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We introduce the rotating waves in a Laplace domain for formulating and
solving wave problems with wedge shaped configurations. The method we
develop is alternative to and possibly ssimpler than the one of Malyuzhinets.
Applications of this method in this paper are concerned with the diffraction
by isorefractive (or diaphaneous) wedges.
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Introduction

In arecent work [1,2,3] this author showed that the diffraction by an impenetrable wedge
having arbitrary aperture angle always reduces to a standard Wiener-Hopf factorization.
However, he encountered some difficulties in ascertaining the coincidence of Wiener-
Hopf solutions with the ones obtained by the Malyuzhinets method. These difficulties are
due to the use of two different spectral representations: the unilateral Fourier Transforms
(or Laplace transforms) in the Wiener-Hopf technique and the Sommerfeld functions in
the Malyuzhinets method. Moreover Sommerfeld integrals introduce the complex angular
spectrum w;, whereas the Fourier integrals introduce the complex wave numbers h. To
smplify this comparison, it appeared more convenient to this author to formulate a
Laplace approach in the angular spectrum w, without using Sommerfeld integrals. This
can be accomplished with the introduction of the concept of the rotating waves. The main
aim of the paper is the exposition of thistheory. Thisauthor believesit isinteresting for
further understanding of the wave motion in angular regions. A second aim is to show
the elegance of the rotating waves method. To this end the solution of the diffraction
problem constituted by the diffraction of a plane wave by many isorefractive wedges is
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presented. Apparently Malyuzhinets’ solutions for these penetrable wedges are not
available in the literature.

Rotating spectral waves

It is well known that angular transmission lines are useful for studying waves in angular
regions [4]. Of course, they imply the presence of clockwise and counterclockwise
angular rotating waves. The Sommerfeld integrals alow the introduction of only one of
these two opposite rotating waves. This simplification comes at a price: the presence in
the integral representation of a complex and artificial integration path called Sommerfeld
contour.

In addition the Sommerfeld integral constitutes an ansatz and has some limitations. For
instance, looking at the link between the Sommerfeld and the Laplace representations [5],
we may have waves that admit Laplace representations but not Sommerfeld
representations.  In fact, the Laplace representation always constitutes a natural and
valid representation. With the purpose of avoiding the Sommerfeld contour and at the
same time using only Laplace transforms, this author introduced the rotating waves in the
Laplace domain. In order to obtain a precise definition of them, let us consider a two-

dimensional electromagnetic field E,(r,j ), H (r,j) and H,; (r,j ) in the free-source
angularregion O£ r <¥,j , £] £j ,, (fig.1)
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fig 1: angular regonl=e<on, =y =i,

It isknown [6], [7] that the function:
VW, ) = KS(W+PIV, (0] )| corimen (1)

where V, (h,j ) is the radial Laplace transform and k the propagation constant of the
medium:

Vo) =UE(r i = QE( i Je T ar| @)

s=- jh

satisfies the equation:
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The most general solution of eq. (3) is:

V(w,j ) = v (W] ) +v,(w-j ) (4)

We define v, (w) (clockwise) and v, (w) (counterclockwise) the rotating waves in the
angular region.

Another important result [8] is that the Laplace transform of the radia component
H, (r,j ) of the magnetic field:

KWJ)=kh®J)=k6HrUJ)é“dr ®)
h =k cos(w+p )

is expressed in terms of rotating waves in the form:

(W ) =Yo v (w+j )= vy (w- )] (6)

where Y, is the admittance of the medium filling the angular region.
Eq.s (4) ard (6) can be recast as transmission line equations with velocity 1, where the
role of the time is assumed by the complex variable w:

ﬂJ.1v<w,j ) =2, ﬂiwi(w,j )

()

ﬂjli(w,j )=, ﬂ%vww,j )

where Y,=1/Z,

It follows that the rotating waves express the forward and the backward traveling waves
of auniform angular transmission line where the role of the time is assumed by the
complex variable w.

Presence of incident plane waves

Let us consider an incident plane wave in the angular region:
EL(rJ)=E " ™) ()= —sing -] )e* " IVE, )
wm

Even though there is the presence of a source in the angular region, egs (4) and (6) hold
again since this source is far away and does not appear in the second member of the wave
equation. The Laplace transforms (2), (5) and the eg.s (1), (4) and (6) evaluated forj =0,
yield the following rotating waves relevant to the plane wave:
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In the following we will cal v; (w) and Vv, (w) the incident rotating waves.

Properties of the scatter ed waves

The homogeneous region considered in fig.1 may be bounded by other homogeneous
or non homogeneous regions. It generates a scattered field ES(r,j ), and H (r,j ) in

addition to the incident fields E.(r ,j Yand H! (r,j ):

ES(rj)=E(rj)-Exrj), HI(rj)=H(rj)-H ()

The following theorem [8] has been shown: the Laplace transforms defined by:
H H i H N H i H -Sr

Vi) =LIE(rj)- E(r.j)]=QlE(r.j)- Ex(r,j)le*dr

s=- jh
150 ) =LH (rj)-Hi(r)] )]=(S[Hr(Ir J)-H(r )]e's’dr‘
are dways regular in the h - upper half plane: Im[h] 3 Im[- k] and in particular on the
half-line h =-ku,u3 0. It follows that V7°(- kcosw,j ) and |(- kcosw,j ) are
regular on the imaginary positive haf-axis w= jw',w'3 0, that isthe image of the half-
line h=-kuu3 0 in the w-plane. This regularity holds for al the vaues of
] 1] ,£E] £] , andinduces the following fundamental property for the scattered rotating

waves.
a) The scattered rotating waves v;,(w) defined by:

s=- jh

Vo (W) = ;5 (W) - vy, (W) (10)

are respectively regular in the strips It {j ;ERgW]£] ,}and {-] ERW]£-] ,}
(seefig.2). To prove this property, let us observe that from eg.s (6) and (4) we have:
- jkan wV? (- kcosw,j ) +wml (- kcosw,j ) (113)

Vi(w+j )= 5

- jkanwV > (- kcosw,j ) - wml (- kcosw,j )
2

From these equations we ascertain that the regularity of VS(- kcosw, ) and

I(-kcosw,j ) imply that also v;(jw'H ) and v;(jw'-j ) are regular for al the

values of | :j,£] £] ,and w’3 0 . Consequently, putting j =w', the analytical

functions v; (w'+jw') and v;(- w'+jw')are holomorphic in the half-strips defined by:

va(w-j )= (11b)




j ,EWE] ,, W' 0.Inaddition the regularity of V.S (- kcosw,j ) in w=0 (h =-Kk)
imposes that: v°(0,j ) =v;( )+Vv5(-j ) =-ksn0V;S(-kcos0, ) =0,

i.e. f(w) =v;(w)+v;(-w)is vanishing on the segment j , ERgW]£j ,, Im[w] =0. A
process of analytical continuation [8] allows one to show the vanishing of f(w) in the
whole complex plane w. The two opposite rotating waves are then related by the property
b):

Vi (W) =-v3(-w) (12)
This property expresses a cawsdlity principle in the w-plane. Property a) follows
immediately from the property b) and from the regularity of v;(w'+jw') and
V5 (- w+jw') inthe hdf-strip defined by: j , EWE] ,, w'3 0.

Ontheinterfaces ] =j, and ] =] , many kind of waves can be generated [4]. From a
mathematical point of view these waves constitute poles or branch pointsin the h -plane.
The mapping h =kcos(w+p) induces an infinite number of images of these points

on the wplane. When dealing with impenetrable wedges (see for example Fig.3), it is
easy to show that the scattered rotating waves are meromorphic functions of w [8]. It

yields only the presence of polesin the w-plane. Because of the property @) v, (w)and
v;(w) have (infinite) poles that are respectively suited outside the strips I;
{I . ERWIE] ,} and I -] , £ERW £-] ,} (fig.2).

Other propertiesof the rotating wavesin free-sour ce angular regions.

Besides the properties @) and b), the rotating waves have the following properties:

N
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Property c): The functions v,(w+j ) and v,(w-] )arebounded as w® =*j¥ for every
] 1] ,E] £] ,. These bounded values do not dependon | :

Vi(EJ¥ H] ) SV(2]¥) v (F]¥ H] ) SV ¥). (13)

To prove this property we first observe that the initial value theorem in the w- plane may
be formulated in the form:



f(r), o =Im - jhF ()] =lim jkcoswF, (- kcosw)]
h® j¥ W® +j¥
Taking into account the boundedness of E in r =0and that the Laplace transform

V,(-ku,j ) isbounded as u® +¥, it follows from eg.14 that v(w,j ) is bounded as
w® +j¥. At the same time the boundedness of the Laplace transform

I, (- ku,j )implies that dso i(w,j ) isbounded as w® +j¥ . Consequently by (11), (1)
and (5) both v, (w+j ) and v,(w-j ) are bounded for w® +j¥ and assume the same
value for every | :j ,£] £] ,. Properties @) and b) extend these characteristics of

v,(w+j ) and v,(w-j ) asointherange w® - j¥ . This concludes the proof.
Property d): If the longitudinal field satisfies near the edge r =0, the condition

E,(r,j)=0(r “)with Re[c]>0, the rotating waves behave as
Vi, (W) = Ofexp(- dim[w]))] as w® +j¥

Also the property d) follows from the behavior of the Laplace transforms for w® =*j¥ .
Because of the property b), it is sufficient to study this behavior for w® ¥ . If
E,=0(r Yand H, =O(r ") , it follows from the Watson lemma that:

SI’] WL(EZ) - O(e||m.W| élm.w|(c-l)) - O(élm.WiC)’ L(Hr ) - O(e||mW|C)

Substituting in eg.s (11) completes the proof.

Property €): When the Sommerfeld integral:

) 1 4 . - .
E (r,j)=—¢¢ +j Jetikestwir gy U 154
Lrg) 2] @QS[W il Wg (159)

(14)

isvalid, the Sommerfeld function s(w) is related to the clockwise wave vi(w) through the
equation:

vi(w) = - s(w) (15b)

The link between the Laplace transform and the Sommerfeld integral has been studied
by many authors including Malyuzhinets. For instance the fig.2 of [5], where the plane w
isnamed a , shows that the Bromwich contour in the h - plane hastheimage g, inthe

wor a - planethat is not exactly the part g, of the Sommerfeld contour g :g+Ug_ .
When we can deform g, into g, , the eg.(15b) does hold and the ansatz (15a) is valid.
However no ore can exclude the presence of infinite poles between these two contours.
In such a case, even assuming on the contour g, high values of Im[a]=Im[w], we
cannot deform @, into g, and the ansatz (154) is no longer valid.

Plane waves are distant sources inthe direction j , (Fig.3). For them the rotating waves
are given by egs.9. We observe the presence of the pole w=j , in theregularity strip 11
of the clockwise waves and the presence of the pole w=-j _ inthe regularity strip I, of

the counterclockwise waves. However, properties b) and c) hold again also for these
rotating waves.



Solution of the transmission line equations

Some particular wedge problems require the solution of the transmission line
equations (7) with suitable boundary conditions. To solve them, it often turns out to be
convenient to introduce the following modified Fourier transforms and integrals [5]:

X(n) =- jé:; x(w)exp[ jn wldw, Ren]=0 (16a)
x(w) = - 2%6:‘ X{O)exp[- jn wjdn, Rew]=0 (16b)

ForRen=0, ,£j £], , we have the following transforms of the rotating waves and
the total field:

Violnii 1=+ ¢y, [ W )]expl+ jn widw, (179
V0 ) =Vi00 ) +V,00 ), 1060 =% 04 )- Va6 )] (17b)

It should be observed that, in generd, the rotating waves may be bounded but not
vanishing for w® =+ j¥ . Consequently we must define Fourier transforms and inverse

Fourier transformsin the distribution space [8].
Evauating the integrals (17a) for the incident rotating waves (9) yields [8]:

Vli[n 1j ] =-p eXp[ +j§n?pon_)p - J )] E0

- 2Jp Eo eXp[ jn (-J +j o][u('j o)+u(j _j o)u(i o)] J 3 O! (18&)

Vi ]=-p EHLING LD )]

(o]

sn(pn)
-2jp Egexpljn (-] ] oJ[u(-] o) - u(-J +j Ju(-j )l ] £0 (18b)
V,Inj 1=-V'T-nj ] (18¢)

For what concerns the scattered waves, their regularity inthe stripsl; and 1, alows the
use of the following transport theorem [8]

Vi i ol =exp[FinG o - 2)Vio I o] (19)

wherej , £] ., £] ,



This theorem yields ﬂl P - jn and consequently the transmission lines eq.s (7) in the
W

n - domain become:
1

SVIE)=inZ, ) (209)
-milsm,j )= in Y,Vi0,)) (20b)

Scattering of a plane wave solution by a perfectly conducting (PEC) wedge

In fig.3 the PEC wedge is immersed in a homogeneous isotropic medium defined by the

Fig 3. Geometry  and associated transrmission line in the v -domam
for scattered waves

angular region - F £] £F . The sourceis an E-polarized plane wave propagating in the
direction j ,(eq.5(8)). Taking into account the boundary conditions. V(n,+F) =0, the
equations of the transmission line yield:

1S(n’0) - _ Vi(n’F)
20,0 MO-F)

Substituting in the third member the eg.s (18) yield:

e-jnF ejnF
ejnF e—jnF

(21)

L 0.F)+V (.F)
,0,F)+V,(,F)

gl 0oP) e P En[(F -j ,)n]
V°nh,0) = + ° E,, V,;,00=-V°(-n,0 22
p @ ){ps.n(pn) 2 | an( 2F 1) } > 0.0)=-V/(-n,0) (22)
Inverse transforming can be accomplishing in closed form, yielding
_ j cosl e
vy (W) = Vo (W) + v (W) = - —————E, (23)
n. w . J,
gdn—- Ian—=
n n

with n :E



Taking into account that the counterclockwise wave is w(w)=-vi(-w), the well known
result follows:

. _i\ . - jhr __i\ H jk cosw —
B (1) =5 QY )™ dh = 2o gl Je dw = o)

E i |
J °cosJ—°Q( w+'1 — .1 —)el* ©aw
2on " an ¥ gnle gn¥ ) ygnle
n n n n

where B is the Bromwich contour and g isitsimage in the complex plane w through
the mapping h = - kcosw.

Formulation of the Malyuzhinets problem in terms of rotating waves

. ) ;
' ¥ |
--Z_smwﬁ| v(w, ¢) |E _
I l _ ! _L—Z_’_smw*
p=-P p=—F $= @

. Fig 4t Ecquivalent transmission hine in the w-dormain
Fig 4a Geometry E B

The boundary conditions on an impedance wedge are defined by: E,=%+Z, H, on

] ==xF where the surface impedances Z. depends on the wedge materia . Introducing
the Laplace transforms, in the w-domain, the boundary conditions become:

- v(w,xF) =kanwV, (wxF) =tksn wZ_ I, (w,xF) = +9n wZ,i(w,xF) (25)

Fig.4b shows the difficulty of solving the problem. In fact we are dealing with
transmission lines loaded by w -variable impedances. If Z. werevariableson r with the
form A.r (4, p.674), the factor sin w would disappear in the last term of eg. (25) and

we would be dealing again with transmission lines with constant |oads,
In terms of rotating waves the eg.s (25) become:

MW Iy, (WtF)- v,(wFF)] (26)

vi(WxF)+v,(WFF)=7F

+



with Z, =Z_/9nq, and O£ Req,]£p /2. Taking into account the property b), we
eiiminate vo(w) from (26) and obtain equations identical to those found by
Malyuzhinets for the Sommerfeld functions gwj]. i.e.:

(Snwzxgang, )v,(wxF) =(- anwzxdnq,)v,(- wxF)

We can use the Malyuzhinets method for solving these equations [2], and obtain

E, cogjj ,/n] Y (w)
n anfw/nl-snj . /nY(,)

vy (W) = ] (27)

where :

YW =Y wrF o) Y wF-Brg) Y w- FPoa) v w-F-Bag

and Y . (w) isthe Mayuzhinets function [5].

Scattering of a plane wave by isor efractive wedges

The problem of diffraction of electromagnetic waves by a penetrable wedge has
produced a multitude of studies, and yet the problemis unsolved. In order to gain nore
insights into the behavior of penetrable wedges it is convenient to study the problem of
the diffraction of isorefractive or digphanous wedges. The importance of this problem is
due to the fact that it constitutes a dynamical penetrable wedge problem that we can
solvein closed form. The solution of isorefractive wedges has been accomplished in the
past by using the KontorovichLebedev transform [9] in the frequency domain and the
Green function in the time domain [10]. Wiener-Hopf solutiors for the right wedge are
also available [11]. In this section we solve this problem by using the rotating waves
method. This approach has two advantages. It can dea with an arbitrary number of
isorefractive wedges and it gives the solution in a form that is more suitable for
evaluating both the near field and the diffraction coefficients of the problem.

Fig.5 shows the geometry of the problem. We have isorefractive angular regions 1 and 2
excited by an E- plane wave (with intensity E,=1) polarized in the z-direction. Let’'s
introduce the rotating waves v;'(w) and vj(w) where the superscript g=1,2 indicates
the relevant region. By imposing the boundary conditions at the two interfacesj =0 or

] =2p,] =g, thefollowing system of linear difference equations is obtained:

polar coordinates : o ¢ =

izorefractive media conditions:

= {d\/sl_#f AR LS W

Fig 5 : scattering by an isorefractive wedge



-Interfacej =0 orj =2p,
Electrical field matching:

V(W) + V2 (W) = Vi (W+2p) +v; (W~ 2p) (283)
Magnetic field matching
V(v (W) - V(W) = Y,(v(W+2p) - v;(w- 2p)) (28b)

-Interface | =g
Electrica field matching:

Vi (W+g) +V3(W- ) = Vi (W+g)+V;(wW- g) (28¢)
Magnetic field matching

Y, (i (w+9) - vp(w- g)) =Y, (' (w+g) - V5 (w- g)) (28d)
For solving eq.[28] we put:

V(W) = v (W) = v (W) + vy (W)

V3 (W) =V, (W) = V3 (W) + v, (W)

and apply to them the Fourier transforms (17a). The transport theorem (19) and the
Fourier transform of the incident rotating waves (18) yield algebraic equations involving

the four unknowns V3, (n), sz (n,g) . The same system holds by solving the circuit that

involves the transmission lines in the n - domain for the different media. The solution
of the system has been obtained by using the program MATHEMATICA and is not

reported here. The inverse transforming of sz(n),sz(n,g) given by (16b) are in

general complicated. They have been accomplished explicitly for certain cases by using
the residue theorem [8]. For the right wedge (g =3p /2) we obtain [8]:

y (W) _ P e i(wH o-p) [ J eJ[20p+(1-C)(w+J o-p)(YlZ _ Y22)
' sn(w+j ) p[3Y7 - 2(- 3+4e® +2e/°®)Y, Y, +3¥;
i Q-2 +A)(WH 6-p) 2 _ 2 2 _ 2
e R PP Coll] )
p[3Y1 - 2(' 3+ 4e +2e )Y1Y2 +3Y2 Jp(ng +Y2 )(Yl +3Y2)

N p el(W'] o) e— J(-1re)(w-j 0)[4-eJCpY1 Y2 - (Y]_ +Y2 )2]
Sn(W- | o) jp[3Y12- 2(_3+4ejcp + 2gi2® )Yl Y2 +3Y22




. ej(1+C)(VV-jo)[4e- jCéY:L Y2 _ (Y]_ +Y2 )2] ]- ) COt(W-j ) 4Y1 Yz +(Y1 +Y2 )2 (29)
Jp[3Y,” - 2(-3+4e + 2PV, Y, +3Y; Pl Y, - Y, +Y,)7

where

Y +AYRY, - 1AY2YZ + AY, Y2 +3Y,
Y].2 + 6Yl YZ +Y22
The asymptotic behavior for w =+ j¥ is given by:

v, (w) = Ofexp] - [Im{ wj|(1- c)]

It yields the near edge behavior:

E,=0(r "), H, =0(r %),

This behavior is in agreement with the static behavior of a penetrable right wedge [11].
The analytical expression in Eq. (29) appears to be different from the analytical
expression obtained by the Wiener-Hopf technique in [11]. The coincidence of the two

solutions has been ascertained numerically by MATHEMATICA using different values
of the parameters involved. Near and far field discussions have been reported in [11].

], O<Rec]<1

czlArctan[
p

Three-dimensional case

Three-dimersional excitations imply the introduction of plane waves with skew
incidence. We have the following longitudinal components relevant to the plane waves
with skew incidence:

E|Z — Eoejt reos -j o} g jaz HIZ — Hoejt reos( -j o)g-iaz (30)

where, by indicating with g,the angle between the edge and the direction of the plane
wave, itis a =kcosq,, t =kdnq,
Consequently, in general, there is the presence of both the longitudina components &

and H; for the total field. Agan we introduce the rotating waves for the Laplace
transform of the longitudinal components:

E, P v(wj)=-tanwV,, (-t cosw,j )=v,(W+] )+Vv,(w-]) (31

H, b i(wj)=-tsnwl, (-t cosw,j ) =i, (W+j )+i,(w-j) (32)

where we have introduced the Laplace transforms V. and I+ for both the longitudinal
electric and magnetic fields.

Starting from the eq.s (31) and (32) we deduced the following Laplace transform of the
radial components [8]:



—r. m . Cy o ) a . N jaz
L[Er ]h:-tcosw_[ t2 (Il(W+J ) IZ(W ] )) tztanw(vl(W+J )+V2(W J ))]e (33)

LH, ]

h=-t cosw

:[\:\_e;(vl(w'i'j )- Vz(W'j )- LW(II(W-H )+i2(W- j ))]e-jaz (34)

t ? tan

The previous equations alow us to formulate all the problems considered in the case of
plane waves with skew incidence. Notice that for the isorefractive wedges the
formulation aways yields a system of difference linear equations with constant
coefficients. This system can be solved with the same procedure described for the
normal incidence. Conversely, the Mayuzhinets problems in generd yield functional
equations that are second order difference equatiors with non constant coefficients.
Although some cases can be solved in closed form [12],[13], no general solution has been
obtained up to now.

Therole of the Kontorovich-L ebedev transforms

For obtaining the solution of wave problems in angular regions, sometimes we used the
sequel:

Laplace mapping h =- kcosw Fourier
r - doman P h -domain p w-domain p n -domain

It easy to ascertain that it is possible to pass directly from the r - domain tothe n -
domain by using the Kontorovich L ebedev transform:

Kontorovich-Lebedev
r - domain p n - domain

in fact we have (use the property: 62 - §n we ¥ Vel gy = i—n e "P12H 9 (kr))
] r
. ¥ . ¥ ¥ L . . .
X(Mn) =- jdj¥ [x(w)]exp[+jn wldw =Jkojj¥ Q X(r )exp[- jkr cosw]sn wexp[+jn w]dr dw=
— s inpi2 X 4@ np . _ “jnp/2 S
=-je QHn (kr )—X(r)dr =- jnp e KL X(r )] (35
r

where KL[X(r )] isthe Kontorovich-Lebedev transform defined by (4, p.325):

KLER( )] = § HE (ke )rlk(r )



Knowing KL[X(r )] weobtain X(r ) by the inverse transform (4, p.325):

% :-1‘j¥ 2 (2 :i J¥ inpr2 (2)
X(r) 40j¥n KL[X(r )]H,” (kr )dn i 0j¥e X@O)H, 7 (kr)dn (36)

In some cases the Kortorovich-Lebedev transform may be useful . For instance, it has
been used for the diffraction by an isorefractive wedge [9]. However, sometimes this
transform does not exist. Moreover whereas the solutions in the h or w-plane allow one
to use immediately powerful techniques for obtaining the far field (saddle point
technique) and the near fields (Watson lemma), the solutions in the n - domain do not
have these characteristics.

Conclusions

It can be shown that the theory of rotating waves may be successfully applied to al the
problems approached by the Malyuzhinets method [8]. Comparing the two methods, we
ascertain many deep-rooted analogies. However, in this author’s opinion, the rotating
waves present peculiar properties that simplify their use and make it reliable for studying
wave problemsin angular regions.

For instance this author claims the following facts must be appreciated:

-the rotating waves are based on the introduction of Laplace transforms and not on the
ansatz constituted by the Sommerfeld integral which is sometimes invalid.

- the Malyuzhinets nullification theorem [5] has been avoided. Sometimes this theorem
may be misinterpreted.

-We safely deal with the rotating waves in alarger number of angular regions. Instead
we must be very careful if we use Mayuzhinets method in angular regions not defined in
thestrip - F £ Re{w] £F

-We can safely apply the Fourier technique ideated by Malyuzhinets for solving
difference equations since the transport theorem is always valid for the scattered rotating
waves. In addition, the distribution space for solving the system in the Fourier domain
ensures the existence of the involved Fourier transforms and integrals.

-Many difficulties which are present in the Mayuzhinets method are overcome when
we use the rotating waves. For instance, we have solved (again with many different
angular regions) wave problems involving isorefractive regions. Up to now these
problems have not been solved by the Mayuzhinets method.
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