence of a minimum of the vortensity within the star. These
studies seem to point to a type of resonant excitation of the unstable mode. Ou and
Tohline (2006) further find that the one-arm spiral instability can develop even for
stiff equations of state (Γ = 2), as well as for non-toroidal configurations, as long as
the radial vortensity profile exhibits a local minimum. A recent simplified Newtonian
perturbative analysis by Saijo and Yoshida (2016) (see also Yoshida and Saijo 2017)
solving an eigenvalue problem on the equatorial plane of a star with j = const.
differential rotation law, suggests that when a corotation radius is present f -modes
become unstable giving rise to the class of “low-T/|W |”, shearing instabilities. In
Yoshida and Saijo (2017), the role of the corrotation radius is further explored and the
authors suggest that low-T/|W | instabilities may arise due because of “over-reflection”
of sound waves between the stellar surface and the corotation band. More recently,
Muhlberger et al. (2014), find that m = 1 modes were excited in general-relativistic
magnetohydrodynamic simulations of the low-T/|W | instability in isolated neutron
stars (see also Fu and Lai 2011). Despite multiple studies of the m = 1 instability,
a clear interpretation of how and under what conditions the instability arises is still
absent.

5 Dynamical simulations of rotating stars in numerical relativity

In the framework of the 3+1 split of the Einstein equations (Smarr and York 1978), the
spacetime metric obtains the Arnowitt–Deser–Misner (ADM) form (Arnowitt et al.
2008)

ds2 = −(α2 − βiβ
i ) dt2 + 2βi dx i dt + γi j dx i dx j , (137)

where α is the lapse function, β i is the shift three-vector, and γi j is the spatial three-
metric, with i = 1 . . . 3. Casting the spacetime metric of a stationary, axisymmetric
rotating star [see Eq. (5)] in the ADM form, the metric has the following properties:

– The metric function ω describing the dragging of inertial frames by rotation is
related to the shift vector through βφ = −ω. This shift vector satisfies the minimal

distortion shift condition.
– The metric satisfies the maximal slicing condition, while the lapse function is

related to the metric function ν in (5) through α = eν .
– The quasi-isotropic coordinates are suitable for numerical evolution, while the

radial-gauge coordinates (Bardeen and Piran 1983) are not suitable for nonspher-
ical sources (see Bonazzola et al. 1993 for details).

– The ZAMOs are the Eulerian observers, whose worldlines are normal to the t =
const. hypersurfaces.

– Uniformly rotating stars have Ω = const. in the coordinate frame. This can be
shown by requiring a vanishing rate of shear.
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– Normal modes of pulsation are discrete in the coordinate frame and their frequen-
cies can be obtained by Fourier transforms (with respect to coordinate time t) of
evolved variables at a fixed coordinate location (Font et al. 2000).

Crucial ingredients for the successful long-term and accurate evolution of rotating
stars in numerical relativity are the Baumgarte–Shapiro–Shibata–Nakamura (BSSN)
(see Nakamura et al. 1987; Shibata and Nakamura 1995; Baumgarte and Shapiro
1998a; Alcubierre et al. 2000) or Generalized-Harmonic (Pretorius 2005; Lindblom
et al. 2006) formulations for the spacetime evolution, and high-order, finite volume
(magneto)hydrodynamical schemes that have been shown to preserve the sharp fea-
tures at the surface of the star (see, e.g., Font et al. 2000; Stergioulas and Font 2001;
Font et al. 2002; Shibata 2003a; Baiotti et al. 2005a; Duez et al. 2005; Anderson et al.
2006; Giacomazzo and Rezzolla 2007; Yamamoto et al. 2008; East et al. 2012; Löffler
et al. 2012).

5.1 Numerical evolution of equilibrium models

5.1.1 Stable equilibrium

Preserving the equilibrium of a stable rotating neutron star has now become a standard
test for numerical relativity codes. The long-term stable evolution of rotating relativis-
tic stars in 3D simulations has become possible through the use of High-Resolution
Shock-Capturing (HRSC) methods (see Font 2008 for a review). Stergioulas and Font
(2001) evolve rotating relativistic stars near the mass-shedding limit for dozens of
rotational periods (evolving only the equations of hydrodynamics) (see Fig. 22), while
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Fig. 22 Time evolution of the rotational velocity profile for a stationary, rapidly rotating relativistic star
(in the Cowling approximation), using the 3rd order PPM scheme and a 1163 grid. The initial rotational
profile is preserved to a high degree of accuracy, even after 20 rotational periods. (Image reproduced with
permission from Stergioulas and Font 2001, copyright by APS)
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accurately preserving the rotational profile, using the 3rd order PPM reconstruction
(Colella and Woodward 1984). This method was shown to be superior to other, com-
monly used methods, in 2D evolutions of rotating relativistic stars (Font et al. 2000).

Fully coupled hydrodynamical and spacetime evolutions in 3D have been obtained
by Shibata (1999a) and by Font et al. (2002). In Shibata (1999a), the evolution of
approximate (conformally flat) initial data is presented for about two rotational periods,
and in Font et al. (2002), the simulations extend to several full rotational periods, using
numerically exact initial data and a monotonized central difference (MC) slope limiter
(van Leer 1977). The MC slope limiter is somewhat less accurate in preserving the
rotational profile of equilibrium stars than the 3rd order PPM method, but, on the other
hand, it is easier to implement in a numerical code.

Other evolutions of uniformly and differentially rotating stars in 3D, using different
gauges and coordinate systems, are presented in Duez et al. (2003), while 2D evolutions
are presented in Shibata (2003a). In Duez et al. (2005), the axisymmetric dynamical
evolution of a rapidly, uniformly rotating neutron star for 10 rotation periods shows that
the PPM reconstruction preservers the maximum value of the rest-mass density better
than either the MC or the Convex Essentially Non-oscillatory (CENO) (Liu and Osher
1998) reconstruction method. It is reported that PPM achieves similar performance
also for full 3D evolution of the same rotating neutron star models. The initial data
for these simulations are equilibrium numerical solutions of the Einstein equations
generated using the Cook et al. (1996) code. Evolutions of stable, uniformly rotating
neutron stars are also performed in Liebling et al. (2010) with initial data generated
in Bocquet et al. (1995).

5.1.2 Instability to collapse

Hydrodynamic Simulations: Shibata et al. (2000b) study the stability of supramassive
neutron stars rotating at the mass-shedding limit, for a Γ = 2 polytropic EOS. Their
3D simulations in full general relativity show that stars on the mass-shedding sequence,
with central energy density somewhat larger than that of the maximum mass model, are
dynamically unstable to collapse. Thus, the dynamical instability of rotating neutron
stars to axisymmetric perturbations is close to the corresponding secular instability.
The initial data for these simulations are approximate, conformally flat axisymmetric
solutions, but their properties are not very different from exact axisymmetric solutions
even near the mass-shedding limit (Cook et al. 1996). It should be noted that the
approximate minimal distortion (AMD) shift condition does not prove useful in the
numerical evolution, once a horizon forms. Instead, modified shift conditions are used
in Shibata et al. (2000b). In the above simulations, no massive disk around the black
hole is formed, because the equatorial radius of the initial model is inside the radius
which becomes the ISCO of the final black hole, a result also confirmed in Baiotti
et al. (2005a) via 3D hydrodynamic evolution in full general relativity, using HRSC
methods and excision technique to follow the evolution past the black hole formation.

To study the effects of the stiffness of the equation of state, Shibata (2003b) per-
forms axisymmetric hydrodynamic simulations in full GR of polytropic supramassive
neutron stars with polytropic index between 2/3 and 2. The initial data are marginally
stable and to induce gravitational collapse, Shibata initially reduced the pressure uni-

123



7 Page 92 of 169 V. Paschalidis, N. Stergioulas

formly by 0.5% subsequently solving the Hamiltonian and momentum constraints.
Independently of the polytropic index he finds the final state to be a Kerr black hole,
and the disk mass to be < 10−3 of the initial stellar mass.

Adopting the BSSN formulation, Duez et al. (2004) perform evolutions of rapidly
(differentially) rotating, hypermassive, n = 1 polytropic neutron stars with strong
shear viscosity in full general relativity both in axisymmetry and in 3D, as a means
for predicting the outcome after the loss of differential rotation. Like magnetic fields,
shear viscosity redistributes angular momentum, braking the differential rotation until
the star is eventually uniformly rotating. During this process the outer layers of the
star gain angular momentum and the star expands. The loss of the differential rotation
support may lead to collapse to a black hole. The initial data used are self-consistent
general relativistic equilibria generated with the Cook et al. (1994b, a) code. It is found
that without rapid cooling, if the hypermassive NS is sufficiently massive (38% more
massive than the n = 1 supramassive-limit mass) the star collapses and forms a black
hole after about 28 rotational periods surrounded by a massive disk. The evolution
is continued through black hole formation by using excision methods. Hypermassive
neutron stars whose mass is only 10% larger than the supramassive limit, do not
promptly collapse to a black hole due to the additional support provided by thermal
pressure which is generated through viscous heating. However, rapid cooling (e.g., due
to neutrinos) can remove the excess heat and eventually these hypermassive neutron
star models collapse to a black hole, too. In all cases where a black hole forms, a
massive disk surrounds the black hole with rest-mass 10–20% of the initial stellar rest
mass.

A different aspect of the neutron star collapse to a black hole is investigated
in Giacomazzo et al. (2011), where the focus is on cosmic censorship. They per-
formed hydrodynamic simulations in full general relativity of differentially rotating,
polytropic neutron star models generated by the RNS code (Stergioulas 1999). The
evolutions are performed using the BSSN formulation, and the Whisky MHD code
(Giacomazzo and Rezzolla 2007). They consider 5 values for the polytropic index
(0.5, 0.75, 1.0, 1.25, 1.5), and initial models that are both sub-Kerr J/M2 < 1 and
supra-Kerr J/M2 > 1 to answer the following two questions: (1) Do dynamically
unstable stellar models exist with J/M2 > 1? (2) If a stable stellar model with
J/M2 > 1 is artificially induced to collapse to a black hole, does it violate cosmic
censorship? The answer to question (1) is that finding supra-Kerr models which are
dynamically unstable to gravitational collapse will be difficult as at least a parameter
survey for different polytropes and different strengths of (one-parameter) differential
rotation did not produce such models. The answer to (2) is that a supra-Kerr model
can be induced to collapse only if a severe pressure depletion is performed. However,
even in this case, prompt formation of a rotating black hole does not take place. This
result does not exclude the possibility that a naked singularity can be produced by the
collapse of a supra-Kerr, differentially rotating star. However, the authors argue that
a generic supra-Kerr progenitor does not form a naked singularity, thereby indicating
that cosmic censorship still holds in the collapse of differentially rotating neutron stars.

Magnetohydrodynamic Simulations: Duez et al. (2006a) perform axisymmetric ideal
magnetohydrodynamic (MHD) evolutions in full GR of a n = 1 polytropic, equilib-
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rium model of hypermassive neutron star which is initially seeded with dynamically
unimportant purely poloidal magnetic fields (plasma β parameter ∼ 103), but suf-
ficiently strong so that the fastest growing mode of the MRI can be resolved. The
mass of the neutron star model is 70% larger than the corresponding TOV limit. The
spacetime evolution is performed using the BSSN formulation and a non-staggered,
flux-CT constrained transport method is employed to enforce the ∇ · B = 0 constraint
to machine precision (see Duez et al. 2005 and references therein). They find that
magnetic winding and the MRI amplify the magnetic field and magnetically brake
the differential rotation through redistribution of angular momentum. Following 74.6
rotational periods of evolution, the star eventually collapses to form a black hole sur-
rounded by a turbulent, magnetized, hot accretion torus with large scale collimated
magnetic fields (see Fig. 23). Due to the chosen gauge conditions the evolution could
not be continued sufficiently long after the black hole formation to observe collimated
outflows, but the remnant system provides a promising engine for a short-hard Gamma-
ray Burst (sGRB). In a companion paper, Shibata et al. (2006) perform axisymmetric
magnetohydrodynamic simulations in full GR of the magnetorotational, catastrophic
collapse of initially piecewise polytropic hypermassive neutron star models seeded
with weak, purely poloidal magnetic fields, and find that the remnant torus has a tem-
perature ≥ 1012 K and can hence lead to copious (νν̄) thermal radiation. In follow up
work (Duez et al. 2006b), the authors use both polytropic and piecewise polytropic
differentially rotating neutron star models and find that catastrophic collapse to a BH
and a plausible sGRB engine forms only for sufficiently massive hypermassive neu-
tron stars (as low as 14% more massive than the supramassive limit mass). The end
state of initially differentially rotating neutron stars whose mass is smaller than the
supramassive limit mass is a uniformly rotating neutron star core, surrounded by a
differentially rotating torus-like envelope. The remnant black hole-tori systems are
evolved in Stephens et al. (2008) using a combination of black hole excision and the
Cowling approximation, finding that these systems launch mildly relativistic outflows
(Lorentz factors ∼ 1.2-1.5), but that a stiff equation of state is likely to suppress these
outflows. We note that GW searches triggered by sGRBs have tremendous potential
to constrain sGRB progenitors such as collapsing hypermassive neutron stars that are
formed following binary neutron star mergers (Abbott et al. 2016c).

Magnetohydrodynamic evolutions of a magnetized and uniformly rotating, unsta-
ble neutron star in full general relativity and 3 spatial dimensions are performed in
Liebling et al. (2010). Instead of the BSSN formulation, the generalized harmonic
formulation with excision is adopted. The ∇ · B = 0 constraint is controlled by means
of a hyperbolic divergence cleaning method (see Anderson et al. 2006 and references
therein). A Γ -law (Γ = 2) equation of state is used and the initial neutron star models
are self-consistent, n = 1 polytropic, uniformly rotating, magnetized (polar magnetic
field strength 1016 G), equilibrium, self-consistent solutions of the Einstein equations
generated with the Magstar code (Bocquet et al. 1995). Without any initial pertur-
bation the unstable star collapses and forms a black hole. In agreement with earlier
studies, the calculations demonstrate no evidence of a significant remnant disk. How-
ever, evidence for critical phenomena is found when the initial star is perturbed: a
slight increase of the initial pressure leads to collapse and black hole formation, how-
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ever if the initial perturbation increases the pressure above a threshold value, the star
expands and oscillates around a new, potentially stable solution.

Gravitational radiation from rotating neutron star collapse: Baiotti et al. (2005b)
study gravitational wave emission from rotating collapse of a neutron star. They
perform 3D hydrodynamic simulations in full general relativity using the Whisky
hydrodynamics code (Baiotti et al. 2005a). Singularity excision is used to follow
the black hole formation. The equilibrium initial data correspond to a uniformly
rotating neutron star near its mass-shedding limit (of dimensionless spin param-
eter J/M2 = 0.54), and are solutions to the Einstein equations. The matter is
modeled as an n = 1 polytrope, and the collapse is triggered by a 2% pressure
depletion. The constraints are re-solved after the pressure reduction to start the evo-
lution with valid, constraint-satisfying initial data. A Γ -law equation of state is used
for the evolution to allow for shock heating. The gravitational waves are extracted on
spheres of large radius using the gauge invariant Moncrief method (Moncrief 1974).
The authors find that a characteristic amplitude of the gravitational wave burst is
hc = 5.77 × 10−22(M/M⊙)(r/10 kpc)−1 at a characteristic frequency fc = 931 Hz.
The total energy emitted in gravitational waves is found to be E/M = 1.45 × 10−6,
and they report that these waves could be detectable by ground based gravitational
wave laser interferometers, but only for nearby sources. In a follow-up paper, Baiotti
and Rezzolla (2006) use the Whisky hydrodynamics code to perform simulations
of collapsing, slowly and rapidly, uniformly rotating neutron stars. The rapidly rotat-
ing model is the same as the one in Baiotti et al. (2005b), while the slowly rotating
model has a dimensionless spin parameter (J/M2 = 0.21). For these simulations they
adopted the puncture gauge conditions (Campanelli et al. 2006; Baker et al. 2006),
instead of singularity excision, allowing them to continue the integration of the Ein-
stein equations for much longer times and even study the black hole ring-down phase.
With the complete gravitational wave train the authors report that the energy lost to
gravitational wave emission becomes E/M = 3.7 × 10−6 (E/M = 3.3 × 10−6 M)
for the rapidly (slowly) rotating progenitor. The role of the puncture gauge conditions
in collapse simulations has been investigated in Thierfelder et al. (2011), Dietrich and
Bernuzzi (2015).

To study the effects of rotation and different perturbations on the gravitational
waves arising from the collapse of uniformly rotating neutron stars, Baiotti et al.
(2007) perform hydrodynamic simulations in full GR using the Whisky code and
similar evolution techniques as in Baiotti and Rezzolla (2006). For initial data they
consider 9 equilibrium neutron star models along a sequence of dynamically unstable
stars, all modeled as n = 1 polytropes, whose dimensionless spin parameter ranges
from 0 to 0.54, and their ratio of kinetic to gravitational binding energy ranges from 0
to 7.67. For all cases the collapse is induced either by a 2% pressure depletion or the
addition of an inward, radial velocity perturbation of magnitude 0.02c, but this time the
constraints are not resolved leading to a small initial violation of the constraints. The
gravitational waves were extracted on a sphere of radius 50 M , and the results of their
study are summarized in Fig. 24, where the total energy carried off by gravitational
waves E is plotted vs J/M2 for various perturbations. It is clear that over the range of
dimensionless spin parameters, rotation influences the gravitational wave amplitude
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Fig. 24 Energy carried off by
gravitational waves during the
collapse of uniformly rotating
neutron stars for different values
of dimensionless spin parameter
J/M2 and initial perturbations.
Left panel: Filled squares and
triangles denote models with a
2% pressure depletion and
unperturbed models,
respectively. Open triangles,
refer to the same models as the
filled ones, but exclude the initial
(potentially spurious) burst in
the waveforms. Right panel:
Filled triangles denote models
with an inward radial velocity
perturbation of magnitude 0.02c,
and the open circles the same
models but considering only the
l = 2 contribution to the emitted
energy; for comparison the
pressure-depleted models are
plotted (filled squares). In both
plots the dashed lines indicate a
scaling ∼ (J/M2)4. (Image
reproduced with permission
from Baiotti et al. 2007,
copyright by IOP)

by about 2 orders of magnitude. When excluding the initial (potentially spurious) burst
of gravitational waves, E scales roughly as (J/M2)4 and the models with velocity
perturbations emit gravitational waves more strongly (total energy emitted is about 2
orders of magnitude larger than 2% pressure perturbations).

In Giacomazzo et al. (2011), in addition to addressing cosmic censorship, they
also extended these results by considering the gravitational wave emission arising
from differentially rotating, collapsing neutron stars with initially J/M2 > 0.54.
They consider the energy lost in gravitational waves as a function of J 2/M (which
is proportional to the initial quadrupole moment). They find that as J 2/M increases
past J 2/M ≈ 1, E decreases (see Fig. 25) and suggest the following fitting formula
for the energy carried off by gravitational waves

E

M
= (J 2/M)n1

a1(J 2/M)n2 + a2
, (138)
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Fig. 25 Energy carried off by
gravitational waves, normalized
to the total initial mass M , as a
function of J 2/M for
collapsing, rapidly rotating
neutron stars initially modeled
as n = 1 polytropes. Triangles
represent uniformly rotating
models, whereas the squares
refer to the differentially rotating
models discussed here. The solid
line is the best fit (see Eq. (138)).
(Image reproduced with
permission from Giacomazzo
et al. 2011, copyright by APS)

where n1 = 1.43 ± 0.74, n2 = 2.63 ± 0.53, a1 = (5.17 ± 4.37) × 105, a2 =
(1.11±0.57)×105. The authors also analyze the signal-to-noise ratio for these sources
assuming a fiducial distance of 10 kpc, finding that ratios of order 50 are possible
for advanced LIGO and VIRGO, around 1700 for the Einstein telescope, thus these
objects could be detectable by third-generation, ground-based laser interferometers at
distances of ∼ 1 Mpc.

Collapse of the NS can potentially occur not only to a black hole but also to a
hybrid quark star, i.e., a compact star with a deconfined quark matter core and outer
layers made of neutrons. The collapse can proceed through a first-order phase transi-
tion in the core. Following up on the Lin et al. (2006) study, this scenario (known as
phase-transition-induced collapse) is studied in Abdikamalov et al. (2009) via axisym-
metric, general relativistic hydrodynamic simulations adopting the conformal flatness
approximation using the CoCoNut code (Dimmelmeier et al. 2005). The initial neu-
tron star models are both nonrotating and rotating, Γ = 2 polytropes. The evolution
adopts an approximate, phenomenological hybrid equation of state: a Γ -law (Γ = 2)
is adopted for hadronic matter—“hm” for short—(rest-mass density (ρ0) such that
ρ0 < ρhm = 6.97 × 1014 g cm−3), the EOS of the MIT bag model for massless and
non-interacting quarks at zero temperature is adopted for the quark matter—“qm” for
short—(ρ0 > ρqm = 9ρnuc, where ρnuc = 2.7×1014 g cm−3 is the nuclear saturation
density), and a linear combination of the two for densities ρhm ≤ ρ0 ≤ ρqm. The
gravitational waves emitted by the collapsing NS are computed using the quadrupole
formula integrated in time as in Dimmelmeier et al. (2002a). Abdikamalov et al.
find that the emitted gravitational-wave spectrum is dominated by the fundamental
quasi-radial and quadrupolar pulsation modes, but that the strain amplitudes are much
smaller than suggested previously by Newtonian simulations (Lin et al. 2006). There-
fore, it will be challenging to detect gravitational waves from phase-transition-induced
collapse.

The gravitational waveforms from collapse have also been studied through a
new code adopting multi-patch methods in Reisswig et al. (2013a), by Dietrich and
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Bernuzzi (2015), and through simulations of the accretion-induced collapse of neutron
stars by Giacomazzo and Perna (2012).

5.1.3 Dynamical bar-mode instability

Shibata et al. (2000a) study the dynamical bar-mode instability in differentially rotating
neutron stars, in fully relativistic 3D simulations. They find that stars become unstable
when rotating faster than a critical value of β ≡ T/|W | ∼ 0.24 − 0.25. This is only
somewhat smaller than the Newtonian value of β ∼ 0.27. Models with rotation only
somewhat above critical become differentially rotating ellipsoids, while models with
β much larger than critical also form spiral arms, leading to mass ejection, see for
example Fig. 26. In any case, the differentially rotating ellipsoids formed during the
bar-mode instability have β > 0.2, indicating that they will be secularly unstable to
bar-mode formation (driven by gravitational radiation or viscosity). The decrease of
the critical value of β for dynamical bar formation due to relativistic effects has been
confirmed by post-Newtonian simulations (Saijo et al. 2001).

Shibata and Sekiguchi (2005b) study nonaxisymmetric dynamical instabilities in
the context of (differentially) rotating stellar core collapse. The initial data corre-
sponding to rotating, Γ = 4/3 polytropic models with maximum rest-mass density
1010 g/cm3, various degrees of differential rotation and values for the rotational param-
eter β = T/|W | ranging from 0.00232 to 0.0263. The adopted differential rotation
law is given by

ut uφ = ̟ 2(Ωa − Ω), (139)

where Ω = uφ/ut , Ωa is the angular velocity at the location of the rotation axis, and
̟d is a constant.

For the evolution a hybrid Γ -law equation of state is adopted that has a cold part
and a thermal part. The cold part has polytropic exponent Γ1 for densities less than the
nuclear density and Γ2 otherwise. Most of the models in this study are evolved using

Fig. 26 Density contours and
velocity flow for a neutron star
model that has developed spiral
arms, due to the dynamical
bar-mode instability. The
computation was done in full
General Relativity. (Image
reproduced with permission
from Shibata et al. 2000a,
copyright by AAS)
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Γ1 = 4/3 and Γ2 = 2, but other values are considered, too. The thermal part Γth = Γ1.
The early stage of the collapse is followed by an axisymmetric hydrodynamic code
in full GR and when the core becomes sufficiently compact—the minimum value
of the lapse function becomes 0.8–0.85—they add a bar-mode density perturbation
and after resolving the Hamiltonian and momentum constraints assuming conformal
flatness and maximal slicing the evolution is followed using a 3D code. They find that
a dynamical bar more instability can occur in newly formed neutron stars following
the collapse of a stellar core, and that β can be amplified even beyond the value
critical value ∼ 0.27 when: (i) the initial stellar model is highly differentially rotating
̟d/Re � 0.1, where Re is the equatorial radius of the star; (ii) the initial value of
the rotational parameter is in the range 0.01 � βinit � 0.02; (iii) the initial star is
massive enough to become sufficiently compact so that it is rapidly spinning, but less
massive than the critical mass value that leads to catastrophic collapse to a black hole.
They find that the maximum β value reached by a proto-neutron star is 0.36 for a stiff
equation of state with Γ2 = 2.75.

Baiotti et al. (2007) use the Whisky code to perform 3D hydrodynamic studies
of the dynamical bar mode instability in full GR. The initial data used correspond
to equilibrium, differentially rotating, polytropic neutron star models with Γ = 2,
K = 100 and have a constant rest mass of M0 ≈ 1.51 M⊙ and various initial β

parameters. In contrast to earlier studies that added an m = 2 perturbation to trigger
the bar mode instability, in this work the instability is triggered primarily by truncation
error and additional simulations are performed to investigate the effects of initial m = 1
and m = 2 perturbations. The evolutions adopt of Γ -law equation of state. They find
that: (i) An initial m = 1 or m = 2 mode perturbation affects the lifetime of the bar,
but not the growth timescale of the instability, unless the initial β is near the threshold
value for instability; (ii) For models with β ∼ βc imposing π symmetry can radically
change the dynamics and extend the lifetime of the bar. However, this does not hold
for models with initial β ≫ βc, in which case even symmetries cannot produce long-
lived bar; (iii) The bar lifetime depends strongly on the ratio β/βc and is generally of
the order of the dynamical timescale ranging from ∼ 6 to ∼ 24 ms (for comparison
the initial equatorial period considered range from 2 to 3.9 ms); (iv) Nonlinear mode-
coupling takes place during the instability development, i.e, an m = 2 mode also
excites an m = 1 mode and vice versa. This mixing can severely limit the bar lifetime
and even suppress the bar.

Manca et al. (2007) use the same methods as in Baiotti et al. (2007) to analyze the
effects of initial stellar compactness on βc for the onset of the dynamical bar-mode
instability through hydrodynamic simulations in full GR. They evolve four sequences
of models of constant baryonic mass (1.0 M⊙, 1.51 M⊙, 2.0 M⊙, and 2.5 M⊙,) for
a total of 59, Γ = 2-polytropic stellar models. Using an extrapolation technique
for these models they estimate βc for each constant-mass sequence, finding that the
higher the initial compactness the smaller βc becomes. Their results are summarized
in Fig. 27. In addition to the dependence of βc on the compactness, it is also found that
for stars with sufficiently large mass (rest-mass greater than 2.0 M⊙) and compactness
(greater than ∼ 0.1), the fastest growing mode corresponds to m = 3, and that for all
59 models the nonaxisymmetric instability occurs on a dynamical timescale with the
m = 1 mode being dominant toward the final stages of the instability.
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Fig. 27 The open circles
represent the extrapolated βc as
a function of the stellar rest-mass
(for the masses considered the
compactness also increases
along the positive horizontal
axis). The filled circle represents
the Newtonian limit for βc . The
plot corresponds to Γ = 2
polytropes. (Image reproduced
with permission from Manca
et al. 2007, copyright by IOP)

Recently, De Pietri et al. (2014) and Löffler et al. (2015) use the Einstein

Toolkit (Löffler et al. 2012) to perform a study very similar to the one in Manca
et al. (2007) but changing the polytropic exponent to Γ = 2.25, 2.5, 2.75, 3.0 and
considering five constant-mass sequences of differentially rotating equilibrium neu-
tron stars with masses 0.5 M⊙, 1.0 M⊙, 1.5 M⊙, 2.0 M⊙, and 2.5 M⊙. Using a similar
extrapolation method as in Manca et al. (2007) they find that the threshold value for
β is reduced by ∼ 5% when compared to the Γ = 2 case, concluding that a stiffer,
realistic equation of state is expected to have smaller βc for the onset of the dynamical
bar-mode instability.

Franci et al. (2013) adopt the Whisky code to perform magnetohydrodynamic
simulations in full GR in order to study the effects of magnetic fields on the develop-
ment of the bar-mode instability. The initial Γ = 2 polytropic, differentially rotating,
equilibrium stars are seeded with an initially purely poloidal magnetic field confined in
the neutron star interior. The magnitude of the magnetic field at the center of the star is
chosen in the range 1014–1016 G. Their magnetohydrodynamic calculations show that
strong initial magnetic fields, B � 1016 G, can suppress the instability completely,
while smaller magnetic fields have negligible impact on the instability.

We note here that some preliminary studies in full GR of the low-T/|W |, bar-mode
(m = 2) instability have been carried out in Cerdá-Durán et al. (2007), Corvino et al.
(2010) and De Pietri et al. (2014) via hydrodynamic simulations and in Muhlberger
et al. (2014) via magnetohydrodynamic simulations, where it was shown that magnetic
fields can suppress the development of the instability, but only for a narrow range of
the magnetic field strength.

5.2 Pulsations of rotating stars

Pulsations of rotating relativistic stars are traditionally studied (when possible) as a
time independent, linear eigenvalue problem, but recent advances in numerical relativ-
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Fig. 28 The first fully relativistic, quasi-radial pulsation frequencies for a sequence of rapidly rotating
N = 1 polytropes, up to the mass-shedding limit (with fixed central density along the sequence). The
frequencies of the fundamental mode F (filled circles) and of the first overtone H1 (filled squares) are
obtained through coupled hydrodynamical and spacetime evolutions (blue solid lines). The corresponding
frequencies obtained from computations in the relativistic Cowling approximation (fixed spacetime) (Font
et al. 2001) are shown as black dashed lines. (Image reproduced with permission from Font et al. 2002,
copyright by APS)

ity also allow the study of such pulsations via numerical time evolutions. Quasi-radial
mode frequencies of rapidly rotating stars in full general relativity have been obtained
in Font et al. (2002), something that has not been achieved yet with linear perturba-
tion theory. The fundamental quasi-radial mode in full general relativity has a similar
rotational dependence as in the relativistic Cowling approximation, and an empiri-
cal relation between the full GR computation and the Cowling approximation can
be constructed (Fig. 28). For higher order modes, apparent intersections of mode
sequences near the mass-shedding limit do not allow for such empirical relations to
be constructed.

For a comparison study of linear and non-linear evolution methods, in the case of
nonrotating polytropic models, as well as for a comparison of different gravitational
wave extraction techniques see, e.g., Baiotti et al. (2009)

In the relativistic Cowling approximation, 2D time evolutions have yielded fre-
quencies for the l = 0 to l = 3 axisymmetric modes of rapidly rotating relativistic
polytropes with N = 1.0 (Font et al. 2001). The higher order overtones of these
modes show characteristic apparent crossings near mass-shedding (as was observed
for the quasi-radial modes in Yoshida and Eriguchi 2001). For a recent code aimed at
computing oscillation frequencies adopting the conformal flatness approximation see
Yoshida (2012), who finds good agreement between f and p-mode frequencies when
compared to the full theory in the case of slowly rotating stars.

Numerical relativity has also enabled the first study of nonlinear r -modes in rapidly
rotating relativistic stars (in the Cowling approximation) by Stergioulas and Font
(2001). For several dozen dynamical timescales, the study shows that nonlinear r -
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modes with amplitudes of order unity can exist in a star rotating near mass-shedding.
However, on longer timescales, nonlinear effects may limit the r -mode amplitude to
smaller values (see Sect. 4.5.3).

In another study, Siebel et al. (2002) perform spherically symmetric simulations in
full GR of the Einstein–Klein–Gordon-perfect fluid system to study the interaction of
a scalar field with a spherical neutron star using a characteristic approach to solve the
dynamical equations. The initial data correspond to a TOV, Γ = 2 polytropic neutron
star for the fluid and metric variables, and a Gaussian pulse is chosen for the initial
scalar field. For a small amplitude scalar field pulse, radial oscillations are excited on
the NS, and a Fourier analysis shows that the oscillation frequencies corresponding
to the fundamental, first and second overtone modes computed through the full non-
linear evolution are very close to those of a linearized analysis, but generally smaller
by � 1–2%.

The gravitational waveforms from oscillating spherical and rigidly rotating (near the
mass shedding limit), Γ = 2 polytropic neutron stars have been computed by Shibata
and Sekiguchi (2004). The equilibrium polytropic stars were perturbed using a velocity
perturbation with magnitude 0.1c at the neutron star surface and evolved using a fully
general relativistic hydrodynamics code in axisymmetry. Gauge invariant methods
and a quadrupole formula were used to compute the gravitational wave signature and
it is found that the wave phase and modulation of the amplitude can be computed
accurately using a quadrupole formula but not the amplitude. It is also found that
for both spherical and rotating stars the gravitational wave frequency is associated
with the fundamental l = 2 mode, and that for rotating stars another frequency in the
gravitational wave signal is detected, which is likely associated with the quasiradial
oscillation p1 mode.

Stergioulas et al. (2004) perform 2D hydrodynamic simulations of differentially
rotating neutron stars to study non-linear pulsations in the Cowling approximation.
It is found that for Γ = 2 polytropic stars near the mass shedding limit, shocks
forming near the stellar surface damp the oscillations and this mechanism may set a
small saturation amplitude for modes that are unstable to the emission of gravitational
waves.

Zink et al. (2010) study the location of the neutral-points for the l = |m| = 2 and
l = |m| = 3 f -mode oscillations of uniformly rotating polytropes using 2D, hydro-
dynamic simulations both in the Cowling approximation and in full general relativity.
These frequencies are important because rapidly rotating neutron stars can become
unstable to the gravitational-wave-driven CFS instability. A polytropic equation of
state is adopted both for the construction of initial data (generated with the RNS code)
and for the evolution. To assess the effects of the stiffness of the equation of state,
two sequences of models are considered: one with Γ = 2 and one with Γ = 2.5.
The rotational parameter β ranges from 0 to 0.08 for the Γ = 2 sequence, and from
0 to 0.12 for the Γ = 2.5 sequence. All models are chosen to have an initial central
rest-mass density close to that of the maximum mass TOV star with the same equation
of state, i.e., ρc = 2.6823 × 10−3(100/K ) (ρc = 5.0 × 10−3(1000/K )3/2) for Γ = 2
(Γ = 2.5). To excite the modes the authors add a small-amplitude, l = |m| density
perturbation and evolve the initial data. The authors find that the Cowling approxi-
mation in some cases underestimates the lower limit of the f -mode CFS instability
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Fig. 29 Frequency band of the CFS instability based on m = 2 and m = 3 f -mode oscillations for two
sequences of rigidly rotating polytropic neutron stars with Γ = 2 and Γ = 2.5. Each band is limited on the
left by the neutral point and on the right by the frequency of the counter-rotating mode in the most rapidly
rotating model. The sensitivity noise curves of aLIGO and the future Einstein Telescope are also plotted.
(Image reproduced with permission from Zink et al. 2010, copyright by APS)

window by 10% and the upper limit by 60%. The authors conclude that general relativ-
ity enhances the detectability of a CFS-unstable neutron star substantially and derive
limits on the observable gravitational-wave frequency band available to the instability,
finding. These results are summarized in Fig. 29.

Kastaun et al. (2010) perform axisymmetric and 3D general relativistic hydro-
dynamic simulation in the Cowling approximation using the PIZZA code (Kastaun
2006) to qualitatively understand what mechanisms set the saturation amplitude of
the f -mode instability. Using the RNS code they build initial data corresponding to
uniformly rotating neutron star models with various masses and degree of rotation
and polytropic indices n = 2, 1, 0.6849. For one of the models studied (MA65) the
l = m = 2 f -mode is excited by the CFS instability in full GR, and hence is a can-
didate for detectable gravitational waves. To excite high amplitude oscillations, they
linearly scale the eigenfunctions of specific energy and 3-velocity, and add them to
the background solution. The primary focus is on the l = |m| = 2 and l = 2, m = 0
modes. It is found that the saturation amplitude of high-amplitude axisymmetric f -
mode oscillations is rapidly determined by shock formation near the surface of the
star. It is also found that stiffer EOSs allow higher amplitudes before shocks begin
to dissipate the f -modes, and rotation affects the damping of axisymmetric modes
only weakly, until the Kepler limit is reached, at which point damping occurs via mass
shedding. For nonaxisymmetric f -mode oscillations, the saturation amplitude is not
determined by shocks, but is primarily determined by damping due to wave breaking
and non-linear mode coupling.

In follow up work, Kastaun (2011) performs relativistic hydrodynamical simula-
tions in the Cowling approximation to study non-linear, r -mode oscillations using the
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PIZZA code. The initial data correspond to two rigidly rotating, Γ = 2 polytropic
models of neutron stars with rest-masses 1.6194 M⊙ and 1.7555 M⊙, and ratio of
polar to equatorial radius 0.85 and 0.7, respectively. The initial data are seeded with
an l = m = 2 perturbation based on the eigenvectors from linearized studies of r -
mode oscillations, and then scaled to larger amplitudes such that the energy in the
r -mode divided by the stellar binding energy is of order 10−3. The initial data are then
evolved adopting a polytropic equation of state for the hydrodynamics. It is found that
the frequencies of the r -modes in the inertial frame agree to better than 0.1% with
those found by linearized studies in Krüger et al. (2010). As found in earlier studies,
Kastaun finds that differential rotation develops during the evolution of the r -mode
with high initial amplitude. Related with the onset of differential rotation is also the
decay of the r -modes, which is why it is hypothesized that the saturation of the dif-
ferential rotation should occur when the r -mode decay due to differential rotation is
balanced by the differential rotation due to the presence of the r -mode. Kastaun also
argues that for the models under study the r -mode decay is not due to shock formation
near the stellar surface. Finally, it is pointed out that while mode-mode coupling is
probably not the main cause of the r -mode decay for these models, as found for other
models in Gressman et al. (2002), Lin and Suen (2006) by Newtonian simulations,
mode-mode coupling cannot be ruled out as a possible cause for the r -mode decay.

Note that the perturbative work by Chugunov (2015) finds that, for the stable r -
mode, differential rotation is pure gauge, reflecting only the differential rotation in
the initial conditions. For the unstable r -mode, Friedman et al. (2016) find that the
2nd-order differential rotation is unique.

It should be noted that the work of Kastaun should be considered preliminary,
because the presence of magnetic fields could brake the differential rotation (Rezzolla
et al. 2000, 2001a, b) and also give rise to a turbulent environment. For example,
for large enough amplitudes Rezzolla et al. (2000) argue that the magnetic fields
could grow large enough to completely suppress the r -mode instability. Hence, a
magnetohydronamic study is required to fully understand this feedback mechanism.
In a recent work, Friedman et al. (2017) explore how much differential rotation, that
is induced by the r -mode instability can boost the magnetic fields. The authors argue
that magnetic-field amplification is restricted in strength by the saturation amplitude
of the unstable mode, and if the saturation amplitude is weak enough � 10−4, then the
magnetic field cannot grow to levels that suppress or modify that r -mode in neutron
stars with “normal” and type II superconducting interiors.

5.3 Rotating core collapse

5.3.1 Collapse to a rotating black hole

Black hole formation in relativistic core collapse was first studied in axisymmetry by
Nakamura (1981, 1983), using the (2 + 1) + 1 formalism (Maeda et al. 1980). The
outcome of the simulation depends on the rotational parameter

q ≡ J/M2. (140)

123



Rotating stars in relativity Page 105 of 169 7

A rotating black hole is formed only if q < 1, indicating that cosmic censorship
holds. Stark and Piran (1985), Piran and Stark (1986) use the 3 + 1 formalism and
the radial gauge of Bardeen–Piran (Bardeen and Piran 1983) to study black hole
formation and gravitational wave emission in axisymmetry. In this gauge, two metric
functions used in determining gθθ and gφφ can be chosen such that at large radii they
asymptotically approach h+ and h× (the even and odd transverse traceless amplitudes
of the gravitational waves, with 1/r fall-off at large radii; note that h+ defined in Stark
and Piran 1985 has the opposite sign as that commonly used, e.g., in Thorne 1983). In
this way, the gravitational waveform is obtained at large radii directly in the numerical
evolution. It is also easy to compute the gravitational energy emitted, as a simple
integral over a sphere far from the source: ΔE ∼ r2

∫

dt (h2
+,r + h2

×,r ). Using polar
slicing, black hole formation appears as a region of exponentially small lapse, when
q < O(1). The initial data consists of a nonrotating, pressure deficient TOV solution,
to which angular momentum is added by hand. The obtained waveform is nearly
independent of the details of the collapse: It consists of a broad initial peak (since the
star adjusts its initial spherical shape to a flattened shape, more consistent with the
prescribed angular momentum), the main emission (during the formation of the black
hole), and an oscillatory tail, corresponding to oscillations of the formed black hole
spacetime. The energy of the emitted gravitational waves during the axisymmetric core
collapse is found not to exceed 7 × 10−4 M⊙c2 (to which the broad initial peak has a
negligible contribution). The emitted energy scales as q4, while the energy in the even
mode exceeds that in the odd mode by at least an order of magnitude. The qualitative
morphology of the gravitational wave signal from collapse has been studied through
perturbative approaches by Seidel and Moore (1987), Seidel et al. (1988), and Seidel
(1990).

Shibata (2000) carried out axisymmetric simulations of rotating stellar collapse
in full general relativity, using a Cartesian grid, in which axisymmetry is imposed
by suitable boundary conditions. The details of the formalism (numerical evolution
scheme and gauge) are given in Shibata (1999b). It is found that rapid rotation can
prevent prompt black hole formation. When q = O(1), a prompt collapse to a black
hole is prevented even for a rest mass that is 70–80% larger than the maximum allowed
mass of spherical stars, and this depends weakly on the rotational profile of the initial
configuration. The final configuration is supported against collapse by the induced
differential rotation. In these axisymmetric simulations, shock formation for q < 0.5
does not result in a significant heating of the core; shocks are formed at a spheroidal
shell around the high density core. In contrast, when the initial configuration is rapidly
rotating (q = O(1)), shocks are formed in a highly nonspherical manner near high
density regions, and the resultant shock heating contributes in preventing prompt
collapse to a black hole. A qualitative analysis in Shibata (2000) suggests that a disk
can form around a black hole during core collapse, provided the progenitor is nearly
rigidly rotating and q = O(1) for a stiff progenitor EOS. On the other hand, q ≪ 1
still allows for a disk formation if the progenitor EOS is soft. At present, it is not
clear how much the above conclusions depend on the restriction to axisymmetry or on
other assumptions—3-dimensional simulations of the core collapse of such initially
axisymmetric configurations have still to be performed.
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Shibata and Shapiro perform axisymmetric, hydrodynamic simulations in full gen-
eral relativity to follow the collapse of a rigidly rotating, supermassive star (SMS) to a
supermassive black hole (SMBH) in Shibata and Shapiro (2002). The initial, equilib-
rium Γ = 4/3 polytropic, SMS of arbitrary mass M rotates at the mass-shedding limit,
is marginally unstable to collapse, and has T/|W | ≃ 0.009 and J/M2 ≃ 0.97. The
collapse is induced via a 1% pressure depletion and proceeds homologously early on,
until eventually an apparent horizon forms at the center. Shibata and Shapiro estimate
that the final black hole will contain ∼ 90% of the total mass of the system and have
a spin parameter J/M2 ∼ 0.75, with the remaining gas forming a disk around the
black hole. In follow up work, Liu et al. (2007) study the magnetorotational collapse
of supermassive stars in axisymmetry and find that following black hole formation
the magnetic-field lines partially collimate along the hole’s spin axis speculating that
these systems may be able to launch jets.

In a more recent studies in full general relativity, Shibata et al. (2016) and Sun
et al. (2017) study the gravitational wave emission from such collapsing, rotating
supermassive stars. Both studies find that for stellar masses M ∼ 106 M⊙, the grav-
itational waves peak in the LISA band and could be detectable out to cosmological
redshift z ∼ 3. Sun, Paschalidis, Ruiz and Shapiro also point out that for super-
massive stars with mass M ∼ 104, the gravitational waves from collapse could be
detectable by DECIGO/BBO out to redshift z ∼ 11. This scenario is very interest-
ing because future space-based gravitational wave observatories have the potential to
probe whether supermassive stars exist and can form seed black holes that later on
could grow through accretion to form the supermassive black holes we observe at the
centers of quasars as early as z = 7.

Sun et al. (2017) also investigate the effects of magnetic fields and find that shortly
after black hole formation the black hole - accretion disk engine that forms can launch
jets (see Fig. 30) with characteristic jet luminosity L jet ∼ 1051 erg s−1 which could be
observable as a very long gamma-ray burst by current satellites such as Swift. Thus,
collapsing supermassive stars could be multimessenger sources.

In a recent work, Uchida et al. (2017) perform axisymmetric calculations in full
general relativity to investigate the effects of nuclear burning in the collapse of super-
massive stars, finding that the collapse proceeds nearly unaffected. In addition, they
find that if a supermassive star core is sufficiently rapidly rotating about 1% of the
initial rest-mass becomes unbound with characteristic velocity and kinetic energy 0.2c

and 1054−56 erg.
A 3D dimensional hydrodynamics code capable of following the collapse of a

massive relativistic star in full general relativity is presented in Font et al. (2002). A
different numerical code for axisymmetric gravitational collapse in the (2 + 1) + 1
formalism is described in Choptuik et al. (2003).

Zink et al. (2006) perform hydrodynamic simulations of supermassive stars in full
general relativity to study for the first time the off-center formation of a black hole
through fragmentation of a general relativistic polytrope. They adopt the Cactus
code and the Whisky module for the spacetime and hydrodynamics, in conjunction
with a Γ law equation of state. The initial data correspond to n = 3 equilibrium
polytrope that is differentially rotating with rotation law (45) ut uφ = A2(Ωc − Ω),
where A is a constant that regulates the degree of differential rotation, Ωc is the angular
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Fig. 30 Cut of 3D rest-mass density profile (colored volume rendering) of a magnetized rotating, collapsing
supermassive star with magnetic-field lines indicated by white curves. The top panel corresponds to the
time near BH formation, the middle panel is during the development of the incipient jet, and the bottom
panel shows the fully developed incipient jet. (Image reproduced with permission from Sun et al. 2017,
copyright by APS)

velocity at the center of the star, and Ω the angular velocity at a given (cylindrical)
radius. The particular initial model they consider is generated using the RNS code, and
has A = re/3, where re is the equatorial coordinate radius of the star, a central density
ρc = 3.38 × 10−6 (in geometrized, polytropic units where G = 1 = c = K and K

is the polytropic constant), the ratio of the polar rp to equatorial radius is rp/r3 =
0.24, and T/|W | = 0.227. After the initial data are generated small nonaxisymmetric
density perturbations are added of the form
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ρ → ρ

(

1 + 1

λre

4
∑

m=1

λm Br sin(mφ)

)

, (141)

where λm = 0, 1 and λ =
∑

m λm , and the collapse is induced by a 0.1% pressure
depletion. After the initial perturbation the constraints are not solved again because the
amplitude B is chosen sufficiently small that the truncation-error induced constraint
violation dominates. They find that the star is unstable to m = 1 and m = 2, and
these modes grow from the linear to the nonlinear regime with time, and eventually,
depending on the initial perturbation, lead to the formation of one or more off-center
fragments. Using an adaptive-mesh refinement type of method, they follow the behav-
ior in the case where one off-center fragment forms, and find that it collapses to form
a black hole. Based on these results the authors argue that the fragmentation could
turn a massive star into a binary black hole with a massive accretion disk around it.
In a follow-up paper, Zink et al. (2007) use the same codes to study many more cases
including different values for compactness, equation of state stiffness, and different
axes ratios (corresponding to even low T/|W | models). It is found that: (1) the growth
time of the m = 1 and m = 2 modes increases with lower rp/re, (2) the m = 1
and m = 2 modes are stabilized with increasing Γ —stiffness of the equation of
state—and T/|W | decreasing from 0.227 to 0.159, (3) the instability growth time is
approximately similar for stars of different compactness (with T/|W | approximately
constant), but the outcome of the fragmentation can differ drastically—the fragments
of more compact stars M/R � 0.044 seem to collapse and form black holes, but
stars with low compactness M/R � 0.022 seem to prevent black hole formation.
The results summarizing whether the instability develops and whether the fragments
collapse to a black hole or not are presented in Fig. 31. Zink et al. also conclude that
along a sequence of increasing T/|W | and restricted to a few dynamical timescales,
the m = 1 perturbation is dominant before higher-order modes become unstable,
suggesting the (off-center) formation of a single black hole with a massive accretion
disk. However, the authors note that these results do not exclude the possibility that
on a longer timescale a higher-order mode will be activated before the m = 1 mode
becomes unstable so that multiple black holes could form. The authors also find that
in the cases where two fragments form and collapse, a runaway instability takes over,
leading eventually to a central collapse.

Montero et al. (2012) perform axisymmetric, HRSC hydrodynamic simulations
in full general relativity (adopting the BSSN formulation) to study the collapse and
explosion of rotating supermassive stars while accounting for thermonuclear effects.
Their simulations adopt an equation of state that accounts for the gas pressure, and the
pressure associated with radiation and electron-positron pairs. In addition, they include
the effects of thermonuclear energy released by hydrogen and helium burning and
neutrino cooling through thermal processes. The initial models are n = 3 polytropic,
rigidly rotating equilibrium configurations constructed with theLORENE library. They
find that nonrotating supermassive stars with a mass of ∼ 5 × 105 M⊙ and an initial
metallicity less than ZC N O ∼ 0.007 collapse to a black hole, while the threshold
metallicity is reduced to ZC N O ∼ 0.001 for uniformly rotating supermassive stars.
The critical initial metallicity is increased for 106 M⊙ stars. It is noted that, for some
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Fig. 31 Top panel: Stability of quasi-toroidal models with ρc = 10−7 on the A–r p/re plane where A

is a constant controlling the degree of differential rotation. (We point out that, here, A does not coincide
with A in Eq. (45), but it equals the A appearing in that equation divided by the equatorial coordinate
radius re). A Latin number denotes the highest azimuthal order more that becomes unstable, i.e., I implies
that only m = 1 is unstable, II implies m = 1, 2 are unstable, and III implies m = 1, 2, 3 are unstable.
Models denoted by (I) are either secularly unstable—growth times τ > tdyn (where tdyn is the dynamical
timescale), or stable (see Zink et al. 2007). Models denoted by A exhibit an axisymmetric instability. The
line in the lower left indicates the location of the sequence J/M2 = 1, and the three lines inside the quasi-
toroidal region indicate the locations of sequences with T/|W | = 0.14 (right), T/|W | = 0.18 (middle) and
T/|W | = 0.26 (left). Lower panel: Remnants of the models from left panel, which are unstable with respect
to nonaxisymmetric modes. The nonlinear behaviour has been analyzed by observing the evolution of the
function minimum value of the lapse αmin Models which show a minimum in this function are marked by
B for bounce, while models exhibiting an exponential collapse of the lapse are marked by C for collapse.
(Image reproduced with permission from Zink et al. 2007, copyright by APS)

models, collapse to a black hole does not occur unless the effects of e± pairs are
accounted for, which render the star unstable to gravitational collapse by reducing the
effective adiabatic index. For the stars that collapse the evolution is continued past
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black hole formation, and the computed peak neutrino and antineutrino luminosities
for all flavors is L ∼ 1055 erg/s.

Reisswig et al. (2013b) inspired by the results of Montero et al. (2012) revisit the
fragmentation instabilities in differentially rotating supermassive stars studied in Zink
et al. (2006, 2007) who, in turn, extended the configurations studied by Saijo (2004).
However, instead of a Γ = 4/3, they adopt a slightly softer Γ = 1.33 equation of state
and consider nonaxisymmetric perturbations of the form ρ → ρ(1 + Amr sin(mφ)),
on initially equilibrium n = 3 polytropes with rotational parameter J/M2 = 1.0643
which are generated with the RNS code. The hydrodynamic evolutions in full general
relativity are performed using the Einstein Toolkit. For the case where only
an m = 2 perturbation is considered, the authors find that the initial star gives rise
to two fragments which subsequently collapse and form a bound supermassive black
hole binary, which in turn inspirals and merges in the gaseous environment of the star
(see Fig. 32). The authors compute the associated gravitational wave signature and
conclude that if m = 2, fragmentation and formation of a supermassive black hole
binary occurs in supermassive stellar collapse, the coalescence of the binary will result
in a unique gravitational wave signal that can be detected at redshifts z � 10 with
DECIGO and the Big Bang Observer, if the supermassive star’s mass is in the range
104–106 M⊙.

Ott et al. (2011) use the Einstein Toolkit (Löffler et al. 2012) to perform
3D hydrodynamic simulations of rotating core collapse in full general relativity to
study gravitational wave emission from collapsar model for long gamma-ray bursts.
The initial data correspond to the inner ∼ 5700 km profile of the realistic 75-M⊙,
10−4-solar metallicity model u75 of Woosley et al. (2002), which corresponds to
the inner ∼ 4.5 M⊙ of the star and imposing different rotational profiles. A hybrid,
piecewise polytropic, Γ -law equation of state is adopted for the evolution (as in e.g.,
Shibata 2003a), such that Γ1 = 1.31 at subnuclear densities, and Γ2 = 2.4 at supernu-
clear densities, and Γth = 4/3. Octant symmetry is imposed throughout the evolution
and crude neutrino cooling is accounted for. Gravitational waves are extracted using
Cauchy-characteristic matching as described in Reisswig et al. (2011). The initial data
are evolved through collapse, core bounce, proto-neutron star (PNS) formation through
collapse of the PNS to a BH. Gravitational waves are computed for all rotational pro-
files and it is found that the peak amplitude at bounce is approximately proportional to
the model spin, and following bounce the signal is dominated by quadrupole motion
due to turbulence behind the post-bounce shock. Following PNS collapse, a second
burst in the waveform appears which corresponds to the BH formation, which sub-
sequently rings down. As expected, characteristic gravitational wave frequencies are
1–3 kHz, and it is estimated that for such an event taking place 10 kpc away the
signal-to-noise ratio for aLIGO will be ∼ 50.

The collapsar scenario is also studied in DeBrye et al. (2013) through hydrodynamic
simulations in general relativity adopting the conformal flatness approximation and
performed using the CoCoNuT code. More detailed microphysics and a neutrino
leakage scheme is implemented to account for deleptonization and neutrino cooling,
and the initial stellar mass, metallicity, and rotational profile of the stellar progenitor
are varied to determine their influence on the outcome. It is shown that shown that
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Fig. 32 Equatorial density contours at select times of a fragmenting, collapsing supermassive star, forming
a supermassive black hole binary. Dark colors indicate high density, light colors indicate low density.
The logarithmic density colormap ranges from 10−7 M−2 (white) to 10−3 M−2 (black). In the bottom
two panels, the colormap is rescaled to the range [10−8 M−2, 10−4 M−2]. The upper two and the bottom
right panels show physical dimensions of ± 40M , while the remaining panels show physical dimensions
of ± 20M . The white disks roughly indicate the black hole apparent horizons. (Image reproduced with
permission from Reisswig et al. 2013b, copyright by APS)

sufficiently fast rotating cores collapse due to the fall-back of matter surrounding the
compact remnant and due to neutrino cooling, eventually forming spinning BHs.

5.4 Formation of rotating neutron stars

Rotating neutron stars can be formed following the collapse of a massive star to
a neutron star. Moreover, rapidly differentially rotating neutron stars are a natural
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outcome of the merger of a binary neutron star system which is not sufficiently massive
for the merger remnant to promptly collapse to a black hole.

5.4.1 Stellar collapse to a rotating neutron star

First attempts to study the formation of rotating neutron stars in axisymmetric col-
lapse were initiated by Evans (1984, 1986). Dimmelmeier et al. (2001), Dimmelmeier
(2001) have performed general relativistic simulations of neutron star formation in
rotating collapse. In the numerical scheme, HRSC methods are employed for the
hydrodynamical evolution, while for the spacetime evolution the conformal flatness

approximation (Wilson and Mathews 1995) is used. Surprisingly, the gravitational
waves obtained during the neutron star formation in rotating core collapse are weaker
in general relativity than in Newtonian simulations. The reason for this result is that
relativistic rotating cores bounce at larger central densities than in the Newtonian limit
(for the same initial conditions). The gravitational waves are computed from the time
derivatives of the quadrupole moment, which involves the volume integration of ρr4.
As the density profile of the formed neutron star is more centrally condensed than in the
Newtonian case, the corresponding gravitational waves turn out to be weaker. Details
of the numerical methods and of the gravitational wave extraction used in the above
studies can be found in Dimmelmeier et al. (2002a, b). In addition, the rotational core
collapse to proto-neutron star simulations performed in Dimmelmeier et al. (2002b)
suggest that types of rotational supernova core collapse and gravitational waveforms
identified in earlier Newtonian simulations (Zwerger and Müller 1997) (regular col-
lapse, multiple bounce collapse, and rapid collapse) are also present in conformal
gravity.

Fully relativistic axisymmetric simulations with coupled hydrodynamical and
spacetime evolution in the light-cone approach, have been obtained by Siebel et al.
(2002, 2003). One of the advantages of the light-cone approach is that gravitational
waves can be extracted accurately at null infinity, without spurious contamination by
boundary conditions. The code by Siebel et al. combines the light-cone approach for
the spacetime evolution with HRSC methods for the hydrodynamical evolution. In
Siebel et al. (2003) it is found that gravitational waves are extracted more accurately
using the Bondi news function than by a quadrupole formula on the null cone.

Shibata (2003a) presents an axisymmetric hydrodynamics code based on HRSC
methods and considers rotating stellar core collapse of a realistic, uniformly rotating,
equilibrium star near the mass shedding limit with central density ∼ 1010g cm−3, and
Γ = 4/3 yielding a mass M = 1.491 M⊙ and radius R = 1910 km. The evolution
adopts a Γ -law-type equation of state consisting of cold component and a thermal
component (allowing for shock heating). The cold part is piecewise polytropic with
exponents Γ1 (for rest-mass densities ρ0 ≤ ρnuc = 2 × 1014 g cm−3) and Γ2 for
(ρ0 > ρnuc). The collapse is triggered by a small reduction of Γ1 from the 4/3
value, i.e., Γ1 = 1.325. Due to the absence of centrifugal force, after the shock
formation, shock fronts of prolate shape spread outward. As the collapse proceeds,
the central density monotonically increases until it exceeds ρnuc. When the central
density is ∼ 3.5ρnuc, the collapse is halted and a proto neutron star is formed, which
demonstrates approximate quasi-periodic oscillations. In a follow-up paper, Shibata
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and Sekiguchi (2004) perform hydrodynamic simulations in full GR of neutron star
formation from stellar collapse adopting similar methods as in Shibata (2003a) and
adopting the same parametric equation of state as in Dimmelmeier et al. (2002b),
but focusing on the gravitational wave signatures of such events. As in Dimmelmeier
et al. (2002b) gravitational waves are computed based on a quadrupole formula and it
is found that waveforms computed based on their fully general relativistic simulations
are only qualitatively in good agreement with the ones in Dimmelmeier et al. (2002b)
which were computed based on the conformal flatness approximation. Quantitatively,
the quadrupole formula used in the conformal flatness calculations (Dimmelmeier
et al. 2002b), yields different results and Shibata and Sekiguchi suggest the use of a
quadrupole formula which is calibrated based on fully general relativistic calculations.

Cerdá-Durán et al. (2005) introduce a new formalism based on the conformal flat-
ness approximation that extends the original formulation (Wilson and Mathews 1995)
by adding to the conformally flat 3-metric, second-order post-Newtonian terms that
lead to deviations from isotropy. This new approximation is termed by the authors the
CFC+ formulation and a numerical implementation is described. After testing the code
using oscillating stars, the authors find that the resulting oscillation frequencies using
the CFC+ formalism are practically the same as those using the original conformal
flatness formalism. The authors conclude that even for stars near the mass-shedding
limit the CFC+ formalism accounts for corrections at the level of 1%. The first appli-
cation of the code is axisymmetric rotational core collapse to a proto-neutron star. It
is shown that the gravitational waves extracted using the quadrupole formula are not
substantially different between CFC+ and the original conformal flatness approach.

Obergaulinger et al. (2006) perform axisymmetric, magnetohydrodynamic simu-
lations of magnetorotational core collapse accounting for relativistic effects with a
modified TOV potential. The initial data are Newtonian, equilibrium (differentially)
rotating polytropes which are seeded with a dynamically weak, dipolar magnetic field
(central field strength of 1010 − 1013 G). The evolution adopts HRSC schemes for the
magnetohydrodynamic equations and the constrained transport method of Evans and
Hawley (1988) for the ∇ · B = 0 constraint, and a hybrid Γ -law equation of state
as in Dimmelmeier et al. (2002b). The main effects of magnetic fields are to trigger
the MRI, and brake the differential rotation of the initial star. It is found that both of
these effects operate in their simulations and that the saturated magnetic field reaches
magnitudes of order 1016. However, it is not reported whether a proto-magnetar forms
in these simulations. It is generally found that only stronger initial magnetic fields can
affect the gravitational wave signatures significantly, and that the gravitational waves
should be detectable by aLIGO, if the source is about 10 kpc away.

The gravitational-wave signal from rotating core collapse has been investigated via
hydrodynamic evolutions in 2 and 3 spatial dimensions, both in Newtonian gravity
(Müller and Hillebrandt 1981; Müller 1982; Mönchmeyer et al. 1991; Zwerger and
Müller 1997; Kotake et al. 2003; Ott et al. 2004) and in general relativity (Dimmelmeier
et al. 2002a, b, 2008; Shibata and Sekiguchi 2004; Obergaulinger et al. 2006; Ott et al.
2007) and four different types of gravitational wave signals have been identified so
far (see also Ott 2009 for a comprehensive review on core collapse supernovae):
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I. In this type the stellar core bounces due to the stiffening of the equation of
state at nuclear densities and subsequently rings down into equilibrium. The
gravitational wave train possesses one large peak corresponding to core bounce,
and then undergoes a damped ring-down phase.

II. In this type the stellar core bounce is driven by centrifugal forces occurring at
sub-nuclear densities and unlike type I the post bounce phase consists of multiple
bounces that are gradually damped. As a result the gravitational waveform is
characterized by multiple distinct peaks corresponding to each bounce.

III. In this type the stellar core undergoes rapid collapse following bounce. The
gravitational waveforms are low-amplitude and possess a subdominant peak.

IV. For magnetized progenitors with B � 1012 G, the magnetic fields can affect the
bounce dynamics. The gravitational wave signature, which has been referred to
as magnetic-type, initially resembles the multiple-bounce signal. However, after
the first shock launching the gravitational wave signal shows high-amplitude
oscillations whose frequencies increase as the collapse proceeds.

More detailed studies in Ott et al. (2007), Dimmelmeier et al. (2008) that account
for both general relativistic and microphysics effects suggest that the generic core-
collapse gravitation signal is of type I. Some work on understanding the different
oscillation modes of proto-neutron stars was performed by Fuller et al. (2015), where
the effects of relativity were largely ignored.

Recently, magnetorotational core collapse has been studied by Mösta et al. (2014)
via ideal magnetohydrodynamic simulations in full GR that accounts for microphysics
by adopting a finite-temperature nuclear equation of state and a neutrino leakage
scheme. The simulations are performed using the Einstein Toolkit and the
focus is on outflows and magnetic instabilities, rather than the gravitational wave
signal. Fundamental differences are reported between axisymmetric and full 3D sim-
ulations in which a kink develops breaking the axisymmetry of the expanding lobes.

In a more recent work, Andresen et al. (2017) perform 3D multi-group neutrino
hydrodynamic simulations of core-collapse supernovae focusing on the gravitational
wave signatures generated during the first few hundreds of milliseconds from the
post-bounce phase. Approximate general relativistic effects are accounted for by use
of a pseudorelativistic effective potential. The authors find that gravitational waves
from models dominated by the standing-accretion-shock instability (SASI) are clearly
distinct from models that are convection-dominated. The main difference arises in the
low-frequency band around 100–200 Hz. The authors also find that the gravitational
wave strain above 250 Hz in 3D is considerably lower than in 2D simulations. The
authors’ results suggest that second-generation detectors will be able to detect only
very nearby events, but that third-generation detectors could distinguish SASI- and
convection-dominated models at distances of 10 kpc.

5.4.2 Binary neutron star mergers

Binary neutron stars have been simulated using numerical relativity techniques for
over a decade. There are recent technical reviews of the topic focusing primarily on
the history of relevant studies, numerical techniques and the final fate of the merger
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remnant, see e.g., Duez (2010) and Faber and Rasio (2012), Baiotti and Rezzolla
(2017), Paschalidis (2017). Here, we focus on the remnant NS properties highlighting
the most recent results related to the remnant hypermassive neutron star (HMNS)
oscillations, and how these can help to constrain the nuclear equation of state.

Observational determination of masses in the known binary neutron star (NSNS)
systems (Chamel et al. 2013; Miller and Miller 2015; Özel and Freire 2016; Miller and
Lamb 2016; Oertel et al. 2017) indicates that a likely range of the total binary mass
(sum of individual TOV masses) is 2.4 M⊙ < Mtot < 3.0 M⊙ with a peak around
2.7 M⊙. Since observations (Demorest et al. 2010; Antoniadis et al. 2013) require a
TOV limit mass of � 2.0 M⊙, a likely outcome of a NSNS merger is a long-lived
(� 10 ms) HMNS (see, e.g., Hotokezaka et al. 2011; Bauswein et al. 2012).

The rotational profile of hypermassive neutron stars formed following binary neu-
tron star mergers have been studied by a number of authors (Shibata and Uryū 2000;
Shibata and Taniguchi 2006; Baiotti et al. 2008; Anderson et al. 2008b; Liu et al. 2008;
Bernuzzi et al. 2012; Kastaun and Galeazzi 2015; De Pietri et al. 2016; Kastaun et al.
2016). The common outcome in these studies is that the actual differential rotation
profile does not seem to match the j-constant rotation law that is usually adopted in
models of isolated differentially rotating neutron stars. Instead, the post-merger rem-
nants almost universally exhibit a rotation profile that is approximately uniform in the
core that smoothly turns into quasi-Keplerian in the outer layers. An extended study
in Hanauske et al. (2017) argues that this profile seems to also be EOS-independent.

The gravitational-wave spectrum in the post-merger phase comprises several dis-
tinct peaks that could be used for characterizing the hypermassive compact object (see,
e.g., Zhuge et al. 1994; Oechslin et al. 2002; Shibata and Uryū 2002; Shibata et al.
2005; Shibata and Taniguchi 2006; Kiuchi et al. 2009; Dietrich et al. 2017). That sev-
eral post-merger GW peaks do in fact originate from specific oscillation modes of the
remnants was established in Stergioulas et al. (2011), by extracting eigenfunctions in
the equatorial plane for the dominant oscillation frequencies. Gravitational wave spec-
tra were split into pre- and post-merger parts and it was shown that several peaks in the
post-merger GW spectrum have discrete counterparts in the evolution of the fluid that
correspond to specific normal modes of oscillation. The dominant peak was identified
as being the co-rotating m = 2 f -mode (denoted as f2 or fpeak), while additional
frequencies ( f− and f+ ) were shown to originate from the quasi-linear combination
between f2 and the quasi-radial oscillation frequency f0. The quasi-radial frequencies
satisfy f− = f2 − f0 and f+ = f2 + f0, forming an equidistant triplet with f2 (see
Fig. 33). Since the amplitude of f+ is much smaller than other frequency peaks, the
quasi-linear combination frequency f− is the more important one from the observa-
tional point of view (after f2) and it has been renamed to f2−0 in subsequent studies,
in order to emphasize its origin. Since f2−0 is a quasi-linear feature, its amplitude
quickly decays (it is the product of the amplitudes of f2 and f0).

A more extensive parameter search by Bauswein and Stergioulas (2015) revealed
that apart from the f2−0 quasi-linear peak, a fully nonlinear peak (denoted as fspiral)
exists in most cases, originating from the transient appearance of a spiral deformation
with two antipodal bulges at the time of merging. Investigating a large number of
EOSs and different masses, Bauswein and Stergioulas (2015) found that the post-
merger phase can be broadly classified as belonging to one of three different types:
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Fig. 33 Top panel: Total (black), pre-merger (red) and post-merger (green) scaled power spectral density,
compared to the aLIGO and ET unity SNR sensitivity curves for a HMNS formed in the merger of an
equal mass NSNS system using the Lattimer–Swesty (LS). Each neutron star has a mass of 1.35 M⊙ and
the distance to the source is set at a nominal value of 100 Mpc. Lower panel: Corresponding FFT of the
evolution of pressure in the equatorial plane, where discrete oscillation frequencies and their quasi-linear
combinations can be seen. (Image reproduced with permission from Stergioulas et al. 2011, copyright by
the authors)

1. Type I (soft EOS/high mass): f2−0 is the strongest secondary peak.
2. Type II (intermediate EOS/intermediate mass): f2−0 and fspiral have roughly com-

parable amplitudes.
3. Type III (stiff EOS/low mass): fspiral is the strongest secondary peak.

For a broad sample of EOSs and for initial masses of 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙, the
frequency of fspiral is in the range fpeak − 0.5 kHz < fspiral < fpeak − 0.9 kHz, while
f2−0 is in the range fpeak − 0.9 kHz < f2−0 < fpeak − 1.3 kHz. The fact that the two
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Fig. 34 Top panel: GW spectra of 1.35–1.35 M⊙ mergers with a soft (red), intermediate (black) and
stiff EOS (blue), at a reference distance of 20 Mpc. Lower panel: Different types of merger dynamics are
indicated for several EOSs and different masses (in each case, half of the sum of individual pre-merger
masses is shown). (Image reproduced with permission from Bauswein and Stergioulas 2015, copyright by
APS)

ranges do not overlap can be used in search strategies and in identifying the type of
the merger dynamics. Fig. 34 (left panel) displays GW spectra for three representative
cases (corresponding to the three types described above), while the right panel shows
the dependence of the different types on the initial mass (Mtot/2 is shown) in a mass
vs. radius plot for nonrotating models.

Bauswein and Janka (2012) found that the peak frequency fpeak is directly related to
the radius of nonrotating neutron stars through an EOS-independent empirical relation,
which can be used to observationally determine neutron star radii with high accuracy,
when the total mass of the system is known. Because the remnants for mergers in the
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Fig. 35 Peak frequency fpeak scaled by the total mass Mtot versus the radius of a nonrotating NS of mass
1.6 M⊙ for different EOSs. The symbols correspond to different values of the total mass. The solid line
shows the quadratic fit in Eq. (143), which can be used to determine R1.6 with a maximum uncertainty of
a few percent for a given fpeak measurement in a system where the total mass Mtot is determined from the
inspiral gravitational waveform. (Image reproduced with permission from Bauswein et al. 2016, copyright
by SIF/Springer)

2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ have a central density comparable to that of a ∼ 1.6 M⊙
nonrotating neutron star, the uncertainty in the above empirical relation is reduced
when it is cast in terms of the radius R1.6 of a ∼ 1.6 M⊙ nonrotating star (Bauswein
et al. 2012). In Bauswein and Janka (2012) representative examples of three initial
binary setups (focusing on the 1.35 + 1.35 M⊙ case) were discussed. Relations for
different binary masses and mass ratios (using also a larger set of EOSs) were discussed
and presented in Bauswein et al. (2012). For specific binary masses such an empirical
relation can have an uncertainty of only a few percent. In the case of a 1.35+1.35 M⊙
merger, the relation yielding the radius of a ∼ 1.6 M⊙ nonrotating star is (Bauswein
et al. 2014)

R1.6 = 1.099 · f 2
peak − 8.574 · fpeak + 28.07. (142)

The fpeak versus radius relation can be scaled by the total mass, to become a universal
relation, which is (to high accuracy) quadratic in the radius:

fpeak[kHz]/Mtot[M⊙] = 0.0157 · R2
1.6 − 0.5495 · R1.6 + 5.5030, (143)

see Bauswein et al. (2016) and Fig. 35. This relation depends only weakly on the mass
ratio. Similar relations can easily be constructed for the radius of nonrotating stars at
lower or higher masses than 1.6 M⊙, but then the accuracy of radius determinations
deteriorates for 1.35 M⊙+1.35 M⊙ mergers. For other total binary masses, other TOV
radii are obtained with minimal uncertainty (Bauswein et al. 2012).

A single event in the most likely range of 2.4 M⊙ ≤ Mtot ≤ 3.0 M⊙ will thus
suffice to significantly constrain the EOS in the density range that corresponds to a
TOV mass of 1.6 M⊙. At significantly higher densities (close to Mmax > 2 M⊙), it is
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Fig. 36 Mass-radius relations for two EOSs with similar stellar properties in the intermediate mass range
around 1.6 M⊙ where the two mass-radius relations cross. Bars at 1.6 M⊙ indicate the maximum deviation
of the estimated radius inferred from a single GW detection of a low-mass binary NS merger. Using the
extrapolation procedure described in Bauswein et al. (2014) the two EOSs can clearly be distinguished.
Boxes illustrate the maximum deviation of the estimated properties of the maximum-mass configuration.
(Image reproduced with permission from Bauswein et al. 2014, copyright by APS)

unlikely that direct constraints can be obtained. On the one hand, the expected merger
rate may diminish above Mtot > 3.0 M⊙, since all known double neutron star systems
have masses smaller than this (notice that measuring neutron star radii from inspiral
waveforms is similarly restricted to low masses). On the other hand, even in the rare
case of a merger with an unusually high total mass it is quite possible that the remnant
will promptly collapse to a black hole, before the radius can be measured through the
detection of post-merger gravitational waves. However, Bauswein et al. (2014) devised
a method to extrapolate the mass and radius of the maximum-mass TOV model from
at least two well-separated low-mass fpeak measurements. The method is based on
the observation that for a given EOS fpeak is almost a linear function of Mtot, while
the slope of this relation can be used to determine empirically the threshold mass of
binary systems to black hole collapse, Mthres. From an empirical relation between
Mthres and the maximum TOV mass Mmax, found in Bauswein et al. (2013), one thus
arrives at a determination of Mmax with an uncertainty of order 0.1 M⊙. Furthermore,
an empirical relation between the peak frequency f thres

peak for a binary system with mass
equal to the threshold mass Mthres and the radius Rmax of the maximum-mass TOV
model then permits a determination of Rmax with an uncertainty of order 5%. Similar
considerations allow the determination of the central density of the maximum-mass
TOV star, ρc,max with an uncertainty of order 10%.

Two representative cases of the determination of the radius and mass (Rmax, Mmax)
of the maximum-mass TOV model are shown in Fig. 36. These two EOSs cross at
about 1.6 M⊙, so that they cannot be distinguished by a single low-mass merger event.
However, extrapolating two well-separated low-mass fpeak measurements (using the
procedure described in Bauswein et al. 2014) allows for a clear distinction of the EOS.
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Lehner et al. (2016) study hypermassive neutron stars formed in equal and unequal-
mass NSNS mergers with realistic, hot nuclear equations of state while employing
an approximate neutrino cooling scheme. The authors find agreement with earlier
findings in Bauswein and Stergioulas (2015), as well as that for a given total mass, the
mass ratio has only a small effect on fpeak (Bauswein et al. 2012). They also discuss
an interesting empirical relation between fpeak and the GW frequency at contact.
A different correlation between the post-merger oscillation frequency and the tidal
coupling constant κT

2 has been discussed by Bernuzzi et al. (2015). The authors report
that their proposed correlation exhibits small scatter with the binary total mass, mass-
ratio, EOS, and thermal effects. However, only total masses in the range of 2.5–2.7 M⊙
where considered and thermal effects where not based on realistic finite temperature
EOSs.

The above results suggest that a postmerger gravitational wave detection can poten-
tially determine neutron star radii to high accuracy and thus constrain the EOS. The
model can be further refined by taking into account additional effects. For example,
although preliminary MHD studies suggest that realistic magnetic fields do not have a
significant direct impact on the fpeak frequency (see, e.g., Endrizzi et al. 2016; Kawa-
mura et al. 2016), the timescale on which MRI could modify the background requires
further studies.

Takami et al. (2014) perform binary neutron star merger simulations for different
EOSs (which are fitted by piecewise polytropes) using theWhisky code, and suggest a
universal (EOS and mass-independent) empirical relation between a secondary peak in
the GW spectrum and the compactness M/R of the progenitor neutron stars, although
their analysis was for a restricted set of EOSs and for varying mass ranges, without
distinguishing between f2−0 and fspiral. In Rezzolla and Takami (2016), a somewhat
more extensive set of models is considered. While their GW spectra appear to be
broadly consistent with the unified picture presented in Bauswein and Stergioulas
(2015), a different interpretation of the secondary peaks (not consistent with Bauswein
and Stergioulas 2015) is presented.

Maione et al. (2017) also perform a large number of binary neutron star merger sim-
ulations (using the Einstein Toolkit, Löffler et al. 2012) surveying the effects
of total mass, the EOS stiffness and the mass ratio. They test their results against
the two competing interpretations of the sub-dominant frequencies in the post-merger
spectrum that have been presented in Bauswein and Stergioulas (2015) and Takami
et al. (2014). The authors conclude that they agree with Bauswein and Stergioulas
(2015) (which includes two different mechanisms for producing mass-dependent sub-
dominant frequencies, f2−0 and fspiral) in that at least two different mechanisms should
be considered for the interpretation of these sub-dominant frequencies. In several
models, Maione et al. were able to confirm another prediction of the unified model of
Bauswein and Stergioulas (2015), that the presence of fspiral would leave an observ-
able imprint also in the maximum density evolution, as a modulation with frequency
fpeak − fspiral, due to the relative instantaneous orientation of the external spiral struc-
ture with respect to the internal double core structure.

Shibata and Kiuchi (2017) perform viscous hydrodynamic simulations of binary
neutron star mergers in full GR and argue that for large values of the shear viscosity
any post-merger oscillations could be damped within 5 ms. Nevertheless, the values

123



Rotating stars in relativity Page 121 of 169 7

of the shear viscosity the authors adopted may be large compared to realistic values
anticipated due to magnetic fields. More recently, Alford et al. (2017) explored various
dissipative mechanisms that may operate in a binary neutron star merger remnant
and argue that bulk viscosity may be sufficiently strong to dampen any post-merger
oscillations. A careful investigation of the effects of bulk viscosity in future relativistic
calculations of mergers will show whether bulk viscosisty plays an important role. For
another review summarizing binary neutron star post-merger oscillation properties
see Baiotti and Rezzolla (2017). Properties of the post-merger remnants have also
been investigated in Kaplan et al. (2014), Kastaun and Galeazzi (2015), Kastaun et al.
(2016).

The detectability of such post-merger oscillations has recently also been consid-
ered. Clark et al. (2016) developed a post-merger GW detection template, based
on the method of principal component analysis (PCA) and evaluated the prospects
for detectability when using present and planned gravitational wave interferometers.
Adopting a signal-to-noise (SN R) ratio detection threshold of 5, an optimally oriented
source and the galactic merger rate of Abadie et al. (2010) they calculated that post-
merger oscillations would not be detectable by advanced LIGO at design sensitivity,
but could become detectable out to ∼ 110–180 Mpc (depending on the EOS) with the
proposed LIGO Voyager upgrade (LV) (LIGO Scientific Collaboration 2015), out to
∼ 200–340 Mpc with the planned third-generation Einstein Telescope (ET) (Amaro-
Seoane et al. 2009) and out to ∼ 330–530 Mpc with the planned Cosmic Explorer
(CE) (Abbott et al. 2017) detector. These results translate to EOS-dependent detection
rates of ∼ 0.2–0.9 year−1 for LV, ∼ 1–6 year−1 for ET and ∼ 5–23 year−1 for CE.

Yang et al. (2017) focus on the detectability of the dominant component of the l =
2, m = 2 mode, exploring different EOSs and considering the ET and CE detectors.
They adopt the same SNR detection threshold of 5 as Clark et al. (2016). Instead of
the galactic merger rate of Abadie et al. (2010) adopted by Clark et al. they adopt
the galactic merger rate of Belczynski et al. (2016), Dominik et al. (2015), Mink and
Belczynski (2015), which is consistent with the latest pulsar beaming corrections and
improved modeling of PSR J0737-3039B (Kim et al. 2015), and roughly 10 times
lower than the one adopted by Clark et al. In addition, Yang et al. consider sources that
are not optimally oriented, and instead have random sky orientations. Moreover, they
adopt the Gaussian mass-distribution for binary neutron stars of Özel and Freire (2016)
and reject models with total mass larger than the threshold mass for prompt collapse.
Under the above assumptions, Yang et al. perform 100 Monte-Carlo (MC) realizations
assuming a 1-year of observations, and (for the EOSs treated) they find it is not likely
that a detection of the dominant component of the post-merger l = 2, m = 2 mode
from individual sources will be made. However, this conclusion depends on the EOS.
For example, for the TM1 EOS the rate of individual detections exceeds 1 year−1 only
in 15% of the MC realizations, but rises to ∼ 60% of MC realizations for the Shen
EOS.

To increase the prospects for detection, Yang et al. (2017) develop a method that
takes advantage of the empirical relation between the peak frequency (when scaled
by the total binary mass) and the radius of a nonrotating neutron star of mass 1.6 M⊙
(as given in Bauswein et al. 2016; see Eq. (143)) to coherently stack an ensemble of
post-merger signals. The authors find that after coherently stacking the post-merger
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oscillations from different sources, the percentage of MC realizations with stacked
SNR above the detection threshold rises considerably to 91% for the TM1 EOS and
CE. In agreement with Clark et al. (2016), Yang et al. find that systematic errors (e.g.,
scatter in the fpeak-EOS universal relationship) at this time dominate the statistical
errors in inferring the NS radius and hence constrain the EOS. Another work exploring
stacking of post-merger signals was recently presented by Bose et al. (2017) (but
without considering the detection probability). As pointed in Yang et al. (2017) the
results from all of these studies should be considered preliminary, because they depend
on the mass distribution and the merger rates of binary neutron stars as well as imprecise
models of the post-merger gravitational waveforms which should all improve with
time.

5.4.3 One-arm instability

Apart from the dynamical bar-mode (m = 2), highly differentially rotating stars can
also become unstable to a dynamical one-arm (m = 1) “spiral” instability. Such,
highly differentially rotating neutron stars can form either during core-collapse or
binary neutron star mergers. Hence, one might expect that the one-arm instability
could arise in these dynamical scenarios. Indeed, the instability has been found to
operate in the differentially rotating neutron star cores formed in general relativistic
hydrodynamic core-collapse simulations by Ott et al. (2005, 2007) and Kuroda et al.
(2014). Shibata and Sekiguchi (2005b) also report the emergence of m = 1 modes
in core-collapse simulations, but the m = 1 perturbations are not reported to grow
significantly. However, until recently the m = 1 instability has never been found
to operate in hypermassive neutron stars formed in a binary neutron star merger.
Nevertheless, we note that Anderson et al. (2008a) performed magnetized neutron star
mergers in full general relativity and reported the emergence of m = 1 modes following
merger, which were attributed to magnetic Tayler instabilities (Tayler 1973a, b; Markey
and Tayler 1973). In addition, m = 1 density modes in hypermassive neutron stars
formed following binary neutron star mergers were reported by Bernuzzi et al. (2014),
where they were explained to arise due to mode couplings.

But, recent hydrodynamic simulations in full general relativity adopting a piecewise
polytropic equation of state of moderate stiffness by Paschalidis et al. (2015), report
the development of the one-arm instability in the highly differentially rotating hyper-
massive neutron star remnant for the first time. The emergence of the instability in the
merger remnants of eccentric binary neutron star mergers was subsequently studied
in East et al. (2016b) with a larger survey of hydrodynamic simulations in full general
relativity. Paschalidis et al. and East et al. argued that the trigger of the instability
is the post-merger vortex dynamics during the merger of the two stars. The growth
time of the instability in the cases studied was ∼ 1–2 ms and the instability saturates
within ∼ 10–20 ms from merger. The m = 1 instability is most easily observed in an
azimuthal density decomposition through the quantities

Cm(̟, z) = 1

2π

∫ 2π

0
ρ0u0√−geimφ dφ (144)
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and

Cm = 1

2π

∫ 2π

0
ρ0u0√−geimφ d3x, (145)

where g is the determinant of the metric, ρ0 the rest-mass density, uμ the fluid 4-
velocity, and φ an azimuthal angle defined in a center-of-mass frame. Here, ̟ is the
cylindrical radius from the center of mass. These quantities are shown in the left and
middle panels of Fig. 37 for a binary neutron star merger remnant that underwent the
one-arm instability in Paschalidis et al. (2015), where it is clear (left panel) that∼ 10 ms
following merger the m = 1 density azimuthal mode amplitude is larger than all other
non-zero m modes, signaling the saturation and dominance of the instability. Notice
the almost constant amplitude of the m = 1 mode throughout the evolution, which
acts as a quasistationary source of gravitational waves. The middle panel also plots the
rest-mass density contours and the phase of the C1 mode in the center of mass and on
the equatorial plane at select times. Notice how the high-density hypermassive neutron
star core is displaced from the center of mass—a signature of the m = 1 instability.
Observe also the spiral pattern of the phase of the m = 1 mode as it becomes sheared
toward the surface of the remnant (although it is unclear at the moment whether the
spiralling of the phase of the mode has any physical significance).

Paschalidis et al. also investigated whether previous criteria for the development of
the instability hold in these cases, too. They find that there exists a corotation radius
within the star prior to the development of the instability. This extends earlier criteria
for the development of shear instabilities from isolated cold stars to hot hypermassive
neutron stars formed by binary neutron star mergers.

Both Paschalidis et al. (2015) and East et al. (2016b) demonstrated that the insta-
bility is imprinted on the gravitational waves generated during the post-merger phase.
In particular, the m=1 instability gives rise to an l = 2, m = 1 mode of gravitational
waves that is quasi-periodic and almost constant in amplitude, and with the gravita-
tional wave fundamental frequencies being consistent with the dominant rotational
frequencies of azimuthal density modes. Moreover, the l = 2, m = 1 gravitational
wave signature occurs at roughly half the frequency of the l = 2, m = 2 mode (higher
modes have frequencies fm ≃ m f1—another signature of the one-arm instability) and
hence lies in a regime where the LIGO detector is more sensitive (see right panel of
Fig. 37). If the m = 1 mode persists during the hypermassive neutron star lifetime
tHMNS ∼ O(1) s (Paschalidis et al. 2015; East et al. 2016b), the peak power at the
m = 1 mode frequency can be amplified by a factor

√
tHMNS/(15 ms) ∼ O(10). Thus,

for long-lived (1–2 s) hypermassive neutron stars for which the one-arm instability
persists Paschalidis et al. and East et al. predicted that the GWs could be detectable
by aLIGO at ∼ 10 Mpc and by the Einstein Telescope at ∼ 100 Mpc, and speculated
that the GWs from the instability may help to constrain the EOS of the matter above
nuclear saturation density.

While these simulations had high eccentricity at merger, Paschalidis et al. and East
et al. found that the instability arises for cases where the total angular momentum at
merger J/M2 ∼ 0.9–1.0, where J is the ADM angular momentum and M the ADM
mass. Since this part of the parameter space is also relevant for quasicircular mergers,
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Fig. 37 Top left panel: Magnitude of Cm normalized to C0 as a function of coordinate time. Top right
panel: Thick lines indicate the phase of the mode C1 as a function of cylindrical radius ̟ at select times.
Dashed thin lines are contours of the rest-mass density normalized to its maximum value at t = 13.4 ms.
The numbers inlined are the values of the level surfaces. The small contour at X/M ≈ Y/M ≈ 1 has a
value of 0.6 and is at the cite of a strong vortex. Lower panel: gravitational wave characteristic strain (solid
black curve) vs gravitational wave frequency for the last ∼ 15 ms (after the m = 1 instability has saturated)
seen by an observer located edge-on at r = 10 Mpc. The first peak on the left corresponds to the m = 1
mode. Notice that the frequencies of the peaks satisfy fm ≃ m f1, m = 1, . . . 4, with f1 ≃ 1.7 kHz.
Dashed (blue) curve: the aLIGO sensitivity curve. Dotted red curve: the proposed Einstein Telescope (ET-
D) sensitivity curve (Hild et al. 2011) (Image reproduced with permission from Paschalidis et al. 2015,
copyright by APS)

Paschalidis et al. and East et al. predicted that the m = 1 instability should arise in
quasicircular binary neutron star mergers, too. These predictions were subsequently
confirmed by Radice et al. (2016) and Lehner et al. (2016) who performed hydro-
dynamic simulations in full GR for equal-mass, and equal- and unequal-mass binary
neutron star mergers, respectively and confirmed that the one-arm instability develops
in quasicircular mergers. Radice et al. employed piecewise polytropic equations of
state, while Lehner et al. adopted realistic equations of state. The Radice et al. study
concluded that aLIGO is unlikely to detect the l = 2, m = 1 modes arising from
the one-arm instability, but, as Lehner et al. pointed out, it is worth searching for
such quasimonochromatic signatures, because the gravitational wave signal from the
inspiral will reduce the signal-to-noise ratio required for detection of the post-merger
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gravitational wave signal. Both studies found that for hypermassive neutron stars that
undergo delayed collapse to black hole � 20 ms following merger, the instability
develops for all equations of state they considered. Finally, Lehner et al. (2016) con-
firm the hypothesis of Paschalidis et al. (2015), East et al. (2016b) that the frequencies
of the peaks in the gravitational wave power spectrum should correlate with the nuclear
equation of state. The same conclusion was also reached in the more recent relativistic
studies of East et al. (2016a), where it was shown that softer equations of state result
in higher frequency l = 2, m = 1 gravitational wave modes. East et al. (2016a) find
that the one-arm instability can be triggerred almost independently of the background
configuration that forms following merger, i.e., independently of whether the hyper-
massive neutron star is toroidal, ellipsoidal or a double core configuration. They also
estimate that typical signal-to-noise ratios of the l = 2, m = 1 GW modes generated
by the one-arm instability would be ∼ 3 for aLIGO at 10 Mpc and ∼ 3 at 100 Mpc for
the Einstein Telescope. These signal-to-noise estimates are more optimistic that those
presented in Radice et al. (2016), but less optimistic than the ones in Lehner et al.
(2016). Thus, gravitational waves from the m = 1 instability could potentially be used
to probe the nuclear equation of state, although more work is needed to solidify this
idea.

5.5 Evolution of magnetized, rotating neutron stars

Recent advances in the field of numerical relativity that combine HRSC methods with
the BSSN or the Generalized harmonic formulation as well as approaches that control
the no-magnetic-monopole constraint ∇ · B = 0 (see, e.g., Etienne et al. 2010, 2012
for a summary of such methods), have allowed the evolution of magnetohydrodynamic
models of neutron stars that enabled the study of magnetic effects such as magnetic
instabilities as well as magnetically driven outflows and magnetospheric phenomena.

5.5.1 Magnetic instabilities

Axisymmetric, magnetohydrodynamic simulations of neutron stars endowed with
purely toroidal magnetic fields are performed in full GR by Kiuchi et al. (2008).
Both rotating and nonrotating, magnetized, equilibrium Γ = 2 polytropes are evolved
and the stability of such configurations is investigated varying the compaction, profile
and strength of magnetic fields and degree of rotation. The equilibrium initial data
are constructed as described in Kiuchi and Yoshida (2008), and the toroidal magnetic
field is set such that

bφ = B0ut (ρhα2γφφ)k, (146)

where B0 and k are constants that determine the B-field strength and profile, uμ

is the fluid four-velocity, h the relativistic enthalpy, α the lapse function and γi j is
the 3-metric. Note that Eq. (146) assumes geometrized polytropic units. As is clear
from Eq. (146) the magnetic field is confined in the NS interior. For the evolution,
the GR magnetohydrodynamics code described in Shibata and Sekiguchi (2005a) is
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adopted in conjunction with a Γ -law equation of state. It is found that for k = 1
the stars are stable, but for k ≥ 2 a dynamical instability sets in, which occurs on
an Alfvén timescale until a new state is reached which is dynamically stable against
axisymmetric perturbations. It is also found that rotation tends to stabilize the stars,
and overall these results are in agreement with earlier studies by Tayler (1973a),
Acheson (1978), and Pitts and Tayler (1985). In a follow-up study, Kiuchi et al. (2011)
use similar methods to study the stability of toroidal magnetic fields in nonrotating
and rapidly, rigidly rotating, Γ = 2 polytropes in full general relativity and 3 + 1
dimensions, focusing on the k = 1 case and nonaxisymmetric perturbations. Very
strong initial magnetic fields of 1016–1017 G are chosen, which may not be realistic
but are useful to accelerate the development of instabilities. It is found that the Parker
(Parker 1966, 1967) and/or Tayler instabilities operate in both nonrotating and rotating
stars triggering long-term turbulence. In contrast to the axisymmetric simulations, it is
found that the magnetic fields never reach a dynamically stable state after the onset of
turbulence. It is concluded that unlike linearized studies even rotation cannot stabilize
the k = 1 case against nonaxisymmetric perturbations.

Lasky et al. (2011, 2012) study the stability of initially purely poloidal magnetic
fields threading nonrotating and uniformly rotating, polytropic, equilibrium neutron
star models which are generated with the magstar module of the LORENE libraries.
The studies vary several quantities: (i) the degree of rotation, (ii) the strength of the
magnetic field, (iii) the stiffness of the equation of state, while the mass of the star
is fixed at 1.31 M⊙. For the evolutions, the THOR and HORIZON ideal magneto-
hydrodynamic codes are used (Zink et al. 2010; Zink 2011) keeping the spacetime
fixed. Consistent with perturbation studies (Markey and Tayler 1973; Wright 1973),
it is found that on an Alfvén timescale a magnetohydrodynamic instability develops
(“kink” instability) leading to violent re-arrangement of the magnetic fields. Such a
re-arrangement may be the engine behind magnetar flares. The simulations demon-
strate that the re-arrangement leads to f -mode oscillations, but that gravitational waves
from f -modes are not likely to be detected by current or near-future gravitational wave
observatories. On the other hand, gravitational waves from Alfvén waves propagating
inside the neutron star are more promising candidates. It is found that rotation separates
the timescales of different instabilities, varicose vs kink instability, but both modes
are always present regardless of the degree of rotation. The end-state magnetic field
geometries derived from the simulations are nonaxisymmetric, with approximately
65% of the magnetic energy in the poloidal field and the authors conclude that these
resemble twisted torus configurations, i.e., the toroidal magnetic field component is
confined within the closed poloidal field lines. The development of the instability and
the final magnetic field configuration in one of their rotating star cases is shown in
Fig. 38.

Lasky and Melatos (2013) study tilted torus magnetic fields, which are defined as
a superposition of a poloidal component extending from the stellar interior to its exte-
rior, with symmetry axis tilted with respect to the spin axis, and an interior toroidal
component, with symmetry axis aligned with the spin axis. Using the HORIZON code
they perform a general relativistic magnetohydrodynamics evolution of a magnetized,
differentially rotating, polytropic neutron star model (prepared with the RNS code),
to argue that such tilted torus magnetic fields arise naturally. The significance of the
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Fig. 38 Time evolution of a magnetized, rotating neutron star model with central magnetic field 1017 G,
initially rotating at 100 Hz with a polar to equatorial radius ratio of 0.99. Lines represent the magnetic
field lines and the volume rendering the rest-mas density. The red field lines are seeded on the equatorial
plane close to the neutral line, and the black field lines are seeded on the equatorial plane interior to the
neutral line. The volume rendering is an contour surface at 37% of the central rest-mass density. The plots
correspond to times a t = 0 ms, b t = 17 ms, c t = 27 ms and d t = 42 ms. (Image reproduced with
permission from Lasky et al. 2012)

result is that tilted torus magnetic fields, if they are of magnetar strength, lead to tri-
axial deformations on the star, and hence the star becomes a quasi-periodic emitter of
gravitational waves. The authors argue that these configurations have a distinguish-
able gravitational wave signature and could be discerned from other magnetic field
configurations, if detected by gravitational wave observatories.

Ciolfi et al. (2011), Ciolfi and Rezzolla (2012) also study the stability of initially
purely poloidal magnetic fields threading nonrotating Γ = 2 polytropic equilibrium
neutron star models which are generated with the magstar module of the LORENE
libraries. The mass of the neutron star is chosen to be 1.4 M⊙ and the strength of the
dipole magnetic field at the pole in the range 1 − 9.5 × 1016 G. The magnetic field
extends from the NS interior to its exterior and to handle the exterior magnetic field
the authors add a non-gauge invariant “resistive” term to the right-hand-side of the
evolution equation for the vector potential of the form η∇2A, where η is a constant.
The evolutions are performed with the Whisky code and the spacetime is held fixed
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(Cowling approximation). To shorten the time for the development of the instability,
a small, m = 2 perturbation is added to the initial θ component of the fluid velocity.
In agreement with perturbation theory (Markey and Tayler 1973; Wright 1973), it is
found that the instability is triggered and accompanied by the production of toroidal
magnetic field. As in Lasky et al. (2011, 2012), the instability occurs on an Alfvén
timescale and saturates when the strength of the toroidal field is comparable to that of
the poloidal one. Major rearrangements of the magnetic field take place that could lead
to electromagnetic emission, and excite f -mode stellar oscillations. The evolutions
settle to a solution that is stable on a dynamical/Alfvén timescale and the authors argue
that a stable neutron star magnetic field configuration should comprise both toroidal
and poloidal components.

5.5.2 Magnetically driven outflows

Shibata et al. (2011) and Kiuchi et al. (2012) perform axisymmetric and 3D, magne-
tohydrodynamic simulations of a differentially rotating star in full general relativity
adopting the BSSN formulation. Their 3D evolutions are performed using a fixed-
mesh-refinement hierarchy with the Balsara divergence-free interpolation scheme
(Balsara 2001, 2009) coupled to the flux-CT constrained transport method for the
magnetic field to remain divergence-free to machine precision even across refinement
levels. They adopt a piecewise polytropic equation of state for initial equilibrium
rotating neutron star model, and a hybrid Γ -law equation of state which consists of
a cold part and a thermal part. The ADM mass of the differentially rotating neutron
star (2.02 M⊙) is slightly larger than the TOV limit with the adopted equation of state
(2.01 M⊙) but smaller than the corresponding supramassive limit (2.27 M⊙). They
seed the star with a weak purely poloidal, dipolar magnetic field such that the maxi-
mum B-field strength (as measured in a frame comoving with the fluid) is 4.2 × 1013

or 1.7×1014 G, and such that the magnetic dipole moment is aligned with the angular
momentum of the star. It is found that after the evolution begins strong outflows are
launched with the Poynting (L B) and matter ejection (L M ) luminosities scaling as

L B ∼ 1047
(

B0

1013 G

)2 (
Re

106 cm

)3 (
Ω

104 rad/s

)

erg/s, (147)

L M ∼ 1048
(

B0

1013 G

)2 (
Re

106 cm

)3 (
Ω

104 rad/s

)

erg/s. (148)

These results hold both in axisymmetry and in 3 spatial dimensions. While the
authors report that in 3 dimensions a kink instability (Goedbloed and Poedts 2004)
develops, they find that the instability does not affect the outgoing luminosities because
it saturates at a small amplitude. However, it does affect the geometry of the outflow
(see Fig. 39) leading to nonaxisymmetric features. As noted by the authors these
outflows could shine electromagnetically, but it is not very likely that the signals will
be detectable.

Motivated by these earlier results, Siegel et al. (2014) perform 3D ideal magnetohy-
drodynamics simulations of a differentially rotating Γ = 2 polytropic, hypermassive
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Fig. 39 Snapshots, at select times, of the magnetic field strength on a the x−z (meridional) plane for
the case with magnetic field strength 1.7 × 1014 G evolved in full 3D dimensions. Image reproduced with
permission from Kiuchi et al. 2012, copyright by APS)

neutron star (with a mass of 2.43 M⊙) which is initially seeded with either a dipo-
lar magnetic field or a random magnetic field. The evolutions are performed using
the Whisky code and adopting a vector potential formulation for maintaining the
∇ · B = 0 constraint, coupled to the generalized Lorenz gauge (Farris et al. 2012). As
in Shibata et al. (2011) and Kiuchi et al. (2012) the authors also find outflows soon after
the evolutions start. In the cases where a dipole magnetic field is initially seeded in the
star, a collimated outflow along the stellar rotation axis is also launched in addition to
a magnetized wind, whereas in the random magnetic field case, the outflow is more in
a form of a wind and isotropic. The typical Poynting luminosity associated with these
outflows is found to be

L B ∼ 1048
(

B0

1014 G

)2 (
Re

106 cm

)3 (
P

10−4 rad/s

)−1

erg/s, (149)

where P is the rotation period at the location of the spin axis.

5.5.3 Magnetospheric studies

Lehner et al. (2012) develop a novel scheme for matching the equations of ideal general
relativistic magnetohydrodynamic stellar interiors to Maxwell’s equations for force-
free electrodynamic or vacuum exteriors. The spacetime is dynamical and evolved
using the generalized harmonic formulation in conjunction with black hole excision.
Validating their method and code using the force-free aligned rotator test (see, e.g.,
Goldreich and Julian 1969; Contopoulos et al. 1999; Spitkovsky 2006; Contopoulos
and Spitkovsky 2006; Komissarov 2006; McKinney 2006), and Michel monopole
solution (Michel 1973), they study the electromagnetic emission arising from both
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nonrotating and rotating, collapsing, polytropic neutron star models. The initial data
are generated using the magstar module of the LORENE libraries, and correspond
to self-consistent rotating Γ = 2 polytropes in unstable equilibrium, threaded by
dipole magnetic fields. It is found that in the nonrotating stellar collapse approximately
1% (10%) of the stored energy in the initial magnetosphere is radiated away during
the collapse in the force-free (electrovacuum) cases. The average outgoing Poynting
luminosity for a nonrotating collapsing neutron star with a force-free exterior scales
as

LEM ≈ 1048
(

Bpole

1015 G

)2

erg/s, (150)

and has a predominantly dipolar distribution. Here, Bpole is the strength of the ini-
tial magnetic field at the stellar pole. On the other hand, for rotating stellar collapse
approximately 20% of the stored energy in the initial magnetosphere is radiated away
during the collapse both in the force-free and electrovacuum cases. The average outgo-
ing Poynting luminosity for rotating collapsing neutron stars with a force-free exterior
scales as

LEM ≈ 1.3 × 1048
(

Bpole

1015 G

)2

erg/s, (151)

and has a predominantly quadrupolar distribution.
The electromagnetic emission from nonrotating collapsing neutron stars is also

studied in Dionysopoulou et al. (2013) using a general relativistic resistive magneto-
hydrodynamic scheme in full general relativity assuming electrovacuum for the stellar
exterior. It is found that up to 5% of the initial energy in the magnetosphere is radiated
away and following the black hole formation the evolution of the magnetic field fol-
lows an exponential decay, with complex frequency matching the quasinormal mode
ringing of a Schwarzschild black hole (Kokkotas and Schmidt 1999) to within a few
percent. This result seems to be in disagreement with the calculations of Baumgarte and
Shapiro (2003) who studied Oppenheimer–Snyder collapse of ideal magnetohydrody-
namic matter matched onto an exterior electrovacuum and recovered the power-law
decay anticipated from Price’s theorem (Price 1972).

The aforementioned studies focused on dynamical spacetime magnetospheric
effects. However, special relativistic studies of stationary pulsar magnetospheres were
performed well before these general relativistic studies. In particular, many flat-
spacetime works attempted to compute the pulsar spin-down due to dipole emission
in the limit of force-free electrodynamics. The first successful numerical solution of
the pulsar equation was presented by Contopoulos et al. (1999), which was later fol-
lowed by numerous studies of aligned and oblique rotators (see, e.g., Spitkovsky 2006;
Contopoulos and Spitkovsky 2006; Komissarov 2006; McKinney 2006; Gruzinov
2007, 2008; Kalapotharakos and Contopoulos 2009; Tchekhovskoy and Spitkovsky
2013; Kalapotharakos et al. 2012a, b; Gruzinov 2013; Uzdensky and Spitkovsky 2013;
Contopoulos et al. 2014 and references therein) that studied global features of the mag-
netosphere. These studies did not include the magnetized NS interior, and modeled
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Fig. 40 Pulsar spin-down luminosity L normalized by L0 = 1.02μ2Ω4, the flat-spacetime result. Left
panel: L/L0 versus stellar compactness C = M/Re , where Re is the equatorial radius. Right panel: L/L0
vs polar redshift Z p . The parameter space for rotating stars is contained between the left dashed line (the
mass-shedding limit) and the right dashed line (maximum compactness). The top point (triangle) represents
the value for the supramassive neutron star limit for n = 1. For these rapidly rotating stars, the lower shaded
zone is the area of the parameter space that cannot be reached, unless flat spacetime is assumed. In the
constant angular velocity sequences Ω̄ = Ω · K n/2 is a dimensionless angular velocity, with K standing
for the polytropic constant. (Image reproduced with permission from Ruiz et al. 2014, copyright by APS)

the effects of rotation through a boundary condition on the spherical stellar surface,
which is modelled as a perfect conductor. Simulations of pulsar magnetospheres in flat
spacetime have produced important results, such as a proof of existence of a stationary
force-free magnetospheric configuration, the calculation of the spin-down luminos-
ity of force-free aligned and oblique rotators, and the evolution of the obliquity angle
(Philippov et al. 2014), all in flat spacetime. There have also been some analytic efforts
to understand the emission from an accelerated isolated pulsar in flat spacetime (see,
e.g., Brennan and Gralla 2014; Gralla and Jacobson 2014).

Recently, a general relativistic resistive magnetohydrodynamics scheme in full gen-
eral relativity was introduced by Palenzuela (2013). The scheme is presented and
tested using the force-free aligned rotator solution. Using a rotating relativistic Γ = 2
polytrope endowed with a dipole magnetic field, Palenzuela reports that the outgo-
ing Poynting luminosity—the spin-down luminosity—differs by 20% from its flat
spacetime value and several potential sources for this difference are listed, including
resistive, general relativistic effects and the way the flat spacetime formula is applied
to a general relativistic case.

More recently, Ruiz et al. (2014) study the pulsar spin-down luminosity via time-
dependent simulations in general relativity. The evolutions are performed using the
technique developed by Paschalidis et al. (2013), Paschalidis and Shapiro (2013)
for matching general relativistic ideal magnetohydrodynamics to its force-free limit.
Equilibrium rotating, polytropic neutron star models of different compactnesses are
considered using 3 constant-angular velocity sequences ranging from the mass-
shedding limit to the maximum compactness configuration. The initial data are
prepared using the Cook et al. code (Cook et al. 1992, 1994b, a). Both slowly rotating
and rapidly rotating stars are considered. The stars are endowed with a general rela-
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tivistic magnetic dipole (Wasserman and Shapiro 1983) and the electromagnetic fields
are evolved keeping fixed both the spacetime and the fluid (a valid assumption for weak
magnetic fields). The structure of the final, steady-state magnetosphere reached for
all evolved stars resembles the structure of the magnetosphere found in flat spacetime
studies. However, it is found that general relativity gives rise to a modest enhancement
of the spin-down luminosity when compared to its flat spacetime value: the maximum
enhancement found for n = 1 polytropes is 23%, and for a rapidly rotating n = 0.5
polytrope an even greater enhancement of 35% is found. The spin-down luminosity for
all cases studied is shown in Fig. 40. This enhancement in the spin-down luminosity
due to general relativistic effects has been confirmed in more recent simulations by
Philippov et al. (2015) and Pétri (2016) who used approximate metrics for the space-
time around a rotating neutron star. However, semi-analytic work presented by Gralla
et al. (2016) suggests that the general relativistic corrections in the slow-rotation limit
should disappear (a result also mentioned in Philippov et al. 2015).
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Tsokaros A, Uryū K, Rezzolla L (2015) New code for quasiequilibrium initial data of binary neutron stars:
corotating, irrotational, and slowly spinning systems. Phys Rev D 91:104030. https://doi.org/10.1103/
PhysRevD.91.104030. arXiv:1502.05674

Tsokaros A, Ruiz M, Paschalidis V, Shapiro SL, Baiotti L, Uryū K (2017) Gravitational wave content and
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