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                    We introduce the rotating waves in a Laplace domain  for formulating and 

solving wave problems with wedge shaped configurations. The method we 
develop is alternative to and  possibly simpler than the one  of Malyuzhinets.  
Applications of this method in this paper are concerned with the diffraction 
by isorefractive (or diaphaneous) wedges.  
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 Introduction 
  
In a recent work [1,2,3] this author showed that the diffraction by an impenetrable wedge 
having arbitrary aperture angle always reduces to a standard Wiener-Hopf factorization. 
However, he encountered some difficulties in ascertaining the coincidence of Wiener-
Hopf solutions with the ones obtained by the Malyuzhinets method. These difficulties are 
due to the use of two different spectral representations:  the unilateral Fourier Transforms 
(or Laplace transforms) in the Wiener-Hopf technique and the Sommerfeld functions in 
the Malyuzhinets method. Moreover Sommerfeld integrals introduce the complex angular 
spectrum w, whereas the Fourier integrals  introduce the complex wave numbers  η .  To 
simplify this comparison, it appeared more convenient to this author   to formulate a 
Laplace approach in the angular spectrum w, without  using Sommerfeld integrals. This 
can be accomplished with the introduction of the concept of the rotating waves. The main 
aim  of the paper is the exposition of this theory. This author   believes it is interesting for 
further understanding of the wave motion in angular regions. A second aim is to show  
the  elegance  of the rotating waves method. To this end the solution of  the diffraction 
problem constituted by the diffraction  of a plane wave by many  isorefractive wedges is 
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presented.  Apparently Malyuzhinets’ solutions for these penetrable wedges are not 
available in the literature.     
 
Rotating spectral waves 
 
It is well known that angular transmission lines are useful for studying waves in angular 
regions [4].  Of course, they imply  the presence of  clockwise and counterclockwise 
angular rotating waves. The Sommerfeld integrals allow the introduction of only one of 
these two opposite rotating waves. This simplification comes at a price: the presence in 
the integral representation of a complex and artificial integration path called Sommerfeld 
contour. 
In addition the Sommerfeld integral constitutes an ansatz and has some limitations. For 
instance, looking at the link between the Sommerfeld and the Laplace representations [5], 
we may have waves that admit Laplace representations but not Sommerfeld 
representations.   In fact, the Laplace representation always constitutes a natural and  
valid representation. With the purpose of avoiding the Sommerfeld contour and at the 
same time using only Laplace transforms, this author introduced the rotating waves in the 
Laplace domain.  In order to obtain a  precise definition of  them, let us  consider  a  two-
dimensional electromagnetic field ),( ϕρzE , ),( ϕρρH  and ),( ϕρϕH  in the free-source 

angular region ∞<≤ ρ0 , 21 ϕϕϕ ≤≤ , (fig.1)    
 

 
 
It is known [6], [7] that the function: 
 

)cos(
),()sin(),(

πη
ϕηπϕ

+=++=
wk

Vwkwv      (1)  

 
where ),( ϕη+V  is the radial Laplace transform and k the propagation constant of the 
medium: 
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satisfies the equation:   
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The most general solution of eq. (3) is: 
 

)()(),( 21 ϕϕϕ −++= wvwvwv                                                                                         (4) 
 
We define )(1 wv (clockwise) and )(2 wv  (counterclockwise) the rotating waves in the 
angular region.  
Another important result [8] is that the Laplace transform of the radial component 

),( ϕρρH  of the magnetic field: 
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is expressed in terms of rotating waves in the form: 
 

[ ])()(),( 210 ϕϕϕ −−+= wvwvYwi                                                                                    (6) 
where Yo  is  the admittance of the medium filling the angular region. 
Eq.s (4) and (6) can be recast as transmission line equations with velocity 1, where the 
role of the time is assumed by the complex variable w: 
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where Yo=1/Zo 

 
It follows that the rotating waves express   the forward and the backward traveling waves 
of a uniform angular transmission line where the role of the time is assumed by the 
complex variable w. 
 
Presence of incident plane waves                                                         
    
 Let us consider an incident plane wave in the angular region: 
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Even though there is the presence of a source in the angular region, eqs (4) and (6) hold 
again since this source is fa r away and does not appear in the second member of the wave 
equation. The Laplace transforms (2), (5) and the eq.s (1), (4) and (6) evaluated for 0=ϕ , 
yield the following rotating waves relevant to the plane wave: 
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In the following we will call )(1 wv i and )(2 wv i the incident rotating waves.  
 
                                                                                   
Properties of the scattered waves 
    
      The homogeneous region considered in fig.1 may be bounded by other homogeneous  
or non homogeneous regions. It generates a scattered field ),( ϕρs

zE , and ),( ϕρρ
sH  in 

addition to the incident fields ),( ϕρi
zE and ),( ϕρρ

iH : 
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  The following theorem [8]  has been shown: the Laplace transforms defined by: 
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are always regular in the −η upper half plane: ]Im[]Im[ k−≥η  and in particular on the 
half- line 0, ≥−= ukuη . It follows that   ),cos( ϕwkV s −+  and  ),cos( ϕwkI s −+  are 
regular on the imaginary positive half-axis  "jww = , 0"≥w , that is the  image of the half-
line 0, ≥−= ukuη  in the w-plane.   This regularity holds for all the values of  

21: ϕϕϕϕ ≤≤  and induces the following fundamental property for the  scattered rotating 
waves:  
a) The scattered rotating waves  )(2,1 wv s defined by: 
 

)()()( 2,12,12,1 wvwvwv is −=                                                                                             (10) 
  
are respectively regular in the strips I1 { 21 ]Re[ ϕϕ ≤≤ w }and I2{ 12 ]Re[ ϕϕ −≤≤− w } 
(see fig.2). To prove this property, let us observe that from eq.s (6) and (4) we have: 
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 From these equations we ascertain that the regularity of ),cos( ϕwkV s −+  and  
),cos( ϕwkI s −+  imply that also )"(1 ϕ+jwv s  and  )"(2 ϕ−jwv s  are regular for   all the 

values of  21: ϕϕϕϕ ≤≤ and w”≥ 0 . Consequently, putting 'w=ϕ ,  the analytical 
functions )"'(1 jwwv s +  and )"'(2 jwwv s +− are   holomorphic in the half-strips defined by: 



0",' 21 ≥≤≤ ww ϕϕ . In addition, the regularity of   ),cos( ϕwkV s −+    in  w=0 )( k−=η  

imposes that: 0),0cos(0sin)()(),0( 21 =−−=−+= + ϕϕϕϕ kVkvvv ssss , 

i.e. )()()( 21 wvwvwf ss −+= is vanishing on the segment  21 ]Re[ ϕϕ ≤≤ w , .0]Im[ =w  A 
process of analytical continuation [8] allows one to show  the vanishing  of f(w) in the 
whole complex plane w. The two opposite rotating waves are then related by the property 
b): 

)()( 21 wvwv ss −−=                                                                                                            (12) 
This property expresses a causality principle in the w-plane. Property a) follows 
immediately from the property b) and from the regularity of )"'(1 jwwv s +  and  

)"'(2 jwwv s +−  in the half-strip defined by: 0",' 21 ≥≤≤ ww ϕϕ .  
 On the interfaces 1ϕϕ =  and 2ϕϕ =  many kind of waves can be generated [4]. From a 
mathematical point of view these waves constitute  poles or branch points in the η -plane. 
The mapping  )cos( πη += wk  induces  an  infinite number of  images of  these points 
on the w-plane. When dealing with impenetrable wedges (see for example Fig.3), it is 
easy to show that the scattered rotating waves are meromorphic functions of w [8]. It 
yields only the presence of  poles in the w-plane.  Because of the property a) )(1 wv s and 

)(2 wv s  have (infinite) poles that are respectively  suited  outside the strips I1 
{ 21 ]Re[ ϕϕ ≤≤ w } and I2{ 12 ]Re[ ϕϕ −≤≤− w } (fig.2).  
 
 
 
Other properties of the  rotating  waves in free-source angular regions.  
 
  Besides the properties a) and b), the rotating waves have the following properties: 

 
Property c):  The functions )(1 ϕ+wv  and )(2 ϕ−wv are bounded as ∞±→ jw  for every 

21: ϕϕϕϕ ≤≤ . These bounded values do not depend on ϕ : 
 

)()( 11 ∞±=+∞± jvjv ϕ         )()( 22 ∞±=+∞± jvjv ϕ .                                                  (13) 
 
To prove this property we first observe that the initial value theorem in the w- plane may 
be formulated in the form:   
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Taking into account the  boundedness of Ez in 0=ρ and that the Laplace transform 
),( ϕkuV −+  is bounded as +∞→u , it follows from eq.14 that ),( ϕwv  is bounded as 

∞+→ jw . At the same time the boundedness  of the Laplace transform 
),( ϕkuI −+ implies  that also ),( ϕwi  is bounded as ∞+→ jw . Consequently by (11), (1) 

and (5) both )(1 ϕ+wv  and  )(2 ϕ−wv  are bounded for ∞+→ jw and assume the same 
value for every  21: ϕϕϕϕ ≤≤ . Properties a) and b) extend these characteristics of 

)(1 ϕ+wv  and )(2 ϕ−wv  also in the range ∞−→ jw . This concludes the proof.  
Property d): If  the longitudinal field satisfies, near the edge 0=ρ , the condition 

)(),( c
z OE ρϕρ = with Re[c]>0, the rotating waves behave as 
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Also the property d) follows from the behavior of the Laplace transforms for ∞±→ jw . 
Because of the property b), it is sufficient to study this behavior for ∞→ jw . If 
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Substituting in eq.s (11) completes the proof.  
Property e): When the Sommerfeld integral: 
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is valid,  the Sommerfeld function s(w) is related to the clockwise wave v1(w) through the  
equation: 
 
v1(w) =  - j s(w)                                                                                                             (15b)                                                
 
    The link between the Laplace transform and the Sommerfeld integral has been studied 
by many authors including Malyuzhinets. For instance the fig.2 of [5], where the plane w 
is named α ,  shows that the Bromwich contour in the plane−η  has the image +γ~  in the 

w or plane−α that is not exactly the part +γ  of the Sommerfeld contour  U −+= γγγ . 

When we can deform +γ~  into +γ , the  eq.(15b) does  hold and the ansatz (15a) is valid. 
However no one can exclude the presence of infinite poles between these two contours. 
In such a case, even assuming on the contour  +γ  high values of  ]Im[]Im[ w=α , we 
cannot deform +γ~  into +γ and the ansatz (15a) is no longer valid. 
   Plane waves are distant sources in the direction oϕ  (Fig.3). For them the rotating waves 
are given by eqs.9.  We observe the presence of the pole  ow ϕ=  in the regularity strip I1 

of the clockwise waves and the presence of  the  pole ow ϕ−=  in the regularity strip I2 of 
the counterclockwise waves.   However, properties b) and c) hold again also for these 
rotating waves.   



 
 Solution of the transmission line equations  
 
         Some particular wedge problems require the solution of the transmission line 
equations (7) with suitable boundary conditions. To solve them, it often turns out to be 
convenient  to introduce the following modified  Fourier transforms and integrals [5]: 
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For Re.ν =0 , 21 ϕϕϕ ≤≤  , we have the following transforms of the rotating waves  and 
the total field: 
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 It should be observed that, in general, the rotating waves may be bounded but not 
vanishing for ∞±→ jw . Consequently we must define  Fourier transforms and inverse 
Fourier transforms in  the distribution space [8]. 
Evaluating the integrals (17a) for the incident rotating waves (9) yields [8]: 
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For what concerns the scattered waves, their regularity in the strips I1 and I2    allows  the 
use of the following transport theorem [8]  
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where 2,1 ϕϕϕ ≤≤ ba  
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 and consequently  the transmission lines eq.s (7) in the 

−ν domain become:  
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 Scattering of a plane wave solution by a perfectly conducting (PEC) wedge  
 
In fig.3 the PEC wedge is immersed in a homogeneous isotropic medium defined by the 

angular region  Φ≤≤Φ− ϕ . The source is an E-polarized plane wave propagating in the 
direction oϕ (eq.s(8)). Taking into account the boundary conditions: 0),( =Φ±νV , the 
equations of  the transmission line  yield:  
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Substituting in the third member the eq.s (18) yield:  
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Inverse transforming can be accomplishing in closed form, yielding  
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Taking into account that the counterclockwise  wave is v2(w)=-v1(-w), the well known 
result follows: 
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where Br is the Bromwich contour  and γ  is its image  in the complex plane w through 
the mapping wk cos−=η . 
 
 Formulation of the Malyuzhinets problem in terms of rotating waves 
 
 
 

The boundary conditions on an impedance wedge are defined by: ρHZE z ±±=  on 
Φ±=ϕ where the  surface impedances Z± depends on the wedge material . Introducing 

the Laplace transforms,  in the w-domain, the boundary conditions become: 
 
 ),(sin),(sin),(sin),( Φ±±=Φ±±=Φ±=Φ±− ±+±+ wiwZwIwZkwwVkwv          (25) 
 
Fig.4b shows the difficulty of solving the problem. In fact we are dealing with 
transmission lines loaded by w -variable impedances. If Z±  were variables on ρ  with the 
form ρ±A  (4, p.674), the factor  sin w would disappear  in the last term of eq. (25) and 
we would be  dealing again with transmission lines with constant loads.      
In terms of rotating waves the eq.s (25) become: 
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with ±± = θsin/oZZ   and 2/]Re[0 πθ ≤≤ ± . Taking into account the property b), we 
eliminate v2(w) from (26) and obtain  equations  identical to those found  by  
Malyuzhinets for the Sommerfeld functions s[w]. i.e.: 
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We can use the Malyuzhinets method for solving these equations [2], and obtain 
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 where  : 

 
 
and )(wΦΨ is the Malyuzhinets function [5]. 
 
 Scattering of a plane wave by isorefractive wedges 
 
           The problem of diffraction of electromagnetic waves by a penetrable wedge has 
produced a multitude of studies, and yet the problem is  unsolved. In order to  gain more 
insights into the behavior of penetrable wedges it is convenient to study the problem of 
the diffraction of isorefractive or diaphanous wedges.  The importance of this problem is 
due to the fact that it constitutes a dynamical penetrable  wedge problem that we can 
solve in closed form.  The solution of  isorefractive wedges has been accomplished in the 
past by using the Kontorovich-Lebedev transform [9] in the frequency domain and the 
Green function in the time domain [10]. Wiener-Hopf solutions for the  right wedge are 
also available [11].   In this section  we solve this problem by using the rotating waves 
method. This  approach  has two advantages. It  can deal with an arbitrary number of 
isorefractive wedges and it gives the solution in a form that is more suitable for 
evaluating both the near field and the diffraction coefficients of the problem.  
Fig.5 shows the geometry of the problem. We have isorefractive angular regions 1 and 2 
excited by an E- plane wave (with intensity Eo=1) polarized in the z-direction. Let’s 
introduce the rotating waves  )(1 wv q  and )(2 wv q   where the superscript q=1,2 indicates 
the relevant region.  By imposing the boundary conditions at the two interfaces 0=ϕ  or 

πϕ 2= , γϕ = ,  the following system of linear difference equations is obtained: 
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-Interface 0=ϕ  or πϕ 2= , 
Electrical field matching: 
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Magnetic  field matching 
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-Interface γϕ =  
Electrical field matching: 
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Magnetic  field matching 
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For solving eq.[28] we put: 
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and  apply  to them  the Fourier transforms (17a). The transport theorem (19) and the 
Fourier transform of the incident rotating waves (18) yield  algebraic equations involving 
the four unknowns ),(),( 2

2,12,1 γνν VV s . The same system holds by solving the circuit that 
involves the transmission lines in the domain−ν  for the different media.  The solution 
of the system has been obtained by using the  program MATHEMATICA and is not 
reported here.  The inverse transforming of ),(),( 2

2,12,1 γνν VV s given by (16b) are in 
general complicated. They have been accomplished explicitly for certain  cases   by using 
the residue theorem [8]. For the right wedge )2/3( πγ =  we  obtain [8]: 
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where 
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The asymptotic behavior for ∞±= jw is given by: 
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It yields the near edge behavior: 
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This behavior is in agreement with the static behavior of  a penetrable right wedge [11]. 
The analytical expression in Eq. (29) appears to be different from the analytical 
expression obtained by the  Wiener-Hopf technique in [11]. The coincidence of the two 
solutions has been ascertained numerically by MATHEMATICA using different values 
of the parameters involved.  Near and far field discussions have been reported in [11]. 
 
 
Three-dimensional  case 
 
Three-dimensional excitations imply  the introduction of plane waves with skew 
incidence. We   have the following longitudinal components relevant to the plane waves 
with skew incidence: 
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where, by indicating with oθ the angle between the edge and the direction of the plane 
wave,  it is: ,cos 0θα k=    ok θτ sin=  
Consequently, in general, there is the presence of both the longitudinal components Ez 
and Hz for the total field.  Again we introduce the rotating waves for the Laplace 
transform of the longitudinal components: 
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where we have introduced the Laplace transforms Vz+ and Iz+  for both the longitudinal 
electric and magnetic  fields.  
Starting from the eq.s (31) and (32)   we deduced the following Laplace transform of the 
radial components [8]: 
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The previous equations allow us to formulate all the problems considered in the case of  
plane waves with skew incidence. Notice that for the isorefractive wedges the 
formulation always yields a system of difference linear equations with cons tant 
coefficients. This system can be solved with the same procedure described  for the 
normal incidence. Conversely, the Malyuzhinets problems in general yield functional 
equations that are second order difference equations with non constant coefficients. 
Although some cases can be solved in closed form [12],[13], no general solution has been 
obtained up to now.  
 
The role of the Kontorovich-Lebedev transforms 
 
   For obtaining the solution of  wave problems in angular regions, sometimes we used the 
sequel: 
 
                      Laplace                     mapping  wk cos−=η              Fourier 

−ρ domain     ⇒          η -domain       ⇒                    w-domain             ⇒        ν -domain 
 
 
It easy to ascertain that it is possible to pass directly from the −ρ domain  to the ν  -
domain by using the Kontorovich-Lebedev transform: 
 
                          Kontorovich-Lebedev                          

−ρ domain          ⇒                            ν - domain 
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where )](ˆ[ ρxKL  is the Kontorovich-Lebedev transform defined by (4, p.325): 
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Knowing )](ˆ[ ρxKL  we obtain )(ˆ ρx by the inverse transform (4, p.325): 
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In some cases the  Kontorovich-Lebedev transform may be useful . For instance,  it has 
been used for the diffraction by an isorefractive wedge [9]. However, sometimes this 
transform does not exist. Moreover whereas the solutions in the  η  or w-plane allow one 
to use immediately powerful techniques for obtaining the far field (saddle point 
technique) and the near fields (Watson lemma),  the solutions in the ν - domain do not 
have these characteristics.    
  
 
Conclusions  
 
It can be shown that the theory of rotating waves may be successfully applied to all  the 
problems approached  by the Malyuzhinets method [8]. Comparing the two methods, we 
ascertain many deep-rooted analogies. However, in this author’s opinion, the rotating 
waves present  peculiar properties that simplify  their use and make it reliable for studying  
wave problems in  angular regions. 
For instance  this author claims the following  facts must be appreciated: 
-the rotating waves are based on the introduction of  Laplace transforms and not on  the 
ansatz constituted by the Sommerfeld integral which is sometimes invalid.  
- the Malyuzhinets nullification theorem [5] has been  avoided. Sometimes this theorem  
may be misinterpreted.   
-We safely deal with the  rotating waves  in a larger number of angular regions.  Instead 
we must be very careful if we use Malyuzhinets method in angular regions not defined in 
the strip Φ≤≤Φ− ]Re[w  
-We can safely apply the Fourier technique ideated by Malyuzhinets for solving 
difference  equations since the transport theorem is always valid for the scattered rotating 
waves. In addition,  the distribution space  for solving the system in the Fourier domain 
ensures the existence of  the involved Fourier transforms and integrals.       
-Many  difficulties which are present in  the Malyuzhinets method  are overcome  when 
we use  the rotating waves. For instance, we have solved (again with many different 
angular regions) wave  problems involving isorefractive regions. Up to now these 
problems have not been solved by  the Malyuzhinets method. 
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