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Abstract

Rotation Invariant Registration of 2D Aerial Images
Using Local Phase Correlation

Ping Lu

Aerial image registration requires a high degree of precision. In order to improve the
accuracy of feature-based registration, this project proposes a novel Log-Polar
Transform (LPT) based image registration. Instead of using the whole image in the
conventional method, feature points are used in this project, which reduces the
computational time. For rotation invariance, it is not important how the image patch
is rotated. The key is focusing on the feature points. So a circular image patch is used
in this project, instead of using square image patches as used in previous methods.
Existing techniques for registration with Fast Fourier Transform (FFT) always do FFT
first and then Log-Polar Transformation (LPT), but it is not suitable in this project.
This project does LPT first and then the FFT.

The proposed process of this project contains four steps. First, feature points are
selected in both  the reference image and the sensed image with corner detector 
(Harris or SIFT). Secondly, image patches are created using feature point positions as
centers. Each point is a center point of LPT, so  circular image patches are cropped
choosing a feature point as center. The radius of the circle can be changed. Then the
circular images are transformed to Log-Polar coordinates. Next,  the LPT images are
dealt with using phase correlation.  Experimental results demonstrate  the reliability
and rotation invariance of the proposed method.
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Chapter 1

Introduction

Image Registration is an essential step in most image processing tasks. It is
widely used in remote sensing, weather forecasting, medical imagimg and so on.
Image Registration is the process of overlaying two or more images that have
the same scene taken at different image sensors, different times, and different
geometric viewpoints, or share the same visual information such as the same
objects. The main goal of image registration is to find the transformation be-
tween the reference image and the sensed images. However, it could not design
a universal registration system to solve all kinds of tasks depending on the dif-
ferent type of image and various types of degradations.

This chapter introduces the majority of registration methods, describes the
characteristic of aerial imaging and discusses the problems involved with aerial
imaging. Then it describes the proposed solution and conclude by reviewing the
thesis.

1.1 Image Registration Process

Image registration consists of the following four steps.

1. Feature Extraction

This step includes feature construction and feature selection. The feature
points (also called key points ) in the image are found by one of the corner
detector methods. Each feature point is unique, which is used for feature
matching. The basic idea of corner detector will be described in section
2.2.2.

5



6 CHAPTER 1. INTRODUCTION

2. Feature Matching

Feature correspodence between the reference and the sensed images is
established in this step. It gives the best matching point pairs between
the images using similarity measures.

3. Homography Estimation

Based on the matching points, this step can estimate the parameter of the
mapping function. In order to get the parameters, homography estimation
only uses the true matching points. If the wrong matching points are used
then the images will be incorrectly aligned. The detail of homography
estimation will be discussed in section 2.4.

4. Transformation

After estimating the homography parameters, the sensed image is trans-
formed. The transformation includes translation, rotation and scaling.

Figure 1.1 shows the whole process of registration. The yellow dots in these
two images represent the feature points. Using similarity measures on these
feature points, the feature correspondence is established which is described by
the green lines in this figure. Then homography between images is estimated
by mapping function. The parameters for rotation, translation and scaling are
found. At last, the sensed image is transformed by this homography parameters,
such as rotation, translation and scaling.

Figure 1.1: The whole process of registration

Each registration step has its own unique challenge. At the beginning, it
should think about what kind of features are suitable for the given task. The
features should be stable, distinctive objects, not sensitive to image degrada-
tion or deformation. The feature sets are expected to have sufficient common
elements in both reference and sensed images.

In the next step, incorrect feature extraction or image degradation will lead
to mistakes. The feature descriptor should be invariant to image degradation.
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Different feature descriptors and similarity measures are used for feature match-
ing. The similar feature points are found by one of similar measurements.

In the homography estimation step, the mapping function is chosen by prior
information concerning the acquisition process and expected image degrada-
tions. Without prior information the mapping function should be flexible and
robust to all the possible degradations. In this step the accuracy of the fea-
ture extraction, the reliability of homography estimation and the acceptable
approximation error should be considered.

Finally, the transformation method depends on the trade-off between the
required accuracy of the interpolation and the required computational time.

1.2 Aerial Imaging

Aerial imaging and mapping present a ”bird’s-eye” view of the earth. While
aerial images are not maps.

Maps are orthogonal representations of the earth’s surface. They are direc-
tionally and geometrically accurate. Aerial imaging displays a high degree of
radial distortion. It means the topography is distorted. So the measurements
made from an aerial image is not accurate. However, aerial images are powerful
tools for studying the earth’s environment. Figure 1.2 shows a sample of an
aerial image.

Due to most geographic information system’s (also called GIS, which is a
system designed to deal with all type of geographical data) can correct for radial
distortion, aerial images are very high quality data sources for many types of
projects, especially those that require spatial data from the same location at
periodic intervals over a length of time.

Arial images are different from ”regular” photo images in at least three ways.
They portray objects from an overhead (and unfamiliar) position, often record
infrared wavelengths and are taken at scales most people are unaccustomed to
seeing

Here the advantages of Aerial Imaging has been described over Ground-
Based Observation. It offers an improved vantage point, and provides a per-
manent recording. Aerial images have broader spectral sensitivity than the
human eye, and have better spatial resolution and geometric fidelity than many
ground-based sensing methods.
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Figure 1.2: Aerial image.

1.3 Problem Statement

The common registration methods are firstly, taking control points over the
images to correct the geometric errors such as translation, rotation and scaling,
and secondly, establishing the correspondence model between images. It does
not matter which registration method and particular image is used, the most
important thing is an estimate how accurate the registration is. However, each
step of registration will influence its final result.

Phase correlation, based on the translation property of the Fourier trans-
form, computes the FFT ratio instead of any control points. The sharp peak
of the inverse of this ratio represents the highest correlation. Before phase
correlation, the reference and sensed images are transformed from the Carte-
sian coordinates to the logploar image and then phase correlation computes the
similar ratio, rotation and scaling errors which are represented as shift. The
correspondence is establish by using these parameters.

The previous registration methods use the whole image to do logpolar trans-
formation and phase correlation. However, the common log-polar transforma-
tion for image registration is to crop a square patch in both the reference image
and the sensed image. After the image has been transformed from Cartesian
coordinates to Log-Polar coordinates, black semicircles appear on the border of
the image, overlapping to form sharp edges / corners in between. Phase correla-
tion focuses on these corners at the black semicircles. There is no information at
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these black semicircles, which influences the accuracy of the registration. Figure
1.3 shows a sample of previous registration methods.

Figure 1.3: The previous registration method.

1.4 Proposed Solution

Aerial image registration requires a high degree of precision. In order to improve
the accuracy of feature-based registration, this project proposes a novel Log-
Polar Transform (LPT) based image registration. Instead of using the whole
image in the conventional method, feature points are used in this project, which
reduces the computational time. Furthermore, the black semicircles need to
be avoided. For rotation invariant, it is not important how the image patch is
rotated. The key is focusing on the feature points. Image registration with FFT
always do the FFT first.

The proposed process of this project contains four steps. First, feature
points are selected in both the reference image and the sensed image with corner
detector (Harris or SIFT). Secondly, image patches are created using feature
point positions as centers. Each point is a center point of LPT, so circular
image patches are cropped choosing feature point as center. The radius of the
circle can be changed, then the circular images are transformed to Log-Polar
coordinates. Next, the LPT images are dealt with using phase correlation.
Figure 1.4 shows the proposed solution in this project, which removes the black
semicircles in success after Log-Polar Transformation.
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Figure 1.4: A proposed solution.

1.5 Overview of the Thesis

This thesis is organized as follows: Each chapter has its own topic, which builds
on the work discussed in the earlier chapter. Chapter 2 describes the theoreti-
cal background and reviews the existing techniques of registration. Chapter 3
presents the outline of our novel registration system. Chapter 4 gives the ex-
perimental results and Chapter 5 analyzes and discusses these results. Chapter
6 provides the conclusion and Chapter 7 lists further extension work.



Chapter 2

Theoretical Background

2.1 Literature Review

This section contains an overview of the previously published, related image
registration literature.

Barbara Zitov and Jan Flusser [33] present the classical and up-to-date image
registration methods. All the methods can be classified into two categories:
area-based methods and feature-based methods. Area-based methods do not
extract features, so they don’t have the feature extraction step of image reg-
istration. These methods put emphasis on feature matching. Feature-based
methods extract salient structures (also called features) in the images. Region
features (lakes, fields and forests) are detected by means of segmentation meth-
ods [23]. Line features(roads, rovers and region boundaries) are extracted by
standard edge detection. Point features (region corners, line intersections and
points on curves with high curvatures) are widely used for registration.

Tuytelaars and Krystian [30] survey invariant interest point detectors, discuss
the properties of the local feature and analyze their strengths and weaknesses.
The Harris Corner detector is proposed by Harris and Stephens [11], which is
based on the second moment matrix and can achieve sub-pixel precision. It
is also proven to be the most informative and repeatable [26] [27]. Although
it takes long time for computation, this detector is widely used in practice.
Because the Harris corner detector is influenced by image scale, it could not
match images in different sizes.

The Smallest Univalue Segment Assimilation Nucleus ( also called SUSAN )
corner detector is introduced by Smith and Brady [29]. For each pixel in the
image, a circular neighborhood of fixed radius is considered around it. The

11
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SUSAN corners are detected by segmenting this neighborhood into two regions:
“similar”region and “dissimilar”region. The corners are located at the place
where the “similar”region reaches a local minimum below a certain threshold.
The SUSAN detector is more efficient than Harris but also more sensitive to
noise.

Tuytelaars and Krystian [30] also discuss Harris-Laplace and Harris-Affine.
Harris-Laplace starts with a multiscale Harris corner detector to determine the
location of the local features. The Laplacian operator is used to select scale.
The select scaled measures the scale at the place where there is maximum sim-
ilarity between the local image structures and the feature detection operator.
Harris-Affine obtain affine invariant corners, which detect the initial region with
the Harris-Laplace detector.

David G. Lowe [17] [18] [19] uses a descriptor called Scale Invariant Feature
Transform (SIFT). It extracts the invariant feature points in a pyramidal Dif-
ference of Gaussians (DOG) and can be invariant to image scaling, translation
and rotation, and partially invariant to illumination changes and affine or 3D
projection.

There are some extensions of SIFT descriptors, such as PCA-SIFT, GLOH,
SURF and ASIFT. The descriptor of SIFT uses 128 dimensions, whereas less are
used in PCA-SIFT. PCA-SIFT [16] uses Principal Components Analysis (PCA)
to normalize the gradient patch, instead of using SIFT’s smoothed weighted
histograms. The dimension of descriptor infulences the running time for in-
teresting point matching. The less dimension is required for fast matching.
PCA-SIFT yields a 36 dimensions, so it is faster for matching. But it is sen-
sitive to registration localization error. Herbert Bay, et al.[4] use a descriptor
called Speed-Up Robust Features (SURF). Compared with SIFT which builds
pyramids into different resolutions, SURF uses another method to extract fea-
ture points. It depends on integral images for image convolutions and a Hessian
matrix-based measure for detector. Once the integral images have been com-
puted , this descriptor runs fast, taking only three additions and four memory
accesses to calculate the sum of intensities inside a rectangular region of any
size.

Michael Grabner et al.[4] propose a fast SIFT descriptor which calculates the
integral images. It is based on orientation histograms. Compared with SIFT,
it computes the scale space by Difference of Mean(DoM) images instead of
Difference of Gaussians(DoG). When the overlap error tolerance is large enough,
the fast SIFT descriptor works better than the original SIFT. Faraj Alhwarin
et al. [9] improve SIFT feature matching and divide the extracted features
into some sub-collections before the two images are matched. This method
reduces the running time for matching images. Luo Juan [14] highlighted that
SIFT is slowest and not as good at illumination changes. SURF is fast but not
stable to rotation and illumination changes. PCA-SIFT should improve on blur
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performance. The methods are selected depending on the application.

Krystian Mikolajczyk and Cordelia Schmid[22] evaluate ten different descriptors
for different types of interest regions. By comparing the ranking of the descriptor
in affine transformations, scale changes, rotation, blur, jpeg compression and
illumination changes, they point out gradient location and orientation histogram
(GLOH) can provide the better results than SIFT. The SIFT based descriptors
perform better than any other region detectors.

In the matching step, the area-based methods are Cross-correlation (CC), Se-
quential Similarity Detection Algorithm (SSDA), Mutual Information (MI),
Phase Correlation and Optimization methods.

CC measures the similarity by computed for window pairs from the reference and
sensed images and searched its maximum. CC matches image intensities directly
without structural analysis. It is sensitive to changes in intensity, which depends
on noise, illumination and different types of sensor. SSDA [3] accumulates the
sum of the absolute differences in image intensity values. It makes use of a
threshold to judge the candidate pair of windows from the reference and the
sensed images. This method is faster but less accurate than CC. Which are both
correlation methods. The main disadvantages of correlation-like method are
the high computational time required and the flatness of the similarity measure
maxima.

The phase correlation [6] presents correlation matching between the two images
in the frequency domain. Compared with cross-correlation, it performs well
with noise and illumination changes. If some changes in rotation or scale exist
between the two images, the correlation methods will fail.

Log-Polar Transform(LPT) [2] [15] [20] [25] [34] [32] is widely used for its scale
and rotation invariant properties. Rotation and scale change in Cartesian co-
ordinate are described as translation in the log-polar domain. In the log-polar
domain the image pixels close to the center are oversampled, but the image
pixels far away from the center are undersampled.

Fourier-Mellin combine the phase correlation technique with the Log-Polar Trans-
formation. It describes rotation and scale as translations in parameter space[7].
Anuta [1] recommends to compute the correlation in the frequency domain.

Mutual Information (MI) represents the leading technique in multimodal regis-
tration, especially in medical image registration. It works with the intensities on
the whole image data and measures how much information one random variable
tells about another.

Dubrofsky [8] discusses homography estimation in various situations. Robust
estimation techniques deal with outliers. Hongshi and Jian Guo[31] present a
phase correlation based sub-pixel feature matching technique.
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Hast [13] presents the process of making a spatial atlas with historic images.
His aim is rebuild a virtual globe, similar to Google Earth (GE) but oriented
towards the management of the temporal variable.

2.2 Feature Extraction

2.2.1 Preprocessing

This section discusses some preprocessing methods before explaining the image
registration. One possible problem is that the aerial image might not be in good
condition for registration. For example, old aerial photos may appear yellow due
to decay or general wear and tear. Additionally, a better stitching result will
not be achieved if the two aerial images have different illuminations, even after
registration. Another problem is that it takes a long time to deal with the high
resolution images. For these reasons the aerial image should be preprocessed.
Then they can be used for feature extraction. According to the above problems,
the aerial image is dealt with the following method.

• Modify Intensity

Although the intensity does not influence the accuracy of phase correlation
in the proposed registration method, it might get a bad stitching result
after registration. This then would produce a visible seam in the joining
of images. In order to implement a better blending operation, modifying
the intensity of the registration image is suggested. For example, changing
the brightness of images makes these images have same intensity value.
This operation can also be done after registration, but it is recommended
to be done prior to assure a better result.

• Remove Noise

Noise in the image will lead to inaccurate results. In spite of the feature
descriptor which are selected to cope well with noise, it is still better to
remove noise using a smoothing operator. Guassian filter and Median
filter are often used to blur the image and remove noise.

2.2.2 Feature Extraction

This section discusses the properties of the local feature. Next, it explains the
basic idea of Harris corner detection, a derivatives-based approach. It then
move on to Scale Invariant Feature Transform (SIFT).

Good features should include the following properties [22] :
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• Repeatability : Given two images of the same scene with different view-
points, a high percentage of the feature detected on the scene in both
image should be found in both images.

• Distinctiveness/ informativeness : The features can be distinguished and
matched using the different intensity patterns.

• Locality : It reduces the probability of occlusion if the feature are local.

• Quantity : The adequate number of features should be detected, so that
the small object will contain a reasonable number of features.

• Accuracy : The features should express the location and shape accurately.

• Efficiency : The feature detected in a new image should satisfy the time-
critical applications.

Repeatability is the most important one among these properties. It can be
achieved in two different way: invariance or robustness.

Invariance: The preferred method of feature detection is not affected by math
transformations when we expect a large deformation.

Robustness: The deformation such as image noise, compression artifacts, and
blur influences the accuracy of detection. The feature extraction method is
expected to be less sensitive to deformation, so that the accuracy will not change
a lot.

Harris Corner Detector

The Harris Corner Detector is one of the simplest corner detector algorithm,
proposed by Chris Harris and Mike Stephens. It is based on the second moment
matrix, called the auto- correlation matrix. The main idea is to find the interest
points called corners where the surrounding neighborhood shows edges in more
than one direction.

The Harris Corner Detector algorithm has the following steps:

1. Define a matrix M for each pixel (x,y) in the image domain, as the positive
semi-definite, symmetric matrix

M =

[

Ix
Iy

]

[

Ix Iy
]

=

[

I2x IxIy
IxIy I2y

]

(2.1)

2. Let w be a weight matrix(a Gaussian filter), the convolution

M = w ∗M (2.2)
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The width of w determines the interesting region around x. The result M is
auto- correlation matrix, sometimes called Harris matrix. It gives a averaging
of M over the neighborhood pixels.

3. For each pixel (x,y), construct an indicator function, calculate the corner-
ness(x,y).

cornerness(x, y) = det(M)− k(trace(M))2 (2.3)

det(M) = λ1λ2 (2.4)

trace(M))2 = λ1 + λ2 (2.5)

k is a constant. A typical value for k is 0.04.

3. Set all cornerness(x,y) below a threshold T to zero. Threshold T controls
the number of corners.

SIFT

The scale invariant feature transform (SIFT) algorithm was developed by David
G. Lowe [17] [18] [19]. The SIFT features are invariant to image scale and
rotation and cope well with changes in illumination and 3D viewpoint. Because
of the highly distinctive property of the SIFT feature, a single feature can be
correctly matched with high probability against a large number of features[19].

SIFT feature detection works in four consecutive steps.

• scale-space extrema detection

• keypoint localization

• orientation assignment

• keypoint descriptor

Details of the above steps are given in the following:

1. In order to find out the potential feature points which are invariant to
scale and orientation. This step is implemented by using the extrema of
Difference of Gaussians(DOG) to search over all scales and image loca-
tions.

First, it establishes the scale space with Gaussian function. The scale
space can be written as
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L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.6)

Where * is the convolution operation, I(x,y) is an input image and

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (2.7)

is the Gaussian function in 2D situation.

While σ needs to be assigned a different value to construct n scaled image
in its first scale space. The DOG image is obtained by the Difference of
Gaussian function convolved with the image I(x,y). It can be described as

D(x, y, σ) = ((L(x, y, kσ)− L(x, y, σ)) ∗ I(x, y) (2.8)

which is equal to

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.9)

where k=
√
2.

The size of each octave scale space is half the previous one. As shown in
Figure 2.1, on the left a set of scale space images are produced by the initial
image convolved with Gaussian repeatedly. On the right, adjacent Gaus-
sian images are substracted to produce the difference of Gaussian(DOG).

Figure 2.1: Construction of DOG image( Image source:[19]).
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Secondly, it detects the local extrema(maxima or minima) of the DOG
image. Looking at Figure 2.2, each pixel is compared against 26 neigh-
bour points (8+2×9=26, 8 neighbours in the current scale space image, 9
neighbours in the scale above and 9 neighbours in the scale below). The
pixel is selected only if its value larger or smaller than all of these neigh-
bors. In the 2D situation, we need to construct 4 different scale images.
Because it needs to compare 3 DOG images in each octave[19].

2. The local maxima and minima of DOG are good candidates for feature
points. But the local extrema with low contrast or are poorly localized
such as correspond to edges should be removed. The main reason is that
they are sensitive to noise. Taylor expansion of the value at the local
extrema can find the intensity. For stability, it should reject the points
whose locations are along the edge. As the same approach of Harris Corner
Detector, it computes Hessian matrix and checks that the ratio of principal
curvatures is under some threshold, r. We need to check

trace(M)2

det(M)
<

(r + 1)2

r
(2.10)

3. The keypoint descriptor can tolerate image rotation by being assigned an
orientation . The following method can provide the most stable results.
For each image sample, L(x,y) (Gaussian smoothed image), the gradi-
ent of each key point should be calculated. The magnitude m(x,y)and
orientation θ(x,y) of the gradient is computed respectively as

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

(2.11)

θ(x, y) = tan−1L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(2.12)

According to Lowe’s suggestion [19], an orientation histogram is formed
from the gradient orientations of sample points within a region around the
keypoint, which has 36 bins covering the 360 degree range of orientations.
After the highest peak in the histogram is detected, any other local peak
with 80% of the peak is used to also create a keypoint with that orienta-
tion. There will be multiple keypoints created at the same location and
scale but with a different orientation because of locations with multiple
peaks of similar magnitude.

4. The previous steps define an image location, scale and orientation of each
keypoint. This step is to compute a descriptor which is highly distinc-
tive and invariant to 3D viewpoint or changes in illumination. Figure 2.3



2.2. FEATURE EXTRACTION 19

Figure 2.2: Maxima and minima of the difference-of-Gaussian images

illustrates how to create a keypoint descriptor. Here a 16×16 Gaussian
window is selected around the keypoint location and broken it into 4×4
subwindows. In each 4×4 subwindow, it calculates the magnitude m(x,y)
and orientation θ(x,y) of the gradient at each point. Next, these orien-
tations are put into an 8 bin histogram with contains 8 features in each
subwindow. In this case, the 16×16 window is used to create a keypoint,
so that each keypoint has 128 feature vectors(16×8=128).

Figure 2.3: Creation of keypoint descriptor( Image source:[28]).
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2.3 Feature Matching

Based on the feature points extracted from the previous chapter, feature
matching can now begin. Original feature matching process establishes
correspondence between the reference image and the sensed image. The
novel method is matching the correspondence circular images patches in
both images. As explained in section 4, we will get a lot of key point
region images and their descriptors for each image.

2.3.1 Log-Polar Transform

Log-Polar Transform (LPT) is a nonlinear sampling method which con-
verts an image from the Cartesian coordinates I(x,y) to the logpolar co-
ordinates LPT(ρ, θ). The mapping function is given by

ρ = logbase
√

(x− xc)2 + (y − yc)2 (2.13)

θ = tan−1 y − yc
x− xc

(2.14)

where
(xc, yc) is the center pixel of the transformation in the Cartesian coordi-
nates,
(x, y) is the sampling pixel in the Cartesian coordinates,
(ρ, θ) is the log-radius and the angular position in the log-polar coordi-
nates.

As shown in figure 2.4 , from the center to the furthest circumference
the distance between two successive sampling points in the radius direc-
tion increase exponentially. In the angular direction, the circumference is
sampled with the same number of samples. So image pixels close to the
center are oversampled while image pixels far away from the center are
undersampled or missed. In the log-polar coordinates, the row represents
the log-radius while the column represents the angular direction.

The benefit of using log-polar coordinates instead of Cartesian coordinates
is that any rotation and scale in the Cartesian coordinates are represented
as translation in the log-polar coordinates. So LPT based image registra-
tion can deal with changes in rotation and scale. The common method
transforms a square image to log-polar coordinates. Due to undersampling
or exempt information, the LPT transformed image appears with black
semicircle shape regions.

A second benefit of log-polar coordinates is the space variant property.
The sampling resolution in the Cartesian coordinates is higher around
the center point and descreases exponentially as it gets far away from the
center. So the center of the LPT becomes more vital than the surrounding
areas which are far away form the feature point center.



2.3. FEATURE MATCHING 21

Figure 2.4: LPT mapping: (a) LPT sampling in the Cartesian Coordinates, (b)
the sample result in the angular and log-radius directions ( Image source:[21]).

Based on one feature point as the center of the circle, our novel method
extracts a circle image patch from Cartesian coordinates to the log-polar
coordinate. It can therefore avoid the black semicircle shape regions .
Without the noise regions, the next step phase correlation can become
more accurate.

2.3.2 Fourier Method

The frequency domain is a space in which each image value at image
position F represents the amount that the intensity values in image I vary
over a specific distance related to F. In the frequency domain, changes in
image position correspond to changes in the spatial frequency, (or the rate
at which image intensity values) are changing in the spatial domain image
I.

There are some reasons to explain why the frequency domain is so inter-
esting. On the one hand, it can make explicit periodic relationships in the
spatial domain. On the other hand, some image processing operators are
more efficient when they are applied in the frequency domain.

The Fourier Transform method converts images from the spatial domain
into the frequency domain. The inverse Fourier Transform method is used
to convert images from the frequency domain into the spatial domain.

Fast Fourier Transform

The Fourier Transform is a technique which is used to convert images from
the spatial domain into the frequency domain and decompose an image
into its sine and cosine components. In the Fourier domain image, each
point represents a particular frequency contained in the spatial domain
image.

The main idea of Discrete Fourier Transform is that F(u,v) in the fre-
quency domain represents the image f(x,y) of size M x N in the spatial
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domain. It is the sampled Fourier Transform , so it does not contain all
frequencies forming an image. But the set of samples is large enough to
fully describe the spatial domain image.

The two-dimensional discrete Fourier transform (DFT) is computed as
follows:

F (u, v) =

M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−j2π(ux/M+vy/N ) (2.15)

The concept behind the Fourier transform is using a sum of sine and cosine
waves of different frequencies to construct any waveform. In equation
(2.15) the exponential can be expanded into sines and cosines with the
variables u and v determining these frequencies.

The equation for the inverse of the above discrete Fourier transform is

f(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ej2π(ux/M+vy/N ) (2.16)

So, if F(u,v) is known, using the equation(2.16) of the inverse, discrete
Fourier transform the corresponding image f(x,y) can be gotten.

Here are some notes about the discrete Fourier transform:

• The values of the Fourier transform are complex, meaning they have
real and imaginary parts.

• We visually analyze a Fourier transform by computing a Fourier
spectrum (the magnitude of F(u,v)) and display it as an image. The
Fourier spectrum is symmetric about the origin

• The fast Fourier transform (FFT) is a fast algorithm for computing
the discrete Fourier transform.

Phase Correlation

This subsection describes the phase correlation method and outline its
vital properties.

The Phase Correlation method is proposed for the registration of trans-
lated images, which is based on the Fourier Shift property[5]. It transforms
shift as phase difference in the Fourier domain.

The Phase Correlation algorithm can be described as follows:
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(a) Give two input images ga and gb, then apply a window function (e.g.,
a Hamming window) on both images to reduce edge effects. Next,
calculate the discrete 2D Fourier transform of both images.

Ga = F{ga}, Gb = F{gb}

The experimental results show that the images without a window
function get better results in this case, so we can ignore this step.

(b) Normalize the cross-power spectrum. It is given by

R =
GaG

∗

b

| GaG∗

b |

where * is the complex conjugate.

(c) Apply the inverse Fourier transform to get the normalized cross-
correlation.

r = F−1{R}

(d) Look for the location of the peak in its inverse Fourier transform r.

(∆x,∆y) = argmax(x,y){r}

Properties of The Phase Correlation algorithm

• The most important property of this algorithm is the value of the
distinct, sharp peak showing the accuracy of correlation. Figure 2.5
is an example of two displaced aerial images. The phase correlation
yield is a sharp peak which represents a high correlation. The stan-
dard cross correlation produces some broad peaks while the maxi-
mum peak (also called the main peak) is not located at exactly the
right point.

• Another vital property is its resistance to disturbances in illuminate
and offsets in average intensity.

2.3.3 Correlationlike Method

Correlation between two image patches, I1(x) and I2(x), is defined as:

c(I1, I2) =
∑

x

f(I1(X), I2(x)) (2.17)

where the function f depends on the correlation method. The sum is
calculated by all positions x in the image patches. For cross correlation
f(I1, I2) = I1I2, and then c(I1, I2) = I1 · I2 with ‘· ’presenting the scalar
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Figure 2.5: Phase correlation and standard cross-correlation:(a) and (b)
Aerial image of Paris with displacements along both axes, (c) standard cross-
correlation and (d) phase correlation (Image source:[10]).

product. The larger the value of c(I1, I2), the more similar the patches
I1(x) and I2(x) are.

The classical representation of the area-based method is normalized cross
correlation. It is given by

ncc(I1, I2) =
1

n− 1

∑

x

I1(x)− µ1

σ1
· I2(x)− µ2

σ2
(2.18)

where n is the number of pixels in a patch, µ1 and µ2 are the mean
intensities, σ1 and σ2 are the standard deviations in each patch. The
method copes well with the image brightness by subtracting the mean and
scaling with the standard deviation. If it requires the subpixel accuracy
of the registration, the interpolation of the normalized cross correlation
measure values need to be used. This method can exactly align translation
images. It can also be applied in slight rotation images and slight scaling
images.
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2.3.4 Removing False Matches

Symmetry Test

In the Symmetry Test, the matches are computed using the symmetrical
(two-sided) matching conditions to remove the false match (i.e. the match
pair could not pass the symmetry test in both directions ) and keep the
accurate match.

2.4 Homography Estimation

Homography is mapping points and lines in one plane to another plane.
The common algorithm uses point feature correspondences to estimate
homographies between images.

According to the homography definition from Hartley and Zisserman [12],
3×3 homography matrix H is suffcient to calculate the homography. The
homography matrix H has 8 independent degrees of freedom.

2.4.1 Algorithms for Homography Estimation

Basic DLT algorithm

The Direct Linear Transform (DLT) algorithm is an algorithm for com-
puting the homography matrix H if it gives four or more point corre-
spondences. The 2D points are mapping in homogeneous coordinates, the
relationship between corresponding points x and x′ can be described as

x′ = Hx (2.19)

or
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 (2.20)

In homogeneous coordinates the points are scaled, so the 2D point can
be expressed as x=[x,y,w]=[αx,αy,αw] = [x/w,y/w,1 ]. To get a unique
identification of the image coordinates x,y, the points are often normalized
with w=1. In order to obtain the correct result, Hartley and Zisserman
[12] propose a normalization step on DLT.

Different Cost Functions

Minimizing a suitable cost function should be considered to solve for a ho-
mography when there are more than 4 points of correspondence available.
Some of these cost functions are used in practice:
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• Algebraic distance: The simplest cost function is to minimize
the algebraic distance using Singular Value decomposition (SVD)
analysis. Although it is cheap, the quantity being minimized is not
geometrically meaningful.

• Geometric distance: This measures the Euclidian image distance
between the point where the homography maps and the correspon-
dence point. An iterative method is required to minimize the cost
function. Although the results are more accurate, iterative tech-
niques have disadvantage when compared with minimizing Algebraic
distance. The method is slower, risk not converging and so on.

• Reprojection error: The goal of the reprojection error cost func-
tion is to make a correction for each correspondence. Minimizing
this function is more complicated than Geometric distance.

• Sampson error: On one hand, algebraic cost function is cheap
to compute but does not provide geometrically meaningful results.
On the other hand, the geometric and reprojection error cost func-
tion can give more accurate results but their iterative methods are
more complex. The Sampson error cost function lies in between two
extremes which are computation cost and providing a close approx-
imation to represented error.

2.4.2 Robust Estimation

The homography estimation algorithm requires a number of correspon-
dences(at least 4 correspondences). However, some situations may arise
where the two features in the images do not correspond to the same real
feature. Therefore we need to distinguish inlier 1 and outlier 2 correspon-
dence. Only inlier matches can be used for homography estimation. In
this section we will discuss two homography estimation methods.

RANSAC

RANSAC (Random Sample Consensus) is the most popular robust ho-
mography estimation method [8]. The method can be described like this.
First, it selects 4 correspondences at random and computes a homogra-
phy matrix H from these 4 correspondences in each iteration. Secondly,
it classifies the other correspondences as inliners or outliers depending on
its concurrence with H. Next it repeats this process in all iterations and
then chooses the iteration which contains the largest number of inliers.
The homography matrix H in that iteration is considered as the best

1inlier, the true matching correspondence, is used for homography estimation
2outlier, the wrong matching correspondence, is not considered for homography estimation
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transformation model.

When RANSAC classifies correspondences as inliers or outliers, a distance
threshold t between x′ and Hx needs to be assigned. If the distance > t,
the point is considered an outlier. We also need to decide the number of
iterations for running RANSAC. Hartley and Zisserman [12] suggest the
formula that

N = log(1− p)/log(1− (1− ǫ)s) (2.21)

where ǫ is the probability of outliers and s is the number of correspon-
dences used in each iteration (s = 4 in this case ).

Least Median of Squares Regression

A distance threshold is chosen to find out outliers and discard them in
RANSAC . It deals with the sum of squared difference algorithms. How-
ever, the Algebraic distance version of DLT is not very robust with outliers.

The Least Median of Squares (LMS) estimation method replaces the sum
of squared residuals. Peter J.Rousseeuw [24] states that LMS works very
well if there are less than 50% outliers and it does not need to set any
parameters such as the threshold or the probability of outliers. The major
disadvantage is that LMS could not deal with the outliers, which are more
than half the data.
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Chapter 3

System Description

This chapter introduces the novel registration system. The purpose of the
project is to analyze the transformation relationship between the refer-
ence image and the sensed image. For obtaining a satisfying final result,
preprocessing work is usually done to remove noise and modify intensity
after selecting interesting aerial images.

At the beginning, the corner detector method is used to obtain feature
points in the reference image and the sensed image. Circle image patches
are created using these feature points as centers. In order to deal with
rotation situation, circle shaped image patches are used. It can avoid the
black semicircle shaped noise after log-polar transformation. Next, we
transform all the image patches from the Cartesian coordinates I(x,y) to
the logpolar coordinates LPT(ρ, θ). Any rotation and scale in the Carte-
sian coordinates are represented as translation in the log-polar coordi-
nates. Then Fast Fourier Transform is used to convert log-polar based
images from the spatial domain into the frequency domain. Based on
the Fourier Shift property, the Phase Correlation method is proposed for
the registration of translated images. Symmetry test is used for removing
false matches. A good matching result can give accurate transformation
parameters. At last, RANSAC is used for homography estimation. Figure
3.1 shows the whole registration system proposed in this thesis.

Some parameters will influence the accuracy of this novel registration sys-
tem. The radius of circle image patches and the size of input images of
FFT are the important parameters in this project. As shown in Figure
3.3, the radius of circle image patches decides the size of input image of
LPT. It also points out the size of input images of FFT affects the FFT.
The output image of the LPT is the same one for input image of FFT. In
order to get high accuracy, the Area of the input image of LPT should be
bigger than the area of input image of FFT.

One detail about the radius of circle image patches should be mentioned.

29
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Figure 3.1: Rigistration System Overview.

The pixel of the center point is removed for avoiding oversample in LPT.
Figure 3.3 shows this detail when the size of subimage square ism×m, the
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radius of the Largest cirlce image patch inside it is defined asm = 2× radius+ 1.

The radius of circle image patches will be tested, accuracy of registra-
tion with a set of radius value compared the best value for the radius
investigated. The size of input image of LPT will be tested also. Then
two methods are compared—-first Log-polar then FFT or first FFT then
Log-polar.

Figure 3.2: The parameters that affect registration are radius and size .
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Figure 3.3: The radius of circular image patch.



Chapter 4

Experiments and Results

This chapter presents experimental results on the proposed algorithm.
The algorithm is developed using Python 2.7, used Intel OpenCV (Open
Source Computer Vision) library version 2.4.3 to test the performance
of the homography and carried out these tests in one computer with the
following configurations:

• System type: Windows 7 Professional 64-bit Operating System

• Processor: Intel Core i5 2.80 GHz

• Memory: 8.00 GB

All of the images that have been tested in this project are screenshots
from Google Earth (Product version 7.0.3.8542). The resolution of these
images are 418*320.

Regardless of the used registration method and the particular images,
the most important thing for the user is an estimate how accurate the
registration is. The accuracy evaluation is not a normal problem, because
the errors can be dragged into each of stages in the registration process and
it is difficult to distinguish between registration inaccuracies and physical
differences in the image contents.

For accuracy evaluation of these experimental results, the homography
with RANSAC was estimated ten times and the average number of inliers
was calculated. In each actual experiment, same results were gotten in
ten times. It proved the novel method is stable and reliable.

The novel registration method is called LPT PC (Log-Polar Transform
and Phase correlation) in this project. At first, the experiment tested dif-
ferent parameters and selected the optimal parameters for the novel algo-
rithm. Then it compared the novel algorithm LPT PC using SIFT select-
ing feature points with the original SIFT (developed by David G.Lowe).

33
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Next, it tested the LPT PC ( Log-Polar Transform and Phase correlation)
and LPT CC ( Log-Polar Transform and Cross Correlation) using Harris
selecting feature points in both methods. The novel method will now be
evaluate based on the number of inliers.

4.1 Results of Optimal Parameter Selection

In this section the optimal parameters for the novel algrithm will be dis-
cussed. Different parameters for the radius of the circle image patch in
LPT will also be compared, as well as the input size of FFT. Then these
optimal parameters will be used to registration.

Here 400 feature points are extracted with SIFT in the reference images
and the sensed images. Because the interesting square is extracted from
the original image, using feature points as centers, when the square is
41x41, the biggest radius should be 20. The left image in Figure 4.1
shows this principle. In order to get high precision, the input size of FFT
should be smaller than the size of the interesting square. Furthermore,
the input size of FFT should be 2n(n = 1, 2, 3, 4....). When the square is
41x41, the biggest input size of FFT is 32x32. The input size of FFT —
64x64 needs to be tested, so the size of the the interesting square should
be bigger than 64x64. Here 71x71 is chosen for the input size of FFT —
64x64. The right image in Figure 4.1 shows the biggest the radius in this
case. In these tests, the radius of the circle image patch in LPT are 10, 12,
14, 16, 18, 20. The input sizes of FFT are 8x8, 16x16, 32x32, 64x64. 10
sets of images have been tested. Figure 4.2 is one sample of test results.
Other test results are in Appendix A.

Figure 4.1: The principle of selecting parameters.

The chart presented in Figure 4.2 shows the optimal parameters —– the
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radius for LPT is 20, the input size of FFT is 32x32. In this case, the
highest number of the inliers is 239 for this set of images.

Figure 4.2: Chart showing the number inliers for different parameters(inlier is

the true matching correspondence).

All the tests of the following sections in this chapter are using the optimal
parameters— radius for LPT is 20, the input size of FFT is 32x32.

4.2 Results of the LPT in OpenCV and the

proposed LPT

In this section the novel log-polar transform and the log-polar transform
in OpenCV will be estimated, and their experimental results analyzed.
Two sets of samples are given in this section.

Figure 4.3 shows the result after dealing with Log Polar Transform in
OpenCV and the proposed LPT. Looking at Figure 4.3 (b), there is a
bright spot near the left margin and black semicircles appear on the right
border of image. While shown as Figure 4.3 (c), the image appears without
a bright spot and black semicircles on the border.

Another experimental result is shown in Figure 4.4. The LPT in OpenCV
and the proposed LPT were also tested using Figure 4.4 (a). Looking at
Figure 4.4 (b), the back semicircles appear on the border of the image
at right side after dealing with LPT in OpenCV. These black semicircles
will influence the accuracy of the registration. Figure 4.4 (c) shows now
after using the proposed LPT, the image appears without these black
semicircles.
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(a)

(b) (c)

Figure 4.3: LPT mapping in OpenCV: (a) LPT sampling in Cartesian Coordi-
nates, (b) the sample result using LPT in OpenCV, (c) the sample result using
the proposed LPT. ( Image source (a) provided by Anders Hast)

4.3 Results of first log-polar then FFT and

first FFT then log-polar

In the experiment, two methods are compared—first log-polar then FFT,
and first FFT then log-polar. The novel log-polar method is used to imple-
ment the First log-polar then FFT method. Also, log-polar in OpenCV is
used to realize the first FFT then log-polar method. Here SIFT is chosen
to extract the feature points in both methods. Then the optimal param-
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(a)

(b) (c)

Figure 4.4: LPT in OpenCV and the proposed LPT: (a) LPT sampling in
Cartesian Coordinates, (b) the sample result using LPT in OpenCV, (c) the
sample result using the proposed LPT.

eters, which are discussed before, are used to complete this experiment.

Figure 4.5 shows the results of the two sequence methods—first log-polar
then FFT, and first FFT then log-polar. Here the lines are used to connect
sets of feature points which have top high phrase correlation. Looking at
the matching Connection in Figure 4.5 (a) and (c), there are some false
matching connections between the reference image and the sensed image
in first FFT then log-polar method. Figure 4.5 (b) and (d) show all the
match connections are correct in first log-polar then FFT.
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(a)

(b)

(c)

(d)

Figure 4.5: Two sequence method: (a)(c) first FFT then log-polar, (b)(d) first
log-polar then FFT.
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4.4 Registration Results

The different images are used to evaluate the performance of the novel
registration method. The different types of images are described as fol-
lowing:

Normal Image: It is a normal aerial image of resolution 418*320 (133760
pixels). According to this standard image, it has been modified to create
other different type of images.

Brightened Image: The normal image have been increased contrast by
20%. The brightened image and the normal image have the same number
of pixel.

Rotated Image: The image has been rotated in google earth in different
angle degrees– 45 degree, 90 degree, 135 degree, 180 degree, 225 degree,
270 degree and 315 degree. The images have also been rotated in random
angle degrees, and then these images have been stored as the sensed image.

Scaled Image: The height and width of the normal image are shrunk by
a factor of two using the defaults of bicubic interpolation and antialiasing.
The resulting image size is 377*288 (108576 pixels) which contains nearly
90% the pixels of the normal image.

Noisy Image: The normal images, screenshots from Google Earth, are
high quality. In order to carry out the test for noise image, salt and pepper
noise has been added to the normal image to get the noisy image. Here
the noise density 0.02 is chosen.

4.4.1 Results of the LPT PC and the original SIFT

This experiment has estimated the novel registration method LPT PC
with SIFT feature detector. The SIFT is selected to extract the feature
points. Next, the first log-polar then FFT method are chosen, which
is compared with Lowe’s SIFT. Both methods select 400 feature points
from the original images. After homography estimation in OpenCV, the
number of inliners are compared.

At the beginning, the different angle rotated images are tested in these
two registration methods. There are 45 degree, 90 degree, 135 degree,
180 degree, 225 degree, 270 degree and 315 degree rotation images in this
experiment. The results of inliers have been presented in the chart shown
in Figure 4.8.

As shown in Figure 4.8, the LPT PC and the original SIFT can cope with
rotation images. The original SIFT get the number of inliers above 179,
the highest number of inliers is 202. The number of inliers in the LPT PC
are range in 144 to 181.

Here another experimental result is given of the LPT PC and the original
SIFT, which is about random angle rotation image registration. 400 SIFT
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Figure 4.6: Chart showing the number of inliers for different rotation degree(
one image is rotated in different angle degrees).

feature points are extracted from the reference images and the sensed
images. Figure 4.7 shows 4 sets of images with random angle degrees. It
also proves the proposed method can handle rotation images.

Figure 4.7: Chart showing the number of inliers for random angle rotation(Four
different images are rotated in random angle degree).

At last, the number of inliers have been compared in the different type
of images — Brightened image, Rotated image (45 degree), Scaled image
and Noisy image.

The chart in Figure 4.8 shows that the LPT PC has high ability for dealing
with the Noisy image which got 197 inliers, while the original SIFT gives
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Figure 4.8: Chart showing the number of inliers for different images.

low number of inliers 17. For rotation, both method can cope with it,
the inliers in the original SIFT is 199 and in the LPT PC is 181. For the
Brighten image, the inliers in the original SIFT is 166 and in the LPT PC
is 234, meaning The LPT PC works better. For scale image, the original
SIFT performs better than the LPT PC.

4.4.2 Results of LPT PC and LPT CC

Here the novel registration method LPT PC has been estimated with Har-
ris feature detector. The Harris is selected to extract 400 feature points
from the reference image and the sensed image. The first log-polar then
FFT method have been chosen. Then two methods have been tested:
phase correlation and cross correlation in this case. After homography
estimation in OpenCV, the number of inliners are compared.

The chart presented in Figure 4.9 shows the results of inliers of different
angle rotation images in these two registration methods. There are 45
degree, 90 degree, 135 degree, 180 degree, 225 degree, 270 degree and 315
degree rotation images in this experiment.

Figure 4.9 shows that LPT PC obtains more inliers than LPT PC after
rotate large degree.

Another experimental result describes the LPT PC and LPT CC dealing
with random angle rotation image registration. 400 SIFT feature points
are extracted from the reference images and the sensed images. Figure 4.7
shows 4 sets of images with random angle degree. It also proves that the
proposed method can handle rotation images. In three sample, LPT PC
works better than LPT CC. Only one sample shows the LPT CC is better.
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Figure 4.9: Chart showing the number of inliers for different rotation degree
using Harris FFT( one image is rotated in different angle degrees).

Figure 4.10: Chart showing the number of inliers for random angle rotation
using Harris FFT(Four different images are rotated in random angle degree).



Chapter 5

Discussion

A novel Log-Polar Transform (LPT) was used in the proposed registration.
Image patches were created using feature points as centers. Each point
was a center point of LPT, so circular image patches were cropped over
the center points. The circular images were transformed to Log-Polar
coordinates. This can avoid black semicircles from appearing on the border
of the LPT images.

Due to the radius of the circle, image patches can be changed. A lot of
image data was tested in the experiments. From experimental results,
the best parameters (the radius for LPT as 20, the input size of FFT as
32x32) were found for this novel method. The benchmark was the number
of inliers (the true matching correspondence in homography estimation).
The best parameters are used in the following registration methods.

In order to evaluate the accuracy of the novel registration. The semicir-
cles and the proposed log-polar were compared at the beginning. The
limitation of the log-polar in OpenCV was discovered.

One disadvantage of the log-polar in OpenCV is presented in Figure 4.3.
Figure 4.3 shows the result after dealing with Log Polar Transform in
OpenCV. Looking at Figure 4.3 (b), there is a bright spot near the left
margin. Due to the LPT’s principle, the image pixel close to the center
is oversampled. If the center of one image is a white bright point in
Cartesian coordinates, it will appear as a white bright line on the margin
in log-polar coordinate. In this case, it appears as a bright spot. The
algorithm in OpenCV extracts the location around the points instead of
the exact location of the point. Figure 5.1 shows the principle of the LPT
in OpenCV and the proposed LPT. The proposed LPT selects the exact
center point. So the LPT in OpenCV is not a ideal solution if a high
precision solution is required.

Another disadvantage is described in Figure 4.3 (b) and Figure 4.4 (b),
where the black semicircles appear on the border of the image on the
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right side after dealing with LPT in OpenCV. These black semicircles will
influence the accuracy of the registration. Some solution is required to
remove these semicircles.

(a) (b)

Figure 5.1: The principle of the LPT in OpenCV and the proposed LPT: (a)
The principle of the LPT in OpenCV , (b) The principle of the proposed LPT

These comparisons indicate that the proposed log-polar has more advan-
tage than the log-polar in OpenCV. As shown in Figure 4.3 (c) and Figure
4.4 (c), the proposed LPT remove these semicircles in success.

Next, the experiments was continued to compare the two methods —first
log-polar then FFT, and first FFT then log-polar. The First log-polar
then FFT method is implemented by the novel log-polar method. The
first FFT then log-polar method is realized by the log-polar in OpenCV.

Here SIFT was chosen to extract the feature points in both methods.
Then the optimal parameters (the radius for LPT as 20, the input size of
FFT as 32x32) are used to complete this experiment. The results gave a
conclusion: first log-polar then FFT is much better than first FFT then
log-polar. The novel log-polar method which extract circle image matches
is better than the LPT method in OpenCV.

The different images were used to estimate the performance of the novel
registration method. From the results of LPT PC and the original SIFT,
both methods can cope with rotated images. Although the original SIFT
can get more inliers, the LPT PC still deals well with the different angle
rotated images. For Noisy images, the LPT PC surpasses the original
SIFT a lot. For Brightened images, the LPT PC still performs better
than the original SIFT. The reason is the brightness change was described
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as the phase difference in frequency domain, phase correlation can cope
with the transforming shift as phase difference in the Fourier domain. This
experiment tested the normal image increased contrast by 20%. If more
increasing contrast appear, it requires bigger radius of the circle in image
patch to operate in phase correlation step. For a scaled image, the original
SIFT works better. The LPT PC still works on it when the scaling factor
is small (the scaling factor as 0.8 in this experiment). The LPT PC will
fail if the scaled image contains nearly half the pixels of the normal image.

At the end of experiments LPT PC and LPT CC were discussed. Both
methods are tested in different angle rotated images. It indicated that the
novel method can handle rotated images. The LPT PC works better than
LPT CC.

For the high accuracy requirement our registration method suffered from
computational complexity: Harris is faster at detection than SIFT. For
removing the false matches, the matches are computed with a symmetry
test. After the symmetry test, SIFT got more accurate match corner than
Harris.

The homography matrix is a suitable transformation model for 2D aerial
images. RANSAC computes a homography requiring at least 4 correspon-
dences. Here RANSAC was chosen instead of Least Median of Squares
Regression (LMS), since LMS does not deal with the outliers, which is
more than half the data. It is important that the resulting transformation
is free of outliers, so that it will not distort the image.

Sub-pixel precision is tried in the novel registration method, the results
being worse than integer pixel precision. Therefore, The novel method
chose integer pixel precision to complete registration.
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Chapter 6

Conclusion and Future

Work

6.1 Conclusion

This thesis contains an overview of image registration methods and pro-
poses a novel registration method which can be used for 2D aerial images.
The aim of the work was to improve the accuracy of registration. It se-
lected the feature points with corner detector and created image patches
using feature points as centers. Instead of using the whole image in the
conventional method, feature points are used in this project, which re-
duces the computational time. For rotation invariant, it is not important
how the image patch is rotated. The key is focusing on the feature points.
Each point was a center point of LPT, so the circular image patches were
cropped over the center point. Then it transformed the circular images to
Log-Polar coordinates, which can avoid black semicircles from appearing
on the border of the LPT image. Next, it coped with the LPT images
with phase correlation.

Due to the radius of the circle, image patches can be changed. After
testing, the best parameters have been found (the radius for LPT as 20,
the input size of FFT as 32x32) for this novel method.

Image registration with FFT always do the FFT first. But in our case it
is bad as we do not want the corners and not the black semicircles either.
Therefore, I do LPT first to get the circular region and then the FFT.
Comparison of two methods — first Log-polar then FFT or first FFT
then Log-polar. Furthermore, the novel LPT with the LPT in OpenCV
have also been compared. Two disadvantage of the LPT in OpenCV were
discovered.

This novel method (novel Log-Polar Transform and first Log-polar then
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FFT) have been compared with Lowe’s SIFT in different types of images
with noise, rotation, high intensity and scaling. The results were analyzed
and evaluated from this novel registration method. The experiment also
tested the LPT PC (Log-Polar Transform and Phase Correlation), and
LPT CC (Log-Polar Transform and Cross Correlation). According to the
number of inliers, the LPT PC works better.

In one word, I have implemented a reliable novel method for 2D aerial
images registration. Comparing with the previous common method, this
novel registration method is able to solve the 2D aerial images in different
rotated images at the present stage. It copes well with the images in
different locations at the same time and finds the transformation between
the reference image and the sensed image. Especially in Noise images, its
performance surpasses the Lowe’s SIFT a lot.

6.2 Future Work

To build more reliable and robust registration, the extension of this project
will be focused on obtaining the optimal parameters for old aerial photos
from different time period. It is important to research the historic build-
ings change. For example, given several images in different time — 60’s,
70’s, 80’s and 90’s, the registration method could find the same objects
and tell about the historic changing among the given images. This method
could be applied in tourism, where the development of a place of interest
could be followed. People can easily understand the history in the place
of interest.

Furthermore, the computational complexity could be reduced and the reg-
istration made faster and more efficient. Python is a interpreting program-
ming language, which incorporates easy with other application. However,
Python is too much slower than C++. The registration method could be
developed by C++ if fewer running time is required. The accuracy of the
novel registration needs to be improved as well.



Appendix A

Figure A.1: Parameters testing for 45 degree rotated image

Figure A.2: Parameters testing for 90 degree rotated image
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Figure A.3: Parameters testing for 135 degree rotated image

Figure A.4: Parameters testing for 180 degree rotated image

Figure A.5: Parameters testing for 225 degree rotated image
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Figure A.6: Parameters testing for 270 degree rotated image

Figure A.7: Parameters testing for 315 degree rotated image
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