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ABSTRACT

Context. The Kepler space telescope monitors more than 160 000 stars with an unprecedented precision providing the opportunity to
study the rotation of thousands of stars.
Aims. We present rotation periods for thousands of active stars in the Kepler field derived from Q3 data. In most cases a second period
close to the rotation period was detected that we interpreted as surface differential rotation (DR). We show how the absolute and
relative shear (ΔΩ and α = ΔΩ/Ω, respectively) correlate with rotation period and effective temperature.
Methods. Active stars were selected from the whole sample using the range of the variability amplitude. To detect different periods
in the light curves we used the Lomb-Scargle periodogram in a pre-whitening approach to achieve parameters for a global sine fit.
The most dominant periods from the fit were associated to different surface rotation periods. Our purely mathematical approach is
capable of detecting different periods but cannot distinguish between the physical origins of periodicity. We ascribe the existence of
different periods to DR, but spot evolution could also play a role. Because of the large number of stars the period errors are estimated
statistically. We thus cannot exclude the existence of false positives among our periods.
Results. In our sample of 40 661 active stars we found 24 124 rotation periods P1 between 0.5 and 45 days, with a mean of 〈P1〉 =
16.3 days. The distribution of stars with 0.5 < B − V < 1.0 and ages derived from angular momentum evolution that are younger
than 300 Myr is consistent with a constant star-formation rate; the detection among older stars is incomplete probably because of our
active sample selection. A second period P2 within ±30% of the rotation period P1 was found in 18 616 stars (77.2%). Attributing
these two periods to DR we found that for active stars other than the Sun the relative shear α increases with rotation period, and
slightly decreases with effective temperature. The absolute shear ΔΩ slightly increases from ΔΩ = 0.079 rad d−1 at Teff = 3500 K to
ΔΩ = 0.096 rad d−1 at Teff = 6000 K. Above 6000 K, ΔΩ shows much larger scatter. The dependence of ΔΩ on rotation period is weak
over a large period range.
Conclusions. Latitudinal differential rotation measured for the first time in more than 18 000 stars provides a comprehensive picture
of stellar surface shear. This picture is consistent with major predictions from mean-field theory, and seems to support these models.
To what extent our observations are prone to false positives and selection bias has not been fully explored, and needs to be addressed
using other data, including the full Kepler time coverage.
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1. Introduction

The interplay of stellar rotation and convection is the origin of
various stellar activity phenomena. For main sequence stars the
rotation rate strongly depends on the stellar age. Because of ro-
tational braking, stars lose angular momentum over the time and
slow down. Skumanich (1972) empirically found the relation
that the stars’ rotational velocity is proportional to the inverse
square root of its age: vrot ∝ t−1/2. Barnes (2003) shows that
this relation holds for open cluster and Mount Wilson stars, and
also provides a color dependence of the rotation period. Irwin
et al. (2011) measure rotation periods for stars with masses be-
low 0.35 M�, finding some exceptionally fast and slow rotators.
These stars do not follow the color-period relation from Barnes
(2003), but they can be explained by a radius-dependent braking

� Appendix A is available in electronic form at
http://www.aanda.org
�� A table with rotation periods is only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A4

efficiency (Reiners & Mohanty 2012). Nowadays, a method
called gyrochronology (Barnes 2007) is being developed using
Skumanich’s relation in the opposite way to infer stellar ages
from the rotation rate. Moreover, the rotation rate strongly cor-
relates with Ca II emission and can be used as a measure of stel-
lar activity. A relation between these properties is often called
age-rotation-activity relation (Covey et al. 2011).

The solar rotation profile is by no means uniform.
Helioseismology reveals that the outer convective region shows
a large spread of rotation rates at different latitudes, whereas
the interior exhibits an almost constant rotation rate. This be-
havior is observed in stars other than the Sun as well. In early
F-type stars a convection zone starts to form growing towards
later spectral types. The Coriolis force acts on turbulence in
the convection zone. Its back reaction redistributes angular mo-
mentum and changes the global rotation behavior, leading to
differential rotation (DR) of the surface. A detailed theoretical
description can be found in Kitchatinov (2005). The DR of stel-
lar interiors is studied by asteroseismology (Aerts et al. 2010),
but we are mainly interested in surface DR. On the Sun the
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equatorial region rotates faster than the poles, i.e., the angular
velocity Ω depends on the latitude θ. This latitudinal DR is usu-
ally described by the equation

Ω(θ) = Ωeq(1 − α� sin2 θ) (1)

with Ωeq being the angular velocity at the equator, and α� = 0.2
the relative horizontal shear. In general, α > 0 is known as solar-
like DR; α < 0 is called anti solar-like DR; and α = 0 supplies
rigid body rotation. The absolute shear ΔΩ between the equator
and the pole is linked to α by the relation

ΔΩ = Ωeq −Ωpole = αΩeq. (2)

Differential rotation is believed to be one major ingredient of
the driving mechanism of magnetic field generation on the Sun.
Turbulent dynamos operating in other stars produce strong mag-
netic fields and are able to transform poloidal into toroidal
fields, and vice versa. Morin et al. (2008) showed that the
M4 dwarf V374 Peg exhibits a strong magnetic field showing
only weak signatures of DR. This effect becomes even more
important when stars become fully convective (Morin et al.
2010). Furthermore, the strength of DR varies with spectral type.
Barnes et al. (2005) found that ΔΩ strongly increases with ef-
fective temperature. For temperatures above 6000 K this trend
was confirmed by other authors (Reiners 2006; Collier Cameron
2007). This could be a hint towards different dynamo mecha-
nisms, but the final role of DR is still not understood.

There are several ways to measure stellar rotation rates. The
most common techniques are the long-term monitoring of pho-
tometric light curves yielding rotation periods from star spots,
and the fit to spectral line profiles to measure rotational broad-
ening (v sin i). Other methods include line core variations in the
Ca II H and K lines (Baliunas et al. 1983; Gilliland & Fisher
1985), and in eclipsing binaries the rotation rate can be mea-
sured by the Rossiter-McLaughlin effect or by ellipsoidal light
variations. The rotation rate is a well-known quantity for tens of
thousands of stars.

Differential rotation is much harder to measure because sur-
face features can only be resolved on the Sun. Nonetheless, star
spots located at different latitudes are useful tracers for DR.
Doppler imaging tracks active regions and follows their migra-
tion over time, which allows us to draw conclusions about the
stellar rotation law. This method has been successfully used
by Donati & Collier Cameron (1997), Collier Cameron et al.
(2002), among others. A different technique to measure DR is
the Fourier transform method (Reiners & Schmitt 2002) that an-
alyzes the shapes of Doppler broadened line profiles. Following
another approach, Lanza et al. (1993) simulated light curves of
spotted stars and detected different periods by taking the Fourier
transform. Walkowicz et al. (2013) fit an analytical spot model to
synthetic light curves of spotted stars to see whether the model
could break degeneracies in the light curve, especially account-
ing for the ability of determining the correct rotation periods,
both in the presence and absence of DR. Analytical spot model
were fit to real data (see, e.g., Croll et al. 2006; Fröhlich et al.
2009), accounting for DR in the parameter space. Recently, this
method was used for single Kepler light curves (Frasca et al.
2011; Fröhlich et al. 2012) where DR is the favorite explana-
tion for the light curve shape. Asteroseismology provides an-
other approach, explaining frequency splitting of global oscil-
lations in terms of different latitudinal rotation rates (Gizon &
Solanki 2004).

With the advent of the space missions CoRoT and Kepler,
photometric data of a vast number of stars were collected, con-
tinuously, simultaneously, and with an unprecedented precision.

This enables us to study stellar variability of a large number
of stars with variations of only millimagnitudes. Because of
the plethora of data, an automated classification for the differ-
ent kinds of stellar variability is needed. Attempts were made
to group the whole Kepler sample into known classes of vari-
ability like defined pulsation classes (e.g., RR Lyrae, δ Scuti,
etc.), and rotation induced variability, binarity, and other groups
(Debosscher et al. 2011; Uytterhoeven et al. 2011). In many
cases, however, a unique classification was not possible.

The main goal of this paper is to provide rotation periods
for a large fraction of the Kepler sample. Our special focus is
on the detection of a second period close to the rotation pe-
riod as a hint for DR. We apply the method from Reinhold
& Reiners (2013, hereafter Paper I) to derive different periods.
Our analysis method is based on the Lomb-Scargle periodogram
(Zechmeister & Kürster 2009) that has been successfully used
to measure rotation periods for several CoRoT stars (Affer et al.
2012). McQuillan et al. (2013) have measured rotation periods
utilizing an auto-correlation technique for the M dwarfs in the
Kepler field, finding evidence for two different stellar popula-
tions due to a bimodal period distribution.

The paper is organized as follows. In Sect. 2 the Kepler
data and its reduction is discussed. Section 3 shows how the ac-
tive stars are selected from the whole sample. Section 4 summa-
rizes the method developed in Paper I, with special focus on the
period selection process. The rotation periods are presented in
Sect. 5.1, with a focus on DR in Sects. 5.3 and 5.4. In Sect. 6 we
compare our results to other observations and theoretical predic-
tions. The last section contains the summary. Differential rota-
tion beyond the imposed limits is shown in the Appendix.

2. Kepler data and reduction

Our analysis is based on the publicly available1 Quarter 3 (Q3)
long cadence data. Although a large quantity of data are avail-
able, we restrict our analysis to one quarter because it is chal-
lenging to stitch different quarters together. The Q3 data was
chosen because it has fewer instrumental effects than earlier
quarters, and carries a large number of targets (165.548 light
curves in total). Generally, each quarter is suitable for our pur-
poses and we plan to use data from other quarters to validate our
results and to see how periods change with time.

All Kepler light curves suffer from systematics hitting on
various time scales. The most dominant one is due to differ-
ential velocity aberration manifesting in upward and downward
low-frequency trends of the light curves. Their removal is non-
trivial (McQuillan et al. 2012; Kinemuchi et al. 2012; Petigura &
Marcy 2012) since one has to decide which trends are purely in-
strumental and which ones are due to true stellar variability. The
uncorrected data are marked as SAP_FLUX in the FITS files.
The first pipeline available that tried to correct for instrumen-
tals is called pre-search data conditioning (PDC) with the aim
of finding planetary signals in the light curve. It was not very
careful when removing variability from the light curves. Hence,
in many cases true stellar variability has been removed. The
next reduction pipeline PDC-MAP2 (Stumpe et al. 2012; Smith
et al. 2012) removes the so-called co-trending basis vectors from
the data. This pipeline removes the most common trends but
keeps the stellar variability. All our calculations are based on

1 http://archive.stsci.edu/pub/kepler/lightcurves/
tarfiles/
2 MAP stands for Maximum A Posteriori which means that the param-
eters are estimated in a Bayesian way.
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Fig. 1. Temperature vs. gravity of all Kepler Q3 stars (black) using KIC
parameters. The active sample (Rvar ≥ 0.003) is shown in red. The
blue star marks the Sun which is shown for comparison. The dashed
line marks log g = 3.5 which was set to exclude giants in the following.

this PDC-MAP data (SOC 8.3). The next section describes how
active stars are selected from the whole Kepler sample.

3. Sample selection

In Fig. 1 we plot effective temperature vs. gravity of the whole
Kepler Q3 sample (black dots) with the active stars shown in
red. The selection of active stars is done automatically, i.e. with-
out visual inspection of the light curves since the Kepler sample
is huge. The active stars are selected using the so-called variabil-
ity range Rvar (Basri et al. 2010, 2011). The value is computed as
follows: we sort the 4 h boxcar smoothed differential light curve
by amplitude, cut the upper and lower 5%, and take the differ-
ence between top and bottom amplitude. This measure accounts
for the intrinsic variability of the star, i.e., a variable star has
a larger variability range than a quiet star. After visual inspec-
tion of several light curves we found that a suitable criterion is
Rvar ≥ 0.003 (3 parts per thousand). Most of the active stars pop-
ulate the dwarf regime with log g � 4. The upper-right corner
shows a significant fraction of active cool stars with log g � 3.
Visual inspection of these low gravity stars reveals two groups of
variability. The first one has very high ranges up to several per-
cent, regular spot-like variations, and long periods. This might
indicate spots or pulsations on giants, which we do not consider
in this work. The second group exhibits irregular variability on
short time scales that could be due to multiple mode pulsations.
The Sun (blue star) is shown for comparison. All parameters
have been taken from the Kepler Input Catalog (KIC). We see
that the Kepler sample is strongly biased towards solar-like stars,
but also a large giant branch (log g � 3.5) is clearly visible.

We compared this value to total solar irradiance (TSI) data
from the VIRGO instrument at the SOHO satellite. Using data
from Dec. 01 1995−Sep. 01 2011 we found that the maximum
range was max(Rvar,�) = 0.0023, with a mean of

〈
Rvar,�

〉
=

0.0011 during solar maximum (Feb. 20 1999−Oct. 21 2004).
This value lies below our limit, thus all stars considered are more
active than the active Sun. The variability range is our key mea-
sure to distinguish between active and quiet stars, i.e., all stars
with Rvar above the upper limit will be called active although
there is a large spread in their ranges; 40 661 stars of the whole
Kepler sample survive this criterion. The distribution of ranges
is shown in Fig. 2. Only 24.6% of all stars are considered active,

Fig. 2. Distribution of Rvar for all Kepler Q3 stars. 40 661 active stars lie
above the imposed limit Rvar ≥ 0.3% that excludes more than 75% of
all stars.

i.e., to these stars we will apply the analysis procedure from
Paper I.

4. Period determination

Stellar activity covers a wide field of different phenomena. Our
main focus is the detection of periodic variability induced by
dark spots co-rotating with the star. Since the spot periods con-
strain the stellar rotation law the detection of more than one dom-
inant period is considered a hint for DR although there might be
other effects able to mimic DR. Hence, the method from Paper I
is applied to all active stars defined in the previous section. In
Sect. 4.1 we briefly recall our method for detecting different pe-
riods in a light curve (for details we refer the reader to Paper I),
and describe the selection process for achieving the physically
meaningful periods (Sect. 4.2). In Sects. 4.3 and 4.4 we apply
different filters to the set of returned periods to make sure that
rotation is their favorite explanation. Finally, we show three ex-
amples where DR is the favorite explanation for the light curve
pattern (Sect. 4.5).

4.1. Lomb-Scargle periodogram and pre-whitening

To detect periods in a light curve we used the generalized Lomb-
Scargle periodogram (Zechmeister & Kürster 2009). To save
computation time each light curve was binned to two hour bins.
The lowest frequency is given by the inverse product of the
time span (≈90 days) times an oversampling factor of 20, i.e.,
flow ≈ 1/(90 × 20 d), which accounts for proper frequency sam-
pling. Using a denser frequency sampling (factor of 30) did not
change the results. The highest frequency is given by the Nyquist
frequency using the above binning. The binning does not af-
fect the period determination since we only considered periods
longer than half a day (Sect. 4.2).

Computing the Lomb-Scargle periodogram is equivalent to
fitting a sine wave to the data. Subtracting the sine function from
the data and computing the periodogram of the residuals yields
a second period. This pre-whitening procedure was repeated five
times to detect additional periods in the light curve. Afterwards,
all sine parameters were used as input for a global sine fit which
is a simultaneous fit of the sum of all five sine waves allowing
for all periods to vary. Using more pre-whitening steps results in
a better fit, but is computationally intensive and does not yield
new significantly different periods. The enlarged set of returned
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periods makes it more difficult to assign a physical meaning
to the individual periods (Sect. 4.2). Visual inspection of sev-
eral light curves confirmed that the resulting fit was sufficient to
detect significant rotation-induced periods. Three example light
curves, the resulting fits, and the corresponding periodograms
are discussed in Sect. 4.5.

4.2. Period selection

The next step was to select the most significant periods from
the global sine fit, and to assign a physical meaning to them. We
were interested in rotation periods of the star. The whole concept
of only one rotation period is not quite exact, because one can
only detect periodic variations caused by active regions located
at certain latitudes. We think of either single spots or spot groups
rotating over the visible hemisphere. If these regions are not lo-
cated at the equator, then the equatorial rotation period remains
unknown. Another problem arises from stars with a high spot
coverage due to many small spots. If their surface distribution is
inhomogeneous, then their light curves cannot be distinguished
from a star with few active regions. Nevertheless, we used the
first sine period from the global sine fit as the most significant pe-
riod in the light curve. This period belongs to the highest power
found in the pre-whitening process, and is therefore defined as
one rotation period. In some cases the spots are located on op-
posite sides of the star, and the half period is what was detected.
To minimize these alias periods we compared the first two pe-
riods from the global sine fit. If the difference of twice the first
period and the second period is less than 5%, then the algorithm
selected the longer one, which is more likely the correct period.
The period finally selected is our primary period P1.

If the star rotates differentially, active regions have different
velocities that manifest in a superposition of different periods in
the light curve. To search for a second period close to P1, we
looked for a period P2 within 30% of P1 in the remaining four
sine periods. To estimate the relative surface shear of the two
active regions we defined

α := |P2 − P1|/Pmax (3)

with Pmax = max{P1, P2}. Since we cannot tell from the light
curve whether the star rotates solar-like or anti-solar-like, we al-
ways assumed solar-like DR. To get closest to the total equator-
to-pole shear we normalized the period difference by Pmax.
Equivalent to Pmax we defined Pmin = min{P1, P2} to get closest
to the equatorial period. The value of α should hold the relations

αmin ≤ α ≤ αmax. (4)

The upper limit αmax = 0.3 was a reasonable choice because the
solar value is α� = 0.2, and the total amount of DR is unknown
for stars other than the Sun. In Appendix A we showed that the
general results were not affected by using different αmax values.
The lower limit αmin = 0.01 accounts for the fixed frequency
resolution of the periodograms. If there were more than one sine
period satisfying both criteria, then the one with the second high-
est power in the pre-whitening process was chosen. If P1 was
an alias period, then only the remaining three sine periods were
considered to look for a second period.

In contrast to previous studies we found that the highest peak
of the initial periodogram was a bad measure for filtering out
active stars. The periodogram often detected a period longer than
90 days. These long periods remain doubtful because one cannot
distinguish between remnants from the PDC-MAP pipeline and

real long-term variability. Their peak height in the periodogram
was similar to more reliable shorter periods, i.e., the peak height
was highly biased by the data reduction. Thus, the variability
range was the only measure we used.

Now, we make further restrictions to the derived periods to
assure that these are really due to rotation. Using the variability
range, we selected 40 661 active stars from the whole sample.
As seen in Fig. 1 there were several active giants. Since we are
mainly interested in rotation periods of main-sequence stars, the
surface gravity was restricted to log g > 3.5 marked by the black
dashed line in Fig. 1. Further limits were applied to the period P1
setting 0.5 d ≤ P1 ≤ 45 d. The lower limit should exclude pul-
sations, which mostly occur on timescales shorter than half a
day. The upper limit is approximately equal to half the time span
of Q3. Since Kepler suffers from instrumental effects visible on
timescales of the quarter duration, periods longer than 45 days
remain doubtful. We cannot distinguish between long-term vari-
ability, and trends caused by the instrument, because the periods
were selected automatically by our algorithm. Nonetheless, there
exists a certain fraction of stars with long periods. We cannot be
sure that some of them are also due to instrumental effects, so
they should be treated with some caution. Furthermore, all de-
rived periods P1 for relevant stars are compared to the orbital
periods Porb from the lists of eclipsing binaries3 and false posi-
tives4. If the relation |P1 − Porb|/Porb < 0.05 holds, these periods
were discarded. This limit excludes orbital periods, but we might
lose some tidally locked systems.

4.3. Zero crossings

After setting several constraints to P1, we applied a filter to
achieve periods originating from rotating active regions by
counting the number of zero crossings of each light curve. For
many possible realizations of a spotted star, the light curve
showed a sine-like variation with a defined number of zero cross-
ings. Thus, a low number of crossing events was indicative for
regular rotation-induced variations, whereas a high number of
zero crossings was considered a hint for stellar pulsations and
irregular variations. In this way we filtered out periods that did
not originate from rotation.

A single sine wave has two zero crossings per period. Thus,
the number of zero crossings in Q3 equals Nzero = 90 × 2/P1 =
180 f1 for a sine wave with a period P1. To calculate Nzero the
light curves had to be smoothed. Since we were facing a vari-
ety of different rotation time scales (0.5−45 days), we could not
apply the same smoothing width to all light curves. The very
fast rotators can only be smoothed on a few hours to stay be-
low the rotation period. For the very slow rotators other effects
(e.g. granulation) becomes dominant on these time scales so the
smoothing time needs to be sufficiently longer. To account for
this effect, we smoothed the light curves over timescales propor-
tional to their period P1. Since Kepler long cadence data consists
of ≈30 min integrations, we had 48 · P1 data points in a certain
period P1. We smoothed the data using a boxcar average with a
width of 4 × P1 data points, which turned out to be a suitable
width for fast and slow rotators. We plot the frequency f1 vs.
the number of zero crossings in Q3 in Fig. 3. The lower red line
equals Nzero = 180× f1 as predicted for sine-like variations. The
upper line equals 2Nzero = 90 × 4/P1. This upper limit accounts
for the cases of two active longitudes located on opposite sides

3 http://archive.stsci.edu/kepler/eclipsing_binaries.
html
4 http://archive.stsci.edu/kepler/false_positives.html
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Fig. 3. Frequency f1 vs. number of zero crossings in Q3. The lower red
line equals the number of zero crossings expected for sine-like vari-
ations. Stars lying above the upper red line (gray symbols) were dis-
carded because they show more than twice the number of zero crossings
expected.

of the star, which produces up to four zero crossings per period.
This trend was broken toward longer periods; the variations be-
came irregular showing more zero crossings. A simple explana-
tion is that the smoothing width chosen was too small. Another
reason could be that star spots evolve on these long time scales
(P1 > 20 days) as seen on the Sun. Stars with too many zero
crossings were considered irregular, quiet, pulsators, or giants
with poorly determined log g. All stars lying above the upper
red line (gray symbols) were discarded.

4.4. Detection limit of α

After filtering out periods by their number of crossing events, we
focused on the cases where two periods were found. The relia-
bility of a second period strongly depends on the separation of
the periods P1 and P2 in the periodogram. If they lie very close
it is hard to tell whether the small separation comes from a very
small α, or if it is due to artifacts from our method. After visual
inspection of several light curves we found that the typical sepa-
ration of the two periods should be larger than ten points on the
frequency grid in the periodogram. Thus, we inverted the peri-
ods to achieve two frequencies f1 = 1/P1 and f2 = 1/P2. If their
absolute separation was less than ten times the lowest frequency
flow (Sect. 4.1), i.e., | f1 − f2| < 10 flow ≈ 0.0056 cycles d−1, then
the second period was discarded.

For each of the above limits imposed upon the set of pe-
riods, we might have lost real rotation periods. This was not
preventable, because the analysis procedure was done automat-
ically. All filters applied have decreased the number of false-
positives significantly, yielding a condensed and reliable set of
rotation periods. We found that 24 124 stars survived all filters,
i.e., they have a measured rotation period P1. For 18 616 stars a
second period P2 was found. The following section shows exam-
ple light curves, the fits achieved by our method, and the associ-
ated periodograms. It demonstrates the problem of determining a
second period from the periodograms, and shows the importance
of pre-whitening.

4.5. Examples: light curves, periodograms, and rotation
periods

We briefly address the problem of associating the returned pe-
riods from the pre-whitening to rotation periods of active re-
gions on the star. Figure 4 shows an example of a fast rotator,
KIC 1995351, and the associated periodograms. The upper panel
shows the light curve and the global sine fit of all five periods in
red. The light curve shows a regular beating pattern most prob-
ably due to several active regions. The lower panel shows (from
top to bottom) the first to the fifth periodogram. The highest peak
in each periodogram was marked by a vertical red line.

The first periodogram reveals several distinct peaks close
to the most significant one at 3.24 days, which was chosen as
primary period P1. In the second panel the periodogram of the
residuals was taken. One clearly sees that the power of the peak
around P1 = 3.24 days dropped to zero, whereas the second
and third highest peak from the initial periodogram now exhibit
the highest powers. The period with the second highest power
around P2 = 3.57 days was chosen. From the third to the fifth
panel we see that there are more periods close to P1 probably
due to other active regions. In the fourth periodogram the vertical
red line is not visible because the highest peak lies at 63.6 days,
which is most probably an artifact from the data reduction. The
periodogram fits long-term trends in the light curve with periods
much longer the rotation periods.

In Fig. 5 we show the slow rotator KIC 1869783 and the
associated periodograms. The panels are the same as in the pre-
vious plot. The light curve has a double-dip shape due to active
regions located on opposite sides of the star. The initial peri-
odogram shows a rather broad peak at 26.2 days that was chosen
as primary period P1. The second periodogram shows a peak
around 13.1 days that belongs to the second active region on
the opposite side of the star. From the light curve we can see
how this region becomes shallower, and the primary region more
pronounced. This traveling wave is usually interpreted as mi-
grating star spots. The third periodogram has the highest peak
around 68.5 days. Again, this peak most probably results from
the data reduction. The fourth periodogram shows a strong peak
around 34.2 days that was unfortunately discarded by the selec-
tion process because it lies beyond 30% of P1. Only in the fifth
pre-whitening step another period at 20.9 days was found which
was chosen as P2 because it lies within 30% of P1.

These two examples demonstrate the process used to detect
the most significant periods. The beating pattern seen in the light
curve in Fig. 4 is no proof of DR, but that was the most probable
explanation. The slow rotator shows active regions at different
longitudes evolving with time. In this case it is not clear whether
this was due to DR, or spot growth or decay. Both figures demon-
strate that the fits to the light curves reproduce the main activity
pattern. They could be improved by using more than five sine
waves, but this would not change the two most significant peri-
ods. Furthermore, they point out the presence of a second period,
and the difficultyof assigning a physical meaning to them.

Finally, we discuss the example of an F-type star in Fig. 6.
This particular star has an effective temperature of Teff = 6504 K
and a color index of B−V = 0.47 (see Sect. 5.2), which roughly
corresponds to a spectral type of F6V. It is questionable whether
the variability in the light curve results from star spots because
F stars are known to exhibit very thin convection zones. Our
pre-whitening analysis reveals the two most significant periods
P1 = 3.97 d and P2 = 4.86 d. The second periodogram shows
an alias of P1 around 2 days. The highest peak in the fourth pe-
riodogram yields a period of 37.1 days that corresponds to the
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Fig. 4. Top Panel: light curve and global fit of the star KIC 1995351. Lower Panel (top to bottom): periodograms 1–5. The vertical red lines
indicate the highest peak in each periodogram. The periods P1 = 3.24 d and P2 = 3.57 d were selected by our method.

beating pattern. The fifth period found is located at 4.52 days
which lies between P1 and P2. Figure 6 clearly shows that the
fit to the light curve is worse than in the other two examples, but
still sufficient to reveal the two strongest periods. In this case,
the beating pattern most probably results from differentially ro-
tating spots, although this light curve shape was also observed in
γ Dor stars. We discuss this issue in more detail in Sect. 5.5.

5. Results

In this section we present rotation periods of more than 20 000
Kepler stars. Section 5.1 compares our results to previous mea-
surements and Sect. 5.2 shows that our periods are consistent
with the concept of magnetic braking. Our main focus is on the

detection of DR, which is discussed in terms of relative and abso-
lute shear in Sects. 5.3 and 5.4, respectively. Finally, we estimate
the number of false-positives, i.e., those periods mis-classified
as rotation in Sect. 5.5, especially accounting for stars hotter
than 6000 K.

5.1. Rotation periods

In Fig. 7 we show the distribution of the rotation periods P1
and P2. We found 〈P1〉 = 16.3 d and 〈P2〉 = 13.3 d, with a spread
of σ(P1) = 10.1 d and σ(P2) = 7.3 d, respectively. The distribu-
tion of P1 slightly decreases toward longer periods, and levels
off around ≈35 days. Toward shorter periods a second peak be-
tween 0.5 and 2 days appears. The distribution of P2 falls off
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Fig. 5. Top Panel: light curve and global fit of the star KIC 1869783. Lower Panel (top to bottom): periodograms 1–5. The vertical red lines indicate
the highest peak in each periodogram. The periods P1 = 26.2 d and P2 = 20.9 d were selected by our method.

more rapidly towards long periods. Most of the missing peri-
ods P2 are greater than 20 days, so some of them might lie be-
low our detection limit. Thus, the mean values of the distribu-
tions do not necessarily indicate that a second period is more
likely be found for shorter periods. There are several explana-
tions for the dearth of slow rotators in both distributions. The
determination of long periods requires stable active regions on
the star. On the Sun the spot lifetimes are of the order of the
rotation period hampering the period detection. This does not
need to be true for other stars, however. Furthermore, long-term
stellar variability and instrumental trends are currently difficult
to distinguish in Kepler data. Both effects bias the distribution
towards shorter periods. Our results apply primarily to periods
shorter than about 30 days. Since we have analyzed only one

quarter so far, and applied an upper limit of 45 days, the distri-
bution of slow rotators is not addressed in this study.

5.2. Rotational braking

It is well-known that stellar rotation rates correlate with spectral
type. Stars around spectral type F and earlier are known to be fast
rotators. The convection zone grows towards cooler stars, and a
dynamo mechanism generates magnetic fields. Ionized material
follows the magnetic field lines (stellar wind) and carries away
angular momentum resulting in a spin-down of the star (Barnes
2003; Reiners & Mohanty 2012). This process is known as rota-
tional braking, for which we show evidence in Fig. 8. We plotted
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Fig. 6. Top Panel: light curve and global fit of the star KIC 9580312. Lower Panel (top to bottom): periodograms 1–5. The vertical red lines indicate
the highest peak in each periodogram. The periods P1 = 3.97 d and P2 = 4.86 d were selected by our method.

our most significant period P1 against B−V for 24 124 stars with
at least one detected period (gray dots). Figure 8 is a composition
of previous rotation studies and our results. Filled circles repre-
sent data from Baliunas et al. (1996), Kiraga & Stepien (2007),
Irwin et al. (2011), and recently McQuillan et al. (2013) pub-
lished rotation periods for the Kepler M dwarfs sub-sample. For
some of those measurements no B − V information was avail-
able. We transformed stellar masses into effective temperature
using 1 Gyr isochrone models from Baraffe et al. (1998). The
temperatures have been transformed into B − V using the rela-
tion from Reed (1998). For the Kepler stars we used the relation
between g − r and B − V from Jester et al. (2005). The periods
from Baliunas et al. (1996) form an upper envelope to our re-
sults. The results for the Kepler M dwarfs (blue circles) show

good agreement with our results (see also Fig. 16), although
McQuillan et al. (2013) used an auto-correlation method which
is a completely different mathematical tool.

Figure 8 is consistent with the picture of rotational braking.
A steep rise in rotation periods appears around B − V ≈ 0.6. In
this region the convection zone starts to form, and grows deeper
in cooler stars. Thus, magnetic braking becomes stronger leading
to a spin-down of the stellar rotation rate. Barnes (2007) empiri-
cally found a relation between B − V , age t, and rotation period:

P(B − V, t) = 0.7725 (B− V − 0.4)0.601 t0.5189. (5)

The age-dependence is similar to the classical Skumanich law
P ∝ √t (see also Reiners & Mohanty 2012). The black curves
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Fig. 7. Distribution of rotation periods for the 24 124 stars with pe-
riod P1 and the 18 616 stars with second period P2 with weighted means
of 16.3 and 13.3 days, respectively. The distribution of P2 falls offmore
rapidly towards 30 days because instrumental effects currently hamper
the detection of long periods.

in Fig. 8 represent isochrones with ages of 100, 600, 2000, and
4500 Myr. The distribution of periods in our sample follows a
similar behavior as the isochrones indicating that stars with dif-
ferent color follow similar age distributions. Stars with rotation
periods around 5 days are probably very young stars that did not
have time to spin-down. In Fig. 9 we show rotation period P1 vs.
range Rvar in a density plot. The bright region in the middle rep-
resents a high density, whereas dark regions express low density.
Young stars are expected to be fast rotators but also to be very
active. We found that the range increases toward fast rotation,
supporting this relation between our measured rotation period
and variability range. Hence, the variability range is a useful age
and activity indicator.

We estimated the ages from the rotational period for the
Kepler stars using Eq. (5). The distribution of ages in the ac-
tive Kepler stars is shown in Fig. 10. The black histogram shows
all stars with 0.5 < B − V < 1.0, the red one covers 1.0 <
B − V < 1.4, and the blue one shows 1.4 < B − V < 1.5. The
steep decrease on the right-hand side of all three distributions
can be understood by the missing long-period stars caused by
our upper limit of 45 days, and by our selection of active stars
only. The left-hand side of the age-distribution is expected to be
almost complete because the lower limit of detectable periods
of 0.5 days is not relevant even for very young active stars. The
dashed black line shows the distribution of stars according to
a uniform distribution of stellar ages (plotted on a logarithmic
scale). The dashed curve is remarkably similar to the left-hand
side of the black distribution up to an age of ≈300 Myr.

McQuillan et al. (2013) found evidence for a bimodal period
distribution in the Kepler M dwarf sample (1.21 < B−V < 1.62).
The bimodality is explained by the existence of two distinct stel-
lar populations. The gap at P1 ≈ 30 days also appears in our
data around 1.4 < B − V < 1.5, corresponding to an age of
roughly 800–900 Myr. We found a similar feature in hotter stars
(1.0 < B − V < 1.4) at P1 ≈ 20 d. This feature, however, cor-
responds to a significantly younger age of 600–800 Myr, and is
unlikely to be caused by the same age distribution as the gap in
cooler stars. Whether the two period gaps are caused by a selec-
tion bias affecting our period sample, or by a predominance of
certain ages in the distribution of stellar ages (potentially intro-
duced by stellar clusters in the Kepler field; see, e.g., Meibom
et al. 2011) needs to be tested. Furthermore, in comparison to

a constant star formation history (dashed red line in Fig. 10),
the sample with 1.0 < B − V < 1.4 (red histogram) lacks stars
younger than ≈200 Myr. The dearth of young objects and the
gaps in the age distributions cannot be easily explained and need
further investigation. We leave this discussion for a subsequent
paper.

5.3. Relative differential rotation α

In Fig. 11 we plot the relative DR α against the minimum rota-
tion period Pmin.

We found that α increases with rotation period. The black
dashed line marks the detection limit (Sect. 4.4) of our method.
If we sort both periods so that P1 = Pmin and P2 = Pmax, then
the absence of data points below this line can be understood by
considering the relation

|P1 − P2| = | f1 − f2|
f1 f2

≥ 10 flowP1P2

⇒ α =
|P1 − P2|

Pmax
≥ 10 flowPmin

Thus, all data points lie above the black line, which is the lower
limit for α. It is worth noting that more than 75% of all stars with
detected period P1 lie above the detection limit, because 18 616
of 24 124 stars exhibit a second period. In other words, only the
5505 stars where only one period was detected can either lie be-
low the detection limit, or above (below) our αmax(αmin) values,
respectively. In the Appendix we discuss different αmax values,
and show that periods are found for αmax > 0.3 (see Fig. A.2),
which were discarded in some cases (see Fig. 5). Lowering the
value of αmin yielded essentially the same periods, so we con-
clude that the general trend of increasing α with rotation period
was not biased by our detection limit.

The colors in Fig. 11 represent different temperature bins.
Towards cooler stars (Teff < 5000 K, red and purple dots) the
rotation period increases, confirming the result from Fig. 8.
Hot stars above 6000 K (green and black dots) mostly popu-
late the short periods covering the whole α range. This region is
probably biased by pulsators, which was considered in Sect. 5.5.

In Fig. 12 we show temperature vs. α, correlating our results
with the variability range. The colors indicate different ranges
growing from 0.3% (yellow) to high ranges with amplitudes
above 5% (purple). A shallow trend towards higher α with de-
creasing temperature is visible (see also Fig. A.1). A correlation
with range can only be found for stars with very high ranges
(purple dots). These stars mostly cover the region with α � 0.05
over a large temperature range. If we think of the variability
range as an activity indicator this might confirm the hypothe-
sis that these stars are very young, because low DR α indicates
short periods.

5.4. Absolute horizontal shear ΔΩ

We define the absolute horizontal shear as

ΔΩ := 2π| f1 − f2|.
In Fig. 13 we plot ΔΩ against the rotation period Pmin. The col-
ors are the same as in Fig. 11; the detection limit is marked by the
horizontal dashed line; and the diagonal dashed lines mark the
upper and lower limit αmax and αmin, respectively. For periods
longer than two days, ΔΩ shows weak dependence on rotation
period. Below two days, ΔΩ shows large scatter on the order
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Fig. 8. B − V color vs. rotation period P1 of the 24 124 stars with at least one detected period (gray dots). The filled circles represent data from
Baliunas et al. (1996, olive), Kiraga & Stepien (2007, purple), Irwin et al. (2011, red), and McQuillan et al. (2013, blue). Towards cooler stars we
found an increase in rotation periods with a steep rise around B − V ≈ 0.6 supplying evidence of rotational braking. The black lines represent a
color-period relation found by Barnes (2007) for different isochrones. The four stars mark the position of the Sun (blue), KIC 1995351 (cyan),
KIC 1869783 (purple), and KIC 9580312 (red) for comparison.

Fig. 9. Density plot of rotation periods P1 vs. Rvar with bright regions
representing a high density, whereas dark regions express low density.
The annotation of the color bar contains the total number of stars in
each bin. The distribution shows that the range increases towards shorter
periods. Since fast rotators are expected to exhibit an enhanced level of
activity, the range could probably be used as proxy for stellar activity.

of one magnitude. The upper and lower limits suggest that ΔΩ
increases toward short periods, which is not necessarily the case
(see Fig. 14). Previous observations (Barnes et al. 2005) and the-
oretical approaches (Küker & Rüdiger 2011) also showed weak
dependence of ΔΩ on rotation period. To emphasize this result
in our measurements, we show a density plot in the Pmin − ΔΩ
plane in Fig. 14. In the range 0.035 rad d−1 � ΔΩ � 0.10 rad d−1

the absolute shear does not depend on rotation period. Above
0.10 rad d−1 the shear shows large scatter for periods 0.5 d �
Pmin � 15 d. Again, the upper limit αmax (see Fig. 13) suggests a
trend toward fast rotators.

Figure 14 is similar to Fig. 3 in Küker & Rüdiger (2011)
showing the dependence of ΔΩ on rotation period for different
stellar mass models. These authors found weak dependence of
ΔΩ on rotation period for all masses. Their model curves would
fit our observations in Fig. 14, although the 0.5 M� and 0.3 M�
models lie below our detection limit. Küker & Rüdiger (2011)
did not consider high DR ΔΩ > 0.1 rad d−1, but their 1.1 M�
model exhibits the largest value of ΔΩ, and deviates the most
from the almost constant shape of the other models, which could
be a hint for the different behavior in this regime.

The temperature dependence of ΔΩ is shown in Fig. 15. Our
results reveal two distinct temperature regions showing different
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Fig. 10. Distribution of ages inferred from rotation periods P1 for differ-
ent color bins. For B − V > 1.0 (red and blue) we found a bimodal dis-
tribution in agreement with McQuillan et al. (2013). The dashed black
and red lines show uniform age distributions (on a logarithmic scale).

Fig. 11. Rotation period Pmin vs. α for all stars with two detected peri-
ods. The colors represent different temperature bins, the dashed black
line marks the detection limit. The relative shear α grows towards longer
rotation periods. More than 75% of all stars with detected period P1 ex-
hibit a second period P2, and lie above the detection limit. This trend
cannot be broken by the 5505 stars with only one detected period, be-
cause most of the missing stars lie above the upper limit αmax = 0.3.

behavior of ΔΩ. For temperatures ranging from 3500−6000 K,
ΔΩ shows only weak dependence on temperature. Above
6000 K, ΔΩ steeply increases toward hotter stars, but with large
scatter supporting no conclusion about the functional form of
a fit. Barnes et al. (2005) found a strong temperature depen-
dence of ΔΩ supplying the power-law ΔΩ ∝ T 8.92

eff . This was
confirmed by Collier Cameron (2007) supplying the power-law
fit ΔΩ = 0.053 (Teff/5130)8.6.

Our results show good agreement with theoretical curves
provided by Küker & Rüdiger (2011). These authors found
that the temperature dependence of ΔΩ cannot be represented
by a single power-law fit, but requires two fits for differ-
ent temperature regions (red and light blue curve; compare
Fig. 2 in Küker & Rüdiger 2011), which was clearly con-
firmed by our measurements. For temperatures of 3500−6000 K,
Küker & Rüdiger (2011) predict a shallow increase of ΔΩ (red
dash-dotted line). Since this behavior is not evident in Fig. 15,
we calculated histograms of ΔΩ for temperature bins of 250 K

Fig. 12. Effective temperature vs. relative shear α. We found that α
slightly increases towards cooler stars. The colors indicate different
variability ranges. A distinct correlation between α and the range is only
visible for the stars with very high ranges Rvar > 5%. These stars group
at small α values over a large temperature range. Low α represents short
periods, probably indicating that their young age.

Fig. 13. Rotation period Pmin vs. absolute shear ΔΩ. The colors are
the same as in Fig. 11, the detection limit is marked by the horizon-
tal dashed line, and the diagonal dashed lines mark the upper and lower
limit αmax and αmin, respectively. We found that ΔΩ is independent of
Pmin over a large period range, although the upper and lower limit sug-
gest an increase of ΔΩ towards short periods, showing large scatter on
one order of magnitude.

between 3400 K and 7400 K. For each distribution, i.e., for each
temperature bin, the weighted mean 〈ΔΩ〉 was calculated, and
is shown as an open black circle in Fig. 15. The mean val-
ues slightly increase for temperatures of 3500–6000 K. Above
6000 K 〈ΔΩ〉 shows very good agreement with the light blue
dashed curve, as predicted by Küker & Rüdiger (2011). For even
hotter stars (Teff > 7000 K) the derived periods are most proba-
bly highly contaminated by pulsators (see Sect. 5.5). In this re-
gion the derived periods and ΔΩ values should be treated with
caution, which is indicated by the vertical red bar.

Although our measurements suggest good agreement be-
tween theory and observations in both regions, the results should
be treated with caution. For the 5505 stars, for which only one
period was detected, we cannot tell whether these stars exhibit a
small horizontal shear below our detection limit, or if a second
period was not detected for other reasons. A fraction of these
5505 stars can change the trends we found, so we cannot draw
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Fig. 14. Density plot in the Pmin − ΔΩ plane. For ΔΩ < 0.10 rad d−1 the
total shear does not depend on rotation period. For ΔΩ > 0.10 rad d−1

we found large scatter of ΔΩ from fast to moderate rotators.

strong conclusions about the behavior below the lower limit
ΔΩ ≈ 0.035 rad d−1.

5.5. False positives

In this section we statistically estimate the number of periods
in our final sample that survived all filters but are probably not
due to rotation. Other sources of periodic stellar variability are
binarity, pulsations, or instrumental effects, for example. We call
these detections false positives (FPs). We defined three classes
of rotational variability: the rapid rotators (0.5 d < P1 < 10 d),
the moderate rotators (10 d < P1 < 20 d), and the slow rotators
(P1 > 20 d). Example light curves representative of the first and
last group are shown in Figs. 4 and 5. Figure 6 shows an example
of an F star. These hot stars are investigated separately at the
end of this section. Since the sample is too large to inspect each
light curve individually, we randomly selected 100 stars of each
rotation class and checked their light curves by eye. This will
only give a rough error estimate, because only a small number
of stars was inspected, and the method remains very subjective.

Orbital periods of eclipsing binaries or transiting planets
should be relatively rare in the final sample. The eclipsing binary
list3 was cross-matched with our sample, and stars with coincid-
ing KIC numbers were discarded. For stars hosting planets or
planetary candidates, the returned periods were predominantly
due to stellar activity. The transits cover very few data points
compared to rotational modulations, hence the periodogram is
not very sensitive to these periods. We found no period associ-
ated to eclipsing binaries or planetary transits in this test.

The rapid rotators class exhibits six stars showing irregular
variations, which could be a hint for stellar pulsations (see be-
low), six alias periods, and two periods without any reference to
the light curve.

For the moderate rotators class, alias periods were the
biggest error source. In six cases the detected period was most
probably half of the true rotation period, and in one case the de-
termined period could not be confirmed by visual inspection of
the light curve.

The slow rotator class with periods greater than 20 days
mostly suffers from instrumental effects. After each third of a
quarter (≈30 days), data is down-linked to Earth cutting the quar-
ter into three segments. Each raw data segment shows individual

trends, which were corrected by the PDC-MAP pipeline. Thus,
on time scales longer than 30 days, the accuracy of the de-
rived periods strongly depends on the data reduction pipeline.
Furthermore, we expect that star spots like those seen on the Sun
may evolve for stars with solar rotation periods. Spot evolution
distorts the light curve shape and makes it more difficult to detect
stable periods. In this class only one alias period was detected,
but 12 stars that did not show clear counterparts to the rotation
period in the light curve (like regular dips or double dips as seen
for fast rotating stars).

In total 300 stars were inspected. Summarizing results for the
above rotation classes, we found that about 12% of all derived
periods should probably be attributed to sources of periodic vari-
ability other than rotation.

As is evident from Fig. 11, stars hotter than 6000 K mostly
exhibit periods less than 1–2 days. This regime is highly biased
by pulsations (Debosscher et al. 2011), because F-type and hot-
ter stars exhibit very thin convection zones. Fast pulsators like
δ Scuti stars show pulsations on timescales of less than half a
day. Thus, we set a lower limit of 0.5 days to our periods in
Sect. 4.2. But there do exist hot A-type stars with γ Doradus
pulsations with periods of 0.5–4 d (Balona 2011, 2013; Balona
et al. 2011). Moreover, these stars show beat-shaped light curves
similar to spot-induced variability. To check whether the periods
found are due to rotation or pulsation, we defined three groups of
hot stars following the classification of Table 1 in Balona (2011):
F9-F5 stars with 6000 K < Teff < 6500 K, F5-F1 stars with
6500 K < Teff < 7000 K, and hotter stars with Teff > 7000 K.
Again, for each group we randomly selected 100 stars, and
checked their variability by eye. If a traveling wave was found
in the light curve, which was visible over several periods, we in-
terpreted this behavior as migrating spots (see Fig. 6) indicating
DR.

For the F9-F5 stars: the derived periods are mostly rotation-
induced. Only six stars were misclassified: two probable pulsat-
ing stars, three stars showing irregular variability, and one eclips-
ing binary. In the second group (F5-F1 stars), beat-shaped light
curves are found quite frequently. In thirty-three stars no trav-
eling wave was found, although some of them exhibit a beat-
shaped light curve. Thus, the variability probably arises from
pulsations.

The situation becomes even worse for the hottest stars.
Thirty-seven stars without moving dips were found, five periods
without clear reference in the light curve, and three alias peri-
ods. This group shows the biggest contamination by γ Dor or
extreme δ Scuti pulsators. Although it is challenging to distin-
guish between rotation and pulsation from the light curve alone,
short periods of hot stars should be treated with caution.

6. Discussion

6.1. Comparison to other observations

The rotation periods of the active Kepler stars are consistent
with previous rotation measurements (Fig. 8), supporting the
picture of stars losing angular momentum as a result of stellar
winds that has been deduced from a long history of observations.
Recently, Nielsen et al. (2013) and McQuillan et al. (2013) pre-
sented rotation periods for a large sample of Kepler stars. To
create confidence in our results and the method we used, we
compared our periods P1 to the periods derived by these au-
thors. The left panel in Fig. 8 shows the normalized period dif-
ference (P1 − PNielsen)/P1. In total 9292 periods were compared.
The huge peak around zero shows that our periods are consistent
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Fig. 15. Effective temperature vs. horizontal shear ΔΩ summarizing different measurements: the olive diamonds and error bars were taken from
Barnes et al. (2005), the olive dashed curve from Collier Cameron (2007). Orange diamonds and error bars show measurements from Ammler-
von Eiff & Reiners (2012). Our measurements are shown as gray dots. The red dash-dotted line and the light blue dashed line show theoretical
predictions from Küker & Rüdiger (2011). The black dashed line marks our detection limit. The four stars mark the positions of the Sun (blue),
KIC 1995351 (cyan), KIC 1869783 (purple), and KIC 9580312 (red) for comparison. The vertical red bar indicates stars hotter than 7000 K with
probable large contamination of pulsators. The open black circles represent weighted means of our measurements for different temperature bins.
From 3500−6000 K, ΔΩ shows only weak dependence on temperature. Above 6000 K the shear strongly increases as reported by Barnes et al.
(2005) and Collier Cameron (2007). The different behavior of ΔΩ in these two temperature regions was supported by theoretical predictions from
Küker & Rüdiger (2011, red and light blue lines).

Fig. 16. Comparison of periods from Nielsen et al. (2013, left panel) and
McQuillan et al. (2013, right panel) with the periods P1 from Fig. 8. We
found good agreement with both samples, although the auto-correlation
method from McQuillan et al. (2013) was less prone to alias periods
than our method, as is obvious from the missing peak around 0.5 in the
right panel.

with the periods derived in Nielsen et al. (2013), which were de-
rived from analyzing multiple Kepler quarters. The small peak
at −1 indicates the cases where we detected an alias period
P1 = PNielsen/2. The small peak around 0.5 shows the opposite
effect when Nielsen et al. (2013) detected an alias according to
PNielsen = P1/2. Both peaks are of the same size as expected, be-
cause the Lomb-Scargle periodogram was used in both studies.

The right panel in Fig. 8 shows the normalized period dif-
ference (P1 − PMcQuillan)/P1 comparing 1277 periods in total.
Again, we found good agreement between both samples. The
peak at −1 indicating the cases where we detected an alias period
P1 = PMcQuillan/2 is rather large compared to the peak around
zero. This was also expected since M-dwarfs exhibit long ro-
tation periods bearing the risk of aliasing, especially when us-
ing an automated method. Around 0.5 there is no peak visible,
clearly demonstrating that the auto-correlation method used in
McQuillan et al. (2013) was less prone to alias periods than our
method.

Our results on DR are quite different than what was observed
before. In contrast to previous observations, e.g., (Barnes et al.
2005; Collier Cameron 2007), we found that ΔΩweakly depends
on temperature for the cool stars (3000–6000K). Above 6000 K,
ΔΩ increases with temperature and the stars show no systematic
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Table 1. Comparison with previous rotation measurements for individ-
ual Kepler stars.

KIC Period(s) Ref. P1 P2

[d] [d] [d]

8429280 1.16–1.20 1 1.16 1.21
7985370 2.84–3.09 2 2.84 3.09
7765135 2.40–2.57 2 2.55 2.40

7287995 13.4 3 13.5 10.4
7825899 25.2 3 12.4 −
8429280 1.16, 1.21 4 1.16 1.21
9726699 0.59 5 − −
2164791 3.36 6 3.35 3.27
10619192 12.01 7 6.05 −
5110407 3.47 8 3.61 3.42

References. References in the third Col.: (1) Frasca et al. (2011);
(2) Fröhlich et al. (2012); (3) Savanov (2011b); (4) Savanov (2011a);
(5) Savanov & Dmitrienko (2011); (6) Savanov & Dmitrienko (2012);
(7) Bonomo & Lanza (2012); (8) Roettenbacher et al. (2013).

trend, but seem to be randomly distributed in this temperature
regime. Using Doppler imaging (DI) Barnes et al. (2005) found
that the horizontal shear ΔΩ strongly depends on effective tem-
perature ΔΩ ≈ T 8.92

eff . Five stars of their sample lie below our
detection limit (see Fig. 15). Collier Cameron (2007) combined
results from DI and the Fourier transform method yielding the
equation ΔΩ = 0.053 (Teff/5130)8.6. The two groups we found
(above and below 6000 K) were also consistent with recent the-
oretical studies (see Sect. 6.2).

The relation between rotation period and DR has been
studied by several authors. Hall (1991) found that the rela-
tive horizontal shear α increases towards longer rotation peri-
ods. Donahue et al. (1996) confirmed this trend finding ΔP ≈
〈P〉1.3±0.1 independent of the stellar mass. Using the Fourier
transform method Reiners & Schmitt (2003) also found that α
increases with rotation period for F-G stars. This result was con-
firmed by Ammler-von Eiff& Reiners (2012) who compiled pre-
vious results and new measurements for A-F stars. Barnes et al.
(2005) found that ΔΩ only weakly correlates with rotation rate
according ΔΩ ≈ Ω0.15.

Observations of DR cover a wide range of α values. Doppler
imaging is particularly sensitive to small DR limited by the
spot lifetimes, α � 0.01 (see, e.g., measurements by Donati &
Collier Cameron 1997 for AB Dor), although there were mea-
surements (Donati et al. 2003) yielding α ≈ 0.05 for LQ Hya,
and new measurements (Marsden et al. 2011) that found val-
ues between 0.005 � α � 0.14. The Fourier transform method
(e.g. Reiners & Schmitt 2003) is sensitive to α > 0.1 and was
used to determine surface shears as large as 50% for some A-
F stars. With our method we are able to detect DR up to α < 0.5.
The errors for individual periods are usually small. Bad detec-
tions of α result from the spot distribution on the stellar surface,
which is a general problem for DR detections from photomet-
ric data. The measured shear α will always be lower than the
total equator-to-pole shear. The accuracy of our method was dis-
cussed in Reinhold & Reiners (2013).

In the following we compared our results with previous rota-
tion measurements of individual Kepler stars (see Table 1). For
three Kepler stars (KIC 8429280, KIC 7985370, KIC 7765135)
DR has been measured (Frasca et al. 2011; Fröhlich et al.
2012) fitting an analytical spot model to the data. Their findings
showed good agreement to our results and have been compared
in Paper I.

Several Kepler stars were measured by Savanov using
a light curve inversion technique that constructs a map of
surface temperature. Savanov (2011b) considered the planet-
candidate host stars KOI 877 and KOI 896 (KIC 7287995 and
KIC 7825899, respectively) finding rotation periods of 13.4 and
25.2 days, respectively, stating that both stars exhibit active lon-
gitudes separated by about 180◦. For KIC 7287995 we found
P1 = 13.5 d and P2 = 10.4 d, and for KIC 7825899 P1 = 12.4 d.
In the latter case the detected period was an alias of the true ro-
tation period due to the active longitudes.

The K dwarf KIC 8429280 was studied in Savanov (2011a),
who found brightness variations with periods of 1.16 and
1.21 days, consistent with the results from Frasca et al. (2011).
In this case we found P1 = 1.16 d and P2 = 1.21 d.

The fully convective M dwarf GJ 1243 (KIC 9726699) was
studied in Savanov & Dmitrienko (2011) yielding a rotation pe-
riod of 0.593 days. Our algorithm detected a period of 118.7 days
due to improper data reduction in Q3. This period was fil-
tered out by the upper limit of 45 days. The second strongest
period we found was 0.59 days, in good agreement with
Savanov & Dmitrienko (2011). This period does not lie within
30% of the first one, and hence was not chosen as P2.

Savanov & Dmitrienko (2012) also studied the fully convec-
tive, low-mass M dwarf LHS 6351 (KIC 2164791). These au-
thors detected a rotation period of 3.36 d, as well as evidence for
DR in terms of ΔΩ = 0.006−0.014 rad d−1 from the evolution
of surface temperature inhomogeneities, which lies below our
detection limit. We found P1 = 3.35 d and P2 = 3.27 d yield-
ing ΔΩ = 0.046 rad d−1. Visual inspection of the light curve in
Q3 supports the larger value of ΔΩ, because a second active re-
gion appears after some periods, which was not observed in the
Q1-Q2 data. Unfortunately, this star was discarded by our al-
gorithm because it has no effective temperature or log g values
from the KIC, and misses in our final list.

Bonomo & Lanza (2012) analyzed the active planet-
hosting star Kepler-17 (KIC 10619192). These authors detected
a rotation period of 12.01 d, and the existence of two active
longitudes separated by approximately 180◦ from each other.
Furthermore, Bonomo & Lanza (2012) found evidence for solar-
like DR, but were not able to give precise estimates for the hor-
izontal shear claiming that active regions on this star evolve on
timescales similar to the rotation rate. We detected an alias pe-
riod of 6.05 d due to the two active longitudes. Again, we found
no second period within 30% of P1. Checking our second and
third strongest period, we found 10.85 d and 12.28 d, respec-
tively, in good agreement with rapid spot evolution.

Recently, Roettenbacher et al. (2013) found a period of
3.47 days for the Kepler target KIC 5110407, and evidence
for DR using light curve inversion. We found P1 = 3.61 and
P2 = 3.42 days yielding α = 0.053, which is consistent with
their differential rotation coefficient k = 0.053 ± 0.014 for an
inclination of i = 45◦ in their model.

Several open clusters in the Kepler field have been studied.
Meibom et al. (2011) measured rotation periods for stars in the
open cluster NGC 6811, supplying evidence for rotational brak-
ing (see Fig. 8). Additional measurements were done for the
open clusters NGC 6866 (Balona et al. 2013a) and NGC 6819
(Balona et al. 2013b) showing rotational braking as well. The
same author found several A-type stars showing signatures of
spot-induced variability (Balona 2011, 2013), e.g., a beating pat-
tern in the light curve, although this behavior was not expected
because of their purely radiative atmospheres.
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6.2. Comparison to theory

Solar DR has been studied theoretically for a long time.
Kitchatinov & Rüdiger (1999) computed DR models for late-
type (G2 and K5) stars. They found that the relative shear α in-
creases with rotation period. They also showed that α increases
towards cooler stars. The general trends are in agreement with
our findings, although their range of α values lies above our
values.

Küker & Rüdiger (2005a) computed models for an F8 star,
and found weak dependence on rotation period, which was con-
firmed by later studies for F, G, and K stars (Küker & Rüdiger
2005b), showing that the dependence on temperature was much
stronger. This result holds for different main sequence star mod-
els (Küker & Rüdiger 2007). These authors found that above
a temperature of 5800 K the strong temperature dependence on
ΔΩ claimed in Barnes et al. (2005) fits the model data reasonably
well, whereas below 5800 K the data lie far off the fit. Recent
studies (Küker & Rüdiger 2011) have shown that the temper-
ature dependence of ΔΩ cannot be represented by one single
power law over the whole temperature range from 3800–6700 K.
Figure 2 in Küker & Rüdiger (2011) shows that ΔΩ only slightly
increases with temperature for stars cooler than ≈5800 K con-
sistent with our measurements (Fig. 15). For stars hotter than
≈6200 K these authors found that ΔΩ shows an even stronger de-
pendence on temperature than predicted in Barnes et al. (2005).
In the same temperature region, our measurements start to show
a different behavior (see Fig. 15).

The weak dependence of ΔΩ on rotation period was con-
firmed by our measurements (see Fig. 14), as predicted by
Küker & Rüdiger (2011) for different solar mass models, and
other authors before. Hotta & Yokoyama (2011) modeled DR of
rapidly rotating solar-type stars and found that DR approaches
the Taylor-Proudman state, i.e., that ΔΩ/Ω decreases with angu-
lar velocity, as long as the rotation rate is above the solar value.
This model agrees well with our findings in Fig. 11.

Direct numerical simulations showed that models with low
Rossby numbers (i.e., fast rotating stars) generate strong dipo-
lar magnetic fields (Schrinner et al. 2012). These fields amplify
Lorentz forces able to suppress Coriolis forces, and hence can
effectively suppress DR (Gastine et al. 2012). This result from
theoretical models agrees well with the trend we found that α
decreases towards shorter rotation periods (Fig. 11).

The dipolarity of the magnetic field strongly depends on the
length scale of convection. As the depth of the convection zone
decreases, the dipolarity breaks down rendering the rotation non-
uniform (Schrinner et al. 2012). This effect could explain the
strong increase of ΔΩ around Teff > 6000 K. Browning (2011)
provided an explanation for the shallow increase of α towards
cooler stars. Because M dwarfs exhibit low luminosities, and
therefore low convective velocities, they strongly depend on the
rotation rate even at solar rotation rates. Magnetic fields cannot
quench DR effectively, so they exhibit strong solar-like DR.

7. Summary

We applied our method from Paper I to the active fraction of
Kepler Q3 data to search for DR in high precision empirical
data. We measured rotation periods of 24 124 Kepler stars, pro-
viding evidence for DR in 18 616 stars. Our measurements for
the rotation period were in good agreement with previous re-
sults. Moreover they were consistent with the theory of magnetic
braking.

Our measurements provide a comprehensive database of
stellar DR. For the first time, we could explore a well-defined
parameter range in a statistically significant sample. We found
that the relative shear α increases towards longer periods, and
slightly increases towards cooler stars. The absolute shear ΔΩ
showed weak dependence on rotation period over a large period
range. In contrast to other observationsΔΩ showed a shallow in-
crease for temperatures from 3500–6000 K, and a steep increase
above 6000 K. Periods above 7000 K should be treated with
caution because of probable high contamination of pulsators.
Both the dependence on rotation period and temperature were
in good agreement with recent theoretical models. Furthermore,
we cannot find any other reasonable explanation for the trends
we found.

We interpreted the existence of a second period as DR.
Although our method is not able to distinguish between DR and
spot evolution, we were confident that most of our measurements
reflect the stellar surface shear because they resemble previous
measurements and recent theoretical models. This was the first
time that DR was measured for such a large number of stars. For
the future this analysis will be applied to more Kepler data to
verify the rotation periods, DR, and to learn about spot lifetimes.
Kepler is the natural source for answers to these questions.
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Appendix A: Differential rotation beyond α = 0.3

In Eq. (4) an upper limit of αmax = 0.30 was used while search-
ing for a second period. In this section we demonstrate how dif-
ferent upper limits αmax change the total number of detections
and the overall behavior of α with temperature and rotation pe-
riod. We use ten equidistant values 0.05 ≤ αmax ≤ 0.50 (see
Table A.1). With increasing αmax we found a larger total number

Table A.1. Number of stars with second period found for different αmax

values.

αmax [%] # of two det. periods

5 1966
10 5437
15 9511
20 13 355
25 16 426
30 18 619
35 20 379
40 21 559
45 22 319
50 23 206

of periods. The case αmax = 0.5 is shown to demonstrate the lim-
its of our method, which is evident in the next two figures. For
all stars with two detected periods we plotted their density in the
Teff−α plane in Fig. A.1. The colors are the same as in Fig. 9 with
bright regions representing high density. For each αmax value we
found that α slightly increases towards cooler stars. The case
with the lowest upper limit (αmax = 0.05) looks a bit scattered,
but it is not very different from the general trend. The plot in
the lower-right corner (αmax = 0.5) demonstrates the limits of
our method. Many stars jumped to the upper limit α = 0.5 be-
cause an alias period was chosen by the algorithm. The Teff val-
ues from the KIC are not very accurate and neither are the stellar
radii. We found the same trend with respect to α however, i.e.,
the α value increases towards smaller radii (although this may
not be an independent constraint). Our previous result that α in-
creases towards longer rotation periods holds for all αmax values.
In Fig. A.2 we showed the density in the Pmin − α plane. We see
that the density is localized in a sharp strip that smears out for
limits greater than αmax = 0.3. These large α values belong to
periods P2 longer than 45 days where instrumental effects play a
dominant role. Again, the stars jumped to the upper limit in the
αmax = 0.5 case.
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Fig. A.1. Density plot in the Teff − α plane for different values of αmax. For each αmax value we found that α slightly increases towards cooler stars.
The plot in the lower-right corner (αmax = 0.5) demonstrates that our method is limited to αmax < 0.5. Colors are the same as in Fig. 9.
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Fig. A.2. Density plot in the Pmin−α plane for different values of αmax. For each αmax value we found that α strongly increases with rotation period.
The plot in the lower-right corner (αmax = 0.5) demonstrates that our method is limited to αmax < 0.5. Colors are the same as in Fig. 9.
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