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ROTATION AND WINDING NUMBERS FOR PLANAR 
POLYGONS AND CURVES 

BRANKO GRUNBAUM AND G. C. SHEPHARD 

ABSTRACT. The winding and rotation numbers for closed plane polygons and 
curves appear in various contexts. Here alternative definitions are presented, 
and relations between these characteristics and several other integer-valued func-
tions are investigated. In particular, a point-dependent "tangent number" is 
defined, and it is shown that the sum of the winding and tangent numbers is 
independent of the point with respect to which they are taken, and equals the 
rotation number. 

1. INTRODUCTION 

Associated with every planar polygon P (or, more generally, with certain 
kinds of closed curves in the plane) are several numerical quantities that take 
only integer values. The best known of these are the rotation number of P 
(also called the "tangent winding number") of P and the winding number of 
P with respect to a point in the plane. The rotation number was introduced 
for smooth curves by Whitney [1936], but for polygons it had been defined 
some seventy years earlier by Wiener [1865]. The winding numbers of polygons 
also have a long history, having been discussed at least since Meister [1769] 
and, in particular, Mobius [1865]. However, there seems to exist no literature 
connecting these two concepts. In fact, so far we are aware, there is no instance 
in which both are mentioned in the same context. 

In the present note we shall show that there exist interesting alternative defi-
nitions of the rotation number, as well as various relations between the rotation 
numbers of polygons, winding numbers with respect to given points, and several 
other integer-valued functions that depend on the embedding of the polygons in 
the plane. We shall define a "tangent number" of P with respect to a point A, 
and prove that the sum of the tangent and winding numbers of P with respect 
to A is independent of A and equal to the rotation number of P. Similar 
results are valid also for the " normal number" of P with respect to a point. 

Received by the editors September 12, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 51M05; Secondary 26B15, 

57M99. 
Key words and phrases. polygon, curve, winding number, rotation number. 
The research of the first author was supported in part by National Science Foundation grant 

DMS-8620 181. 

169 

© 1990 American Mathematical Society 
0002·9947/90 SI.OO + S.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



170 BRANKO GRUNBAUM AND G. C. SHEPHARD 

With appropriate interpretation, these results remain true for piecewise smooth 
closed curves. On the other hand, some results concerning polygons seem to 
lack analogues for curves. For example, for a polygon P, and any point A that 
does not belong to P, we shall define a "modified polar" of P with respect to 
A , and show that the rotation number of P is equal to the winding number of 
this modified polar with respect to A. 

2. BASIC DEFINITIONS; THE ROTATION NUMBER 

A polygon P, or, more specifically, an n-gon is a family of n ~ 3 points 
~ , V;, T-;, ... , ~ and n directed line segments EI = [~, V;], E2 = [V;, T-;], 
... , En_ 1 = [Vn_ 1 ' Vn], En = [Vn , VI] in the Euclidean plane E2, such that 
Jj i- Jj+ I for j = 1 , 2, ... , n. Here, and in the sequel, it is convenient to take 
all subscripts modulo n. The n-gon P is denoted by [~, V;, T-;, ... , ~], 
and we shall call this the standard presentation of P. The points Jj are the 
vertices of P, and the directed line segments [Jj, Jj+d are its edges. Two 
polygons are considered identical if the standard presentation of one can be 
obtained from that of the other by a cyclic permutation of the symbols Jj. 
All the polygons are "oriented" in the sense that [~, V;, V3 , ••• , ~] is to be 
considered distinct from [Vn , •.• , V3 , V;, ~]; two such polygons are said to 
be of different orientations, though their vertices, and their edges (considered as 
point-sets rather than as directed line segments) coincide. Where appropriate 
and unambiguous, we shall use the words "clockwise" and "counterclockwise" 
to describe the orientation of a given polygon. 

A polygon is called ordinary if no three edges have a common point. It is 
called simple if, in addition to being ordinary, no two edges have a common 
point which is in the relative interior of each. A simple polygon P is a simple 
Jordan curve; the complement of P in the plane consists of two disjoint, open, 
and connected regions, one of which is bounded and simply-connected, and 
the other unbounded. These are known as the interior and the exterior of P, 
respectively. More generally, if P is any polygon, its complement E\P in the 
plane consist of a finite number of connected and polygonally-connected open 
sets called cells of P, all but one of which are simply-connected and bounded. 
The exceptional one is unbounded and is called the exterior of P . The boundary 
of each cell consist of a finite number of segments, which can be directed so as 
to form a simple polygon. A polygon P has a whisker at a vertex V if the two 
edges of P incident with V overlap in a segment of positive length. While 
we shall admit various coincidences to occur between vertices and edges of the 
polygons we discuss (see Figure 1), polygons with whiskers will be excluded 
from all our considerations. Note, however, that the alternative definition of 
the rotation number given in §5 applies only to ordinary polygons. Examples 
of polygons which illustrate these definitions appear in Figure 1. In each, the 
orientation of any polygon can be deduced from the labels on the vertices, as 
well as from the direction of one edge, which is indicated by an arrow. 
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FIGURE 1. Examples of polygons. Vertices are indicated by solid dots 
labelled by 1, 2, ... ,n (instead of ~, V;, ... , Vn ). Polygons (a) to 
(f) are ordinary, the first three are also simple. The last six polygons are 
not ordinary. In particular, polygon~ (i) and U) are "self-osculatory" in 
an obvious sense, and polygons (k) and (1) are "overlapping". The poly-
gon (1) has, moreover, a whisker at vertex 2, and is therefore excluded 
from the considerations of the text. The twelve polygons shown have 
2,2, 2, 11, 7, 10, 3,4, 3,4, 3 and 2 cells, respectively, and the rotation 
numbers of the first eleven are 1, 1, 1, 2, 2, 1, 0, 2, 0, 2 and 1; the 
rotation number of the last polygon is not defined. 
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For any two distinct points A, B in the plane we shall use the notation 
[A, B) for the ray (closed halfline) with endpoint A that passes through B. 
Two rays are said to be parallel if one is a translate of the other. Let ~_I' ~, 

~+ I be three consecutive vertices of a polygon P and let A j be any point on 
the extension of the edge [~_I' ~] beyond ~. The deflection wedge D(~) 
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of P at ~ is the union of all the rays with endpoint ~ that lie strictly between 
the rays [~, A) and [~, ~+I) (see Figure 2(a)). Since we are assuming that 
P is whisker-free, the rays [~, A) and [~, ~+I) do not lie in the same line 
opposite to each other, hence the meaning of "between" is well-defined. We 
define d (~) , the deflection of P at ~, by the signed measure of the angle of 
d(~) at its vertex ~. If the second ray [~, ~+I) is obtained from [~, A) 
by a counterclockwise rotation (in D( ~) ) then D( ~) is taken to be positive; if 
it is obtained by a clockwise rotation, d (~) is taken to be negative. Throughout 
we shall use the absolute system of angle measure, so that a complete counter-
clockwise turn of 3600 or 2n radians has value 1. By definition, the value of 
d(~) satisfies -1 < d(~) < 1· 

By translating the deflection wedges so that their vertices all coincide with 
a point 0, we obtain the so-called "second figure" of the polygon (see Figure 
2(b)). It is easy to see that these translated wedges fit together so as to cover the 
plane, and hence, for every polygon P, the quantity 2: j d (~) is an integer; 
here summation is over all vertices ~ of P. This integer indicates how many 
times any point (that does not lie on the boundary of a translated wedge) is 
covered by the wedges. The covering is reckoned in the algebraic sense, that is, 
a wedge contributes ± 1 to the covering according to the sign of d (~). The 
integer 2: j d (~) is called the rotation number of P and is denoted by r( P) . 
It follows that if a simple n-gon P is oriented in a counterclockwise direction 
then r(P) = 1 , and if it is oriented in a clockwise direction then r(P) = -1 . 
In general, reversing the orientation of a polygon has the effect of changing the 
sign of its rotation number. The rotation numbers of the polygons shown in 
Figure 1 are indicated in the caption to the figure. 

Let R j = [~., C) be any ray with endpoint ~. We say that R j is concor-
dantly tangent to P at ~ if it is contained in the interior of the deflection 
wedge D( ~). The concordant tangency of the ray R j is positive or negative 
according to the sign of d(~), see the caption to Figure 2(a). We have the 
following result: 

Theorem 1. Let P be a whisker-free polygon and R be any ray not parallel to 
an edge of P. For each vertex ~ of P let R j be a ray parallel to R with 
endpoint ~. Define r(R) = 1 if R j is positively concordantly tangent to P 
at ~; r(R) = -1 if R j is negatively concordantly tangent to P at ~; and 
r(R) = 0 otherwise. Then 

r(P) = Lr(R) 
j 

where summation is over all the vertices of P . 
Proof. Consider the second figure of P, and let Ro be the ray parallel to R 
with endpoint o. Then it is clear that 2: j r( R) is precisely the multiplicity 
with which the ray Ro is covered by the translated wedges, and so is equal to 
the rotation number r(P). 0 
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(a) 

(b) 

FIGURE 2. The definitions of "deflection wedge" and "rotation number". 
The construction of the "second figure" illustrated in (b) for the polygon 
in (a) goes back to Wiener [1865]; it shows that the polygon P in (a) 
satisfies r(P) = 1 . Rays directed vertically up are concordantly tangent 
at V;, V; and V7 (these rays are not shown); the concordant tangency 
is positive at V; and V5 , negative at V7 • 
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The restriction that R is not parallel to an edge of P can be removed if one 
counts, instead of vertices, the connected subsets of P at which rays parallel to 
R are concordantly tangent, and the definition of the sign of concordancy is 
modified in the appropriate manner. 
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174 BRANKO GRUNBAUM AND G. C. SHEPHARD 

3. TANGENT AND NORMAL NUMBERS 

For any polygon P let W(P) be the web of P, that is, the union of all 
the lines determined by the edges of P (see Figure 3(a)). For any point A E 
E\W(P) and for each j = 1,2, ... , n, let B j be any point on the extension 

(a) 

.":1 

.. 1 

.. ' .) 

t(P,A,) = t(P,Ai = 1 

(b) 

FIGURE 3. (a) The web W(P) of the polygon P is indicated by thin 
lines. (b) to (e) Determination of the tangent number of P with respect 
to various points. Concordant tangents are indicated by dotted lines. 
In (b), the points Al and A2 are on opposite sides of a line (indicated 
by a thin solid line) of the web W (A) . 
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.... 

t···· 
(c) t(P,A) = 0 

(d) "J 
t(P,A) = 2 

t(P,A) = ·1 

FIGURE 3 (continued). 

of the line segment [A, Tjl beyond Tj, and M j = [Tj, B). We define the 
tangent number t(P, A) of P with respect to A E E\W(P) by t(P, A) = 
2.: j r(M). Here r(M) is defined as in Theorem I, that is, as ±I depending 
on whether M j is positively or negatively concordantly tangent at Tj, and the 
summation is over all the vertices of P; see Figure 3(b )-( e) for illustrative 
examples. 

It is clear that t(P, A) is a continuous function of A so long as A does 
not belong to W(P) , and since it takes only integer values it is constant in 
any connected component of E2\W(P). Further, t(P, A) can be extended by 
continuity to each cell of P. This follows (see Figure 3(b)) since, as is easily 
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verified, for two nearby positions of A (say Al and A2 ) separated by a line 
of W(P) but not by an edge of P, t(P, AI) = t(P, A2 ). With this extended 
definition t(P, A) is continuous and therefore constant on each cell of P. By 
taking A very far from P (that is, situated sufficiently far compared to the size 
of P) in a direction which is not parallel to any edge of P, we see that t(P, A) 
can be made arbitrarily close to r(P). Since both functions are integer-valued, 
this implies the following: 

Theorem 2. For every whisker-free polygon P and for each A in the exterior of 
P we have r(P) = t(P, A). 0 

For each vertex ~ of a polygon P let points B j and C j be chosen so that 
each of the triangles ~_I Bj ~ and JijCj ~+I is right-angled at Jij and both are 
positively oriented. Let R j be the ray [~, B) such that the triangle ~_I Bj ~ 

is positively oriented, Sj the ray [~, C) . The normal wedge N(~) of P at 
~ is the union of all the rays with endpoint ~ that lie strictly between R j and 
Sj (see Figure 4(a)). It is clear that N(~) results from the deflection wedge 
D(~) by a clockwise rotation through t (that is, nl2 radians). We denote by 
n ( Jij) is the signed measure of the angle of N (Jij) at ~; hence n ( Jij) = d ( ~) 
and so Lj n(Jij) = r(P). Let A be any point of E2 \ P such that [~, A} is 
not in the boundary of any normal wedge N(~). We define indices v(~, A) 
and v(Ej' A) for all vertices ~ and edges E j of P in the following manner: 

v(V, A) = 1 0 } 1 

-1 

"(Ej • A) ~ L 
if [Jij, A} does not belong to the normal wedge N(~) 
of P at ~; 
if [~, A} belongs to N(~) and n(V) > 0; 
if [~, A} belongs to N(~) and n(V) < o. 

if the foot of the normal from A to the line L j determined 
by Ej is a point of Ej' and the direction of E j as seen 
from A is clockwise; 
otherwise. 

Then the normal number of P with respect to A is the integer defined by 

n(P, A) = L v(~, A) + L v(Ej' A) 
j j 

where the sums are over all the vertices and all the edges of P, see Figure 4(b), 
(c). In fact, the restriction that A must not be in the boundary of any normal 
wedge is unnecessary, and the domain of definition of n(P, A) can be extended 
by continuity so that A may lie anywhere in E2 \ P . 

Clearly n(P, A) is a continuous function, and as it takes only integer values 
it must be constant on each cell of E2 \ P . 

Theorem 3. For each whisker-free polygon P and for each point A E E2 \ P we 
have n (P , A) = t (P , A) . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ROTATION AND WINDING NUMBERS 

(a) 

(b) 

n(P,A) = -1 

(c) 

FIGURE 4. (a) The normal wedges N (V) of a polygon P. (b) and (c) 
The determination of the normal numbers n(P, A) for various points. 
Rays Pi, A) and normals to edges oriented clockwise as seen from A 
are indicated by dotted lines 
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In particular, this means that for points A belonging to the exterior of P we 
have n(P, A) = r(P) = t(P, A). 

We know of no direct proof of Theorem 3; an indirect proof will follow 
from the results concerning winding numbers which we shall establish in the 
next section. 
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4. THE WINDING NUMBER 

Let P be a polygon and A any point of E2 \ W(P). Let R = [A, B) be a 
ray which contains no vertex of P. For each edge E j of P we define an index 
t{I(R, E) as follows: 

{ 

0 if R does not intersect E j ; 

1 if E j crosses R in a counterclockwise direction as viewed 
t{I(R, E) = 

from A; 

-1 if E j crosses R in a clockwise direction as viewed from A. 
Then the winding number w(P, R) of P with respect to R is defined by 

w(P, R) = L t{I(R, E) 
j 

where summation is over all the edges of P, see Figure 5. Thus w(P, R) 
is the (signed) difference between the number of edges that cross R in a coun-
terclockwise direction and the number that cross R in a clockwise direction. 
It is easy to show that w(P, R) takes the same value of all rays R with end-
point A that do not contain a vertex of P. Therefore the value of w(P, R) 
can more fittingly be denoted by w(P, A). This function of A is continuous 
and takes only integer values; hence it is constant as A ranges over any cell 
C of P. Denote its value for A in C by w(P, C). The value of w(P, C) 
is often called the density of the cell C with respect to P. Clearly, if A lies 
in the exterior of P then w(P, A) = o. The function w(P, A) is useful in 
the calculation of the areas and other properties of polygons. An alternative 
definition of w(P, A) equivalent to the one above is given by the equation 
w(P, A) = 2: j a(E) , where a(E) is the angle subtended by the edge E j of 
P at A, taken with the appropriate sign. The following basic result connects 
the rotation number of a polygon P, and the tangent and winding numbers of 
P with respect to a point A. 

FIGURE 5. For several rays issuing from A and B , the values of t{I are 
indicated near each intersection with the polygon P. In this example 
we have w(P, A) = -1, w(P, B) = 2. 
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Theorem 4. For every whisker-free polygon P and every point A not belonging 
to P we have 

(1) w(P, A) + t(P , A) = r(P). 
Proof. We shall first show the left side of (1) is constant for A not in P. To 
do this, refer to Figure 6 for the difference between the values of w(P, AI) and 
w(P, A2) on the one hand, and t(P, AI) and t(P, A2) on the other, when Al 
and A2 lie in adjacent cells of P. We have to consider the four cases shown, 
and in each it will be observed that w(P, A) + t(P, A) takes the same value in 
all cases. Hence this quantity is constant in E2 \P . Since, for sufficiently distant 
points, w(P, A) = 0 and t(P, A) = r(P) , the relation (1) is established. 0 

Theorem 5. For every whisker-free polygon P and every point A not belonging 
to P we have 

w(P, A) + n(P, A) = r(P). 0 

~ 
A· 1. 

I 

"" 
FIGURE 6. The main step in the proof that t(P, A) + w(P ,A) is 
constant. The heavily drawn segments represent part of the polygon 
P. The points Al and A2 are close enough to the edge that sepa-
rates them to have analogous positions relative to all the vertices and 
edges of P that are not shown. In all the cases illustrated we have 
w(P, A2) - w(P, AI) = 1, t(P, A2) = t(P, AI) = -1 . 
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This is proved in an exactly analogous manner to Theorem 4. For two posi-
tions of A in adjacent cells of P we calculate w(P, A) + n(P, A) and notice 
that it takes the same value in each case. Hence this quantity is constant in 
EZ \ P. Moreover, if A is sufficiently distant from P, and is such that no line 
through A that meets an edge of P is perpendicular to that edge, then clearly 
w(P, A) = 0 and n(P, A) = r(P) . 0 

From Theorems 4 and 5 immediately follows the validity of Theorem 3. 

5. AN ALTERNATIVE DEFINITION OF THE ROTATION NUMBER 

In the case of ordinary polygons, there is an alternative definition of the 
rotation number. Let P now denote an ordinary polygon, and A be any point 
of P which belongs to a single edge. Starting from A, we follow P and note, 
each time we reach for the first time any self-intersection point D of P, whether 
the crossing edge traverses from left to right, or from right to left. In the former 
case we define the crossing index c(D, A) relative to A as + 1 , in the latter as 
-1 . See the example in Figure 7 (a). Then we have the following theorem. 

Theorem 6. For every ordinary polygon P 

(2) r(P) = w(CI , P) +w(Cz , P) + L c(D, A), 
DEP 

where w(CI , P) and w(Cz' P) are the winding numbers of the two cells of P 
adjacent to A, and the summation extends over all the self-intersection points D 
of P. 
Proof. The theorem is clearly true if P has no self-intersections. Next, we 
note that the right-hand side of (2) is independent of A, since on crossing a 
self-intersection point of P the changes in the winding numbers of the adjacent 
cells are exactly compensated by the changes in the sum of the indices c( D, A) . 
Now let A be any self-intersection point of P with the property that the part of 
P from one crossing at M to the revisit of M is a simple polygon p* ; denote 
the remaining part of P by p** . Clearly, p** has fewer self-intersections than 
P and we can use induction. Let A be a point of p** just preceding M, so 
that the part of P from A to M contains no self-intersections of P. Since the 
contributions to LD c(D, A) which arise from self-intersection points D of P 
which belong to p* cancel each other out, using relation (2) for p** (which is 
permissible by induction) we have 

w(CI , P) +w(Cz' P) + L c(D, A) 
DEP 

DEP" 

= r(P*) + r(P**) = r(P). 

See Figure 7(b), (c), (d), in which this proof is illustrated for several possible 
positions of A and P*. 0 
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(a) 
(b) 

(e) (d) 

FIGURE 7. (a) The determination of the rotation number r(P) by the 
densities of the cells adjacent to A, and the crossing indexes relative 
to A. (To avoid clutter, + and - are used for +1 and -1.) (b), (c), 
(d) Illustrations of the construction used in the proof of Theorem 6. In 
each case, the polygon p* is indicated by wide, shaded lines. 

6. THE MODIFIED POLARITY 

181 

First let us recall the usual concept of polarity of a polygon P with respect 
to a circle C. Without loss of generality (by a change of scale and applying 
a suitable translation) we may suppose C is the circle of unit radius centered 
at the origin 0, which is the initial point for all the position vectors. Polarity 
is the correspondence II which maps a point T (other than 0) with position 
vector t, onto the line (not through 0) (x, t) = 1 which we denote by II(T). 
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5 

FIGURE 8. An illustration of the construction of the polygon II(P) 
(thin solid lines) dual of the polygon P (heavy lines) by the polarity 
II determined by the circle C. To avoid clutter, we write j instead of 
L j and n(L). 

Geometrically II(T) is perpendicular to the vector t, and its distance from 
o is the reciprocal of the length of t. The images under polarity of all the 
points on a line L that does not pass through 0 is a pencil of lines, that is, 
the set of all (except one) lines passing through a point, which we denote by 
n(L) ; the one exception is the line joining II(L) to O. We may say that II(L) 
corresponds to L under the polarity. Thus polarity maps points onto lines and 
lines onto points, preserves incidences of points and lines, and it is involutory 
in that II(II(L)) = L for any line L not through 0, and II(II(T)) = T for 
any point T =1= O. 

We shall denote by L j the line containing the edge E j of P, oriented in the 
same direction as E j . It is well known that polarity can be used to establish 
a duality between pairs of polygons which are such that no edge of either lies 
on a line that passes through O. To be precise, the polygon II(P) polar to P 
is determined by its vertices, namely II(L,) , II(L2 ) , .•• , II(Ln) , and these, in 
turn, determine the edges of II(P); see Figure 8 for an illustrative example. 
The same result is obtained by considering II(P) to be determined by its lines 
II(V,) , I1(V2 ) , ••• , II(Vn) , which are the polars of the vertices of P. 

This polarity is not completely satisfactory for our purposes, so we define a 
modified polarity as follows. Let P be a polygon such that no line L j passes 
through O. For each edge E of P define a point f'(L) (where L is the line 
containing E) in the following way: 

{ 
II(L) if 0 is on the left of L (when looking along L in the direction 

f'(L) = of its orientation); 
- I1(L) if 0 is on the right of L. 

The edges of f'(P) are naturally determined by its vertices f'(L,) , f'(L 2 ) , 

... , f'(Ln) , and f'(P) is called the modified polar of P (see Figure 9). If 0 
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FIGURE 9. An illustration of the construction of the modified polar 
r(P) for the polygon P shown in Figure 8. 
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lies on the left of all the edges of P (as will happen, for example, if 0 lies 
in the interior of a convex polygon oriented in a counterclockwise direction), 
then clearly r(P) = I1(P). In this case r(r(P)) = P, but in general r is not 
involutory - that is r(r(P)) =I- P. However r(P) has the following interesting 
property: 

Theorem 7. If P is a whisker-free polygon such that no line determined by an 
edge of P passes through the origin 0, then r(P) = w(r(P) , 0) . 

Proof. We recall from §3 that r(P) = Lj n(V)), where n(V)) is the measure of 
the normal cone at the vertex V) of P. As can be seen from the construction 
in Figure 9, in each possible situation the value (including the sign) of n(V)) 
equals to the measure of the angle a([r(L j _ I ) , r(L)]) sub tended at 0 by the 
edge [r(L j _ I ) , r(L)l of r(p). Therefore, summing up for all j, we get the 
required equality. D 

7. SIMPLE CLOSED CURVES 

Most of the results stated above for polygons have analogues or generaliza-
tions to closed, piecewise smooth curves. The changes needed are obvious. For 
example, in computing the rotation number of such a curve one has to take into 
account not only the contributions from the vertices (points at which the left 
and right tangents fail to coincide) but also those arising from the curvature 
of the smooth arcs. However, the curve must not have cusps; for such curves 
various complications arise and in some cases the interpretation is not clear. In 
fact it was to avoid such complications that, in our treatment of polygons, we 
restricted attention to those that are whisker-free; whiskers are just the polygo-
nal version of cusps. For curves Theorem I is valid in the following form. It 
can be proved by straightforward approximation arguments. 
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Theorem 8. Given any ray L, the rotation number of a piecewise smooth, cusp-
free closed curve C is the number of rays parallel to L that are positively con-
cordantly tangent to C less the number of those that are negatively concordantly 
tangent. 

The other results of §§3, 4 and 5 have similar analogues. However, we know 
of no result analogous to Theorem 7 which holds for curves other than polygons. 

8. REMARKS 

If P is a regular polygon with center 0, then it is easily seen that r(P) = 
w(P, 0); equality also holds if the symmetries of P act transitively on its 
vertices, or on its edges, with 0 as the center of symmetry, and if all the edges 
are directed clockwise (or all counterclockwise) as seen from O. Since these 
kinds of polygons were the ones most frequently investigated, and served as 
models for the classical theory, the equality for them of the winding number 
(with respect to 0) and the rotation number probably explains why the latter 
concept has been neglected. (A vertex-transitive octagon P for which r(P) =1= 

w(P,O) is shown in Figure 10.) In fact, Wiener [1865] explicitly defined what 
we call r(P); he used the phrase "die Art von P ", which may be translated "the 
kind of P ", for our r(P). However, in what seems to have been a misguided 
effort to belittle Wiener, Hess [1874] appropriated the word "Art" for a different 
concept (which, though related to r(P) , is needlessly complicated, besides being 
useless and misleading; it is rather revealing that in all situations in which 
Hess's concept can be used, its value coincides with the one given by Wiener). 
Bruckner [1900] adopted Hess' approach and since Bruckner's book became the 
basic reference for the theory of polygons, it is not surprising that Wiener's work 

FIGURE 10. A vertex-transitive octagon P for which the rotation num-
ber r(P) = 3 differs from the winding number with respect to the cen-
ter, w(P, 0) = 1. Some edges of P are directed clockwise, and some 
counterclockwise, as seen from the center O. 
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FIGURE 11. The simultaneous "switching" at all self-intersection points 
of an ordinary polygon P (shown in (a)) yields a non crossing family of 
simple polygons (shown in (b)). 
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was almost forgotten. As a result, many of the useful ideas Wiener introduced 
were not developed. There are several indications that Bruckner considered 
himself to be the intellectual heir of Hess, and, as such, took a similar attitude 
to Wiener's work. From the standpoint of the present, we venture to suggest 
that Wiener's treatment of polygons was superior to that of the others, and 
it is regrettable that Hess and Bruckner tried (and to some extent succeeded 
in) suppressing his work. There are only a few later references to Wiener's 
definition of the rotation number of a polygon; the most recent one known to 
us is in Steinitz [1922], which was actually written in 1916. However, even this 
mention did not prevent Wiener's work from sinking into long oblivion; in fact, 
many of Steinitz's own remarkable ideas remained unnoticed for many years. 

One of the techniques first used by Wiener [1865] consists in splitting off 
a simple loop from a self-intersecting ordinary polygon by "switching" the two 
outgoing parts of edges at a suitable self-intersection; in the proof of Theorem 6 
we employed this "switching" at the point M. Remarkably, Wiener seems not 
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to have had the idea of "switching" simultaneously at all self-intersection points 
of P (see Figure 11). If this is done, we immediately obtain the following 
reduction theorem which yields alternative definitions of the winding, tangent 
and rotation numbers of a polygon: 

Theorem 9. (i) The "switching" at all self-intersection points of an ordinary poly-
gon P yields a uniquely defined family S( P) of simple and mutually noncrossing 
polygons. 

(ii) For each point A $. P, the winding number w(P , A) equals the difference 
between the numbers of positively and of negatively oriented polygons of S(P) 
that contain A in their interior. 

(iii) For each point A $. P, the tangent number t(P, A) equals the difference 
between the numbers of positively and of negatively oriented polygons of S(P) 
that contain A in their exterior. 

(iv) The rotation number r(P) equals the difference between the numbers of 
positively and of negatively oriented polygons of S(P). 

Parts (i) and (ii) of this result are due (in rather cryptic form) to C. G. J. 
Jacobi (1804-1851). Their exact date is uncertain, and they were published 
only posthumously, by O. Hermes (see Jacobi [1866]). This, and a short note 
by Hermes [1866] which extends parts (i) and (ii) (in a noncanonical way) to 
certain nonordinary polygons, seem to have been largely forgotten; the only 
mention we were able to find is in Steinitz [1922]. Part (iv) of Theorem 9 
appears in Steinitz [1922, p. 8], in a slightly stronger formulation. Clearly, 
the results of Theorem 9 extend to piecewise smooth closed cusp-free curves 
without triple points or self-osculations. 
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