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ROTATION HYPERSURFACES IN SPACES
OF CONSTANT CURVATURE

BY

M. DO CARMO AND M. DAJCZER

Abstract. Rotation hypersurfaces in spaces of constant curvature are defined and
their principal curvatures are computed. A local characterization of such hyper-
surfaces, with dimensions greater than two, is given in terms of principal curvatures.
Some special cases of rotation hypersurfaces, with constant mean curvature, in
hyperbolic space are studied. In particular, it is shown that the well-known conjuga-
tion between the belicoid and the catenoid in euclidean three-space extends naturally
to hyperbolic three-space H3; in the latter case, catenoids are of three different types
and the explicit correspondence is given. It is also shown that there exists a family of
simply-connected, complete, embedded, nontotally geodesic stable minimal surfaces
in//3.

1. Introduction. The main purpose of the present paper is to extend the classical
notion of rotation surfaces of the three-dimensional euclidean space £3 to hyper-
surfaces of the (« + l)-dimensional hyperbolic space 7/"+1(c) with constant curva-
ture c < 0. Our primary motivation was to describe explicitly some simple examples
of minimal hypersurfaces of //"+1(c) and to study their properties, in particular,
their stability properties. It soon became clear, however, that it would probably be
useful to frame some of our results in a more general context.

In §2 we define rotation hypersurfaces of 7/"+1(c) and give their explicit parame-
trizations. Roughly speaking, they are generated by moving an (« — l)-dimensional
umbilic submanifold 2 C 77"+1(c), 2 with varying curvature, along a certain curve
(cf. Definition (2.2)). The various positions of 2 are called the parallels of the
rotation hypersurface which is then classified according to the nature of the
parallels: spherical, if the parallels are spheres, hyperbolic, if the parallels are
hyperbolic spaces, and parabolic, if the parallels are horospheres. It seems to us that
the two last types have not appeared explicitly in the literature. Actually, we were led
to them by considering the one-parameter family of geodesically-ruled mimmal
surfaces in 7/3(-l) (see Lawson [7, p. 352], and §3). By analogy with the situation in
£3, where helicoids are conjugate to catenoids, it is natural to expect that each such
surface, say, corresponding to a parameter X E (0, oo) is conjugate (in a sense to be
made precise, see §3) to a rotation minimal surface Mx G //3(-l). This is indeed the
case if we bring into play all the three types considered above and the correspon-
dence is actually very interesting: for X E (0,1), Mx is a rotation minimal surface of
spherical type, for X E (1, oo), Mx is a rotation minimal surface of hyperbolic type, and
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686 M. DO CARMO AND M. DAJCZER

for X = 1, Mx is the unique minimal rotation surface of parabolic type in 7/3(-l). (That
it is unique is proved in a more general context in Theorem (3.14); the result itself is
proved in Theorem (3.31).)

For convenience of later theorems, we formulate the definition of rotation
hypersurfaces in a way that it applies equally well when the ambient space is the
sphere S"+Xic), with constant curvature c > 0, or the euclidean space £"+1. From
now on, we will denote by M" + Xic), a simply-connected, complete, Riemannian
manifold with constant curvature c, where c is a real number.

In classical differential geometry, rotation surfaces with an additional property
(constant mean curvature, constant Gaussian curvature, minimal, etc.) are probably
the simplest surfaces having the specified property, and provides a good test-ground
for various conjectures. Of course, similar questions can be posed for the hyper-
surfaces here defined. In §3 we compute the principal curvatures X and p of rotation
hypersurfaces; one of them, say X, has multiplicity at least « — 1. By specifying a
certain property in the form f/(\, p) = 0, a differential equation is determined that
yields a family of rotation hypersurfaces with the specified property. As an example,
to be used extensively in the paper, we establish the equation of the rotation
hypersurfaces with prescribed mean curvature and use it to prove that up to
isometries o/7/"+'(c), there exists a unique complete parabolic rotation hypersurface of
7/"+1(c) with a given constant mean curvature 77. // 77 = 0, such a hypersurface is an
embedded, simply-connected, iminimal) hypersurface (Theorem (3.14)).

The question whether complete rotation minimal hypersurfaces are embedded is
quite interesting. We can prove that ///: M2 -* 7/3(-l) is a rotation minimal surface,
then f is an embedding (Theorem (3.26)). From a different point of view, the
embeddability of rotation minimal hypersurfaces of 5"+1(c) has been treated by
Otsuki in a long series of papers that started with [10]. We conclude §3 by proving
the conjugacy stated in the beginning of the Introduction.

In §4 we restrict ourselves to the case « > 3, and present some sufficient
conditions for an arbitrary hypersurface/: M" -» M"+Xic) to be a rotation hyper-
surface. The main result is that // the principal curvatures kx,...,kn of f satisfy
kx = k2= • • • = kn_x — -X ¥= 0, k„ — -p — —p(X), and X — p ^ 0, then /(Af ) is
contained in a rotation hypersurface (Theorem (4.2)). This is trivially not true if « = 2
and generalizes a result of Otsuki [10] who proved it for c > 0 and / minimal. As a
corollary, we obtain that a conformally flat hypersurface f: M" -> M"+Xic), n > 4 (it
is known that in this case kx = k2= ■ ■ ■ = kn_x = -X), that admits a relation
p — piX), with X¥=0 and X — p =£ 0, is contained in a rotation hypersurface. This
generalizes a result of Blair [2] who proved it for c — 0 and / minimal.

A further sufficient condition is related to the determination of hypersurfaces /:
M" -» Af"+1(c) that, roughly speaking, satisfy a specified condition and are in-
variant by an /-parameter group of isometries of M"+ '(c). The main result is that ///
is the maximum admissable value then either f has two principal curvatures X, p, where
one of them has at least multiplicity n — 1 or f is contained in an isoparametric family
(in the sense of E. Cartan [4]) of M"+ '(c) (Theorem (4.7)). In the particular case that
/ is minimal and c < 0, a more precise result can be obtained, namely (Corollary
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ROTATION HYPERSURFACES 687

(4.9)): Let f: M" -* M"+Xic), c < 0, « > 3, be a nontotally geodesic, minimal immer-
sion, invariant by an l-parameter subgroup of the isometries of A/"+1(c). Then
'max = n(n ~ l)/2 and if 1= /max,/(M) is a rotation hypersurface. This generalizes a
result of Barbosa and do Carmo [1], who proved it for c = 0. The result does not
hold for c > 0.

Finally, in §5 we study some stability properties of rotation minimal surfaces in
hyperbolic spaces. H. Mori [8] has shown that a certain class of complete spherical
rotation minimal surfaces in 7/3(-l) is globally stable. Here we show that the
complete hyperbolic and parabolic rotation minimal surfaces are all globally stable.
It follows (Theorem (5.5)) that there exists a family of simply-connected, complete,
nontotally geodesic, embedded stable minimal surfaces in 7/3(-l).

Next, we derive (Theorem (5.6)) a necessary condition for a complete minimal
hypersurface of H"+X(c) to be globally stable. The condition is an integral inequality
on the norm of the second fundamental form that is obtained by a modification of
the argument in do Carmo and Peng [3]. With this inequality it is possible to show
that there are spherical catenoids that are not globally stable.

We want to thank H. Mori for kindly pointing out to us a mistake in a constant
appearing in our first version of Theorem (5.6) and for communicating to us the
corrected estimate for the range of unstable spherical catenoids. We also want to
thank Oscar Bustos at IMPA for the computer work needed in Theorem (3.26).
Finally, we want to thank the referee for a number of valuable comments.

2. General properties.
(2.1) In this section we define the rotation hypersurfaces of M"+Xic) and write

down their parametrizations. We begin with the case where c < 0, and we will first
establish some notation.

We will denote by £" the space of «-tuples ixx,...,xn) = x with the Lorentzian
metric g_xix, y) = -xxyx + • ■ • +xnyn, where y = (yx,... ,y„), and will consider the
hyperbolic space H"+ x(c), c < 0, as a hypersurface of L"+2, namely,

H"+Xic) ={xE Ln + 2; g_xix, x) = 1/c, xx>0}.

An orthogonal transformation of Ln+1 is a linear map that preserves the bilinear form
g_x; the orthogonal transformations induce, by restriction, all the isometries of
H"+Xic). We will denote by Pk a /e-dimensional subspace of L"+2 passing through
the origin and by G(£2) the set of orthogonal transformations of Ln+2 with positive
determinant that leave P2 pointwise fixed. We will also use [vx,... ,vk] to denote the
subspace generated by the vectors vx,...,vk. We will say that Pk is Lorentzian if the
restriction g_, | Pk is a Lorentzian metric; Pk is Riemannian if g_, | Pk is a Rieman-
nian metric; Pk is degenerate if g_, | Pk is a degenerate quadratic form. Sometimes, it
will be convenient to consider affine subspaces of Ln+1 rather than subspaces
passing through the origin; we will distinguish them by a bar placed above the letter.

(2.2) Definition. Choose £2 and £3 D P2 such that £3 n Hn+\c) ¥= 0. Let C
be a regular curve in £3 n Hn+X(c) = H2ic) that does not meet £2. The orbit of C
under the action of 0(P2) is called a rotation hypersurface M" G H"+X(c) generated
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688 M. DO CARMO AND M. DAJCZER

by C around P2. If o E 0(£2), the curve oiC) is a meridian of M" and the orbit of a
point of C under 0(£2) is a parallel of M".

(2.3) Remark. A hypersurface of rotation M" G R"+x generated by a curve C
around an axis r that does not meet C is obtained by taking the orbit of C under
those orthogonal transformations of £"+l that leaves r pointwise fixed. By setting
Rn+\ = {ixx,...,xn+2)ER n + 2.

in + 2 - 0}   and   taking  £2 -n + 2' -n + 2
(0,..., 1), we see that M" satisfies Definition (2.2) with £"+1 in place of Z/"+1(c)-

(2.4) We have yet to show that Af", defined by Definition (2.2), is actually a
hypersurface of Hn+X(c). One way of doing this is to give A7" an explicit parametri-
zation. For that, we need a description of 0(£2), and we must distinguish three
exhaustive cases:

(i) (The spherical case) £2 is Lorentzian.
(ii) (The hyperbolic case) £2 is Riemannian.

(iii) (The parabolic case) £2 is degenerate.
In the first two cases, it is easily seen that we can choose an orthonormal basis

e |,..., e„ +,, en+2 of L"+2 such that the following conditions are satisfied :
(1) £2 is the plane [<?„+,, en+2] generated by en+x and e„+2,
(2) g_x(en+2, en+2) = -1 in case (i), and g.x(ex, <?,) = -1 in case (ii),
(3) the matrix of an element of 0(P2) can be written in this basis as

*n/2

for « even,

or

4

4.-.(n-0/2

for «odd,

where 7 is the 2 X 2 identity matrix, Ax is a 2 X 2 matrix that has the form

. coso,      sino, \
R{0x)= I -sino,    coso,      incase(i)'

coshô,     sinhô,
sinhf?,     coshf?,

and, in both cases, A, = R(0¡) for / > 1.

in case (ii)
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ROTATION HYPERSURFACES 689

Case (iü) is less usual. To treat it, we consider a pseudo-orthonormal basis of
£"+2, i.e., a basis ex,.. -,en+2 such that

g-\i*\,e.) = g-lien+\> en+\) = 0.      g-l(el> en+\) =   '>

g_x(ek,ej) = 8kj,       k= l,...,n + 2,j = 2,...,« + 2,j ¥=n + 1.

In such a basis,

g_x(x,x) = 2xxxn+x + x +xn + xn+2, iXkek-

Assume that the pseudo-orthonormal basis is so chosen that £2 = [en+x, e„+2].
Consider the (« + 2) X (« + 2) matrices given by

z'th    column
I
0 0

A,=

-tf/2
0

0
0

-ti
0

1
0

ith
line

where 2 < i < n, and the (« — 2) non written lines make up a matrix of the form

0    b22    b'2,

h' h'°32      w33

0    b'n2    b'n3

0    b2ti+x
0    b'

0    bL

b\n    0    0
bL    0    0

bL„    0    0

where (b'aß) = £,, a, ß = 2,...,«, a ¥^ i, ß J= i, is an (« - 2) X (« - 2) orthogonal
matrix. We claim that A, are matrices of elements of 0(P2) in the above basis and that
they are all of them.

Clearly A, leaves £2 pointwise fixed. To show that Ai preserves g_x, we notice that
if x = %xkek, k — 1,...,« + 2, then

,2 \

AtX —  I Xx, X2, X3,. . .,tiXx + Xj,...,- 2X\        t¡Xi "*" Xn+l> Xn + 2 I '

where xa is defined by

£/(2*«e«) = (x2,x3,...,x„),   i.e., 2xl = 2xl-
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690 M. DO CARMO AND M. DAJCZER

Thus

g_x(Atx, Atx) = 2xA—j*i - hxi + xn+\) + ('¿*i + Jc,)2 + x2+2 + 2*«
* ' a

= 2X\Xn+i  + X? + Xn + 2 + 2*« = g-|(*> X),
a

and this proves the first part of our claim.
To show that we have obtained in this way all the elements of 0(P2), we make the

following observation. The intersection of H"+X(c) with an affine «-plane of £"+2
parallel to [ex,... ,en] is a "paraboloid" of £"+2 that represents a (« — l)-horosphere
of H"+x. Clearly 0(£2) is the group of isometries of such a horosphere; hence the
dimension of 0(£2) is n(« — l)/2. On the other hand, when £, = ident., the matrix
Ai is that isometry of the paraboloid that takes into itself the parabola contained in a
plane parallel to [ex, e¡]. Furthermore, each £, is an isometry of the sphere in which
the paraboloid is cut by subspaces parallel to[e2,e3,...,e¡,...,e„], where ê, means
that e, is omitted. By varying i from 2 to «, we see that the dimension of the
set of £,'s is the dimension of the group of isometries of the sphere in which
the paraboloid is cut by a subspace parallel to [e2, e3,...,e¡,...,en], namely
(« — 2)(« — l)/2. Thus the dimension of the matrices of type A¡ is

(« - 1) + (« - 2)(« - l)/2 = «(« - l)/2,
which is the dimension of 0(£2) and proves our claim.

(2.5) We are now ready to parametrize the orbit of C in Definition (2.2). If £2 is in
case (i) or (ii) above, choose an orthonormal basis of £"+2 such that conditions (1),
(2) and (3) of (2.4) hold. If £2 is case (iii), choose a pseudo-orthonormal basis as
above. In both cases, let the space £3 D £2 in Definition (2.2) be given by
£3 = [ex, en+x, en + 2\ and parametrize the curve C in £3 n Hn+X by jc, = *,($),
xn+\  = xn+\(s)' xn + 2 = xn + lis)-

Now, for a fixed s = s0, the intersection U(s0) of H"+x with an affine «-plane
passing through (0,0,.. .,0, xn+x(sQ), xn+2(s0)) and parallel to [ex,...,en] is a
sphere in case (i), a hyperboloid in case (ii) and a paraboloid in case (iii). Clearly
0(£2) is the group of isometries of U(s0) and l/(s0) is the orbit under 0(£2) of the
point ixxiso),0,... ,0, xn+xis0), xn+2is0)), i.e., Uis0) is the parallel of A7" passing
through this point. Thus a parametrization of M" can be obtained by taking a
parametrization of the parallel Uis0) and letting s0 vary.

For the case (i), we take <p(i,,.. .,tn-x) = i(px,...,%) as an orthogonal parametri-
zation of the unit sphere oí [ex,...,en].lt follows that

(2.6) /(/,,...,*„_,, s) = (xx(s)(px,... ,xx(s)(pn, xn+x(s), xn+2(s)),

(Pl = (Pi(tx,...,t„_x),   (p] + •■• +m2= 1

is a parametrization of a rotation hypersurface generated by a curve xx(s), xn+x(s),
xn+2(s) around P2 = [en+x,en+2], when £2 is in case (i). This will be called a
spherical rotation hypersurface of H"+X(c). Here g_x(x, x) = x2 + x\ + ■ ■ ■ +x2+x
— x2+2, if x — 1xkek. Since the curve xx(s), xn+x(s), xn+2(s) belongs to 7/"+1(c)
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ROTATION HYPERSURFACES 691

and the parameter s can be chosen as its arc length, we have

x2is) + x2n+xis) - x2n+2is) = 1/c,   x2(s) + x2+x(s) - x2+2(s) = 1,

and from that we can obtain jc„+1(í) and xn+2is) as functions of xxis). In fact, we
can write

(2.6)' x„+x(s) = /*?(*) - 1/c sinh^(j),

xn+2(s) = Jx2(s) - 1/c cosh(b(s)

where <í>(í ) is determined by (for typographical reasons, we drop the 5 in some of the
expressions below and indicate by an upper dot the derivative relative to j)

2 • 2

1 = x2 + x2n+x - x2+2 =   -      ' \t_ + (x2 - l/c)<#>2 + x2,
xf - 1/c

or

i y-l/c + x2 + x2/c
(2.6)" *(j) = / -2——-da.

Jo xx — 1/c

Similarly, by taking tp(tx,..-,tn-X) as an orthogonal parametrization of the "unit"
hyperbolic space of [ex,... ,en], we obtain that

(2.7)        f(tx,...,tn_x,s) = (xx(s)(px,... ,xx(s)%, xn+x(s), xn+2(s)),

ipl = 9i(ti,...,tH-l),   -y] + <p¡ + ■■■ +<p2 = -l,

is a parametrization of a rotation hypersurface generated by a curve xx(s), xn+x(s),
xn+2(s) around £2 = [en+x,en+2], where £2 is in case (ii). This will be called a
hyperbolic rotation hypersurface of Hn+X. Here g_xix, x) = -x2 + x\ + ■ ■ ■ +xj+2 if
x = "2xkek, and as before we can determine xn+ ,(i) and xn+2is) by

(2.7)'   xn+x(s) = ]jx2is) + 1/c sin<i>(5),   x„+2(ä) =/xf(¿) + 1/c cos<i>(j),

., xjl/c + x2 + x2/c
(2.7)" *(i) = / -——-da.

Jo x[ + 1/c

Finally,  to  parametrize   U(s0)  in  case  (iii),  we  observe  that  the  orbit  of
(xx(s0), 0,... ,0, xn+x(s0), xn+2(s0)) = x0 under A¡ is given by

Mxo) = \x\(so),0,...,0,tixx(so),0,...,-^-xx(so) + Xb+i(Jo).*B+2(*o)I

-ívíe^n       n(ví,ln          -1/c + *2+2(*o) + ^2(^o) /   A- I x,(s0),0,...,0, tiXx(s0),0,...,--2x~Ts~)-' ^+2(^0) h
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692 M. DO CARMO AND M. DAJCZER

since 2xx(s0)xn+x(s0) + xj+2(s0) — 1/c. It follows that we can take t2, t3,.. ,,tn as
parameters for U(s0), hence

.xn+2(s)\

(2.8)    f(t2,t3,...,t„,s) = \xl(s),xlis)t2,...,xlis)ti,...,xlis)tn,

-1/c + x2+2(s) + x2(s)2it2

2xx(s)

is a parametrization for a rotation hypersurface generated by the curve xx(s),
xn+x(s), xn+2(s) around £2 = [en+x, en+2], where £2 is the case (iii). This will be
called a parabolic rotation hypersurface of H"+x. Here g_x(x, x) — 2xxxn+x + x\
+ ■ ■ ■ -\-x2 + x2,+2 if x = 1xkek. To determine xn+2(s), we proceed as before by
requiring s to be the arc length of the meridian curve xxis), xn+ xis), xn+2is). Since

¿X\Xn+\  "*" Xn + 2 =   VC'      ¿XxXn+x  + X„ + 2 =   1,

we obtain

(2.8)' (X„ + 2X\ - x\Xn + 2) = )IX\  + Xl/C ,

hence

fsp2 + xJ/c'
(2.8)" xn+2 = xi     -2-da.

Jo xx

(2.9) Although we have so far restricted ourselves to the hyperbolic space, where
the situation is more interesting due to the presence of case (iii), the above
considerations extend trivially to other spaces of constant curvature. For the
purposes of later sections, it will be convenient to have a unified notation. Thus we
will denote by R" the space of «-tuples (xl,...,xn) = x with the Riemannian metric
gxix, y) = 1x¡y¡, y = (yx,... ,yn), and write the model spaces of constant curvature
as

Sn+Xic) = {x E Rn+2; gxix, x) = 1/c) = M"+1(c),       c> 0,

Hn+Xic) = [xE Ln + 2; g_,(x, x) = 1/c, xx > 0} = Â7"+1(c),       c < 0,

£"+1 = [x E Rn+2; xn+2 = 0} = Â7"+1(0).

We will refer to £"+2 or £"+2, as the case may be, as the ambient space of Af n+1(c).
The notation 0(£2) will again denote the set of orthogonal transformations of the
ambient space that leave a given £2 pointwise fixed. Definition (2.2) extends to this
general situation if we replace 7/"+1(c) by Af"+1(c) and £"+2 by thecorresponding
ambient space. It is then immediate that a rotation hypersurface of Af"+1(c)> c > 0,
can be parametrized by

(2.10)       /(*„...,/„_„*) = (xx(s)(px,...,xx(s)(pn,xn+x(s),xn+2(s)),

where <p(/,,...,in_,) = (<p,,...,«pn) is an orthogonal parametrization of a unit
sphere in [ex,... ,e ]. Here £2 = [en+x, e„+2]. By requiring s to be the arc length of
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the meridian xx(s), xn+x(s), xn+2is) we obtain

(2.10)' xn+x = (l/c-x2)'/2sin<¡),   x„+2 = (l/c-x2)1/2cos<|>,

fs{\/c-X2-X2/c)l/2
-da.(2.10)" (Pis) = f

1/c - x2

Similarly,

(2.11) fitx,...,tn_x, s) = (xx(s)(px,... ,xx(s)<p„, x„+x(s)),

where (p(tx,.. .,tn_x) = ((px,...,<p„) is the same as before, is a parametrization of a
rotation hypersurface of R"+ ' ; here i is the arc length of the curve xx(s), xn+ x(s).

It will sometimes be expedient to use the notation M"s, 8 = 1,0 or -1, to denote a
rotation hypersurface of Af"+ x(c), where

ifc<0,
5=1 means that Afc s is spherical,
ô = 0 means that Afc s is parabolic,
8 = -1     means that Mc s is hyperbohc,

and if c > 0, then 8 = 1.
Unless otherwise stated, all manifolds are connected and C00.

3. The principal curvatures; rotation hypersurfaces with constant mean curvature.
(3.1) In this section we compute the principal curvatures of a rotation hyper-

surface. This will allow us to establish a second order ordinary differential equation
for rotation hypersurfaces with constant mean curvature. In general, for each type
M"s there exists a one-parameter family of distinct solutions of the equation. We
will prove, however, that for the parabolic case, the solution is unique up to
isometries. We will also prove, for « = 2, that the complete minimal rotation
surfaces of Af 3(c) are embedded if c < 0, and that their universal coverings are
conjugate to the geodesically ruled minimal surfaces in Af 3(c).

(3.2) Proposition. Let M"s G M"+X(c) be a rotation hypersurface. Then the
directions of the parameters described in §1 are principal directions, the principal
curvatures along the coordinate curves ?, are all equal and given by

xjo — cx\
(3-3) X = --

and the principal curvature along the coordinate curve s is

(3.4) p
xx + cxx

\J8 — ex2 — x2

Thus X has multiplicity at least equal to n — 1.

Proof. We give the proof for the cases: (1) c < 0, 8 - -1 ; (2) c < 0, 8 = 0. All the
other cases will be similar to Case 1.
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694 M. DO CARMO AND M. DAJCZER

Case (1). Since, from (2.7),

gj-       (XX(fX,...,XX(Pn,Xn+X,Xn + 2),

9/,     \l atj '•■•'X> 9f, ,U'U

and <p is an orthogonal parametrization, we obtain

where we have set atj = 2k(o(pk/at¡, a(pk/otj). A unit normal field N is given by

N — y-c (<p(x„+2x„+1 — xn+xxn+2), \xn+2xx — xxxn+2), (x,x„+1 — xn+1x,)j

and

— = (x,<p,x„+1,x„+2),    _=|,1_,o,0|,    —^x,— 0,0j.

It follows from the above that the coordinate curves are hnes of curvature. The
principal curvatures along the coordinate curves ti are given by

c j-1 - ex2 - x2
^ v        (-^n + a-^n+l •*'n+l-Xn-l-2/ v >

A. 1 A|

where we used the fact that

x„+2 = (x2 + 1/c)     cos<i>   and   xn+x = (x2 + 1/c)     sin^.

This proves the first part of Proposition (3.2).
It is now an easy matter to compute p and find

M =  V_c \xl(Xn + 2Xn+i  ~ Xn+lXn+2/    '   Xn+ \(Xn + 2Xi  ~ x\Xn+2)

JrXn + 2\X\Xn+\ ~ ^l-^n+l)]'

= xj-C (X|(x„ + 2x„+, — x„+1x„ + 2) + x,(x„ + 2x„+i — x„ + 2x„+1)

~T~X\\Xn + 2Xn+\  ~~ Xn + 2Xn+\) I

X, + CX,

y-1 — ex2 — x2

and this completes the proof for Case (1).
Case (2). From (2.8), we see that

J£= lo,o,...,o/x7,o,...,o,-*,*,.,o),

9/_   I   .        ■   t -   t 2x\Xn+2Xn+2 + xÍx^t2 + X,/c - X,X„+2      . \
g5 —   I Xl> xl'2'- ■ -'x\ln'~ „    2 > Xn + 2    •
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It follows that

(3.6)

9/    9/\ _   2ft (afof.

[K   9/\ _ (*«+2*i - *i*n+2)2 - *2A = r~ x2/c
8-X\ds'osj- x2 x2 -1'

where we have set r = (x„+2x, — x,x„+2)2 and used the fact that the meridians are
parametrized by arc length.

To find a normal vector to Af ", we write

_f      i,3/ r_[ -1/c - x2+2 - x2ltf
T'~*        Xcds' ¡>  —  \X\' X\t2>--->xlin> 2x n + 2

It is easily checked that g_,(f, f ) = -1/c and that

9/\_n       _    (,    9/\_       *,g,(Lf) = 0,   ulr.ft   =o.   gM,%   =--L.

Thus Tj is a normal vector and g_,(n, r/) = -r/cx2. By noticing that a2f/ot2 =
(0,0,... ,0, -x,, 0), we obtain

oti 2*#<KH-?K-
On the other hand,

(3.7)
/9V     \_        /9/   9t,\ Í3/9Í|_|Í)      A     /9/   9V\

g-\os2,J]) " "^'Ui' 9W "   ^'Ui'gJ    U*J    «/-Vi'aj2)'
To simplify the above expression, we observe that, since g_,(9//9s, af/os) = 1, we
have

.      d      lof   9/\ /9/   92/\
0 = ÂMaï'âï)-2«-« fr'aïï ■

Furthermore,

9? _ I •     -, -,    -2X]X„+2xB+2 — xxxxzti + X|/c + X]Xn+2    .
„—      Xl,X,i2,...,X,rn, , Xn + 2os 2xf

hence g.,(9f/95, 9//9s) = r/x2. Thus (3.7) becomes
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It follows that

xl-cxj
\=-~- = -"-

r       x,x, — x2 \ x\\-c x, + ex,

A Ac       !     f J-cx2 - x2 '

and this proves Proposition (3.2) for Case (2).

(3.8) Corollary. The first and second fundamental forms of Mc s are given by (cf.
(3.5), (3.6))

(3.9) l = ds2 + x2(s)liandt2,
(3.10) II = pis) ds2 + X(s)xf(s)2iaiidt2,

respectively, where a,, = 1 if 8 — 0.

(3.11) Remark. One might question whether p is well defined at points where
X = 0. To see that this is the case, let us consider the spherical rotation hypersurfaces
(8 = 1) of Hn+\c). From (2.6)', it follows that

X„_L.1 X„ _J_ ->
e -Hs) — "+' _|_

Mi*) - 1/c       l/*i(*) - 1A
whence (pis) is a differentiable function. From (2.6)" we obtain that

x,(x, + x/c) \/-lA + x2 + x\/c
ï>(s) = "-, , H-;--;-2x,x,. 2

(x2 - l/c)]¡-l/c + x2 + x2/c (x2-l/c)

Now Xis0) = 0 imphes that x,(i0) ¥= 0. Thus

v (    \ _ xx(s0)_^i(Sq) + CJCi(^o) ^1(^0) /    -v

HSo) - (x2(s0) - 1/c) Jl-cxf(So)-x2(s0)      AM - l/cM50)'

Therefore, p(s0) is well defined and given by (3.4). The remaining cases are similar.
(3.12) Remark. For the case « = 2, it is easily seen that we can choose i, = t so

that axx — 1. Next, by replacing the parameter s by a — /0J ds/xx(s), we obtain that
the first quadratic form I in the parameters (a, t) is given by I = x\(da2 + dt2),
hence the parameters (a, t) are isothermal.

From Proposition (3.2), we can write down a differential equation to be satisfied
by a rotation hypersurface Afc s with a prescribed function // = //(s) as the mean
curvature, namely

(3.13)       x,x, + (« — l)x2 + ncx2 — 8(n — 1) = nHxx\j8 ex;

For 7/ = 0, c = 0, and « = 2, (3.13) agrees with the equation of a catenary
parametrized by arc length. Therefore we will call catenoids the solutions of (3.13)
for H = 0, and will distinquish, for c < 0, the spherical, parabolic and hyperbolic
catenoids. For c > 0, rotation minimal hypersurfaces were determined in a slightly
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different way by Otsuki [10]. It should be noticed that the Clifford minimal
hypersurface  Sx X Sn~x G S"+1(l)   corresponds   to   the   trivial   solution  x2 =
(«- l)/n of (3.13), when//= 0,5= l,c= 1.

We want to use (3.13) to prove the following fact.

(3.14) Theorem. Up to isometries, there exists a unique, complete, parabolic rotation
hypersurface o///"+1(c) with a given constant mean curvature H. Such a hypersurface
is simply-connected and if H = 0 it is embedded.

For the proof we need the following lemma.

(3.15) Lemma. Let H be constant. Then a first integral c/(3.13) is given by

(3.16) x2 = 5 — ex2 —    Hxx-—    ,       a = const.

Proof of Lemma (3.15). Set y — \J8 - ex2 - x2. Then yy = -x,(cx, + x\), and
by using the value of X[ from (3.13) we obtain

y = -^[(n-l)y + nxxH].
x\

Now set/ = y + Hxx. Since H is constant, the above implies that/x, = -(« — l)/x,
which yields that/ = a/x"~ ', where a is a constant. It follows that

y2 = (f- Hxxf = 8-cxx2-x2
which gives (3.16).   Q.E.D.

Proof of Theorem (3.14). Set 5 = 0 and xnx = z in (3.15). Then

z2 = «2[- (c + H2)z2 + 2aHz - a2]

which yields, by adjusting the origin of the parameter s,

(3-17) s = U dz = g(x,).
nJ  J-(c + H2)z2 + 2Haz-a2

Let x, = xxis) be the inverse function of g, and define xx(s) by x,(s) = ax/"xxis).
We claim that x,(s) does not depend on a. This follows from the fact that, by setting
x" = z, we obtain

1  /• dz 1   /• dz_ I  ç dz _ 1   /•

« J   .1    ( „   i    i/2\,2   i   t u_2 « 7y'-(c + //2)z2 + 2//az-a2       " J J- (c + //2)z2 + 2Hz - 1

and this proves our claim.
Now, by inserting x,(i) = ax/"xxis) in the values of X and p given by (3.3) and

(3.4) (with 5 = 0), we see that X and p do not depend on a either. By looking at the
first and second fundamental forms:

l = ds2 + x2is)a2/"?idt2,
i

11 = pis) ds2 + Xis)x2a2/"^dt2,
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we notice that by changing the parameter /, into ax/"ti = t¡, the expressions of I and
II in the parameters (s, t¡) do not depend on a. Since a simply-connected hyper-
surface in 7/"+1(c) is determined up to isometries by I and II, this proves the first
part of the theorem.

To prove the second part, we can assume that c — -1. Then set 7/ = 0, c = -1
and a = 1 in (3.17) to obtain by integration xx(s) = (cosh ns)x/n. By observing that
xx(s) is unbounded, that for s ¥= 0, xx(s)¥=0, and that x,(i,) = x,(s2) implies
s2 = ±sx, we are reduced to prove that x„+2(i) ¥^ xn+2i~s), for all s =£0.

To see that, assume that the contrary holds and use (2.8)' to obtain

(*„+2*i _ *i*«+2)2 = A - A ~ (cosh«s)2/""2,

hence

(3.18) xn+2sinh ns — xn+2cosh«s = ± 1.

We can assume that the right-hand side of (3.18) is -1. It is easily checked that the
solution x„+2(j) of (3.18) that satisfies x„+2(0) = 0 has the property that x„+2(s) is
an odd function of s. Thus, there exists by hypothesis an s = s0 such that

xn+2(±s0) = 0,   xn+2(±s0)>0,   x„+2(0) = 0,   x„+2(0) = l,

and xn+2(s) is not zero in the open intervals (-s0,0), (0, i0). This is clearly a
contradiction and completes the proof of Theorem (3.14).

For the case « = 2 and 7/ = 0, (3.13) can be easily integrated in terms of
elementary functions. Since we want to use some of the expressions so obtained to
prove Theorems (3.26) and (3.31) below, we will give some details. For the rest of
this section, we will assume, for simplicity, that c = 1 or c = -1.

For c = -1, (3.13) becomes
(3.19) x,x, + x2 = 2x2 + 8.

By setting 2x2 + 5 = y, we see that y — 4y; hence, by adjusting the origin of the
parameter s, we can write the solutions of (3.19) as

(3.20) xxis) — (acosh2j — 5/2)    ,       a = const.
The remaining coordinates of the meridian curve are then given by (3.18), if 5 = 0,
and (see (2.6)' and (2.7)')

(3.21)

x3is) = ixfis) + l)1/2 siring),   x4(i) = (x,2(i) + l)'/2 coshes)   if5=l,

(3.22)

x3(s) = (x2(s)- l)'/2sin^)(i),   x4(s) = (x,2(s) - l)1/2cos</>(i)   if5 = -l,

where <> is given by (see (2.6)" and (2.7)")

(im   ./^- fs(s + A-A)
(3-23)    *(iWo-xJTo—

= (a2 - 1/4)1/2 f(acosh2j + 5/2)"' (a cosh 2 s - 8/2)'x/2 ds.
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It follows from (3.23) that a > 1/2 if 5 = ±1, and as we have seen in the proof of
Theorem (3.14), a = 1 if 5 = 0.

For c — 1, it is easily seen that the solutions of (3.13) are

(3.24) x,(s) = (1/2 + acos2s),/2,       a = const.

In this case, the remaining coordinates of the meridian curve are given by (2.10)',
where (¡> is (see (2.10)")

/••î (l — x? — x?)
(3.25) </>(s) = H--J-^—ds

Jo 1 — x,

= (1/4 - a2)1/2 f (1/2 + acos2s)~1/2(l/2 - acos2s)~'<fs.
•'o

It follows from (3.24) that for c = 1, -1/2 < a < 1/2.
We are now in position to prove the following result.

(3.26) Theorem. Let f: M2 -» 7/3(-l) be a complete catenoid. Then f is an
embedding.

Proof. The case 5 = 0 is contained in Theorem (3.14); thus we can assume that
5 = ±1. By arguing as in the last part of the proof of Theorem (3.14), we are
reduced to proving that either x3 or x4 satisfies the condition

(3.27) x2+iis) ^ x2+ii~s)   for alls ^ 0, i = 1 or / = 2.

To see that this is the case, we first observe from (3.23) that <p(s) is an odd
function of s. Since the hyperbolic sine is injective, we see that x3(s) of (3.21)
satisfies (3.27). This proves Theorem (3.26) for 5 = 1. For 5 = -1, we observe that
<|>'(s) > 0 for all s, and, by using a computer, we check that <i>(oo) < it for all
a > 1/2. It follows that x3(s) of (3.22) satisfies (3.27) and this concludes the proof.

We now want to use the above explicit expressions to prove that the conjugate
surfaces to the two-dimensional catenoids in Af3(c) are the geodesically-ruled
minimal surfaces in M3ic).

We recall that the geodesically-ruled minimal surfaces (see Lawson [7, p. 352]) of
M3ic) can be parametrized by

(3.28) fis, t) = (cosAicoss, sin A/sins, cos?sin s, sin isin s)

if c = 1, and by

(3.29) fis, t ) = (cosh Xtcosh s, sinhXicoshs, cos/sinhs, sin isinhs)

if c = -1; here X is a positive real number (the parametrization (3.29) is not
explicitly given in Lawson [7] but the same proof of (3.28) applies). It will be
convenient to set in (3.29) X = a/ß and to change the parameter t to t = ßt. Thus
(3.29) can be written as
(3.29)'   fis, t) = (coshaicoshs, sinha/coshs, cosß/sinhs, sin ßrsinhs).

We also recall (Lawson [7], see the proof of Theorem 8, p. 366) the following fact:
Let f: M2 -* M3ic) be a minimal surface in isothermal parameters (a, t). Denote by
I = Eida2 + dt2) and by II = ßxx da2 + 2ßX2 da dt + ß22 dt2 the first and second
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fundamental forms of f, respectively. Set xp = ßn — ißX2 and define a family of
quadratic forms depending on a parameter 6, 0 < Q =£ 2ir, by

(3.30)   /?„(<?) = Re{e<V},   ß22i6) = -Re{e'9xp),   ßX2(d) = Im{e'V}-

Then le = I and Ue = ßxx(6) da2 + 2ßx2(0) da dt + ß22(6) dt2 satisfy the Gauss and
Codazzi equations, thus giving rise to an isometric family fB: M2 -» Af3(c) of minimal
immersions; here M2 is the universal covering of M2. The immersion fv/2 is called the
conjugate immersion to f0 = /.

(3.31) Theorem. Let f: M2 -> //3(-l) be a catenoid given by (3.21). Its conjugate
minimal surface is the geodesically-ruled minimal surface given by (3.29)' where

if8=1,       a = ia - 1/2)1/2,     ß = (a + 1/2)1/2,
(3.32) j//5 = 0,       o = 0=1,

if8 = -l,    a = ia + 1/2)1/2,    ß = (a - 1/2)1/2.

Proof. It is easily computed that the first and second fundamental forms of the
catenoid (3.20) are given by

I = ds2 + (acosh2s - 5/2) dt2,

respectively. Set

(3.33) a = f-.
^o (acosh2s-5/2)1/2

Then

1 = ia cosh2s - 8/2)ida2 + dt2),   11 = (a2- | 5 |/4)'/2(t/a2 - dt2),

where s = s(a) is the function of a obtained from (3.33). Furthermore, the corre-
sponding fundamental forms of the geodesically-ruled surface (3.29)' are

Ï = ds2+ (ß2sinn2 s + a2cosh2 s) dt2,

ÍI = —-,   aß  .-—ds dt.
ß sinh s + a cosh s

Now, by using the correspondence (3.32), one sees that

a cosh 2s — 5/2 = (a + 8/2) j —    .     cosh2 s + sinh2 s J

= a2 cosh2 s + ß2 sinh2 s.

It follows that by making the change of parameter (3.33), we obtain

ï = (acosh2s-ô/2)(i/a2 + i/i2),    ÏÏ = (a - \ 8 |/4)1/2 dadt.

By applying the above quoted Lawson's result to the present case (ß,2 = 0,
ß,, = -ß22) and the fact that surfaces are uniquely determined by their first and
second fundamental forms, we complete the proof.
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(3.34) Remark. A similar correspondence can easily be established between the
catenoids of 53(1) given by (3.24) and the geodesically-ruled surfaces (3.28) (as
expected, the minimal Clifford torus appears as a self-conjugate surface). That they
are conjugate has already been established by Lawson [7] by using certain reflection
properties of the conjugate surface. Lawson's method can probably be applied to the
hyperbolic space. The point of Theorem (3.31), however, is to give the explicit
correspondence (3.32) and to show that the hyperbolic and parabolic catenoids
appear naturally in this context.

(3.35) Remark. It is possible to determine explicitly the associated family fe of the
catenoids in Af 3(c) but we will not go into that here. Also Lawson's correspondence
is much more general than the one quoted above and can be stated as follows: Given
an immersion f: M2 -» Af 3(c) with constant mean curvature H, there exists a 2-param-
eter family of immersions fe ¿: Mx -» Af 3(c), c < H2 + c, 0 < 6 < 2tt, that are isomet-
ric to / = f0c and have constant mean curvature H — (H2 + c — c)x/2 (this is not
actually stated in Theorem 8 of Lawson [7] but is contained in its proof). In the
applications of the above theorem, one has to be a bit careful because the construc-
tion of the family fe- is given in terms of isothermal parameters, which are not
always present in a natural parametrization. In any case, using these ideas we have
been able to determine all surfaces of constant mean curvature in £3 that are
invariant by helicoidal motions of £3; these include the classical rotation surfaces of
constant mean curvature of Delaunay [5]. We will discuss that somewhere else.

(3.36) Remark. Before concluding this section, it may be convenient to observe
that catenoids that are not totally geodesic have no umbilic points. This follows from
Lemma (3.15). In fact, by setting H = 0 in (3.16), we obtain

i        ■>          a28 — cxf — xf =-,       a = const.,
(*r')2

hence, by (3.3), X2x2 = a2/(x"~')2. Since x, > 0, we can assume that a =£ 0;
otherwise X = 0 and, since H = 0, p = 0 and the catenoid is totally geodesic. Thus
A t^ 0 everywhere, and there are no umbilic points.

4. Sufficient conditions.
(4.1) In this section we want to describe some sufficient conditions for a hyper-

surface of A/"+1(c), « > 3, to be a rotation hypersurface. The main theorem is as
follows.

(4.2) Theorem. Let f: M" -» Af"+1(c), n>3,be an arbitrary hypersurface. Assume
that the principal curvatures kx,...,kn of f satisfy kx= k2— ■ ■ ■ = kn_x = -X ¥= 0,
kn = -p= -piX), andX — p =£ 0. ThenfiM") is contained in a rotation hypersurface.

Proof. It is known (Ryan [11, p. 372]) that M is foliated by the leaves of the
(involutive) distributions Dx and D determined by the eigenvectors corresponding to
X and p, respectively; furthermore, X is constant along the leaves of Dx. Let p EM
and denote by 2 and Lp the leaves of Dx and Dp, respectively, passing through p.
Choose, in a neighborhood  U of p, coordinates «„...,«,  and / such that
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t/,,.. .,«„_! are local coordinates in 2^ and t is a coordinate in Lp. Set Vi — 9/9«,,
£ = 9/9/, and denote by N a unit normal vector of the immersion /. We will show
that, in a neighborhood oí p,f isa rotation hypersurface.

We will first show that 2p is umbilic in A/"+1(c). Let V denote the covariant
derivative of M"+ '(c). Then

~VVN = \V,,    VTN = pT.

Since V¡iX) = 0 and p = p(X), V,ip) = 0, and

VTVVN = X'V¡ + XvTv,,   vvyTN = pVvT.

From the fact that Af"+1(c) has constant sectional curvature and [V¡, T] = 0, we
conclude that

o = (vrVi, - vvyT)N = x'v, + (A - p)vvt.
Thus, since p is not umbilic,

VyN = XV„    vyT=-£^Vit

hence 2  is umbilic in Mn+X(c).
It follows that 2^ C £" n Â7n+I(c), where F" is an affine «-subspace of the

ambient space. We want to show that the spaces £" corresponding to distinct leaves
2 are parallel in the ambient space.

Let x be the position vector of Af"+1(c) in the ambient space and let V and ge,
e = 1 or -1, be the covariant derivative and the metric, respectively, of the ambient
space. Let IF be a vector field along 2^ defined by W = X'N/(X — p) + XT. Then,
gJJV, Vt) = 0 and

VylV = TT- VyN +  XVyT = 0.
X — p      > Yi

Thus VVW = ax, where

« = %(VyW, x) = -egt{W, Vvx) = -egeiW, Vt) = 0.

It follows that IF is constant along 2  and orthogonal to £".
Now let A = -x + N/X. Then ge(A, V,) = 0 and

VyA = -Vt + I VyN = -Vi + YVyN = 0,' A       ' A       '

which means that A is also constant along 2^ and orthogonal to £". Since IF and A
are linearly independent, we can consider the plane II = [IF, A] generated by IF and
A. n is the subspace orthogonal to £", and to prove that £" is parallel it suffices to
show that n is parallel. Thus we must show that both vrIF and vTA belong to II.

Since the ambient space is flat and [£, V¡\ = 0, we obtain

VyVTA   = VjVy.A   = 0,       VyVTW =   VTVyW'= 0.

Thus vTA and vrIFare constant along 2 . Furthermore,

g.(yTA, Vt) = -glA, VrVt) = -gt{A,VTV,) = -gt{A,VvT) = 0
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and

ge(VrÍF,FI) = -ge(lF,VKr) = 0.
It follows that both vrIF and VTA are constant vectors along 2^ that are
orthogonal to £", hence belong to n, as we wished to prove.

Notice that if the subspace £" parallel to P" is degenerate, the same happens with
n and furthermore dim(£" nll)= 1; however, it is still true that the parallelism of
n implies that of P".

Now assume that Af"+1(c) is not £"+1. Choose a basis e,,... ,en+2 of the ambient
space such that:

(i) If the subspace parallel to £" is either Riemannian or Lorentzian e„... ,e„+2 is
an orthonormal basis with ge(ex, ex) = e, in the first case, and g_x(en+2, en+2) = -1,
in the second case. In both cases, the basis is so chosen that £" is parallel to
[ex,.. .,«„]. We will denote [e„+x,en+2] = £2.

(ii) If the subspace parallel to P" is degenerate, e,,... ,en+2 is a pseudo-orthonor-
mal basis_with g_x(ex, ex) = g.x(en+x, e„+x) = 0, g_x(ex, en+x) = I, and chosen in a
way that £" is parallel to [e2,... ,en+x). We will denote [e„+x, en+2] = £2.

In any case, as £" moves along the leaf Lp, its intersection with Af "+ '(c) describes
a rotation hypersurface around £2 that is exactly/(Af") as we wished to prove.

In case Mn+X(c) = R"+x, the above argument does not work, and we must show
that the (« — l)-spheres 2^ that are in parallel «-planes £" have their centers lying
on a straight line orthogonal to £".

For that, we define a map Y: M" -> £"+1 by
Y(q,t)^f(q,t)-N/X(t),        qElp,tEL.

It is easily seen that vK Y — 0; thus F is a function of / alone, i.e., Y = Y(t). Notice
that the sphere with center Y(t) and radius 1/X(t) is tangent to M along 2. Thus we
are reduced to showing that Y(t) is a straight line orthogonal to £". Since

we have that gx('VTY, V¡) = 0. Thus

g,(vrVrF, Vt) = -g,(vrF, VTV,) = 0.
It follows that both vTY and Vt-Vt-F are orthogonal to £". Therefore V7-V7-F is
either zero or parallel to VTY. In both cases, Y(t) describes a straight line
orthogonal to £", and this shows that, in a neighborhood of p, f is a rotation
hypersurface.

Now, from Corollary (3.8), we see that a rotation hypersurface is locally de-
termined by the functions X(s) and p(s). By a standard connectedness argument, we
conclude that/(Af ) is contained in a rotation hypersurface, as we wished to prove.

(4.3) Remark. Theorem (4.2) is clearly false for « = 2.
For the case c > 0, the following corollary has been obtained by Otsuki [10].

(4.4) Corollary. Letf: M" -+ Af"+1(c), n^3,bea minimal hypersurface that has
two principal curvatures X and p, where one of them, say X, has multiplicity at least
« — 1. Then /(Af ) is contained in a catenoid.
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Proof. By minimality, / is analytic. If there exists a neighborhood of umbilic
points, / is totally geodesic and the corollary holds. Otherwise, there exists a
neighborhood of nonumbilic points and Theorem (4.2) applies to this neighborhood.
By analyticity,/(M) is contained in a catenoid.   Q.E.D.

It is a known fact (see e.g. [9]) that for « 3» 4 a hypersurface/: Af" -» M"+X(c) is
conformally flat if and only if at least « — 1 of its principal curvatures are equal,
say, to -X. Let the other principal curvature be denoted by -p. The following is an
immediate consequence of Theorem (4.2).

(4.5) Corollary. Let f: M" -> M"+ x(c), n^4,bea conformally flat hypersurface.
Assume that X¥^0, p = p(X) and X — p =£ 0. Then f(M) is contained in a rotation
hypersurface.

For the case c = 0, the following corollary has been obtained by Blair [2].

(4.6) Corollary. Let f: M" -» Af"+1(c), n> 4, be a conformally flat minimal
hypersurface. Then /(Af) is contained in a catenoid.

The proof is the same as in Corollary (4.4).
The next theorem is related to the question of determining which hypersurfaces of

M"+X(c) are invariant by an /-parameter subgroup of isometries of Af"+1(c) and
have a specified property. Roughly speaking, we show that if we exclude the
hypersurfaces that have constant principal curvatures and assume that / is the
maximum admissable value, then/(Af ) is a rotation hypersurface.

It will be convenient to denote by Q(n, c) the set of hypersurfaces of M"+x(c) that
have constant principal curvatures.

(4.7) Theorem. Let « > 3 be fixed and let f: M" -» M"+X(c) be a hypersurface
invariant by an ¡-parameter subgroup of the isometries of Mn + X(c). Assume that f E 6.
Then the maximum value of I is /max = «(« — l)/2, and ifl= /max,/«as two principal
curvatures X, p, where one of them, say X, has multiplicity at least n — 1. //, in
addition, X ¥= 0, p = p(X) and p — X ¥= 0, then f(M) is a rotation hypersurface.

Proof. The last sentence is an immediate consequence of Theorem (4.2).
To prove the first part of Theorem (4.7), we begin by showing that /max =

«(« — l)/2. That this value can be reached follows from the existence of rotation
hypersurfaces. Let p E M" and let 2p be the orbit of p under the orbit of an
/max-parameter subgroup of the isometries of Mn+X(c). Assume that /max >
«(« — l)/2. Then dim2/) = «; otherwise the dimension of the group of isometries
of 2^ is at most «(« — l)/2. Since dim 2^ = «, by homogeneity, 2^ = Af ". But then
Af " E 6. This contradicts the hypothesis and shows that /max = «(« — l)/2.

Now let / = /max — n(n — l)/2. We want to show that / has two principal
curvatures and one of them has at least multiplicity « — 1. Let again p EM" and 2
be the orbit of p under the action of the /-parameter subgroup. Since /EC,
dim 2   = « — 1. If j? is umbilic, the theorem holds; thus we can assume that/> is not
an umbilic.

Let ex,...,en be unit principal vectors at p with principal curvatures kx,...,kn,
respectively. We first show that the tangent space 7^,(2^,) of 2^ atp contains « — 1
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principal vectors. This amounts to proving that if a unit vector v belongs to
7^,(2^) C Tp(M), i.e., if v - 2a;e,, 2a,2 = 1, 2^4,a, = 0, A¡ constants, i - 1,...,«,
then some a, = 0.

Since the group acting on 2? is a maximal group of isometries, and « > 2, all
normal curvatures in the directions contained in Tfë ) are equal. This means that
the function

F(ax,...,an) = ^kjO2 = normal curvature in (a,,...,a„)

restricted to the submanifold of 7^,(2^) defined by

G(ax,...,an) = 2X2 -1=0,

H(ax,...,an) = S-4;«; = 0,

is constant. By using the method of Lagrange multiphers we obtain that, for some
real numbers X and ß, V(£ + XG + ßH) = 0, where V( ) denotes the gradient of
the enclosed function. Thus

2a,.(JfcJ■ + X) + ßA,, = 0,       j'=l,...,«,

for all a,. If ß =£ 0, then A, = 0 for all i, and this is impossible. Thus ß = 0 and
a¡ik¡ + X) = 0. If all a¡ =£ 0, then all k¡ are equal and this contradicts the fact that;?
is nonumbilic. Thus some a¡ = 0 and this proves our claim. Notice that the proof
does not work if « = 2.

It follows that (n — 1) of the principal curvatures, say, kx,...,kn_x are equal,
kx = ■ ■ ■ = kn^ | = -X, and this completes the proof.

(4.8) Remark. The class 6(«, c) is the class of isoparametric families of Af"+I(c)
in the sense of Elie Cartan. For the case c < 0 they have been classified (Cartan [4])
and there are not too many of them. Thus the restriction / £ C(«, c), c < 0, is not
really serious. However, for c > 0, the complete description of the class Q(n, c) is
still an open problem (see Ferus [6] for recent developments). Of course, not all
elements of C(n, c), c > 0, are invariant by an /-parameter subgroup of the group of
isometries of Af"+1(c). If the classification could be obtained under this additional
restriction, Theorem (4.7) could be made more explicit.

In any case, for minimal hypersurfaces we can be more precise.

(4.9) Corollary. Let f: M" -* Af"+1(c), c'< 0, « > 3, be a minimal hypersurface,
not totally geodesic, invariant by an ¡-parameter subgroup of the isometries o/A/"+l(c).
Then /max = «(« — l)/2 and if I = /max, /(AÍ) is a catenoid ii.e., a rotation minimal
hypersurface).

This follows from Theorem (4.7), the fact that the only minimal hypersurface in
6(n, c), c < 0, is totally geodesic, and the argument given in Corollary (4.4).

(4.10) Remark. For the case that the ambient space is S"+1(c), n > 3, the
following examples show that Corollary (4.9) does not hold. The Clifford minimal
hypersurfaces S"-1 X Sx CS"+l(l)are catenoids invariant by an ((«(« — l)/2) +
l)-parameter group of isometries of S"+1(l), and the Clifford minimal hypersurface
S2 X S2 G S5il) is invariant by an («(« — l)/2 = 6)-parameter group of isometries
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of 55(1) but is not a catenoid. From the above proof, it is easy to see that if
/ = n(« — l)/2 and dim 2^ = « — 1, where 2^ is the orbit of p E M, then/( Af ) is a
nonhomogeneous catenoid.

5. Stability of catenoids.
(5.1) In this section we will describe some stability properties of the rotation

minimal surfaces in hyperbolic space 7/"+1(c); for computational convenience, we
state the results for c = -1.

We start with « = 2. In this case, the catenoids in //3(-l) are parametrized by (see
(3.20))

X|(s) = (acosh2s — 5/2)     ,

where a > 1/2 if 5 ¥= 0 and a = 1 if 5 = 0. Furthermore, the square of the norm
\A |2 of the second fundamental form A is given by

,,,_    2(*2-|51/4)
(a cosh 2s — 5/2)

and satisfies

(5.2) ,,fs^M = f£±i^<2   „,__,,(a - 5/2) (a ~ à/2)

(5.3) |^|2<-%— <2   if5 = 0.
cosh2 2s

It has been proved by H. Mori [8] that, if a > 17/2, spherical catenoids are
globally stable. This follows from the second variation formula for a domain
DGM,

(5.4) ID(uN, uN) = -f (uAu + i\A\2- 2)u2} dM

+ 2 - \A\2)u2dM;¡{HD)
here N is a unit normal vector, Am is the Laplacian of the function u (u = 0 on aD)
in the induced metric and XX(D) is the first eigenvalue of the Laplacian in the
induced metric. By observing that \A |2 < 2(a + 1/2)/(a — 1/2) and that, for every
domain £ of a negatively curved surface homeomorphic to a cyhnder, X,(£») > 1/4,
we conclude that, for a > 17/2, IDiuN, uN)>0, for all D and all u with u — 0 on
9£. Thus spherical catenoids are globally stable if a > 17/2. Notice that spherical
catenoids are not simply-connected.

Our computations (5.2) and (5.3) for the hyperbohc and parabohc catenoids,
together with (5.4), allow us to make the following assertion.

(5.5) Theorem. Hyperbolic and parabohc catenoids in //3(-l) are globally stable.
Thus there exist a family of simply-connected, complete, embedded nontotally geodesic
stable minimal surfaces in 7/3(-l).

The last sentence follows from the first one and Theorem (3.26).
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The question now arises whether there exists some unstable catenoid in //3(-l).
Our answer to this question will depend on a general theorem that may be
interesting in its own right and can be stated as follows.

(5.6) Theorem. Let f: M" -* Af"+1(c) be a complete, stable minimal immersion. Let
S be the scalar curvature of M in the induced metric, denote by BR the geodesic ball of
M with a fixed center p0 E M and radius R, and assume that

JB I (£-«(«- l)c)\dM ,-
lim ^^- '-= 0,       0<q<{2/n.

*-°o R2 + 21

Then c < 0. If c = 0, /(M) GR"+X isa hyperplane, and ifc<0,

lim sup y |^|2+2?(|^|2 + ß)i/M^0,

where \ A \2 = | S — «(« — l)c | is the square of the norm of the second fundamental
form A off and ß is a constant depending on n,c and q that will be defined during the
proof.

Proof. Theorem (5.6) is a generalization of Theorem (1.3) in M. do Carmo and C.
K. Peng [3] and the proof follows essentially the same steps. We have only to replace
(2.5) and (2.6) of [3] by

(5.7) MIAI/fl +M|4>-| v|^l||2 + «c|^|2,v .      n ■     '    "

(5.8) f {nc+ \A\2)f2dM^¡ \ vf\2dM.

From that point on, we follow the proof of [3] up to (2.11) that is now replaced by

(5.9) f \A\4+2"f2dM + ßf \A\2"+2f2dM<ßx( \A\2"+2\vf\2dM,JM JM JM

where ß, is a constant depending on n,c,q and ß is a similar constant given by

q2 + (4 + e)q + 2 + 2e + 2/«(5.10) ß = nc

here e > 0 is chosen so that

2/« — q2 — eq

1^±^<1    if,</27«".q + 2/n

By using, as in [3], Young's inequality in (5.9), we obtain

(5.11) f \A\2+2« i\A\2 + ß)f2+2*dM ^ ß2( \A\2\ vf\2+2"dM,
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where again ß2 is a constant. From (5.11) we conclude as in [3] that

r , x in  \A\2dM
(5.12)      f   \A\2+2"i\A\2 + ß)^ß3      ,Br\+'-,       1<0<\.JBJ Vl    '      H'       3{l-6)2+2qR2+2«

Now if we let R -» oo and use the hypothesis of the theorem, we obtain that the
left-hand side of the above inequality is nonpositive. If c > 0 then ß > 0, and this
implies that A = 0. Since there is no stable totally geodesic complete submanifold of
a sphere, this is a contradiction and c < 0. If c = 0, ß = 0 and we are reduced to the
case proved in [3], namely/(Af) is a hyperplane of £"+'. Finally, if c < 0, we obtain
that

limsup(  |^|2+2<?(|^|2 + ß)i/A/<0,

as we wished.

(5.13) Corollary. Let f: M" -> Z/"+1(-l) be a complete minimal immersion with
finite total curvature. If fis globally stable then

f \A\2i\A\2-nin+ 1) dM) < 0.

Proof. Notice that if we take e = 0, q = 0, then from (5.10),

ß = -(2« + 2)/(2«-l).
Since the integrals we are dealing with are finite, the conclusion follows.   Q.E.D.

The answer to our question is an application of the above corollary. We first
observe that spherical catenoids have finite total curvature. Indeed

\A\2 =-(a   - V4)   ^ ̂    dM = iacosh2s - l/2)V2dsdt,       0 < t < 2ir.
(a cosh 2s — 1/2)

Thus
1

( \A\2dM = 4ir(a2- 1/4) f -ds
•V ■'o

<4ir(a2- 1/4) f

V""' ,Jo   (acosh2s- l/2)3/2

ds
< 00.

(a + as2 - 1/2)

By Corollary (5.13), we see that should a spherical catenoid corresponding to the
parameter a be globally stable, then

«.)_/-(—"'-</<-1— L«o.
■'o   \ (acosh2s - l/2)7/2      (acosh2s - l/2)3/2 /

Now, it is possible to show that if 1/2 < a < c0, c0 — 0.69, then F(a) > 0.x Thus,
such spherical catenoids are not globally stable.

1 The above value was communicated to us by H. Mori. A better value can probably be obtained by
using a computer.
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