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Abstract

A cornerstone of geometric reconstruction, rotation aver-

aging seeks the set of absolute rotations that optimally ex-

plains a set of measured relative orientations between them.

In spite of being an integral part of bundle adjustment and

structure-from-motion, averaging rotations is both a non-

convex and high-dimensional optimization problem. In this

paper, we address it from a maximum likelihood estimation

standpoint and make a twofold contribution. Firstly, we set

forth a novel initialization-free primal-dual method which

we show empirically to converge to the global optimum.

Further, we derive what is to our knowledge, the first op-

timal closed-form solution for rotation averaging in cycle

graphs and contextualize this result within spectral graph

theory. Our proposed methods achieve a significant gain

both in precision and performance.

1. Introduction

Rotation averaging, also known as group synchronization,

is an estimation problem wherein we want to find a set of

rotations {R1, . . . , Rn} 2 SO(p)n, where

SO(p) = {R 2 R
p⇥p : RR> = I, det(R) = 1}, (1)

that optimally explains a set of m noisy pairwise mea-

surements { eRij}i⇠j 2 SO(p)m of the relative orientations

RiR
>
j . The notation i ⇠ j refers to the existence of a mea-

surement between rotations i and j. As a sub-problem of

several 3D reconstruction tasks, namely bundle adjustment

[1, 26], structure-from-motion [23, 17] and camera network

calibration [25], rotation averaging is of particular interest

in computer vision. Nevertheless, the high-dimensionality

of the aforementioned problems and the non-convexity of

SO(p) render this problem difficult.

Under the hypothesis of the Langevin noise model [6, 9]

adopted in [13, 12, 3, 20] we formalize rotation averaging
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Figure 1: Comparison between our primal-dual method and

the solutions produced by Shonan Averaging [12] and SE-

Sync [22] for rotation averaging problems adapted from

pose graph optimization datasets [8].

as the Maximum Likelihood Estimation (MLE) problem

minimize
R1,...,Rn

X

i⇠j

���� eRij �RiR
>
j

����2
F

subject to Ri 2 SO(3), i = 1, . . . , n.

(2)

Contribution Firstly, we present a primal-dual method to

solve (2) inspired in optimization algorithms with orthogo-

nality constraints [15]. We show empirically that this algo-

rithm converges to the global optimum when the dual vari-

able is initialized with the graph degree matrix (Fig. 1).

Secondly, we put forward the first optimal closed-form so-

lution for rotation averaging problems with a cycle graph

topology. This solution allows for the retrieval of machine-

precision global optima several orders of magnitude faster

than the state-of-the-art and compounds the results in spec-

tral graph theory set forth in [13]. Our code is available at

https://github.com/gabmoreira/maks.
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2. Related work

The literature on rotation averaging spans a large array of

optimization schemes, from iterative search methods [2, 12,

13, 14, 21, 22] to closed-form suboptimal solutions [3, 19,

20]. Recently, global optimality has taken the spotlight in

rotation averaging papers. Nevertheless, finding the global

minimum and thus solving (2) remains a difficult task to

accomplish efficiently.

In the domain of iterative algorithms, Gauss-Newton (GN)

and Levenberg-Marquardt (LM) methods such as those

available in the pose graph optimization frameworks g2o

[18] and GTSAM [11] were until recently, the most promi-

nent techniques for solving rotation averaging. The non-

convexity of this problem however, makes these techniques

initialization dependent. A distributed Riemannian gradient

descent algorithm in the manifold of 3D rotations has been

proposed by Tron et al. [25] but this method is arguably less

efficient than GN and LM.

In order to circumvent the retrieval of local optima, which

are of no practical interest for the applications we are con-

sidering, Eriksson et al. [13] derived the dual for problem

(2) and set forth a multitude of results pertaining to op-

timality verification relying on duality theory. Assuming

strong duality holds, the solution of the semidefinite pro-

gram (SDP) corresponding to the dual of problem (2) yields

the sought-after set of rotations. To solve this SDP, the au-

thors presented a block coordinate descent method.

Alternative globally optimal strategies have been put for-

ward. The SE-Sync pose graph optimization framework by

Rosen et al. [22] relies on a Riemannian staircase [5, 7]

to solve a SDP relaxation and guarantees globally opti-

mal solutions under a few assumptions on the noise model.

Shonan averaging, proposed by Dellaert et al. [12] and now

part of GTSAM, solves the problem locally on SO(3) and

then increases the dimension of the manifold to start the op-

timization again. This is carried out iteratively, until a glob-

ally optimal solution is attained. This method combines the

performance of GN and LM methods with a strategy for

guaranteeing global optimality.

As opposed to the methods aforementioned, a number of

works have proposed closed-form approximations of the

optimal solution. Martinec et al. [19] treat the problem as a

least-squares and then project the solution to the space of ro-

tations. More recently, Arrigoni et al. [4, 3] and Moreira et

al. [20] have proposed eigenspace-based solutions attending

to the fact that for noise-free measurements solving rotation

averaging is tantamount to solving an eigenvector equation.

Whilst these closed-form approaches may yield satisfactory

results for moderate noise levels, it is difficult to ascertain

their domain of applicability.

3. Problem statement

Let G = (V, E) be a connected graph and { eRij}i⇠j 2

SO(3)m a set of relative rotation measurements between

nodes i and j. Under the assumption of isotropic Langevin

noise [6, 9], rotation averaging seeks the set of rotations

{R⇤
i }i2V , which minimize the chordal distance [16] be-

tween each measurement eRij and the respective pairwise

estimate R⇤
iR

⇤>
j , over all edges of the graph. The MLE

estimate [8, 20, 12] is

{R⇤
i }i2V = argmax

{Ri}i2V2SO(3)n

X

i⇠j

tr(R>
i
eRijRj). (3)

We now introduce a block-matrix notation that we will use

throughout the paper. Let Sp be the set of symmetric p ⇥ p
matrices, Ip 2 R

p⇥p the identity and 0p 2 R
p⇥p the null

matrix. We define the block-vector R 2 SO(3)n as

R :=
⇥
R>

1 . . . R>
n

⇤>
(4)

and the pairwise block-matrix eR 2 S3n as

eR :=

8
><
>:

I3 if i = j
eRij 2 SO(3) if i ⇠ j

03 if i 6⇠ j.

(5)

The block-entry i, j of eR contains the measured rotation of

that edge or a null block if i 6⇠ j. We set rotations from

each node to itself as the identity and consider eRji = eR>
ij .

Defining the cost function

f(R) := � tr
�
R> eRR

�
, (6)

we can write the optimization problem in (3) as

minimize
R

f(R)

subject to R 2 SO(3)
n
.

(7)

4. Primal-dual method

In this section, we present a novel primal-dual update

method to solve problem (7). We will show in Section 6

that in the applications considered, this algorithm succeeds

in retrieving the global optimum.

As derived in [13], the Lagrangian for rotation averaging

under the orthogonality constraint R 2 O(3)n is

L(R,Λ) = � tr
�
R> eRR

�
� tr

�
Λ(I �RR>)

�
, (8)

where the Lagrange multiplier is the block diagonal matrix

Λ = blockdiag(Λ1, . . . ,Λn), with Λi 2 S3. Differentiating

(8), we have the stationarity condition

�
Λ� eR

�
R = 0 (9)
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i.e., the optimal rotations are in the kernel of Λ � eR. Con-

versely, we can obtain Λ from (9) via

Λi = RiR
>
i +

X

i⇠j

eRijRjR
>
i , i = 1, . . . , n. (10)

Our primal-dual method consists of combining (9) and (10)

with projections to SO(3)n and S3n respectively, in order to

create primal and dual feasible update rules.

Primal update Given an estimate of the dual variable at

the k-th iteration, which we denote by Λk, Eq. (9) will in

general not have a solution in SO(3)n. We resort thus to an

approximation. In order to avoid the trivial solution R = 0,

we look for X on the Stiefel manifold

St(3n, 3) := {X 2 R
3n⇥3 : X>X = I3} (11)

that minimizes tr
�
X>(Λk� eR)X

�
. We then project the re-

sult to SO(3)n by solving n Procrustes problems [24]. Our

primal updates consist thus of

Xk+1 = argmin
X2St(3n,3)

tr
�
X>(Λk � eR)X

�
(12)

Rk+1 = argmin
R2SO(3)n

����R�Xk+1
����2
F
. (13)

The solution of (12) is given by the three eigenvectors of

Λk � eR associated with the three smallest eigenvalues.

These eigenspaces can be computed efficiently by means

of sparse symmetric eigensolvers. The optimization prob-

lem in (13) can be solved via singular value decompositions

of 3⇥ 3 matrices. As demonstrated in [13], if a primal-dual

pair (R⇤,Λ⇤) verifies the stationarity condition (9), then

Λ⇤ � eR ⌫ 0 is sufficient for strong duality to hold and for

(R⇤,Λ⇤) to be optimal. Thus, (12) allows for an optimality

assessment at each iteration.

Dual update Drawing from the work of Gao et al. on op-

timization problems with orthogonality constraints [15], we

form the dual update by symmetrizing (10). Let Ψ(X) de-

note the projection to S3 i.e., Ψ(X) := 1
2 (X +X>). Given

a primal variable estimate Rk, we compute Λ according to

Λ
k
i = Rk

i R
k>

i +Ψ

✓X

j⇠i

eRijR
k
jR

k>

i

◆
, i = 1, . . . , n (14)

Initialization Instead of initializing the aforementioned

primal-dual updates with an estimate of the primal variable

i.e., a set of rotation estimates, we leverage the fact that

for noise-free measurements Λ⇤ depends only on the graph

topology. In this case, the optimal rotations R⇤ verify

�
(D + I)⌦ I3 � eR

�
R⇤ = 0, (15)
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Figure 2: Cosine of the principal angle between the noisy

and noise-free eigenspaces of Λnf � eR for a graph with

50 nodes and different algebraic connectivities ⇢ (Fiedler

value). Averaged over 3⇥ 104 simulations.

where D 2 R
n⇥n is the graph degree matrix. The optimal

Lagrange multiplier for noise-free measurements is thus

Λnf := (D + I)⌦ I3, (16)

as stated in [3, 20]. In our method, we set Λ0 = Λnf . To un-

derstand why this initialization allows the primal-dual itera-

tions to attain optimality, we show empirically that for mod-

erate noise levels, the subspace containing the ground-truth

rotations and the subspace which solves (12) at k = 0 are

close together. Let eRnf 2 S3n denote the ground-truth pair-

wise block-matrix and eR 2 S3n (5) the matrix obtained by

perturbing the non-null blocks of eRnf with Langevin noise

(standard deviation �noise). We represent in Fig. 2 the co-

sine of the principal angle between the kernel of Λnf � eRnf ,

which we denote by Unf and the subspace spanned by the

three eigenvectors of Λnf � eR associated with the smallest

eigenvalues, which we denote by U . The cosine is com-

puted according to cos2 = tr
�
U>UnfU

>
nfU

�
/3. As ex-

pected, these subspaces are closer for well connected graphs

(large Fiedler value ⇢). However, even for poorly connected

ones the cosine is on average close to 1.

In Algorithm 1 we show how our primal-dual updates were

implemented. This method will henceforth be referred to

as Rotation Averaging in a Split Second (RAveSS). The pa-

rameter � used in the sparse eigensolver corresponds to the

eigenvalue target for the eigenvectors we are computing.

Since our primal update is achieved by solving (12), we

pick � < 0 such that the three eigenvectors retrieved cor-

respond to the three smallest eigenvalues. Note that prior to

projecting the solution of the primal problem to SO(3)n we

fix the gauge freedom by anchoring the first rotation.
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Algorithm 1: RAveSS (Primal-Dual)

Result: R,Λ
Λ (D + In)⌦ I3;

for t 0 to maxiter do

X,�1,�2,�3  eigensolver
�
Λ� eR,� = �10�6

�
;

X  XX�1
1 ;

for i 1 to n do

UΣV >  SVD
�
Xi

�
;

Ri  U diag
�
[1 1 det(UV >)]

�
V >;

end

for i 1 to n do

Λi  
1
2

P
j⇠i

eRijRjR
>
i +

1
2

�P
j⇠i

eRijRjR
>
i

�>
+RiR

>
i ;

end

Λ blockdiag(Λ1, . . . ,Λn);
if min{|�1|, |�2|, |�3|} < ✏ then

return R,Λ;

end

end

5. Cycle graphs: optimal closed-form solution

From a topological standpoint, cycle graphs are the simplest

instance of rotation averaging. Nevertheless, they are usu-

ally solved via the same iterative methods that cater for the

general synchronization problem [13, 12, 22]. In this sec-

tion we show that rotation averaging problems with an un-

derlying cycle graph topology have closed-form solutions

for their stationary points, global optima included. We will

first derive the closed-form solutions for one-parameter sub-

groups of SO(3). We then show that, in the general case,

there is a basis wherein the block matrix eR can be written

such that its non-null blocks lie in a one-parameter subgroup

of SO(3). This allows us to optimally solve problem (7).

Cycle error We start by defining the error E 2 SO(3) in-

curred while traversing the cycle graph starting and ending

on the same node. Without loss of generality let

E :=

n�1Y

k=0

eRmod(k,n)+1, mod(k+1,n)+1, (17)

with the matrix product in (17) being defined from left to

right. In a cycle with 3 nodes e.g., E = eR12
eR23

eR31.

Further, let � 2 [�⇡,⇡] be the angle of E, which we denote

by � := ∠(E). We define the set of the n-th roots of E as

E
1

n :=
�
E0, E1, . . . , En�1

 
, (18)

with Ek 2 SO(3), En
k = E and ∠(Ek) = �/n � 2k⇡/n,

for k 2 {0, . . . , n� 1}.

5.1. One-parameter subgroups of SO(3)

We consider for now one-parameter subgroups of SO(3)

by assuming that the pairwise rotation measurements
eR12, eR23, . . . , eRn1 share a common axis.

Lemma 1. For cycle graphs whose edge measurements lie

in a one-parameter subgroup of SO(3), the points

Ri =

 
i�1Y

s=1

eRs,s+1

!>

Ei�1
k , i 2 {2, . . . , n} (19)

with R1 = I3, indexed by k 2 {0, . . . , n�1}, are stationary

points of problem (7).

Proof. We rewrite the cost function f (6) as

f(R) = �3n� 2
X

i⇠j

tr
� eRijRjR

>
i

�
. (20)

Under the hypothesis that the rotations eRij share a common

axis, we can restrict our search for R1, . . . , Rn to this sub-

group. Thus, ∠( eRijRjR
>
i ) = ∠( eRij) � ∠(RiR

>
j ). From

tr(R) = 1 + 2 cos(∠(R)), the trace in (20) becomes

tr
� eRijRjR

>
i

�
= 1 + 2 cos

�
∠( eRij)� ∠(RiR

>
j )
�
. (21)

Define the angles ✓ij := ∠(RiR
>
j ),

e✓ij := ∠( eRij) and the

set Θ = {✓12, . . . , ✓n1}. The optimization problem

maximize
Θ

X

i⇠j

cos
�e✓ij � ✓ij

�

subject to ✓12 + · · ·+ ✓n1 = 2k⇡,

(22)

for k 2 {0, . . . , n�1}, is equivalent to (7). Let the residuals

be e✓ij� ✓ij 2 [�⇡,⇡] and let y 2 R be a dual variable. The

Lagrangian for (22) is

L(Θ, y) =
X

i⇠j

cos(e✓ij � ✓ij) + y

 
X

i⇠j

✓ij � 2k⇡

!
(23)

From (23), we have the sufficient stationarity conditions

9 w 2 [�⇡,⇡], 8i⇠j
e✓ij � ✓ij = w, (24)

9 k 2 {0, . . . , n� 1},
X

i⇠j

✓ij = 2k⇡. (25)

Summing (24) over all the edges of the cycle graph we have

X

i⇠j

e✓ij �
X

i⇠j

✓ij = nw. (26)

Combining (25) and (26) with
P

i⇠j
e✓ij = � yields

✓ij = e✓ij � �/n+ 2k⇡/n. (27)
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From (19), we have RiR
>
j = eRijE

>
k , for i ⇠ j. Thus,

∠
�
RiR

>
j

�
= ∠

� eRij

�
� ∠

�
Ek

�
(28)

which is simply (27) since ∠(Ek) = �/n� 2k⇡/n.

Theorem 2. For cycle graphs whose edge measurements

lie in a one-parameter subgroup of SO(3), the point

R⇤
i =

 
i�1Y

k=1

eRk,k+1

!>

Ei�1
0 , i 2 {2, . . . , n} (29)

with R⇤
1 = I3 is a solution of problem (7).

Proof. Invoking Theorem 4.2 of [13] for cycle graphs,

strong duality will hold and a solution will be globally op-

timal if 8i ⇠ j the residuals verify
��e✓ij � ✓⇤ij

��  π

n
. From

(29), the optimal rotations verify

R⇤
j = E0

eR>
ijR

⇤
i , (30)

with ∠(E0) = �/n. From (30) we can write

e✓ij � ✓⇤ij = ∠
� eRijR

⇤
jR

⇤>
i

�
= �/n, (31)

Since

|�/n| 
⇡

n
(32)

due to � 2 [�⇡,⇡], the solution in (29) is optimal.

In cycle graphs, rotation averaging problems in one-

parameter subgroups of SO(3) will redistribute the cycle er-

ror equitably over all of the edges. If we incur an error of E,

with ∠(E) = �, the optimal relative rotation R⇤
iR

⇤>
j will

have an angular residual of �/n relative to the respective

measurement eRij . By increasing this figure by a multiple

of 2⇡/n we obtain suboptimal stationary points of (7).

5.2. Optimization in SO(3)

We now show that any cycle graph problem in SO(3) has

the same expression for its stationary points (19) and global

optimum (29) as derived for one-parameter subgroups. We

accomplish this by rewriting eR in a new basis.

Change-of-basis Define the matrix U 2 SO(3n) as

U := blockdiag
�
U1, . . . , Un

�
, (33)

with Ui 2 SO(3) for i 2 {1, . . . , n} computed according to

Ui :=

(
I3, i = 1
eR>
i�1,iUi�1, i 2 {2, . . . , n}.

(34)

R1

R2

R3

R4

eR12

eR41
eR34

I

R
0

2

R
0

3

R
0

4

I

IE

R
0

1

eR23

Figure 3: The cycle graph problem on the left can be trans-

formed into the problem on the right via a change-of-basis.

Lemma 3. Denote by eR0, the matrix eR written in the basis

U i.e., eR0 := U> eRU . Then,

eR0 =

2
666664

I3 I3 . . . 0 E>

I3 I3 . . . 0 0
...

...
. . .

...
...

0 0 . . . I3 I3
E 0 . . . I3 I3

3
777775
, (35)

with E = eR12
eR23 . . . eRn1 being the cycle error (17).

Proof. From (34), the blocks on the lower triangular part of
eR0 := U> eRU are given by

eR0
ij =

8
><
>:

U>
n
eRn1U1, i = n, j = 1

U>
i
eRij
eR>
ijUi, j = i� 1

U>
i Uj , i = j.

(36)

It is immediate that for i = j and j = i� 1 we have eR0
ij =

I3. It suffices to show that U>
n
eRn1U1 = E. Note that from

(34) we have U1 = I3 and Un = eR>
n�1,n . . .

eR>
23
eR>
12. Thus,

U>
n
eRn1U1 = eR12

eR23 . . . eRn�1,n
eRn1, (37)

which equals E by definition of the latter.

We can visualize this result in Fig. 3. In cycle graphs, MLE

rotation averaging (7) can be solved by concentrating the

cycle error E at a single edge. Further, by changing ba-

sis, the pairwise measurements I3 and E belong to a one-

parameter subgroup of SO(3). We can thus leverage the

results from Section 5.1 to retrieve the global optimum and

stationary points of problem (7) in closed-form.

Theorem 4. For cycle graphs with edge measurements in

SO(3), the point

R⇤
i =

 
i�1Y

s=1

eRs,s+1

!>

Ei�1
0 , i 2 {2, . . . , n} (38)

with R⇤
1 = I3, is a solution of the problem (7).
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Proof. We write f as

f(R) = tr
�
(U>R)>U> eRU(U>R)

�
. (39)

Using the change-of-variables R0 = U>R and the change-

of-basis eR0 = U> eRU we have the equivalent problem

minimize
R0

tr
�
R0> eR0R0

�

subject to R0 2 SO(3)n,
(40)

whose edge measurements are I3 and E according to

Lemma 3. These rotations belong to the one-parameter sub-

group t 7! exp
�
t[n̂]⇥

�
, where n̂ is the axis of E. Theorem

2 is thus applicable and the solution of (40) is

R0⇤

i = Ei�1
0 , i 2 {1, . . . , n}, (41)

since eR0
i,i+1 = I3, 8i 2 {1, . . . , n � 1}. It suffices now

to write (41) in the old basis vectors according to R⇤ =
UR0⇤. Since U is block-diagonal, R⇤

i = UiR
0⇤

i . From the

definition of Ui (34) we have

R⇤
i =

 
i�1Y

s=1

eRs,s+1

!>

Ei�1
0 , i 2 {2, . . . , n} (42)

with R⇤
1 = I3.

As a corollary of Theorem 4, we can take any stationary

point of the problem in the new basis (see Lemma 1) and

revert to the old basis vectors in order to obtain the corre-

sponding stationary point of problem (7). Thus, the points

Ri =

 
i�1Y

s=1

eRs,s+1

!>

Ei�1
k , i 2 {2, . . . , n} (43)

with R1 = I3, are stationary points of (7) indexed by k 2
{0, . . . , n� 1}, where the cost function evaluates to

f(R) = �3n� 2n tr
�
Ek

�
. (44)

Since tr
�
Ek

�
= 1 + 2 cos(�/n � 2k⇡/n) it follows that

the greater the number of nodes, the greater the number of

local minima near the global optimum. Hence the difficulty

of solving rotation averaging optimally.

We conclude this section by showing that in cycle graphs

the spectrum of eR relates to the values of f at stationary

points and can therefore be computed in closed-form.

Theorem 5. Let �( eR) denote the spectrum of eR. Then,

�
� eR
�
=
�
1 + 2 cos

�
�/n� 2k⇡/n

� 
k=0,...,n�1

[
�
1 + 2 cos

�
2k⇡/n

� 
k=0,...,n�1

. (45)

The proof is provided in the appendix (Section 8.1).

6. Experimental results

In this section, we evaluate the performance of our primal-

dual update method (RAveSS) and our closed-form solu-

tion in pose graph datasets and synthetic rotation aver-

aging problems in cycle graphs, respectively. Our algo-

rithms were implemented in C++ and all the tests were con-

ducted on a laptop computer with a 6-core Intel Core i7-

9750H@2.6GHz running macOS Big Sur.

6.1. Pose graph datasets

Using seven datasets from the pose graph optimization lit-

erature available online [8], we extracted the pairwise ro-

tation measurements from each one in order to generate

rotation averaging problems. Some of these datasets con-

tain multiple measurements per edge, from which only one

was kept. We compare the performance of RAveSS (primal-

dual update method in Algorithm 1) against Shonan Aver-

aging (SA) [12] and SE-Sync [22]. The authors’ implemen-

tations are available online and we tested them with their

default parameters. Since SE-Sync is designed for solving

pose graph optimization problems, we set the input trans-

lations to zero. The stopping criterion for our method was

defined as |�0| < 10�15, which corresponds to tolerance of

the Krylov-based eigensolver used.

The results can be observed in Table 1. In order to juxtapose

the three methods in terms of the positive semidefiniteness

of Λ � eR i.e., in order to verify optimality, we proceeded

as follows. For each estimate computed, we obtained the

Lagrange multiplier using the KKT condition in (10) and

symmetrized it via the projection Ψ. The columns �0 in Ta-

ble 1 correspond to the minimum eigenvalue of Ψ(Λ)� eR,

which is zero if a given solution is optimal and strong dual-

ity holds. In addition, we represent the cost function eval-

uated at the solution produced by RAveSS, denoted by f⇤

and the difference between this minimum and the minima

computed by SA and SE-Sync, denoted by �⇤ = f⇤ � f .

The CPU time is shown in seconds for all three algorithms.

The three methods benchmarked reach the global optimum

in all seven datasets. While there may be disparities re-

garding precision, the differences in terms of the minimum

attained and the set of rotations produced are negligeable in

the applications considered. We focus thus on the CPU time

of each algorithm. Our primal-dual method attains machine

precision of �0, and therefore the global optimum, faster

than the two other methods take to stop iterating. If we were

to relax the upper bound on our stopping criterion, the CPU

times could be brought down even further, without compro-

mising the solution as far as geometric reconstructions are

concerned. Plots showcasing the convergence of RAveSS

in terms of the positive-semidefinitess of Λ � eR for six of

the datasets are available in the supplemental material.
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Graph RAveSS (ours) Shonan Averaging SE-Sync

Dataset n m |λ0| f⇤ t(s) |λ0| δ
⇤ (approx.) t(s) |λ0| δ

⇤ (approx.) t(s)

SmallGrid 125 297 10
�15

−2118.202 0.02 10�07
−10�04 0.55 10�08

−10�05 0.09

Garage 1661 6275 10
�15

−42632.998 0.06 10�05
−10�01 24.5 10�14

−10�10 0.99

Sphere 2200 8647 10
�15

−56981.692 0.36 10�07
−10�03 30.1 10�09

−10�05 2.79

Torus3D 5000 9048 10
�15

−69227.058 0.35 10�06
−10�02 98.8 10�09

−10�05 3.86

Cubicle 5750 12486 10
�15

−92163.079 0.46 10�05
−10�02 96.8 10�08

−10�04 2.49

Grid3D 8000 22236 10
�15

−157206.257 1.78 10�07
−10�02 154.54 10�09

−10�04 11.69

Rim 10195 22251 10
�15

−164037.930 5.92 10�05
−10�01 221.63 10�12

−10�07 8.73

Table 1: Comparison between RAveSS (Algorithm 1), Shonan Averaging [11] and SE-Sync [22]. Datasets from [8].

6.2. Cycle graphs

Borrowing the evaluation approach adopted in [12, 13],

we tested our closed-form cycle graph solution, entitled

C-RAveSS, in synthetic cycle graph datasets. These con-

sisted of random rotation averaging problems with under-

lying cycle graph structures of different sizes, wherein the

ground-truth absolute orientations Ri correspond to rota-

tions around the z-axis, forming a circular trajectory. The

synthetic pairwise measurements were simulated by per-

turbing the relative ground-truth orientations between ad-

jacent nodes by an error matrix obtained from angle-axis

representations. The axes were sampled uniformly over the

unit sphere. The angles were drawn from a normal distribu-

tion with zero mean and standard deviation �.

We benchmarked C-RAveSS against two baselines, the

block coordinate descent method (BCD) [13] used to solve

the dual of the dual of problem (7) and the SA algorithm

which we also tested in our pose graph experiments. We

implemented the former in MATLAB and used the author’s

implementation of the latter. Both methods were initialized

randomly. Results averaged over 20 simulations can be ob-

served in Table 2. For our solution, we list the smallest

eigenvalue of Λ � eR, denoted by |�̄0|, which certifies that,

as we have shown, our solution is optimal to machine pre-

cision in all the simulations we ran. In the two rightmost

columns, we show the average difference �̄⇤ between our

closed-form global minimum and the cost function evalu-

ated at the set of rotations produced by SA and BCD.

Using its default settings, SA retrieved the global optimum

in all the tests conducted. Nevertheless, not only does preci-

sion wane as the order of the cycle increases but also the av-

erage CPU time surges substantially as the number of vari-

ables increases. In order to test the BCD method, we first

computed the global optimum in each simulation with C-

RAveSS. We then used it to set the stopping criterion for

the BCD as �⇤  10�3. As evidenced by the average CPU

time, convergence flatlined for the largest cycles. Attaining

the global minimum to three decimal places using this algo-

rithm took, on average, as much as 96 seconds for n = 100

Problem C-RAveSS Shonan BCD

n σ (rad) |λ0| t̄ (s) δ̄
⇤ t̄ (s) δ̄

⇤ t̄ (s)

20 0.2 10
�15 0.00007 10�4 0.11 10�3 0.18

0.5 10
�15 0.00007 10�4 0.12 10�3 0.23

50 0.2 10
�15 0.00008 10�3 0.26 10�3 4.48

0.5 10
�15 0.00008 10�2 0.32 10�3 6.80

100 0.2 10
�15 0.00009 10�2 0.42 10�3 51.75

0.5 10
�15 0.00009 10�2 0.50 10�3 96.19

200 0.2 10
�15 0.00010 10�2 0.74 10�3 n.a.

0.5 10
�15 0.00010 10�1 1.10 10�3 n.a.

Table 2: Comparison between our closed-form solution,

Shonan Averaging [12] and the block coordinate descent

method (BCD) [13] for random cycle graph problems.

Figure 4: Reconstruction using our closed-form solution for

cycle graphs with 38 optimal rotations computed in 70 µs.

and longer than that would be required for n = 200. While

this may be a shortcoming of our implementation, the orders

of magnitude of the CPU time appear to be in accordance

with those reported in [12].

These experiments validate our solution as both the fastest

and most precise method to solve cycle graphs. As per Table

2, our optimal closed-form represents a performance gain

over the state-of-the-art that may be as big as 10000-fold.

Fig. 4 illustrates an application of this solution in geometric

reconstruction using a cycle graph rotation averaging prob-

lem extracted from a larger 3D reconstruction dataset [10].
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7. Conclusion

In this paper we presented two contributions to the prob-

lem of averaging multiple rotations. Considering the MLE

formulation under the hypothesis of Langevin noise, we set

forth a primal-dual update method and a closed-form solu-

tion for cycle graphs. As demonstrated by our empirical

evaluation, the former produces optimal solutions to ma-

chine precision in a fraction of the time of existing solvers.

Further, it verifies optimality by default at each iteration.

The latter is, to our knowledge, the first optimal closed-form

to be derived for this class of problems. The performance

gain from optimally solving a problem that used to be tack-

led via iterative search methods, in closed-form, is substan-

tial, as evidenced by the experiments conducted.

8. Appendix

8.1. Proof of Theorem 5

We will prove the result for the spectrum of eR0, which is

equal to that of eR since the matrices are similar. We start by

showing that the block-vectors V k 2 R
3n⇥3, with

V k :=

2
6664

E0
k

E1
k
...

En�1
k

3
7775 , (46)

indexed by k 2 {0, . . . , n� 1} span invariant subspaces of
eR0 i.e., 9 H 2 R

3⇥3 : eR0V k = V kH . For this step, it

suffices to compute eR0V k. From (35) and (46)

eR0

2
6666664

E0
k
...

Ei
k
...

En�1
k

3
7777775
=

2
6666664

E0
k + E1

k + E>En�1
k

...

Ei�1
k + Ei

k + Ei+1
k

...

EE0
k + En�2

k + En�1
k

3
7777775

=

2
6666664

E0
k
...

Ei
k
...

En�1
k

3
7777775

�
I3 + Ek + E>

k

�
. (47)

It compact notation, (47) reads as

eR0V k = V k(I3 + Ek + E>
k ). (48)

Since I3 + Ek + E>
k 2 S3, let its EVD be

I3 + Ek + E>
k

EVD
= JΣJ>, (49)

with J 2 O(3) and Σ 2 R
3⇥3 diagonal. From (48) we have

eR0(V kJ) = (V kJ)Σ. (50)

The diagonal of Σ contains thus three eigenvalues of eR0.

From (49), these eigenvalues are those of I3 + Ek + E>
k

i.e., {3, 1+2 cos(∠(Ek)), 1+2 cos(∠(Ek))}. By definition,

∠(Ek) = �/n� 2k⇡/n, thus

�
1 + 2 cos(�/n� 2k⇡/n)

 
k=0,...,n�1

⇢ �( eR), (51)

with each eigenvalue having multiplicity 2.

In order to identify the remaining n eigenvalues of eR let

n̂ denote the axis of the cycle error E i.e., En̂ = n̂ and

E>n̂ = n̂. Define the vectors zk 2 R
3n

zk :=

2
666664

1
cos
�
1 2kπ

n

�

cos
�
2 2kπ

n

�

...

cos
�
(n� 1) 2kπ

n

�

3
777775
⌦ n̂, (52)

indexed by k 2 {0, . . . , n� 1}. We have

eR0zk =
2
6666664

�
1 + cos

�
2kπ
n

�
+ cos

�
(n� 1) 2kπ

n
)
�
n̂

...�
cos
�
(i� 1) 2kπ

n

�
+ cos

�
i 2kπ

n

�
+ cos

�
(i+ 1) 2kπ

n

��
n̂

...�
1 + cos

�
(n� 2) 2kπ

n

�
+ cos

�
(n� 1) 2kπ

n

��
n̂

3
7777775

=

✓
1 + 2 cos

✓
2k⇡

n

◆◆

2
6666664

1
...

cos
�
i 2kπ

n

�

...

cos
�
(n� 1) 2kπ

n

�

3
7777775
⌦ n̂ (53)

In compact notation, (53) reads as

eR0zk =
�
1 + 2 cos(2k⇡/n)

�
zk, (54)

for k 2 {0, . . . , n� 1}. It follows that

�
1 + 2 cos(2k⇡/n)

 
k=0,...,n�1

⇢ �( eR). (55)

Finally, from (51) and (55) we have

�( eR) =
�
1 + 2 cos

�
�/n� 2k⇡/n

� 
k=0,...,n�1

[
�
1 + 2 cos

�
2k⇡/n

� 
k=0,...,n�1

. (56)
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[18] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt

Konolige, and Wolfram Burgard. g2o: A general framework

for graph optimization. In IEEE International Conference on

Robotics and Automation, pages 3607–3613, 2011. 2

[19] Daniel Martinec and Tomáš Pajdla. Robust rotation and
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