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Rotation Invariant Localization of Duplicated Image

Regions Based on Zernike Moments
Seung-Jin Ryu, Matthias Kirchner, Min-Jeong Lee, and Heung-Kyu Lee

Abstract—This paper proposes a forensic technique to localize
duplicated image regions based on Zernike moments of small

image blocks. We exploit rotation invariance properties to reliably

unveil duplicated regions after arbitrary rotations. We devise
a novel block matching procedure based on locality sensitive

hashing and reduce false positives by examining the moments’

phase. A massive experimental test setup benchmarks our algo-
rithm against state-of-the-art methods under various perspectives,

examining both pixel-level localization and image-level detection

performance. By taking signal characteristics into account and
distinguishing between “textured” and “smooth” duplicated

regions, we nd that the proposed method outperforms prior art

in particular when duplicated regions are smooth. Experiments
indicate high robustness against JPEG compression, blurring,

additive white Gaussian noise, and moderate scaling.

Index Terms—Copy-move detection, duplicated region localiza-

tion, locality sensitive hashing, Zernike moments.

I. INTRODUCTION

E ASY-TO-USE imaging devices and inexpensive storage

space make the acquisition of high-quality digital images

a natural form of human perception of and interaction with the

real world. At the same time, the very nature of digital data puts

into question many of the positive aspects that we usually asso-

ciate with digital images. Digital data can bemanipulated easily.

This raises questions regarding the authenticity of digital im-

ages, and a constantly growing number of uncovered manipula-

tions [1] is certainly only the tip of the iceberg.

Within the last decade, scholars in digital image forensics

have set out to develop passive-blind techniques to restore

some of the lost trustworthiness of digital images [2]. These

methods work by examining inherent statistical characteristics

of an image in question. One of the key assumptions of pas-

sive—blind forensics is that processed images exhibit artifacts,

e.g., due to resampling [3], [4], double quantization [5], [6],
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contrast enhancement [7], smoothing [8], or sharpening [9].

The presence of such artifacts in a questioned image may indi-

cate a manipulation. While a strict line between legitimate and

illegitimate processing is often hard to draw in practice [10],

local processing artifacts are often deemed particularly critical.

Copy-move (CM) manipulations are a common form of local

processing, where parts of an image are copied and reinserted

into another part of the same image [11], often to conceal or em-

phasize image details. While basic CM manipulations are typi-

cally considered to duplicate parts without further change, real-

istic manipulations may also require a geometric transformation

of the original part prior to reinsertion. This can result in a better

alignment of the duplicated part with its surrounding. In the fol-

lowing, we focus on rotation as a typical representative of such

transformations. We refer to a copy—move manipulation that

involves rotated duplicate regions as copy-rotate-move (CRM)

manipulation.

A number of passive—blind methods to unveil copy—(ro-

tate)—move manipulations have already been proposed. Most

of them adopt a procedure rst outlined in Fridrich et al.’s [11]

seminal CM paper. Section II recalls the general scheme before

we follow its trail to present a CRM detector based on Zernike

moments [12] of small overlapping image blocks. These mo-

ments have already found wide application in areas such as

pattern recognition and digital watermarking. Here, we demon-

strate their superior performance as building blocks of CRM de-

tectors. An overview of relevant properties of Zernike moments

in Section III lays the foundation for their application to CRM

detection in Section IV. Section V benchmarks our detector with

state-of-the-art methods and presents empirical evidence from

a massive test setup. Section VI concludes the paper.

II. DETECTING COPY(—ROTATE)—MOVEMANIPULATIONS

A. General Detection Procedure

Copy—move manipulations result in (near-)duplicate image

regions, which practical forensic analyses examine in terms of

robust feature representations of parts of the image. Fig. 1 de-

tails the principal detection pipeline [13]. After optional prepro-

cessing (e.g., color to grayscale conversion), the image is trans-

formed to the feature space. A set of feature vectors represents

local image characteristics and is inspected for similarities in

a matching procedure. This is achieved either by splitting the

image into small blocks, which are then transformed separately,

or by nding salient key points and extracting feature vectors

based thereon. The detector then outputs tuples of similar fea-

ture vectors or their corresponding coordinates in the image

plane. False positives in the matching procedure are pruned in

a nal error reduction step.

1556-6013/$31.00 © 2013 IEEE
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Fig. 1. General copy(—rotate)—move detection pipeline [13]. Highlighted
blocks refer to components where this manuscript presents advances.

B. Copy—Move Manipulation

Speci c CM detection features include quantized DCT co-

ef cients of small blocks [11], [14], or the representation of

relevant block characteristics by means of a principal compo-

nent analysis (PCA) or kernel PCA [15], [16]. Other approaches

measure the similarity of blocks based on Hu moments [17],

discrete wavelet transform [16], singular value decomposition

[18], intensity-based features [19], or blur-invariant moments

[20]. As to the matching procedure, most techniques lexico-

graphically sort the respective feature vectors and measure the

similarity between adjacent sorted vectors [11]. However, lex-

icographical sorting is suboptimal in this respect as adjacent

sorted vectors are not necessarily near-duplicate. -trees give

better performance [21], yet at the cost of increased computa-

tional complexity. Error reduction typically involves the search

for pairs of feature vectors that are linked via the same trans-

lation vector in the image plane. Assuming that the duplicated

region covers a reasonable number of blocks or key points, a

peak in the histogram of translation vectors hints to the spatial

relationship of original and duplicated region.

C. Copy—Rotate—Move Manipulation

The procedure in Fig. 1 also applies to most CRM detectors.

To account for rotated regions, feature representations have

to be chosen invariant to rotation. Bayram et al. [22] use

the Fourier-Mellin transformation, yet experiments indicate

reliability only for small rotation angles. Li et al. [23] improve

Bayram’s method, but the reported detection accuracy still

remains rather low. In a similar attempt, Bravo-Solorio et al.

[24] represent blocks in log-polar coordinates and construct a

feature vector by angular integration over xed radii. However,

as this representation, as well as a recent extension by Wu

et al. [25], directly depends on individual pixel intensities, it

is particularly sensitive to changes thereof. Wang et al. [26]

propose a more robust approach based on Gaussian pyramids

and mean intensities of circular blocks, which Liu et al. [27]

combine with Hu moments. An alternative stream of research

builds upon scale-invariant feature transforms (SIFT) and fea-

ture vectors from the neighborhood of geometrically invariant

key points [28]–[30]. Yet such schemes have in common that

key points can only be computed from salient image regions,

which can pose a considerable drawback in practical analyses.

CRM manipulations further require a generalized procedure

to identify matched blocks or key points across duplicated re-

gions. A common approach is to estimate the underlying af ne

transformation by tting a system of linear equations to the

corresponding coordinates in the image plane. Pairs of feature

vectors are considered to be part of a duplicated region if the

number of pairs with equal transformation parameters exceeds

a certain threshold [13], and/or estimated transformation param-

eters do not deviate substantially [29].

D. Main Contributions

Within this paper, four major contributions greatly advance

the eld of C(R)M detection and overcome some of the limita-

tions discussed above. (See also Fig. 1, where the corresponding

components in the detection pipeline are printed on gray back-

ground.) First, we represent individual blocks by Zernike mo-

ments [12] up to an appropriate order. A rotation-invariant mag-

nitudemakes thesemoments particularly promisingCRMdetec-

tion features [31]. The second contribution is an ef cient block

matching procedure based on locality sensitive hashing (LSH)

[32]. Third, we incorporate the phase of Zernike moments into a

feature space error-reduction procedure. This differs from ear-

lier spatial domain approaches and yields increased accuracy.

Finally, a massive test setup based on a set of 1000 images re-

sults in a comprehensive reference benchmark of state-of-the-art

CRM detection methods. It is, to the best of our knowledge,

the rst of this kind in the literature. In particular, we explicitly

take signal characteristics into account and distinguish between

‘smooth’ and ‘textured’ duplicated regions. Experiments con-

sider both pixel-level localization and image-level detection of

manipulations, respectively, different sizes of images and dupli-

cated regions, as well as robustness against a number of repre-

sentative distortions.

III. ZERNIKE MOMENTS

Moments and invariant functions of moments have been used

extensively for feature extraction in a wide range of pattern

recognition and digital watermarking applications [33], [34].

Among the various types of moments discussed in the literature,

in particular Zernike moments [12] are known for their supe-

rior insensitivity to image noise, their information content, and

their ability to provide robust image representations [34]–[36].

This section recalls the mathematical foundations of Zernike

moments based on [34], [36].

A. De nition

Let and represent polar coordi-

nates over the closed unit disk. For a continuous image function

that vanishes outside the unit disk, the Zernike moment

of order with repetition is de ned as

(1)

Here, is a nonnegative integer, and is an integer such that

is nonnegative and even. Coef cient is given by

(2)
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Computing Zernike moments requires evaluating complex

functions , de ned as

(3)

with Zernike polynomials [37] given by

(4)

These polynomials are orthogonal and satisfy

(5)

where is the Kronecker delta:

for

else.
(6)

It follows from (4) that and thus

.

B. Rotation Invariance of Zernike Moments

A desirable property of Zernike moments is their analytical

invariance to rotation. Consider rotation of an image by angle

. Writing the rotated image as , the relationship between

original and rotated image is

(7)

Combining (1) and (3) to

(8)

the Zernike moments of the rotated image are given by

(9)

Substituting , we obtain

(10)

(11)

(12)

Hence, rotation of an image translates to a phase shift in the

corresponding Zernike moments. It follows that the magnitude

of Zernike moments, , can be interpreted as rotationally

invariant feature representation of a given image.

C. Rotation Angle Estimation Using Zernike Moments

It is possible to determine the rotation angle between two im-

ages by analyzing the phase of their Zernike moments [38]. By

making use of (12), the Zernike moments of a rotated image can

be written as

(13)

(14)

(15)

The phase of these moments can be expressed as

(16)

so that the phase difference, , is given by

(17)

(18)

Because , the rotation angle can

be inferred from (18) via examination of arbitrary -th order

moments with repetition .

IV. CRM DETECTION BASED ON ZERNIKE MOMENTS

Analytical invariance to rotation and robustness to noise

make Zernike moments a perfect building block for detecting

copy—rotate—move (CRM) manipulations. This section de-

tails a speci c instance of such detectors. We extract Zernike

moments from overlapping blocks of a questioned image and

use their magnitudes as feature representation. The detector em-

ploys locality sensitive hashing (LSH) [32] for block matching

and removes falsely matched block pairs by inspecting phase

differences of corresponding Zernike moments.

A. Feature Extraction

Given an grayscale image under analysis, we denote

overlapping blocks of size as , where super-

script refers to row

and column index of a block’s upper-left corner in the intensity

plane, respectively. Block size is chosen under the assump-

tion that the duplicated region spans more than a single block.

Each of the blocks in the image,

(19)

is transformed to the feature space by computing its Zernike

moments . More speci cally, we use (1)—with integrals

replaced by summations—to obtain vectors with the mag-

nitudes of Zernike moments up to particular order ,

(20)

Each vector holds a total of elements,

(21)
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Block-based CRM detection then boils down to the examination

of a set of feature vectors for near-duplicate entries,

(22)

Parameter trades off the robustness and the degree of de-

tail captured by the feature representation. By the orthogonality

property of (5), a block can be approximated from

its Zernike moments as

(23)

The larger the maximum order is, the more high-frequency

information is taken into account [36]. Yet with becoming too

large, also the sensitivity to noise increases.

For practical computation of Zernike moments we take

the block center as origin, mapping pixel coordinates

to the range of the unit circle.

Our implementation ignores pixels outside the unit circle.

This common procedure introduces a geometric approximation

error. It occurs in combination with numerical discretization

errors and is relatively stronger for smaller block sizes and

higher-order moments [39].

B. Locality Sensitive Hashing

Because CRM manipulations are likely to result in pairs of

similar feature vectors, we inspect set for near-duplicate en-

tries within the Euclidean distance

(24)

in the feature space. We adopt locality sensitive hashing (LSH)

[32] to nd matching blocks (i.e., pairings that adhere to (24))

with success probability for a given error proba-

bility . This works by mapping each entry of set to

a (sequence of) hash table(s), which can then be searched for

candidate blocks ef ciently. A hash function is called lo-

cality sensitive, if the probability that two input vectors collide

strictly decreases as a function of their distance. We exploit that

such hash functions can be constructed from quantized random

projections with quantization bin size [40],

(25)

if the elements of random vector are

independently drawn from an -stable distribution. We use i.i.d.

Gaussian (i.e., stability parameter ), with

offset drawn from a uniform distribution, . Under

this construction, the collision probability for two vectors

with Euclidian distance is given by [40]

(26)

Fig. 2. Structure of hash tables for locality sensitive hashing.

where denotes the density func-

tion of the half-normal distribution with standard deviation 1.

The collision probability for blocks with large feature space

distance is reduced through independent evaluations of

(25), . This procedure

is repeated times to further increase the clustering accuracy

for near-duplicate vectors. Hence, overall hash tables are

constructed, whereas each feature vector is stored in corre-

sponding buckets [40]. Fig. 2 depicts the

structure of hash tables.

As a result, the probability that two near-duplicate vectors do

not collide in any of the tables is at most .

Requiring a success probability , i.e.,

(27)

establishes the following relation between the parameters of the

hashing scheme:

(28)

Because the amount of time required to set up and to search the

hash tables increases with , we set [40].

Once the hash tables are initialized, nding a near-dupli-

cate block for a query means inspecting all

buckets for a feature vector

. As blocks in close spatial proximity are

likely to yield relatively similar Zernike moments, we further

evaluate the spatial distance between blocks in the intensity

plane and require

(29)

Among candidate blocks satisfying (29), the pair with minimum

distance in the feature space is selected and considered as po-

tentially being part of a duplicated region.

In practice, the parameters of this matching procedure are

chosen commensurate with the forensic investigator’s require-

ments on reliability and robustness. A small feature space dis-
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tance lowers the number of erroneous matches, whereas

larger values facilitate more robust decisions. Also a large spa-

tial distance may reduce false matches, however at the cost

of an increased chance of missing duplicated blocks nearby.

For a desired success probability , the length of hash vec-

tors is central to the collision probability of the hashing

scheme. It also trades off the time required for hash table con-

struction and search, respectively. Shorter vectors mean faster

construction, whereas we prefer rather large to reduce search

time over all blocks. We refer to Section V-A for the numerical

parametrization used in our experiments.

C. Postprocessing to Reduce False Matching

False matching occurs when pairs of original blocks have

similar magnitudes of Zernike moments despite not being dupli-

cated. This section describes a procedure to remove such false

positives from the set of potential CRM blocks. We inspect the

set of matched block pairs for a common rotation angle by cus-

tomizing the Random Sample Consensus (RANSAC) [41] al-

gorithm with Zernike phase differences. Note that this feature

space approach differs from prior art, where RANSAC has been

applied directly to the corresponding block coordinates in the

intensity plane [29], [30].

Algorithm 1 details our error reduction method. Denoting the

set of all LSH-matched block pairs as , we estimate the rotation

angle for all pairs in by making use of (18),

(30)

Iterating over a set of candidate angles, we then conduct the

following steps. Identifying block pairs for which the estimated

rotation angle satis es

(31)

for a chosen angle and threshold results in a set of block

pairs . A reduced set is constructed from by keeping

only those pairings for which at least one spatially adjacent

block pair is also included in . Assuming that the block size

is smaller than the duplicated region, the rationale is that spa-

tial neighbors of a duplicated block are with high probability

part of the same duplicated region. Finally, RANSAC is applied

to the reduced set . Denoting a pair of matched blocks as

, we select three spatially adjacent colinear pairs

from to infer their 2 2 af ne transformation in the spa-

tial domain,

(32)

with being a 2 1 translation vector. The polar decomposition

is then used to extract the rotational part of matrix

[42]. In analogy to the polar form of a nonzero complex number,

this factorizes into a positive semide nite “stretching” ma-

trix and an orthogonal “rotation” matrix .1 The decomposi-

tion can be obtained in terms of the singular value decomposi-

tion (SVD) ,

(33)

1 is not necessarily only a scaling matrix as it can have nonzero elements
along the off-diagonal. Also, may contain a re ection component.

For block pairs belonging to a duplicated region, we expect both

that is a scaling matrix and that rotation angle

(34)

conforms to candidate angle . Hence, RANSAC proceeds iff

(35)

where is the identity matrix, and and are preset thresh-

olds, respectively. All pairs in are classi ed into inliers or

outliers by checking the condition

(36)

for another threshold . This procedure is repeated times,

each time initialized with a triple of block pairs randomly drawn

from set . The algorithm outputs the set of pairings with the

largest number of inliers as duplicated region.

Algorithm 1 Error Reduction Procedure

//result

for to 360 do

//Start RANSAC

for to do

Randomly choose three adjacent colinear pairs

from

//Estimate affine transformation

Find and from

//Singular Vector Decomposition

//Polar Decomposition

,

if or then

continue

end if

if then

update with

end if

end for

end for

D. Complexity Analysis

This section analyzes the time complexity of the proposed

method. Computing Zernike polynomials using (3)

roughly takes . Determining actual Zernike mo-

ments is a point-wise multiplication of the corresponding poly-

nomial and a block’s intensity values. It is of order for

a single moment. About time is

thus required to quantify all moments. The next components to
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consider are locality sensitive hashing and searching the hashed

data. Hashing approximately takes

, where and are the number of hash functions

and buckets, respectively. Finding the nearest neighbor for all

blocks requires

where #collisions is the number of near-duplicate vectors found

in the hash tables using linear search. As , , and are rel-

atively small, takes similar time

as . However, #collisions is

rather large compared to the other parameters.2 Hence, the time

complexity up to the feature matching step is

(37)

It depends, for a xed image size and number of features, on

the number of hash collisions, and thus on the image content.

As for the time complexity of the error reduction procedure, we

note that most false matches are already eliminated by (35) in

practice. Despite two nested loops, the complexity of Algorithm

1 is consequently relatively low compared to feature extraction

and matching, and we do not consider the time consumed by

this last step any further.

V. EXPERIMENTAL RESULTS

This section reports results from an extensive series of C(R)M

localization and detection experiments. The setup includes our

method as detailed in Section IV and an alternative detector,

which combines Zernike moments with Christlein et al.’s -d

tree block matching and Same Af ne Transformation Selec-

tion (SATS) framework [13].3 We use the same framework for

a number of further benchmark methods, namely the circular

block method by Wang et al. [26], as well as Bashar et al.’s de-

tectors based on discrete wavelet transform (DWT) and kernel

PCA (KPCA) features [16]. The set of block-based detectors is

completed by Bravo-Solorio and Nandi’s [24] intensity-based

algorithm. We also detail results of Pan and Lyu’s SIFT-based

approach [29] and report the performance of Amerini et al.’s

SIFT-based detector [30] whenever appropriate. Note that all

benchmarkmethods are particularly recommended for the local-

ization and detection of rotated duplicated regions in Christlein

et al.’s recent CM detection evaluation [43].

A. Experimental Setup

We use a randomly chosen subset of the BOSS image data-

base [44] for our experiments. The image contents range from

overly smooth to highly textured, making this data set a useful

reference for benchmarking C(R)M detectors. Because creating

convincing image manipulations is a time-consuming manual

task, we follow prior research work and opt for an automated

approach to generate a large number of processed images in

a controlled environment. More speci cally, we generate 1000

2The expected number of collisions for a given query is
.

3Christlein et al. [13] devised this combination as improvement of a detector
presented by us in an earlier conference version of this manuscript [31].

‘manipulated’ images by duplicating a randomly chosen part

of the original image and inserting a possibly rotated version

at a random4 position of the same image without any local

postprocessing. Rotation is implemented using bicubic inter-

polation. We take signal characteristics of the duplicated re-

gion into account and always consider each 500 ‘textured’ and

‘smooth’ manipulations, whereby duplicate regions with 50

SIFT key points are assigned to the ‘textured’ set.5 Duplica-

tion of textured regions is presumably easier to detect, because

more distinct feature characteristics make block or key point

matching more reliable. We believe that this distinction con-

tributes to a better understanding of the strengths and weak-

nesses of different detection approaches and that it fosters a

more comprehensive assessment of localization and detection

performances.

If not stated otherwise, we use the the following parameters:

� The block size is set to . Zernike moments up to

the of order are analyzed, which we found to give

a good trade-off between the features’ information content

and sensitivity to noise [31] (see also Section IV-A). This

results in feature vectors of length .

� Locality sensitive hashing (cf. Section IV-B) is imple-

mented based on the E2LSH package [45]. We found

empirically that a distance threshold gives

good results [31]. With preset , a quantization bin

size implies a collision probability of

by (26). For a success probability

, we set the length of hash vectors to

(and thus, by (28), ). Smaller values are prone to

produce many false alarms. The minimum spatial distance

threshold between two matched blocks is set to .

� The parameters of our phase-based error reduction proce-

dure (cf. Section IV-C) have been determined empirically

as follows. We set the maximum rotation angle differences

. Threshold is chosen rather low,

since our main objective are rotated blocks. The RANSAC

parameters and resemble literature

settings [29].

Benchmark methods ran with standard parameters as provided

by the authors and/or suggested in the literature.6

Under these conditions, we evaluate localization and detec-

tion performance along four main directions.

� The baseline experiment (Section V-C) keeps both the

image size and the size of duplicated regions constant,

while systematically varying the rotation angle of the

duplicated region, resulting in altogether 10000 runs per

detector.

� Variable-size experiments (Section V-D) investigate the in-

uence of the image size and the size of duplicated regions,

respectively. Here, we rotate the duplicated region by a

4Overlap between original and duplicated region is ruled out by design.

5This de nition is inspired by Pan and Lyu’s experiments [29], who
considered manipulations with 50 SIFT key points only.

6We set the SATS thresholds for the minimum Euclidean distance to 50 and
for the minimum number of correspondences to 30, respectively. For Pan and
Lyu’s detector we set (using their symbols) the threshold for key point matching
to , the maximum distance of RANSAC inliers to , and the
number of RANSAC iterations to , respectively. Correlation maps
are discretized with threshold .
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Fig. 3. CRM manipulation and its detection result: (a) CRM manipulation in-
volving a rotation of 10 ; (b) duplicated region; and (c) detected region.

randomly chosen amount and vary either the size of the

duplicated region or the size of the image. This series of

experiments comprises in total 7000 runs per detector.

� Robustness experiments (Section V-E) address robustness

against plausible postprocessing [46]. For this series of ex-

periments, image size and size of the duplicated region

are kept constant, whereas the rotation angle is chosen

randomly. Overall 34,000 detector runs give insight how

JPEG compression, distortion by additive white Gaussian

noise, or blurring in uence detection performance.

� Copy—scale—move experiments (Section V-F) examine

localization and detection performance when the dupli-

cated region underwent a rescaling operation instead of

being rotated. While Zernike moments are not invariant to

scaling by design, SIFT-based methods are also capable of

handling arbitrary af ne transformations other than rota-

tion. Additional 6000 runs per detector thus further inves-

tigate strengths and weaknesses of the proposed method

and the benchmark algorithms under this practically rele-

vant scenario.

To the best of our knowledge, this large-scale setup accumulates

to the most extensive evaluation of C(R)M detectors in the liter-

ature, which we further supplement by the analysis of a number

of real-life manipulations in Section V-H.

B. Performance Metrics

We use pixel detection accuracy (PDA) and pixel false posi-

tive (PFP) rate for a quantitative evaluation of localization per-

formance at pixel-level. These standard criteria [13], [19], [24],

[29] re ect the ratio of correctly detected duplicated regions

and the ratio of regions incorrectly marked as duplicate, respec-

tively. PDA and PFP are de ned as follows:

(38)

(39)

Fig. 3 visualizes the corresponding regions for an example ma-

nipulation. PDA and PFP are obtained by counting the respec-

tive pixels in the binary masks. In general, higher PDA as well

as lower PFP values indicate superior performance.

While pixel-level metrics are useful to assess the general lo-

calization performance of C(R)M detectors when ground-truth

data is available, image-level decisions are of particular in-

terest to the automated detection of manipulated images. To

this end, Section V-G reports ROC curves with image-level

true positive rates (TPR) and false positive rates (FPR). Our

detector uses the number of matched blocks as decision cri-

terion, for which we vary the threshold from 0 to 20000 in

steps of 20. ROC curves for the other detectors are drawn by

thresholding the size of the detected region,7 iterated over the

sequence . Since the design of Amerini

et al.’s detector [30] (which adopts agglomerative hierarchical

clustering on spatial locations) does not allow to compute ROC

curves over the full FPR range in a straight-forward manner,

we test the method as proposed in the original manuscript. We

use Ward’s linkage method and vary the clustering threshold

from 0.8 to 3.0 in steps of 0.2. FPR values are generally

obtained by running the respective detector on all original

images in the database.

C. Baseline Results

To demonstrate the general effectiveness of our detector, we

generated each ten CRM manipulations from 1000 original im-

ages of size 512 512. Duplicated regions of size 96 96

were rotated in the range of 0 to 90 , applied in steps of 10 .

Fig. 4 depicts selected box plots of PDA and PFP values for 500

textured (a) and 500 smooth (b) duplicated regions, as obtained

with the proposed method and the six benchmark methods. De-

tailed localization results are also summarized in Tables I and

II, respectively.

Taking all tested rotation angles into account, algorithms

based on Zernike moments appear to be the most accurate

approaches. At the same time, a direct comparison of our de-

tector with the SATS algorithm [13] suggests that the proposed

matching and error reduction procedure outperforms prior art

especially for smooth duplicated regions. It is also worth noting

that the proposed method generally yields lower PFP values

than SATS. The impact of our feature space error reduction

procedure (cf. Section IV-C) can be seen from Fig. 5, where we

compare the baseline results of the proposed method with and

without error reduction. Observe the drastically increased PFP

values in the absence of pruning.

As for the other benchmark detectors in Fig. 4, we note that

Wang et al.’s detector [26] gives a slightly better PDA, yet

relatively higher PFP values impair the overall performance.

Bravo-Solorio and Nandi’s [24] intensity-based detector gener-

ally yields very low PFP values but fails to detect a large portion

of duplicated regions for rotation angles other than 0 and 90 .

Bashar et al.’s approaches [16] were not designed to be explic-

itly invariant to rotation and are thus not able to localize rotated

regions at angles . Pan and Lyu’s SIFT-based method [29]

operates very well on the textured set, yet against the backdrop

of relatively lower PDA values for smooth duplicated regions,

where it is hard to extract a suf cient number of key points.

D. Variable-Size Results

Two important factors that impact the performance of C(R)M

detectors are the size of the duplicated region and the size of

the image under investigation [21]. While small duplicated re-

gions are typically hard to distinguish from incorrectly matched

blocks or key points, the likelihood of observing such false pos-

itives is expected to increase with the overall image size.

7The benchmark implementations worked best based on the region size and/or
did not support counting the number of matched blocks.
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Fig. 4. Pixel-level CRM localization baseline results; textured (top rows) and smooth (bottom rows) subset PDA and PFP box plots; image size 512 512;
duplicated region size 96 96; each 500 CRM manipulations per rotation angle.

TABLE I
TEXTURED SUBSET BASELINE PIXEL-LEVEL MEDIAN PDA AND PFP VALUES; BREAKDOWN BY DETECTOR AND ROTATION ANGLE

We examine the in uence of the duplicated region size by

increasing this dimension from 32 32 to 128 128 pixels in

steps of 32 square pixels while keeping the image size (512

512) constant. For each size, 500 textured and 500 smooth CRM

manipulations were created by rotating the duplicated region

by an angle randomly chosen from the set .

Following our de nition of smoothness, duplicated regions of

size 32 32, 64 64, 96 96, and 128 128 with more

than 6, 25, 50, and 90 SIFT key points, respectively, are labeled

‘textured’, thus keeping the relative number of necessary key
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TABLE II
SMOOTH SUBSET BASELINE PIXEL-LEVEL MEDIAN PDA AND PFP VALUES; BREAKDOWN BY DETECTOR AND ROTATION ANGLE

Fig. 5. Pixel-level CRM localization baseline results with/without error reduction procedure for the proposed method; textured (left) and smooth (right) subset
PDA and PFP box plots; image size 512 512; duplicated region size 96 96; each 500 CRM manipulations per rotation angle.

points per region size constant. The left panels of Fig. 6 report

box plots of the resulting pixel-level PDA values8 for textured

(a) and smooth (c) regions. While the results from both subsets

generally resemble the detectors’ baseline performances, it is

worth noting that all but Christlein et al.’s [13] and Wang et

al.’s [26] methods fail to reliably localize duplicated regions

of size 32 32. Yet these methods suffer from relatively high

median PFP values (54.3/50.7% and 53.9%/79.7% for textured/

smooth 32 32 regions, respectively). Hence, we conclude in

accordance to earlier reports in the literature [29] that duplicated

regions of this size are typically too small for state-of-the-art

CRM detectors.

In addition to the duplicated region size, we further investi-

gated the in uence of image size by duplicating a randomly-

chosen, xed-size region (96 96) in images of dimension 256

256, 512 512, and 1024 1024, respectively. As before,

the duplicated regions (each 500 textured and 500 smooth) were

rotated by a randomly chosen angle. Note that the 256 256

images were generated by down-sampling the corresponding

BOSS images by a factor of two, whereas the 1024 1024 im-

ages were resized and cropped from the BOSS RAW database.

Fig. 6(b) and (d) depict the resulting textured and smooth subset

PDA box plots for each image size. The graphs indicate that our

8Due to space constraints, we refrain from reporting detailed PFP values in
the remainder of the manuscript.

method, along with Wang et al.’s detector, works with high ac-

curacy relatively independent the image size and the smooth-

ness of duplicated regions. Observe that this is generally not the

case for all other benchmark methods.

In summary, the variable-size experiments con rm the

baseline results. Fig. 6 indicates that CRM detectors based on

Zernike moments or circular features are often superior. Our

detector is among the best performers for duplicated regions

larger than 32 32, whereas the SIFT-based method local-

izes in particular textured duplicated regions with very high

accuracy.

E. Robustness Results

Assessment of forensic algorithms’ detection performance

in practice also calls for considering their robustness against

plausible postprocessing [46]. This concerns in particular lossy

JPEG compression, which is often the last step prior to releasing

a manipulation to the public. JPEG compression is likely to

smooth out subtle differences between individual blocks. At

the same time it introduces its own blocking artifacts. Here, we

compress the image after CRMmanipulation with JPEG quality

factors 100, 80, 60, and 40, respectively. We further investigate

robustness against additive white Gaussian noise (AWGN) and

linear blurring with a circular averaging lter. We understand

these image processing primitives as placeholders for more
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Fig. 6. Pixel-level CRM localization variable-size results; textured (top row) and smooth (bottom row) subset PDA box plots as obtained for (a, c) xed-size
512 512 images with different duplicated region sizes, and (b, d) different image sizes with xed-size 96 96 duplicated region size; each 500 CRM manipu-
lations with rotation angles randomly sampled from the set .

Fig. 7. Pixel-level CRM localization robustness results; textured (top row) and smooth (bottom row) subset PDA box plots as obtained (a, c) with our detector
for different types and strengths of distortion, and (b, d) with all benchmark detectors for selected distortion settings; each 500 CRM manipulations with rotation
angles randomly sampled from the set ; image size 512 512; duplicated region size 96 96; “ ” refers to no distortion.

complex manipulation procedures—which may also be part

of intended targeted attacks [46] to hide characteristic CRM

traces [47]—and apply them to the duplicated regions only. The

strength of distortion is parametrized via the noise’s standard

deviation and the lter’s radius. We considered zero-mean

AWGN with standard deviation 2, 4, 6, and 8, as well as av-

erage lters of radius 0.5, 1, 1.5, 2, and 2.5, respectively. Note

that all images in this series of experiments (each 500 from the

textured set and 500 from the smooth set) are of size 512 512,

with 96 96 duplicated regions rotated by randomly sampling

from the set . Under these settings, Fig. 7

summarizes the robustness of our detector and the benchmark

approaches. More speci cally, panels (a) and (c) report, for

the textured set and the smooth set, respectively, PDA box

plots of the proposed method for (from left to right) all tested

JPEG quality factors, blur radii, and noise strengths. Overall,

the results emphasize the high robustness of Zernike moments.

The right panels in Fig. 7 compare all seven detectors for one

representative JPEG, blur and noise parameter setting. The

graphs indicate that the proposed method is superior to alterna-

tive approaches throughout all benchmark experiments for both

textured (b) and smooth (d) duplicated regions. Observe that
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Fig. 8. Pixel-level copy—scale—move localization results; (a) textured and (b) smooth subset PDA box plots; image size 512 512; duplicated region size
96 96; each 500 CRM manipulations per scaling factor.

the performance of Wang et al.’s detector is affected relatively

stronger, presumably because their approach directly depends

on the blocks’ intensity values.

F. Copy—Scale—Move Results

In a special case of robustness experiments, we also investi-

gated localization performance when duplicated regions under-

went geometric transformations other than rotation. We frame

this as a question of robustness because Zernike moments are

by design only invariant to rotation. Yet realistic copy—move

manipulations may also incorporate other transformation types,

so that we deem a reasonable localization accuracy even under

this more general setting a valuable property of CRM detectors.

At the same time, we see this experiment as a critical test of our

detector with respect to SIFT-based methods, which can by def-

inition also handle arbitrary af ne transformations.

We generated six CMmanipulations from each of the 500 im-

ages of size 512 512 in the textured set and in the smooth set.

The original region size was 96 96, and the corresponding

duplicated regions were rescaled by . Fig. 8 de-

picts the resulting PDA box plots as obtained with our detector

and the six benchmark methods. The graphs indicate that our

method remains accurate for slightly rescaled textured

regions and even outperforms all other detectors when smooth

regions are rescaled to [90, 120]%. Not surprisingly, perfor-

mance degrades towards stronger scaling factors, so that the pro-

posed method is not able to localize duplicated regions in the

more extreme cases. For textured regions, the SIFT-based de-

tector yields almost perfect PDA values, yet performance again

strongly depends on the image content.

G. Image-Level Manipulation Detection Results

Figs. 9 and 10 proceed with an overview of the image-level

manipulation detection performances. The individual sub-

gures resemble the previous localization experiments in

Sections V-C, V-D, V-E and V-F. More speci cally, Fig. 9

reports textured and smooth subset ROC curves of our detector

and the six benchmark methods in the baseline experiment,

the variable size experiments, and the robustness experiments.

Corresponding textured and smooth region results for Amerini

et al.’s detector [30] in Table III complement the curves. All

results were obtained according to the procedure outlined in

Section V-B. Each data point is based on 1000 original images

and 500 textured/smooth CRM manipulations with rotation

angles randomly sampled from . Table IV

summarizes the results for all methods at a xed 4.1% FPR.9

For the sake of a fair comparison, we also report the detection

performance of Pan & Lyu’s method with the threshold men-

tioned in their paper (0.1% of total image size, corresponding

to a FPR of 11.1%). Fig. 10 presents the textured and smooth

subset copy—scale—move ROC curves for selected scaling

factors. Table V completes the benchmark with results of

Amerini et al.’s detector under this scenario.

Overall, the image-level detection results are largely in line

with the pixel-level localization performances. For smooth

regions, the proposed method outperforms all benchmark de-

tectors in every tested circumstance except for strong scaling,

cf. Fig. 10(e) and (h). SIFT-based methods are particularly

well suited for detecting textured duplicated regions, for which

Christlein et al.’s Zernike/SATS combination shows a similar

performance (except for strong scaling, cf. Fig. 10(a) and (d)).

It is worth noting that all six block-based detectors suffer from

rather low detection rates at very low FPR values, whereas our

method tends to give better results in this particular segment of

the ROC curve (cf. Table IV). Wang et al.’s detector generally

gives higher FPR’s than our method in Fig. 9. Bravo-Solorio

and Nandi’s detector typically cannot compete with the other

methods. Very strong scaling impairs the performance of all

detectors, most apparently when smooth duplicated regions are

concerned (cf. Fig. 10(e) and (h), and Table V). In general, we

believe that all ROC curves leave room for improvement.

9For Amerini et al.’s detector, this corresponds to a clustering threshold
, which we found to give the best results under most settings (cf. Table III).
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Fig. 9. Textured and smooth subset image-level CRM detection; ROC curves from 1000 originals and each 500 manipulations with rotation angles randomly
sampled from the set ; (a, g) duplicated region size 96 96, image size 512 512, (b, h) duplicated region size 64 64, (c, i) image size
1024 1024, (d, j) JPEG compression with QF 80, (e, k) blur with radius 2.0, and (f, l) AWGN with .

Fig. 10. Image-level copy—scale—move detection results for textured (top row) and smooth (bottom row) duplicated regions; ROC curves from 1000 original
images and each 500 CRM manipulations; 96 96 duplicated regions rescaled to (a, e) 50%, (b, f) 90%, (c, g) 110%, and (d, h) 150%.

H. Tests With Real-Life Manipulations

Our last series of experiments analyzes ve realistic

manipulations of the Erlangen ‘Image Manipulation Dataset’,

which Christlein et al. [43] compiled for the purpose of bench-

marking CM detectors. The images cover different levels of

sophistication, with duplicated regions of varying number and

size.10

Fig. 11 depicts two images (‘acropolis’ and ‘giraffe’) along

with ground truth masks in Fig. 11(b). The output of our detector

10http://www5.cs.fau.de/research/data/image-manipulation/
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TABLE III
TEXTURED AND SMOOTH SUBSET IMAGE-LEVEL CRM DETECTION WITH AMERINI’S METHOD AT DIFFERENT CLUSTERING THRESHOLDS ; BASELINE

RESULTS, ALONGWITH SELECTED VARIABLE SIZE AND ROBUSTNESS RESULTS; 1000 ORIGINALS AND EACH 500 MANIPULATIONS

TABLE IV
IMAGE-LEVEL TPR AT FPR ; 1000 ORIGINALS, 500 TEXTURED AND

500 SMOOTH CRM MANIPULATIONS

TABLE V
TEXTURED AND SMOOTH SUBSET IMAGE-LEVEL COPY—SCALE—MOVE
DETECTION WITH AMERINI’S METHOD AT DIFFERENT CLUSTERING
THRESHOLDS ; 1000 ORIGINALS AND EACH 500 MANIPULATIONS

is displayed in Fig. 11(c). It coincides to a great extent with the

true duplicated regions. Table VI summarizes the detection re-

sults for all ve (partly downscaled) tested images and com-

pares our detector to the benchmark methods. The PDA/PFP

values largely re ect the large-scale results of the previous sec-

tions. Except for the ‘building’ image (with a duplicated re-

gion smaller than 32 32), all detectors are generally capable

Fig. 11. “Acropolis” and “giraffe” CM manipulation [43]: (a) manipulated im-
ages, (b) duplicated regions, and (c) detected regions.

of localizing the duplicated regions. Overall, Zernike moments

offer one of the best trade-offs between high PDA and rela-

tively low PFP. Compared to Christlein et al.’s SATS algo-

rithm [13], our feature-based error reduction procedure tends to

give lower PFP’s at similar PDA values. Similarly, the proposed

method also yields lower PFP values than Wang et al. [26],

Bashar et al. (DWT) [16], and Pan and Lyu [29]. Bashar et al.’s

KPCA detector [16] works very well for most images, mainly

because the duplicated regions were not rotated. Bravo-Solorio

and Nandi’s method [24] fails to detect large portions of the

‘acropolis’ manipulation.

I. Summary

All experimental results strongly suggest that localization and

detection performance greatly depends on image characteris-

tics, the type of processing applied to the duplicated region, and

many other in uencing factors. This emphasizes both the empir-

ical nature and the complexity of the problem, and it calls for a

careful interpretation of detector outputs in practical investiga-

tions. In practice, also a detector’s run-time has to be considered.

Table VII reports average run times of the tested detectors, ob-

tained from the analysis of each 1000 images of size 512 512

with standard parameter settings. Among the tested block-based

methods, our detector is fastest, outperforming others by a factor

of 2 at least. Not surprisingly, the table also nds that all these

detectors are considerably slower than SIFT-basedmethods. Yet

the high ef ciency of SIFT-based detectors comes at the cost
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TABLE VI
PIXEL-LEVEL PDA AND PFP FOR FIVE REALISTIC CM MANIPULATIONS

TABLE VII
AVERAGE RUN TIME OF EACH DETECTOR FOR 1000 512 512 IMAGES

of suboptimal detection performance when the duplicated re-

gions have not enough texture information. Overall, we thus

conclude that the quest for the one “best” detector rather de-

pends on the investigator’s priorities of how computational re-

sources, low false positives and high detection rates shall be

traded off against each other.

VI. CONCLUDING REMARKS

In this paper, we have focused on the localization and detec-

tion of copy—rotate—move (CRM) manipulations, for which

we advocate Zernike moments as robust feature representation

of small overlapping image blocks. Zernike moments are known

for their analytical invariance to rotation and are thus particu-

larly suitable for this application. Our detector employs a novel

block matching paradigm based on locality sensitive hashing,

and it exploits phase differences of Zernike moments in a fea-

ture-based error reduction approach. Extensive experimental re-

sults based on large set of images con rm the superior perfor-

mance and robustness under a variety of settings.

As to the limitations, we note that detectors based on Zernike

moments are inherently incapable of localizing duplicated

regions that underwent strong af ne transformations other

than rotation. In general, it remains an open research question

whether there exists one single “catch-all” approach, or whether

combining specialized detectors with feature representations

invariant to particular forms of processing is more favorable.

The signal-dependent performance of different CRM detectors,

the relatively low computational cost of running individual

state-of-the-art detection procedures in parallel, and recent

decision fusion attempts [48] can all be viewed in support of

the latter option. Moreover, it is also conceivable to support

duplicated region detectors with side-information about other

image characteristics, for instance traces of CFA interpolation

[49] or JPEG compression [50].

Apart from endeavors to advance the eld by means of more

robust feature representations, we see a major domain for future

research in the process of making automated decisions about the

presence of C(R)Mmanipulations. Given a typical binary output

map (see for instanceFig. 11(c)), human interpretation is likely to

unveil the presence of suspicious regions with high accuracy by

comparison with the questioned image. On the contrary, rather

simple computational measures, such as plain integration over

the output map, ignore available semantical information. They

are thus particularly prone to false alarms. We see this as being

part of a more general problem common to all forensic methods

aiming at local image manipulations. It is up to future research

to investigate means how recent advances in quantifying the ‘se-

mantical impact’ of amanipulation in a nonblind setting [51] can

be transferred to the examinationof (localized) forensicdetection

scores with side information about the image content.
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