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Rotation indices related to

Poncelet’s closure theorem

Abstract. Let CRCr denote an annulus formed by two non-concentric circles
CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem
holds for k-gons circuminscribed to CRCr, then there exist circles inside this
annulus which satisfy Poncelet’s closure theorem together with Cr, with n-
gons for any n > k.

1. Introduction. Poncelet’s closure theorem, going back to the 19th cen-
tury, has various interesting forms and applications; cf. [2], [7], [4], [9], and
the excellent survey [3] as well as [4]. The rich history of this theorem is
presented in [1, Ch. 16], [8, § 2.4], and [7], and our paper refers to circular
versions of it. Let CR, Cr be two circles with radii R > r > 0 and Cr lying
inside CR. From any point on CR, draw a tangent to Cr and extend it to CR

again, using the obtained new intersection point with CR for starting with
a new tangent to Cr, etc.; the system of tangential segments obtained in
this way inside CR is called a Poncelet transverse (or bar billiard). We say
that the annulus CRCr has Poncelet’s porism property if there is a starting
point on CR for which a Poncelet traverse is a closed polygon. Poncelet’s
closure theorem (for circles) says that then the transverse will also close for
any other starting point from CR. It is known that such closing polygons
(with or without self-intersections) correspond to rational rotations; e.g.,
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the rotation number or index 1
3 is related to a triangle “between” CR and

Cr, and the index 2
5 to a (self-intersecting) pentagram.

In [6] it was proved that “close” to a pair of circles, which have Poncelet’s
porism property for index 1

3 , there exist unique pairs of circles having this
property with respect to indices 1

4 and
1
6 , and it was conjectured there that

this holds true for arbitrary indices.
In the present paper we show that this conjecture is true in the following
sense: for a pair of circles having Poncelet’s porism property for index 1

k
,

with k ≥ 3 as natural number, we prove that there exists a circle lying
between the starting circles such that this circle together with the smaller
given circle has Poncelet’s porism property for any given index 1

n
, where n

is an arbitrary natural number with n > k.

2. Basic notions and tools. Let us consider a circular annulus CrCa,R

formed by two circles Cr and Ca,R. The circles Cr and Ca,R are given by
the equations x2 + y2 = r2 and (x− a)2 + y2 = R2, respectively, with

(1) 0 < a < R− r.

Recall the following form of Poncelet’s closure theorem which is suitable
for our purpose; see [1].
If there exists a one circuminscribed (i.e., simultaneously inscribed in the
outer circle and circumscribed about the inner circle) n-gon in a circular

annulus, then any point of the outer circle is the vertex of some circumin-

scribed n-gon.

If Poncelet’s closure theorem holds for n = 3, then Euler’s condition

(2) R2 − 2Rr − a2 = 0

is satisfied. We will denote this condition by Pct (CrCa,R, 3). There is no
elementary formula for the analogously defined condition Pct (CrCa,R, n),
but we note that Pct (CrCa,R, 4) and Pct (CrCa,R, 6) have the forms

(3)
(

R2 − a2
)2

= 2r2
(

R2 + a2
)

and

(4) 3
(

R2 − a2
)4

= 4r2
(

R2 + a2
) (

R2 − a2
)2

+ 16r2a2R2,

respectively; see [3].
It is amazing that for particular natural numbers we have elementary
conditions involving also radicals, while for an arbitrary natural number n ≥
3 only the Jacobi formula (cf. formula (7) in [10]), using elliptic functions,
is involved.
For further use we introduce a convenient parametrization of the annulus

CrCa,R. Namely, we take the parametrization z (t) = reit for Cr, and for
Ca,R we use

(5) w (t) = z (t) + λ (t) ieit, t ∈ [0, 2π] ,
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where λ (t) =
√

R2 − (r − a cos t)2 − a sin t.
The line which is tangent to the circle Cr at a point z (t) intersects the
circle CR at a point w (t) = z (t) + λ(t)ieit. Let us draw a second tangent
line to Cr, passing at w (t). It intersects Cr at a point z (ϕ (t)), where ϕ (t)
satisfies the condition

(6) tan
ϕ (t)− t

2
=

λ (t)

r
.

In [5] it is proved that

(7) ϕ′ =

√

1− (σ ◦ ϕ)2
√
1− σ2

,

where

(8) σ (t) =
r − a cos t

R
.

It is routine to check that the solution of this differential equation with
initial condition ϕ (0) = m is given by the formula

(9) ϕ (t) = B−1 (B (t) +B (m)) ,

where

(10) B (t) =

t
∫

0

ds
√

1− σ2 (s)
.

3. Results and proofs.

Theorem 1. Poncelet’s closure theorem holds in the annulus CrCa,R for

n-gons, n ≥ 3, if and only if the following identity holds:

(11) B

(

t+ 2arctan
λ (t)

r

)

≡ B (t) +
1

n
B (2π) .

Proof. ⇒) From the assumption it follows that Poncelet’s transverse closes
after n reflections, forming a circuminscribed convex n-gon. This is equiv-
alent to the condition

(12) ϕ[n] (t) = t+ 2π for all t ∈ R,

where

(13) ϕ[1] = ϕ and ϕ[n+1] = ϕ[n] ◦ ϕ for n = 1, 2, 3, . . .

Note that formula (9) implies

(14) ϕ[n] (t) = B−1 (B (t) + nB (m)) .

From (12) and (14) it follows immediately that

(15) B (2π) = nB (m) .
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Finally, the function ϕ is given by the formula

(16) ϕ (t) = B−1

(

B (t) +
1

n
B (2π)

)

,

and

(17) ϕ (0) = m = B−1

(

1

n
B (2π)

)

.

From (6) we get

(18) ϕ (t) = t+ 2arctan
λ (t)

r
.

The formulas (17) and (18) imply the identity (11).
⇐) Assume that in the annulus CrCa,R the identity (11) holds for some
natural number n ≥ 3. From the formulas (10) and (16) we get

ϕ[n] (t) = B−1(B(t) +B(2π)) = B−1(B(t+ 2π)) = t+ 2π.

�

Now, using (10), we can rewrite the identity (11) in the form

(19)

t+2arctan
λ(t)
r

∫

0

1
√

1− σ2 (s)
ds ≡

t
∫

0

1
√

1− σ2 (s)
ds+

1

n

2π
∫

0

1
√

1− σ2 (s)
ds.

Hence we have

(20)

2 arctan
λ(t)
r

∫

t

1
√

1− σ2 (s)
ds ≡ 1

n

2π
∫

0

1
√

1− σ2 (s)
ds.

In the particular case t = 0 we have

(21)

2 arctan 1
r

√
R2−(r−a)2

∫

0

1
√

1− σ2 (s)
ds =

1

n

∫ 2π

0

1
√

1− σ2 (s)
ds.

This is exactly the formula (5.6) from [5], and we note that it implies Pon-
celet’s porism property for n-gons.
Introducing

Vξ =
1

r

√

[(1− ξ) r + ξR]2 − (r − ξa)2(22)

for ξ ∈ [0, 1], we have

Vξ =
1

r

√

(R− r + a) [(R− r − a) ξ2 + 2rξ] .(23)
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Since 0 < a < R− r, we can write

(24) Vξ =
1

r
c (ξ)

√
R− r + a for ξ ∈ [0, 1] ,

where

(25) c (ξ) =
√

(R− r − a) ξ2 + 2rξ.

Note that

(26) V1 =
1

r

√

R2 − (r − a)2 and V0 = 0.

Similarly, we define

(27) σξ (t) =
r − ξa cos t

(1− ξ) r + ξR
for ξ ∈ [0, 1] ,

and one has σ1 = σ and σ0 = 1.
Now we will prove our main theorem.

Theorem 2. Assume that Poncelet’s closure theorem holds in an annulus

CrCa,R for k-gons, k ≥ 3. Then for any n > k there exists γ ∈ (0, 1) such
that Poncelet’s closure theorem holds in the annulus CrCγa,(1−γ)r+γR for

n-gons.

Proof. Using the equality (20) from the proof of Theorem 1, we introduce
the function

(28) Fn (ξ) = n

2 arctanVξ
∫

0

1
√

1− σ2
ξ (s)

ds−
2π
∫

0

1
√

1− σ2 (s)
ds.

First we have

Fn (1) = n

2 arctanV1
∫

0

1
√

1− σ2 (s)
ds−

2π
∫

0

1
√

1− σ2 (s)
ds.

From now on we assume that the starting annulus CrCa,R has Poncelet’s
porism property for a natural number k ≥ 3, and we consider n > k. Then
by (20) we have

(29) k

2 arctanV1
∫

0

1
√

1− σ2 (s)
ds =

2π
∫

0

1
√

1− σ2 (s)
ds.
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Using this condition, we get

Fn (1) = (n− k)

2 arctanV1
∫

0

1
√

1− σ2 (s)
ds+ k

∫ 2 arctanV1

0

1
√

1− σ2 (s)
ds

−
∫ 2π

0

1
√

1− σ2 (s)
ds = (n− k)

2 arctanV1
∫

0

1
√

1− σ2 (s)
ds > 0.

In order to evaluate Fn (0), we first calculate the value Fn (ε) for ε ∈ (0, 1).
We have

Fn (ε) = n

2 arctanVε
∫

0

1
√

1− σ2
ε (s)

ds−
2π
∫

0

1
√

1− σ2
ε (s)

ds

= (n− 1)

2 arctanVε
∫

0

1
√

1− σ2
ε (s)

ds−
2π
∫

2 arctanVε

1
√

1− σ2
ε (s)

ds.

First we prove that

(30) lim
ε→0+

2 arctanVε
∫

0

1
√

1− σ2
ε (s)

ds ≤ C,

for some positive constant C. We calculate

2 arctanVε
∫

0

1
√

1− σ2
ε (s)

ds

=

2 arctan 1
r
c(ε)

√
R−r+a

∫

0

[

1−
(

r − aε cos t

(1− ε) r + εR

)2
]− 1

2

dt

=

2 arctan 1
r
c(ε)

√
R−r+a

∫

0

(

[(1− ε) r + εR]2 − (r − εa cos t)2

((1− ε) r + εR)2

)− 1
2

dt

=

2 arctan 1
r
c(ε)

√
R−r+a

∫

0

(1− ε) r + εR
√

(R− r + a cos t) [(R− r − a cos t) ε2 + 2rε]
dt
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≤
2 arctan 1

r
c(ε)

√
R−r+a

∫

0

(1− ε) r + εR
√

(R− r − a) [(R− r − a) ε2 + 2rε]
dt

= [(1− ε) r + εR]

2 arctan 1
r
c(ε)

√
R−r+a

∫

0

1

c (ε)
√
R− r − a

dt

= [(1− ε) r + εR]
2 arctan 1

r
c (ε)

√
R− r + a

c (ε)
√
R− r +−a

.

Since arctanx < x for x > 0, then

(31)
∫ 2 arctanVε

0

1
√

1− σ2
ε (s)

ds ≤ 2

r
[(1− ε) r + εR]

√
R− r + a√
R− r − a

.

Thus

(32) lim
ε→0+

∫ 2 arctanVε

0

1
√

1− σ2
ε (s)

ds ≤ C =
2

r

√
R− r + a√
R− r − a

.

Next, we claim that

(33) lim
ε→0+

2π
∫

2 arctanVε

1
√

1− σ2
ε (s)

ds = +∞.

We have

(34)

2π
∫

2 arctanVε

1
√

1− σ2
ε (s)

ds

=

2π
∫

2 arctanVε

(1− ε) r + εR√
R− r + a cos t ·

√

(R− r − a cos t) ε2 + 2rε
dt

and, furthermore,

((1− ε) r + εR)

2π
∫

2 arctanVε

1√
R− r + a ·

√

(R− r + a) ε2 + 2rε
dt

=
(1− ε) r + εR√

R− r + a
·
2π − 2 arctan 1

r

√
R− r + a · c (ε)

√

(R− r + a) ε2 + 2rε
−→ +∞ ,

when ε → 0. Hence

(35) lim
ε→0+

2π
∫

2 arctanVε

1
√

1− σ2
ε (s)

ds = +∞ .
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Thus, we have

(36) Fn

(

0+
)

= lim
ε→0+

Fn (ε) = −∞

and
Fn (1) > 0.

These conditions imply that there exists a number γ ∈ (0, 1) such that

(37) Fn (γ) = 0.

Thus, with Theorem 1 the proof is finished. �
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