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Abstract

Face recognition under viewpoint and illumination

changes is a difficult problem, so many researchers have

tried to solve this problem by producing the pose- and

illumination- invariant feature. Zhu et al. [26] changed all

arbitrary pose and illumination images to the frontal view

image to use for the invariant feature. In this scheme, pre-

serving identity while rotating pose image is a crucial is-

sue. This paper proposes a new deep architecture based

on a novel type of multitask learning, which can achieve

superior performance in rotating to a target-pose face im-

age from an arbitrary pose and illumination image while

preserving identity. The target pose can be controlled by

the user’s intention. This novel type of multi-task model

significantly improves identity preservation over the single

task model. By using all the synthesized controlled pose

images, called Controlled Pose Image (CPI), for the pose-

illumination- invariant feature and voting among the multi-

ple face recognition results, we clearly outperform the state-

of-the-art algorithms by more than 4∼6% on the MultiPIE

dataset.

1. Introduction

Recently, there have been significant advances in face

recognition technologies, especially due to deep learning.

Zhu et al. [26] proposed a deep model that can convert

a face image with an arbitrary pose and illumination to a

so-called canonical face image as if it is viewed from the

front with a standard illumination. DeepFace [18] achieved

a human-level performance in face recognition for the first

time with a 97% recognition rate on very challengning LFW

dataset [6], and this record has recently been updated by a

more powerful deep learning method [17] achieving an im-

pressive 99% recognition rate on LFW dataset.

One important challenge related to face recognition is

changing the viewpoint of a face image or synthesizing a

novel view while preserving the identity of the face. For

Figure 1. Conceptual diagram of our proposed model. The Input

image under an arbitrary pose and illumination is transformed into

another pose image. The Remote Code represents the target pose

code corresponding to the output image. By interacting between

the input image and the Remote Code, our model produces desired

pose image.

instance, DeepFace also relies on a preprocessing stage that

rotates the input face images to a canonical view. A recent

work [27] that extends [26] can generate not only a canon-

ical view but also many face images with arbitrary poses

preserving the identity.

This paper improves upon these recent achievements

by proposing a simple yet powerful way to rotate a two-

dimensional face image to a different pose selected by a

user. More specifically, an arbitrary pose and illumination

are used for input to the network, and a controlled pose un-

der frontal illumination is generated as output. The concept

is illustrated in Figure 1. We train a deep neural network

(DNN) that takes a face image and a binary code encoding

a target pose, which we call Remote Code, and generates

a face image with the same identity viewed at the target

pose indicated by the Remote Code. It is as if the user has

a remote control and a black-box rotator, which can rotate

a given face image according to the user’s Remote Code.

The quality of this rotator can be measured by the degree to
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Input −45o −30o −15o 0o +15o +30o +45o

Figure 2. The first column represents the input test images of two

individuals from the MultiPIE dataset. The remaining columns are

the outputs from the input images with different Remote Codes.

For example, the third column represents the −30
o pose images

resulting from the first column images and the Remote Code that

represents −30
o. The top three rows have the same identity, and

the bottom three rows are the same identity under different illumi-

nations and poses.

which the output face image accords with the desired pose

and the degree to which the identity of the face is preserved.

Figure 2 shows the final results of our model. From the in-

put images under various illuminations and poses with the

same identity, our model can produce almost the same im-

ages for each controlled pose under frontal illumination.

To improve the identity-preserving ability of the deep

neural network, we introduce an auxiliary DNN and an aux-

iliary task that requires that the series interconnection of the

main DNN, which generates the desired pose image, and

the auxiliary DNN reconstructs the original input image,

i.e. the auxiliary DNN reconstructs the original input im-

age back from the output image of the main DNN. The idea

is that if the series interconnection of the main DNN and

auxiliary DNN can reconstruct the original input image, the

output of the main DNN should be identity-preserving and

contain sufficient information about the identity of the input

image. If the identity is not preserved by the main DNN,

the output image of the main DNN already takes a different

identity and the result of the next auxiliary DNN would de-

viate even further from the set of valid face images of the

original identity.

Another conceptual diagram for this multi-task learning

approach is shown in Figure 3. Suppose you would like to

rotate a given face image to 30o. A DNN trained with a typ-

ical single-task approach would warp the face image along

a path that deviates from the ground truth path to some ex-

tent, which is depicted by the yellow region. The output

image will be somewhere in the intersection of the yellow

region and subspace corresponding to pose parameter 30o.

Figure 3. Conceptual diagram for our multi-task learning. By

attaching second task, the path from input image to target pose

image is closer to the ground truth path than the single task.

With the additional task that restores the original input im-

age back from the output image, the warping path would

get closer to the ground truth path as depicted by the green

regions due to improved identity preserving ability. Simi-

larly, the target pose can be 0o or −45o, etc., as illustrated

in Figure 3.

Previous multitask learning models have shared some

layers to determine common features [13]. After the shared

layers, the remaining layers are split into the multi-tasks.

However, we have designed the multi-task model in a novel

way, as described in Figure 4. Our multi-task model shares

all the layers involved in the main DNN and attaches auxil-

iary DNN right after the main DNN to improve the identity-

preserving ability. To evaluate the performance of our

model, we prepared a face recognition task. We trained and

tested on the large MultiPIE face dataset [5], which contains

face images taken in various poses and under diverse illu-

minations. We use several pose-changed images from each

test image as the pose- and illumination- invariant features.

Our contributions are as follows: 1. We propose the new

architecture and Remote Code, which can efficiently change

the image into the desired pose. Unlike [27], where several

candidate face images for face rotation should be generated

and the best fit for controlled pose is selected from among

the many candidates, the proposed method can generate the

new face image with the desired pose in a single trial. 2. We

introduce a novel type of multi-task learning strategy, which

further improves the identity-preserving ability of the DNN.

3. We achieve a better face recognition rate than [26] and

[27] using all the synthesized images at multiple viewpoints

and voting among the multiple face recognition results.

The rest of this paper is organized as follows. In Sec. 2,

previous research about the face recognition and multitask

learning are explained. The description of our model and



Figure 4. Complete architecture of our DNN model containing four main parts: the feature extraction part, the feature rotation part, the

imaging part, and the reconstruction task part which is the auxiliary task. Each part consists of the locally connected layer, the max-pooling

layer, and the fully connected layer. In the third part, the red box represents the output layer where the target pose images are generated.

what we focused on designing is explained in Sec. 3, and

the parameters of our models are described in Sec. 4. Sec.

5 describes various experiments to demonstrate the strength

of our model, followed by the conclusion in Sec. 6.

2. Related Work

Face recognition Typically, for the past twenty years,

hand-crafted features such as LBP [1], SIFT [15] or Gabor

[14] have been used in the face recognition task. Recently,

face recognition and verification across poses have become

major issues. These studies are largely separated into stud-

ies of 3D methods [2, 12, 24, 20] and 2D methods [11]. For

the 3D methods, Asthana et al. [2] rotate non-frontal im-

ages to frontal images using the 3D model and landmark

points. Li et al. [12] also transform a rotated face image to

a frontal image using a morphable displacement field. Yi et

al. [20] provide pose-robust features by using transformed

filters and the 3D model. On the other hand, 2D methods

extract pose-invariant features without 3D information. By

representing the test image with a weighted sum of gallery

images, Li et al. [11] use these weights as pose-invariant

features. The DNN have been used to find pose-robust fea-

tures without hand-crafted features [26, 7, 27]. Zhu et al.

[26] change various pose images into frontal images using

CNN and use these ouput images directly as pose-invariant

features. This method is also applied in [7], by changing

poses step-by-step to minimize the effects of the manifold.

Zhu et al. [27] propose a multi-view perceptron (MVP),

which can untangle the identity and pose by using random

hidden neurons.

Deep learning with multitask learning Recently, many

DNN architectures have improved the performance on sev-

eral computer vision tasks by using multitask learning

[21, 23, 4]. To obtain the global weights that can extract

features for the various tasks, Collobert et al. [4] iteratively

trains the single model on each training set corresponding to

each different task. Instead of sharing all weights, a DNN

has the shared layers in the front part, followed by separated

layers to perform different tasks [25, 13, 22]. However, our

model shares all layers of the main task with the second

task.

3. Model Description

Two key objectives of our model are creating a new

posed image according to what the Remote Code represents,

and preserving input image identity even though the pose is

changed. Our model is carefully designed to produce su-

perior performance in these objectives. Figure 4 represents

the final design of the network. Our model uses an image

M ∈ R
N×N and the Remote Code C ∈ {0, 1}2N+1 for the

input W ∈ R
(N+1)×(N+1), which is defined as:

W(x,y) =

{

M(x,y) if 1 ≤ x, y ≤ N
CN+1−x+y otherwise

, (1)

where (x , y) and C j represent the pixel coordinate (x , y)
and the j -th bit of C , respectively. As shown in Figure 4, the

Remote Code surrounds the input image to make a square

input set. Experimentally, the way to attach the Remote

Code to an image doesn’t effect on the performance.

Many previous works have efficiently used CNN to train

the DNN model from images [16, 9]. However, CNN shares

filters over all images, when it is inappropriate to apply fil-

ters, which share weights, to the Remote Code attached im-

age. For that reason, we use the locally connected layer

without weight sharing for the first part. For the second

part, we use the fully connected layer to change features to

contain the target pose information that the Remote Code

represents. The locally connected layer and the pooling

layer are applied after the fully connected layer to make

features more effectively contain pose information and pre-

serve identity. After the second part, the output layer, which

consists of the fully connected layer, functions to construct



the new pose image. Furthermore, the novel element of the

additional task part is attached after the third part. A de-

tailed explanation of part 4 is contained in Sec. 3.2.

The whole set of parameters is expressed as

Input(61×61)-L(7,32)-P(2,2)-FC(3600)-L(5,32)-P(3,3)-

FC(3729)-FC(3600)-L(5,32)-P(3,3)-FC(3721). L, P, and

FC denote the locally connected layer, pooling layer, and

fully connected layer, respectively. L(7,32), P(2,2), and

FC(3600) mean that this layer applies 32 filters without

weight sharing with size 7, the max-pooling layer whose

size is 2 with stride 2, and the fully connected layer with

3600 neurons, respectively. FC(3729) is the output layer

that produces a target image and code that represents the

informations of input image. In addition, FC(3721) means

a second task layer that reconstructs an input image and

Remote Code the same as the input layer. The locally

connected layer and fully connected layer use an ReLU

activation function [9]. The whole locally connected layer

has stride 1, and all the strides of pooling layers are set

to the same as their filter size. However, the output layer

and the last layer contain the linear activation function

without rectification. Parameter settings can be varied

flexibly depending on the input image size and the number

of target poses. The above parameter settings are designed

for the experiment with 60×60 input images and 7 poses,

described in Sec. 5.2.1.

3.1. Remote Code

We use two special codes at the input and output layer

to control the input image to change their pose. The code

at the input layer, Remote Code, Ci , i = 1 , . . . ,n , instructs

the input image to change to the i -th pose out of n poses

with the same identity. The Remote Code, which is a kind

of simple repetition code, Ci ∈ {0, 1}l with total length l is

defined as:

Cj
i =

{

1 if (i− 1)× k < j ≤ i× k
0 otherwise

, (2)

where C
j
i is the j -th bit of code Ci and k = ⌊l/n⌋. (l ,n)

were set equal to (121, 7) and (65, 9) for the experiments

described in Sec. 5.2.1 and Sec. 5.2.2, respectively. As the

output layer generates the target pose image with frontal

illumination from various illumination images, we do not

need the illumination information at the input layer code.

However, the auxiliary DNN that starts with the output layer

of the main DNN needs the information of not only the pose

but also the illumination of the input image to reconstruct

the input image. We set the output layer code, called Recon

Code, {Qi ,St}, i = 1 , . . . ,n, t = 1 , . . . ,m , which repre-

sents the i -th pose out of n poses with the t-th illumination

condition out of m illumination variations of the input im-

age. Similarly to the Remote Code, we set the pose code,

Qi ∈ {0, 1}l with total length l is defined as:

Qj
i =

{

1 if (i− 1)× k < j ≤ i× k
0 otherwise

, (3)

where Q
j
i is the j -th bit of code Qi and k = ⌊l/n⌋. (l ,n)

were set equal to (49, 7) and (72, 9) for the experiments de-

scribed in Sec. 5.2.1 and Sec. 5.2.2, respectively. Further-

more, the illumination code, St ∈ {0, 1}l with total length l

is defined as:

Sj
t =

{

1 if (t− 1)× k < j ≤ t× k
0 otherwise

, (4)

where S
j
t is the j -th bit of code St and k = ⌊l/m⌋. (l ,m)

were set equal to (80, 20) and (60, 20) for the experiments

described in Sec. 5.2.1 and Sec. 5.2.2, respectively.

Finally, we can define the training dataset. As we can

make n Remote Codes for one image, the dataset is n

times larger than the original dataset. We can set the train-

ing dataset, input and output pairs for the each image M ,

L = {{M ,Ci}, {Mi ,Qj ,St}}, where i = 1 , . . . ,n and Mi

is the i -th pose image with frontal illumination with the

same identity as M . Qj and St are the pose and illumi-

nation code of the image M , respectively.

3.2. Multitask Learning

We used a multitask learning model as described in Fig-

ure 4. Although the main objective of our model is to con-

struct the new pose image, we additionally attached a sec-

ond task, reconstructing the input image, after the first task

model to preserve the input identity while rotating an input

image.

We take the squared L2 norm as the cost function for

both tasks. For the first task, the cost function of the output

layer, constructing the new pose image and the Recon Code,

is defined as:

Ec =

N
∑

i=1

∥Yi,GT − Yi∥
2
2, (5)

where Yi,GT and Yi are the ground-truth and the gener-

ated output that contains the changed pose image, and the

pose and illumination information of the input image, re-

spectively. Furthermore, i and N indicates the index of the

training input and total batch size, respectively.

The cost function of the second task, reconstructing the

input image and the Remote Code, is defined as:

Er =
N
∑

i=1

∥Xi,GT −Xi∥
2
2, (6)

where Xi,GT and Xi are the ground-truth and the con-

structed output containing the input image and Remote



Input layer First Pooling Layer First FC Layer Label

Second Pooling Layer Output Layer Third FC Layer

Figure 5. Feature space of 6000 features of the testing images, from MultiPIE dataset, extracted on each layer. Each dot of the same color

represents the feature of input set containing the same Remote Code; for example, the red dot is the feature containing the Remote Code

representing −60
o.

Code, respectively. Our final cost function is the weighted

sum of the cost function of the first and the second task,

E = λcEc + λrEr, (7)

where λc and λr are the weights for the first and second

task, respectively. We assumed that the two tasks have same

importances. λc and λr were set equal to 1 for all experi-

ments.

4. Training

All our experiments used the cuda-convnet [8], which is

one of the popular DNN toolboxes. We can control several

parameters including the initial weight (iniW), the learning

rate of weight and bias (epsW, epsB), momentum of weight

and bias (monW, momB), and L2 weight decay (wc). For

all experiment settings, we use the same parameters. For

the locally connected layer and the fully connected layer,

we set the iniW equal to 0.001 and 0.01, respectively. In ad-

dition, for all layers except the first locally connected layer,

we set the epsW, epsB, momW, momB, and wc equal to

0.0001, 0.0002, 0.9, 0.9, and 0.04, respectively. We set

epsW to 0.001 and epsB to 0.02 for the first locally con-

nected layer. We trained our model using mini-batch gradi-

ent descent with back propagation [10]. The batch size is

equal to 100.

To obtain the input and output training set, we carried

out two preprocessing steps for the image set, not for the

Remote Code. First, in order to be robust to illumination

changes, each image is subtracted and divided by the mean

and variance of each image, respectively. Second, we also

subtracted the per-pixel mean and divided by the per-pixel

variance, computed over the training images.

5. Experiments

The experiment section consists of four parts to demon-

strate the strength of our model. Sec. 5.1 shows the feature

space of each layer to analyze how the input face image ro-

tates along the deep architecture. We use the t-SNE method

[19], one of the famous tools to transform high-dimensional

space into two-dimensional space. Sec. 5.2 contains the re-

sults of face recognition experiments with state-of-the-art

procedures to demonstrate the ability to preserve identity.

We carefully designed our model to construct a target im-

age and preserve an identity at the same time, performing

well on both tasks. Accordingly, we contruct the experi-

ments to demonstrate the effectiveness of our model. In

Sec. 5.3, we compare our multitask model to a single task

model. Finally, in Sec. 5.4, we construct an experiment to

show the advantages of putting a fully connected layer at

the beginning.

5.1. Feature Space

As shown in Figure 5, the features from the first pool-

ing layer are mixed together in similar patterns to the input

layer. This shows that the first locally connected layer and

the pooling layer extract useful features of the input image,

rather than the changed pose. Features that have the same

Remote Code inserted in the input layer start to merge with



each other from the first fully connected layer. However,

some different-color dots mixed with each other show that

the one fully connected layer is not enough to change the

pose perfectly. The locally connected and pooling layers

attached after the fully connected layer clearly performed

the objective of changing pose. As shown in Figure 5, at

the second pooling layer, features are perfectly separated

from the other colors. As the output layer is a fully con-

nected layer, operating to change the features into the target

pose image, features are mixed with those of similar poses;

for example, the −45o,−30o, and −15o images are simi-

lar. Features extracted from the second pooling layer show

a better performance than those extracted from other layers

in the face recognition task, as described in Table 3.

5.2. Face Recognition

To demonstrate how our model maintains the identity of

input images, we take the face recognition task by using the

MultiPIE dataset [5]. We prepared two experiment settings:

Setting 1, we only used session 1 images in the MultiPIE

dataset which includes 249 subjects. 100 subjects (ID 001

to 100) under 7 poses (−45o to +45o) and 20 illuminations,

were used for training the model to analyze a human face.

After the training, we chose the remaining 149 subjects (ID

101 to 250 except 213) under 6 poses (−45o ∼ +45o ex-

cept 0o) with 19 illuminations (ID 01 ∼ 20 except frontal

illumination, ID 07) for the probes to test. For the gallery

images, one frontal image with frontal illumination for each

subject was used. Therefore, 14000 images were used for

training, and 16986 images were used for testing. For Set-

ting 2, we prepared more large scale data in the MultiPIE

dataset. We used 200 subjects (ID 001 ∼ 200) under 9 poses

(−60o to +60o) with 20 illuminations for training. For the

testing, we used remaining 137 subjects under 9 poses with

20 illuminations, 137×9×20 images in total. The selecting

procedure of gallery images are same with Setting 1.

For the test step, we extracted features from the output

layer, called Controlled Pose Image (CPI), which is marked

with a red box in Figure 4. Furthermore, we extracted fea-

tures from the second pooling layer in front of the output

layer, termed as Controlled Pose Feature (CPF). To evalu-

ate, all experiments used L2 distance norm to compare the

test image and gallery images. As our model can create dif-

ferent pose images from one image, we make n, the number

of trained poses (7 for Setting 1 and 9 for Setting 2), im-

ages Pi (i = 1, . . . ,n) per one probe image. Furthermore,

we make n images Gj
i (i = 1, . . . ,n, j is subject identity) per

one gallery image. For each i, the result of the equation

min
j

∥Pi −Gj
i∥

2
2, (8)

is calculated. The result for each i is voted to produce the

final result.

−45o −30o −15o +15o +30o +45o Avg

Li[11] 63.5 69.3 79.7 75.6 71.6 54.6 69.3

Z.Zhu[26] 67.1 74.6 86.1 83.3 75.3 61.8 74.7

CPI 66.6 78.0 87.3 85.5 75.8 62.3 75.9

CPF 73.0 81.7 89.4 89.5 80.4 70.3 80.7

Table 1. Recognition rates (%) for the various poses under Setting

1. Best results are written in bold.

00 01 02 03 04 05 06

Li[11] 51.5 49.2 55.7 62.7 79.5 88.3 97.5

Z.Zhu[26] 72.8 75.8 75.8 75.7 75.7 75.7 75.7

CPI 66.0 62.6 69.6 73.0 79.1 84.5 86.6

CPF 59.7 70.6 76.3 79.1 85.1 89.4 91.3

08 09 10 11 12 13 14

Li[11] 97.7 91.0 79.0 64.8 54.3 47.7 67.3

Z.Zhu[26] 75.7 75.7 75.7 75.7 75.7 75.7 73.4

CPI 86.5 84.2 80.2 76.0 70.8 65.7 76.1

CPF 92.3 90.6 86.5 81.2 77.5 72.8 82.3

15 16 17 18 19 Avg

Li[11] 67.7 75.5 69.5 67.3 50.8 69.3

Z.Zhu[26] 73.4 73.4 73.4 72.9 72.9 74.7

CPI 78.2 80.7 79.4 77.3 65.4 75.9

CPF 84.2 86.5 85.9 82.9 59.2 80.7

Table 2. Recognition rates (%) for the various illuminations under

Setting 1. Best results are written in bold.

5.2.1 Result of Setting 1: Containing 7 Poses

In this setting, we used 60×60-size images for the input as

described in Figure 4. We compared our results with the

state-of-the-art results [26] and Li et al. [11]. The results of

recognition rates for different poses are shown in Table 1.

As with human perception, our model found it difficult to

imagine the face identity from the greatly rotated images,

−45o and +45o cases. However, Table 1 shows that not

only the CPI but also the CPF outperformed the state-of-

the-art for most poses. Table 2 shows the recognition rates

for 20 different illuminations. As we tested on 19 illumi-

nation settings excluding frontal illumination (ID 07), only

19 results are shown. The CPF outperforms all the other

methods for 12 out of 19 parts.

5.2.2 Result of Setting 2: Containing 9 Poses

As the state-of-the-art [27] uses training and test im-

ages with size 32×32, we prepared the same setting.

The changed input image size requires different param-

eter settings. The whole set of parameters is expressed

as Input(33×33)-L(5,16)-P(2,2)-FC(1600)-L(5,16)-P(2,2)-

FC(1156)-FC(1600)-L(7,16)-P(2,2)-FC(1089). We com-

pared our results with several features listed in [27]. All

the previous settings used LDA to reduce the dimensions

of features. As shown in Table 3, the CPF outperforms all

the other methods for all different poses. Extracting fea-

tures from different layers produced different results. As



−60o −45o −30o −15o 0o +15o +30o +45o +60o Avg

Landmark LBP[3] 35.5 52.8 71.4 83.9 94.9 82.9 68.2 48.3 32.1 63.2

FIP+LDA[26] 49.3 66.1 78.9 91.4 94.3 90.0 82.5 62.0 42.5 72.9

RL+LDA[26] 44.6 63.6 77.5 90.5 94.3 89.8 80.0 59.5 38.9 70.8

MTL+RL+LDA[27] 51.5 70.4 80.1 91.7 93.8 89.6 83.3 63.8 50.2 74.8

Z.Zhu+LDA[27] 60.2 75.2 83.4 93.3 95.7 92.2 83.9 70.6 60.0 79.3

CPI 55.8 71.8 80.0 90.1 98.4 90.2 82.7 71.0 52.9 77.0

CPF 63.2 80.4 88.1 94.5 99.5 95.4 88.9 79.4 60.6 83.3

CPF-FC1600 45.4 72.7 80.8 885 96.8 90.3 79.6 70.22 42.5 74.1

CPF-Pool1 9.7 39.1 51.6 69.9 92.5 70.8 51.1 39.4 9.3 48.1

Table 3. Recognition rates (%) for the various poses under Setting 2. The CPF-FC1600 and the CPF-Pool1 indicates the features extracted

from the first FC(1600) layer and the first pooling layer, respectively. Best results are written in bold.

the output layer is converting high level features into target

images, some of the discriminative features useful for dis-

cerning face identities may be lost at the output layer. This

is why the high level feature just before the output layer,

CPF, performs the best. Our model achieves remarkable

performance on 0o. Showing a 99.5% recognition rate, our

method clearly outperforms the state-of-the-art algorithm,

which reports a 95% recognition rate on 0o. Indeed, the

recognition rate of our method amounts to 14 misclassifica-

tions out of 2740 images.

Although the above final results are produced by vot-

ing among the multiple results which are produced by each

CPFs, most of the correct results are generated by large

number of votes meaning high confidence as shown in Fig-

ure 6. This result indicates that face recognition based on

synthesized face images at each target pose gives quite con-

sistent result and that the proposed DNN can generate high

quality multi-view face images across pose. In addition, as

described in Figure 7, proposed model can preserve identity

while changed pose as well.

Figure 6. The percentage of the number of CPFs contributing

to final result. Most of the incorrect results are generated by low

confidence, e.g. 5 out of 9 CPFs are voted. On the other hand,

most correct results are produced from high confidence. We can

infer that each CPF has an ability to preserve identity.

5.3. Compare to Single Task Learning

We constructed a new experiment to demonstrate the ef-

fectiveness of appending the reconstruction task layer after

the output layer. We prepared two models, the multi-task

model the same as Figure 4 and the single task model as

only the first task of the first model. As the CPF outper-

forms the CPI, we take CPF for both models in the same

experiment as Setting 1. The recognition rates for vari-

ous poses and illuminations are shown in Table 4 and 5,

respectively. For all pose and illumination settings, multi-

task model is better than single task model. The first task

of multitask model is to construct a target pose image that

the Remote Code represents, the same as the single task

model’s objective. However, the second task is to recon-

struct the input image and the input Remote Code from the

output layer features. Since the output layer of the multi-

task model must contain identity preserving features to re-

construct the input layer in the second task, the multitask

Figure 7. The feature space of 6000 features from the second

pooling layer with Setting 2. Each pale dot color represents a dif-

ferent Remote Code. 54 dots with the same deep colors represent

the features from a single identity. In the feature space, not only

are the features united among the Remote Codes, but also the deep

dots are united among the same identity in each pose.



−45o −30o −15o +15o +30o +45o Avg

Single 65.4 76.5 85.9 85.8 76.3 63.2 75.5

Multi 73.0 81.7 89.4 89.5 80.4 70.3 80.7

Table 4. Recognition rates (%) for the various poses under Setting

1, comparing with single task model and multitask model. Best

results are written in bold.

00 01 02 03 04 05 06

Single 45.4 64.3 72.9 74.9 82.0 86.9 89.8

Multi 59.7 70.6 76.3 79.1 85.1 89.4 91.3

08 09 10 11 12 13 14

Single 89.7 87.9 81.7 76.5 72.2 66.7 76.9

Multi 92.3 90.6 86.5 81.2 77.5 72.8 82.3

15 16 17 18 19 Avg

Single 80.9 82.7 79.9 76.5 47.1 75.5

Multi 84.2 86.5 85.9 82.9 59.2 80.7

Table 5. Recognition rates (%) for the various illuminations under

Setting 1, comparing with single task model and multitask model.

Best results are written in bold.

model retains identity features more effectively than the sin-

gle task model.

5.4. Effectiveness of Early FC layer

Most DNN models are composed of two large parts,

feature extraction and combination of the features. As a

large-scale input size is difficult to handle, convolutional

layers or locally connected layers are usually used at the

beginning of the network for feature extraction. In addi-

tion, fully connected layer is used to combine features in

the rear. However, as described in Figure 4, our model

uses a fully connected layer at the beginning. To ex-

amine the effectiveness of an early fully connected layer

model (EFC), we constructed an experiment with Set-

ting 2. Our model is described in Section 5.2.2. We

designed another model (LFC) in which the fully con-

nected layer is located just before the output layer, not

at the beginning. The whole parameter set is defined

as Input(33×33)-L(5,16)-P(2,2)-L(5,16)-P(2,2)-FC(1600)-

FC(1156)-FC(1600)-L(7,16)-P(2,2)-FC(1089). All param-

eters are the same, except the position of the fully connected

layer, the first FC(1600) layer. The recognition rates of the

two models are noted in Table 6. We also include the results

of using the CPI and CPF for each model. CPF-LFC and

CPI-LFC are extracted from the FC(1600) and FC(1156),

respectively.

As the locally connected layer filter acts on local parts,

only the fully connected layer operates globally. Accord-

ingly, at the fully connected layer, the Remote Code starts

to change features to contain the target pose that the Re-

mote Code represents. Thus in the early fully connected

layer model, the features that contain the target poses ap-

pear earlier than in the late fully connected model. As the

results show, although CPI-LFC results are better than those

CPI-EFC CPF-EFC CPI-LFC CPF-LFC

Result 77.0 83.3 78.3 79.7

Table 6. Recognition rates (%) compared with our model, which

has an FC layer at the beginning, and Late FC model, which has

no FC layer at the beginning. Best results are written in bold.

of CPI-EFC, the early fully connected model is better than

the late fully connected model in the case of the best perfor-

mance feature, CPF.

6. Conclusion

In this paper, we proposed a novel type of multi-task net-

work that can synthesize the desired pose and frontal illu-

mination face image by utilizing user’s Remote Code repre-

sents. By attaching a second task model which reconstructs

the input image, after the first task model which rotates an

input image to a certain pose, proposed multi-task network

produced better performance at preserving identity than the

single task model. Activation values of the second pooling

layer at the first task model can be used as the pose- and

illumination- invariant feature. In the face recognition task

under arbitrary poses and illuminations, our model clearly

win against the previous state-of-the art model by more than

4∼6%.
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