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Abstract For more than a decade, time series similarity search has been given a
great deal of attention by data mining researchers. As a result, many time series
representations and distance measures have been proposed. However, most existing
work on time series similarity search relies on shape-based similarity matching.
While some of the existing approaches work well for short time series data, they
typically fail to produce satisfactory results when the sequence is long. For long
sequences, it is more appropriate to consider the similarity based on the higher-
level structures. In this work, we present a histogram-based representation for time
series data, similar to the “bag of words” approach that is widely accepted by
the text mining and information retrieval communities. We performed extensive
experiments and show that our approach outperforms the leading existing methods
in clustering, classification, and anomaly detection on dozens of real datasets. We
further demonstrate that the representation allows rotation-invariant matching in
shape datasets.

Keywords Time series · Similarity search · Feature extraction · Representation ·

Classification · Structural similarity

1 Introduction

Time series similarity search has been a major research topic for time series data
mining for the past two decades. As a result, many time series representations and
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similarity measures have been proposed (Chan and Fu 1999; Faloutsos et al. 1994;
Keogh 2002; Keogh and Kasetty 2002; Keogh et al. 2001; Li and Vitanyi 1997; Lin
et al. 2007). Similarity measures can be categorized, based on how features are
extracted and how similarity is determined, into shape-based similarity and structure-
based similarity (Keogh 2004). The former determines the similarity of two time
series by comparing their individual point values, whereas the latter looks at the
higher-level structures (Keogh et al. 2004). Most existing approaches focus on finding
shape-based similarity. Classic examples of shape-based similarity measures for time
series include the Euclidean Distance and Dynamic Time Warping (Keogh 2002).
While some of these approaches work well for short time series data, they typically
fail to produce satisfactory results with long time series data (Keogh 2002). To
understand the need for a higher-level, structure-based similarity measure for long
time series data, consider the scenario for text data. If we are to compare two strings,
we can use the string edit distance to compute their similarity. However, if we want
to compare two documents, we typically do not compare them on the word-to-word
basis. Instead, it is more meaningful to use a higher-level representation that can
capture the structure or semantic of the document. Below, we describe the two types
of similarity in more detail.

Given two time series Q and C, shape-based similarity determines how similar
these two datasets are by summing up local comparisons. The most well-known
distance measure in data mining literature is the Euclidean distance, for which
sequences are aligned in the point-to-point fashion, i.e. the ith point in sequence Q
is matched with the ith point in sequence C. Assuming that Q and C are of the same
length n, Eq. 1 defines their Euclidean distance.

D (Q, C) ≡

√

√

√

√

n
∑

i=1

(qi − ci)
2 (1)

The simplicity and efficiency of Euclidean distance makes it the most popular
distance measure in data mining, and it has the advantage of being a distance metric.
While Euclidean distance works well in general, it requires that both input sequences
be of the same length. In addition, it is sensitive to distortions, e.g. shifting along the
time axis. As an example, the top and bottom time series in Fig. 1 appear to be very
similar. In fact, the time series below is the shifted version of the time series above.
However, the slight shifts along the time axis will result in a large distance between
the two time series.

Fig. 1 (Left) Alignment for Euclidean distance between two time series. (Right) Alignment for
Dynamic Time Warping distance between two time series
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Such a problem can generally be handled by elastic distance measures such as

Dynamic Time Warping (DTW) (Keogh 2002; Ratanamahatana and Keogh 2004;

Sart et al. 2010; Ko et al. 2005). DTW uses dynamic programming to determine

the best alignment that will produce the optimal distance. The parameter, warping

window length, determines how much warping is allowed to find the best alignment

(Ratanamahatana and Keogh 2004). A large warping window causes the search to

become prohibitively expensive, as well as possibly allowing meaningless matching

between points that are far apart. On the other hand, a small window might prevent

us from finding the best solution. Euclidean distance can be seen as a special case

of DTW, where there is no warping allowed. Figure 1 demonstrates the difference

between the two distance measures. Note that with Euclidean distance, the dips and

peaks in the two time series are misaligned and therefore not matched, whereas with

DTW, they are aligned with their corresponding points from the other time series.

While DTW is a more robust distance measure than Euclidean Distance, it is also a

lot more computationally intensive. Keogh (2002) proposed an indexing scheme for

DTW that allows faster retrieval. Nevertheless, DTW is still at least several orders

slower than Euclidean distance.

Other elastic distance measures exist for time series, such as Longest Common

SubSequence (LCSS) (Vlachos et al. 2002), Edit distance with Real Penalty (ERP)

(Chen and Ng 2004) and Time-Warp Edit Distance (TWED) (Marteau 2009).

However, we do not consider them in our experimental comparison since DTW is still

considered the most commonly used distance measure among the family of elastic

measures for time series (Ding et al. 2008). In addition, it performs just as well, if not

better, than the other elastic measures (Ding et al. 2008).

Shape-based similarities work well for short time series; however, for long time

series data (generally speaking, with a length of hundreds or more), they either

produce poor results, or require intensive computation (Keogh et al. 2004). More

specifically, while Euclidean distance is efficient to compute, it is very sensitive

to distortions such as noise and shifting. On the other hand, while DTW is more

robust, its computational time is quadratic in the lengths of the input time series.

Recently, it has been proposed that a more appropriate alternative to determining
similarity between long and noisy time series is to measure their similarity based
on higher-level structural information (Keogh et al. 2004). Compared to the large
amount of work on shape-based similarity, there is relatively little work on finding
structural similarity. This is an unfortunate oversight, as the structural approach is
particularly useful for long time series, or for applications where domain experts
compare time series or signals based on the arrangement of morphological events
present in the signals (Olszewski 2001), e.g., radar signal detection and speech
recognition. Several structure- or model-based similarities have been proposed that
extract global features such as autocorrelation, skewness, and model parameters
from data (Keogh 2004; Nanopoulos et al. 2001; Wang et al. 2006). However, it is
not trivial how to determine relevant features, and/or compute distances given these
features. In addition, in many cases, it was shown that the simple Euclidean Distance
outperforms many of the sophisticated model-based approaches (Keogh 2004).

In this paper, we propose a novel time series representation that allows us to
determine structural (dis)similarities between time series data. Our method is robust
and efficient, and it is inspired by the well-known bag-of-words representation for
text data. There are several advantages for our approach compared to existing
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structure-based methods. First, since the overall representation is built by extracting
the subsequences from data, we in fact take local structures into consideration as well
as global structures. Furthermore, the incremental construction of the representation
suggests that it can be used in the streaming data scenario. Our representation
also allows users to understand the pattern distribution of the data by examining
the resulting histograms. It also has the desirable property of being invariant to
distortions like rotation. We show that our approach outperforms leading existing
methods in the tasks of classification, clustering, and anomaly detection on several
real datasets. We demonstrate the rotation-invariance property with a case study on
shape matching.

The rest of the paper is organized as follows. In Section 2 we briefly discuss
background and related work. Section 3 presents our methodology. In Section 4,
we show empirical results in clustering, classification, and anomaly detection. In
Section 5, we performed a case study on rotation-invariant shape matching. We
conclude and discuss future work in Section 6.

2 Background and related work

In this section, we briefly discuss background and related work on time series
similarity search.

For concreteness, we begin with a definition of time series:

Definition 1 Time Series: A time series T = t1, . . . , tm is an ordered set of m real-
valued variables.

Some distance measure Dist(C,Q) needs to be defined in order to determine the
similarity between time series objects.

Definition 2 Distance: Dist is a function that has C and Q as inputs and returns a
nonnegative value R, which is said to be the distance from Q to C.

Each time series is normalized to have a mean of zero and a standard deviation of
one before the distances are computed, since it is well understood that in virtually all
settings, it is meaningless to compare time series with different offsets and amplitudes
(Keogh and Kasetty 2002).

As mentioned, Euclidean distance and Dynamic Time Warping are among the
most commonly used distance measures for time series. For this reason, we will
use Euclidean distance as the distance measure for our new representation, and
compare the results with Euclidean distance and Dynamic Time Warping on raw
data. Since our representation is inspired by the bag-of-words representation, for
which cosine similarity is used instead of Euclidean distance, we will also compare
these two distance measures on our representation. In addition to comparing with
well-known distance measures on the raw data, we also demonstrate that our method
outperforms popular time series representations such as Discrete Fourier Transform
(DFT).

While there have been dozens of representations and distance measures pro-
posed for shape-based similarity matching, there is relatively little work on finding
structure-based similarity. Deng et al. (1997) proposed learning ARMA model on
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the time series, and using the model coefficients as the feature. This approach has
an obvious limitation on the characteristics of input data. Ge and Smyth (2000)
proposed a deformable Markov Model template for temporal pattern matching, in
which the data is converted to a piecewise linear model. However, this approach
requires many parameters, and does not achieve better accuracy than Euclidean
distance (Keogh 2004). Nanopoulos et al. (2001) proposed extracting statistical
features of time series such as skewness, mean, variance, and kurtosis, and classifying
the data using multi-layer perceptron (MLP) neural network. Kriegel et al. (2008)
proposed to approximate each time series by the coefficients of a mathematical
model involving a set of reference time series. Their approach requires derivation
of a set of reference time series in order to build the best fitting model.

Keogh et al. (2004) proposed a compression-based distance measure that com-
pares the co-compressibility between datasets. Motivated by Kolmogorov Com-
plexity (Keogh et al. 2004; Li and Vitanyi 1997) and promising results shown in
similar work in bioinformatics and computational theory, the authors devised a
new dissimilarity measure called CDM (Compression-based Dissimilarity Measure).
Given two datasets (strings) x and y, their compression-based dissimilarity measure
can be formulated as follows:

CDM (x, y) =
C (xy)

C (x) + C (y)
(2)

where C(xy) is the compressed size of the concatenated string x + y, C(x) and
C(y) are the compressed sizes of the string x and y, respectively. In their paper,
the authors show superior results compared to other existing structural similarity
approaches. In this work, we will compare our method with CDM, the best structure-
based (dis)similarity measure reported. We will show that our approach is highly
competitive, with several additional advantages over existing methods.

3 Finding structural similarity

We propose a histogram-based similarity measure, using a representation similar to
the one widely used for text data. In the Vector Space Model (Salton et al. 1975), each
document can be represented as a vector. Each dimension of the vector corresponds
to one word in the vocabulary, and its value is the relative frequency of occurrences
for the corresponding word in the document. As a result, a p-by-q term-to-document
matrix X is constructed, where p is the number of unique terms in the text collection,
q is the number of documents, and each element X(i, j) is the frequency of the ith
word occurring in the jth document.

This “bag of words” representation is widely accepted for documents. It is able to
capture the structure or topic(s) of a document, without knowing the exact locations
or orderings of the word appearances. We hypothesize that we may be able to
represent time series data in a similar fashion, i.e. as a combination of patterns from
a finite set of patterns.

There are two challenges if we represent time series data as a “bag of patterns.”
The first challenge concerns with the definition and construction of the patterns
“vocabulary.” The second challenge comes from the fact that time series data are
composed of consecutive data points. There is no clear “delimiters” between pat-
terns. To tackle both challenges, we use a simple sliding window scheme, and adapt
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the widely used symbolic representation for time series, SAX (Symbolic Aggregate
approXimation) (Lin et al. 2007). The intuition is to convert the time series into a set
of SAX words, and then construct a word-sequence matrix (analogous to the term-
document matrix) using these SAX words. Intuitively, each SAX word represents a
pattern in the time series. In the next section, we briefly describe how SAX converts
a time series into strings.

3.1 Symbolic aggregate approximation

Given a time series T of length n, SAX produces a lower dimensional representation
of a time series by transforming the original data into symbolic words. Two parame-
ters are used to specify the size of the alphabet to use (i.e. α) and the size of the words
to produce (i.e. w). More specifically, SAX performs the discretization by dividing a
time series into w equal-sized segments. For each segment, the mean value for the
points within that segment is computed. Aggregating these w coefficients forms the
Piecewise Aggregate Approximation (PAA) representation of T. Each coefficient is
then mapped to a symbol according to a set of breakpoints that divide the distribution
space into α equiprobable regions, where α is the alphabet size specified by the
user. If the symbols were not equiprobable, some of the symbols would occur more
frequently than others. As a consequence, we would inject a probabilistic bias in the
process. It has been noted that some data structures such as suffix trees produce
optimal results when the symbols are of equiprobability (Crochemore et al. 1994).
In previous work, we found that normalized time series subsequences had a highly
Gaussian distribution (Lin et al. 2007). A symbolic transformation table could be
created by defining breakpoints that would result in regions of equal-probability on
the Gaussian distribution. These breakpoints (or the z-values) may be determined
by looking them up in a statistical table. Table 1 gives the breakpoints for values of
α from 3 to 10 (though higher values of α can be easily determined). For example, if
α = 3 (i.e. there are three regions), then the breakpoints that divide the distributional
space into 3 equiprobable regions are −0.43 and 0.43 (see also Fig. 2 for an example).

Figure 2 shows how a time series of length 128 is converted to a SAX string
cbccbaab (i.e. α = 3, w = 8). The breakpoints, illustrated by dotted lines, are −0.43
and 0.43.

Table 1 A lookup table that contains the breakpoints that divides a Gaussian distribution into an
arbitrary number (from 3 to 10) of equiprobable regions

a 3 4 5 6 7 8 9 10

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28

β2 0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84

β3 0.67 0.25 0 −0.18 −0.32 −0.43 −0.52

β4 0.84 0.43 0.18 0 −0.14 −0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28
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Fig. 2 Example of SAX for a time series. The time series above is transformed to the string cbccbaab,
and the dimensionality is reduced from 128 to 8

3.2 Bag-of-patterns representation for time series

Having discretized the time series via SAX, our algorithm works as follows. First, we
construct the pattern “vocabulary” for our time series database. The easiest way to
achieve this is to use a sliding window to extract subsequences of length n (a user-
defined parameter). Each subsequence is normalized to have a mean of zero and
standard deviation of one before it is converted to a SAX string. As a result, we
obtain a set of strings, each of which corresponds to a subsequence in the time series.
As noted in (Lin et al. 2007), given a subsequence Si, it is likely to be very similar
to its neighboring subsequences, Si−1 and Si+1 (i.e. those that start one point to the
left, and one point to the right of Si, respectively), especially if Si is in the smooth
region of the time series. As a result, in some cases we might see that multiple
consecutive subsequences are mapped to the same string. These subsequences are
called trivial matches of Si. To avoid over-counting these trivial matches as true
patterns, a technique called numerosity reduction is often administered (Lin et al.
2007). More specifically, we may choose to record only the first occurrence of the
string, and ignore the rest until we encounter a string that is different. In other
words, for each group of consecutive identical strings, we may record only the first
occurrence and count this group of occurrences only once. As an example, suppose
we obtain the following sequence of SAX strings with the sliding window technique:

S = aac aac abc abb abb abb abb bac baa ...

With the numerosity reduction option, we would record the following sequence
instead:

S1 = aac1 abc3 abb4 bac8 baa9

The subscripts denote the starting offsets of the first occurrences of the repeating
strings.

While the inclusion of numerosity reduction seems reasonable here, we believe
that the decision on adapting numerosity reduction depends on the data. More
specifically, for data that are generally smooth and slow changing, we might see
many consecutive subsequences being mapped to the same SAX string. In this case,
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counting all occurrences of the string would result in over-counting of the pattern.
Figure 3 illustrates such an example. In the figure, first few extracted subsequences
are shown. Since this time series is relatively smooth (i.e. no rapidly changing
patterns, spikes, or noises), the first few subsequences are very similar and are likely
to be mapped to the same SAX string. It would make sense to count this pattern
(represented by the same SAX string) only once, rather than multiple times, until we
see a different string that breaks the consecutive identical streak of strings.

Once we obtain the set of strings for each time series, we can construct the word-
sequence matrix. Given α and w as the parameters for SAX, we know the size of
our entire collection of possible SAX strings, or our “dictionary.” More specifically,
there are αw possible SAX words. For example, for α = 4 and w = 4, our dictionary
size is only 256. Clearly, the size of the dictionary increases exponentially with the
increase of w. Typically, a value of 3 or 4 works well for most time series datasets
(Lin et al. 2007). In most experiments, we choose α = 4 for simplicity. With this
arbitrarily chosen parameter, we want to demonstrate that in situations where we
have no prior knowledge on the datasets and the best parameter setting, the “default”
value α works reasonably well.

Having fixed α, we now have to determine the value for w and n (the sliding
window length). While the best choices of w and n are data-dependent, in general,
time series with smooth patterns can be described with a small w and a large n, and
those with rapidly changing patterns may prefer large w and small n to capture the
critical changes. We choose w = 6 ∼ 8 for our initial experiments, with sliding window
length of 100 ∼ 300 depending on the characteristics of the data. If training data is
available, these parameters can also be learned, as we will show in the later part of
our experiments.

With α = 4 and w = 8, the resulting dictionary size is αw = 4
8 = 65,536. Despite its

apparent size, the matrix is likely to be sparse, as with text data. In our experiments,
we find that only about 10% of all strings have some subsequence mapped to them.
Therefore, we can eliminate words that never occur in any data, or store only the list
of occurring SAX strings for each time series. Another option is to set a threshold
for the maximum allowable dictionary size, and set the parameters accordingly. We
will discuss this approach in a later section.

The construction of the temporal “bag of patterns” matrix M is straightforward.
The matrix M is a word-sequence matrix, analogous to term-document matrices used
for information retrieval and text mining. Each row i denotes a SAX word (i.e. a
pattern) from the pattern dictionary; each column j denotes a time series dataset;
and each Mi, j stores the frequency of word i occurring in time series j. The matrix

Fig. 3 Subsequences are
extracted from the time series
via a sliding window. The first
few subsequences are very
similar, so they are likely to be
mapped to the same string
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provides a summary of time series data in terms of distributional structure for the pat-
terns. Once we build the matrix M, we can then use any applicable distance measures,
typically Euclidean distance, or dimensionality reduction techniques to compute the
similarity between them. In our experiments, we normalize the histograms so that
the values range between zero and one. Doing so allows us to compare time series
of different lengths meaningfully. We call this new representation BOP (Bag of
Patterns).

Figure 4 shows a visual example of this representation. Like the bag-of-words
representation for documents, the orderings of patterns are lost. However, for long
time series data, this level of details is exactly the reason why conventional shaped-
based approaches do not work well. In addition, the extraction of subsequences rather
than points allows some preservation of pattern ordering within a subsequence.
As our experiments demonstrate, BOP produces very good results even without
knowing the exact ordering of the patterns.

Figure 5 shows one of the datasets we use in our experiments, and their cor-
responding “bags of patterns.” The leftmost column shows thirteen pairs of time
series obtained from UCR Time Series Archive (Keogh et al. 2006a) and PhysioNet
(Goldberger et al. 1997). The middle column shows the bag of patterns for each time
series (i.e. the column vectors in matrix M). The SAX parameters used here are
α = 4, and w = 6, so the resulting vocabulary has 46 = 4,096 words (i.e. the length of
the column vectors is 4,096). The numbers to the right are the sparsity levels of the
vectors, calculated by the following equation:

s = 1 −
#of nonzero entries

vocabulary size
(3)

We can make the following observations from the sparsity levels: (1) the matrix
is extremely sparse, similar to the case for text data. The densities for the bags
of patterns range from 0.46% to 9%. (2) Data from the same cluster have similar
distributional information and sparsity levels. The latter explains why using structural
or pattern distributional information to distinguish data is a promising idea.

Fig. 4 A visual example of the
bag-of-patterns representation
for time series. Each row
denotes a SAX word, and each
column denotes a time series
data
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Fig. 5 Twenty-six datasets and their corresponding bags of patterns. The sparsity scores on the right
show that the matrix is extremely sparse

4 Empirical evaluation1

In this section, we present empirical evaluation of our method on clustering, clas-
sification and anomaly detection.

4.1 Clustering

For this part of experiments, we demonstrate the effectiveness of our approach in
hierarchical clustering and partitional clustering. We show that our representation
outperforms leading existing approaches and produces more accurate clustering
results.

4.1.1 Hierarchical clustering

One of the most widely used clustering approaches is hierarchical clustering (Johnson
1967). Hierarchical clustering computes pairwise distances of the objects (or groups
of objects) and produces a nested hierarchy of the clusters. It has several advantages
over other clustering methods. More specifically, it offers great visualization power
with the hierarchy of clusters, and it requires no input parameters. However, its
intensive computational complexity makes it infeasible for large datasets.

1All datasets used in this paper are available at http://www.cs.gmu.edu/∼jessica/BOP

http://www.cs.gmu.edu/~jessica/BOP
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Fig. 6 New clustering result on the same data shown in Fig. 2. This time, we used our bag-of-patterns
approach, and combined it with Euclidean distance. The two clusters are well separated

To give a visual intuition of why our method works, we performed a simple
experiment. We extracted subsequences of length 2,048 from six different records
on PhysioNet (Goldberger et al. 1997), an online medical archive containing digital
recordings of physiological signals. Signals labeled #1 ∼ 3 are measurements on
respiratory rates, and signals labeled #4 ∼ 6 are electrocardiograms (ECGs). All
datasets were normalized prior to clustering so that they have a mean of zero and
a standard deviation of one.2 We extracted the bag of patterns from the data, and
used Euclidean distance to compute the similarity between the pattern frequency
vectors (i.e. the column vectors). Figure 6 shows the resulting dendrogram. Note
we are now clustering on the transformed time series, or the “histogram” of the
patterns. The parameters used to produce this dendrogram are n = 200, w = 8, and a
= 4; group average linkage was used (though other linkage options produced similar
results). For clarity, we also plot the original, corresponding time series to the left of
the dendrogram. This figure provides the exact explanation on the clustering result,
as we can see clearly that the time series clustered together have similar pattern
distribution.

We also tried to cluster the raw signals using Euclidean distance as the distance
measure, and the result is disappointing. Figure 7 shows the hierarchical clustering
result using Euclidean distance and single linkage (the choice of linkage technique
also does not make any difference in this case). As the figure shows, none of the
signals was clustered correctly. One reason for the poor clustering result could be
that the signals within the same cluster are not perfectly aligned. For example, signals
#1 and #2 are out of phase. In addition, the presence of anomalous points, e.g., in the
beginning of signal #4, could also throw off the distances computed.

2In previous work (Lin and Li 2009), we used a different normalization technique, min-max
normalization, which resulted in slightly better clustering for Euclidean distance: signals #5 and #6
were correctly clustered together. However, z-normalization is more commonly used for time series
data mining tasks.
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Clustering using Euclidean Distance (single linkage)

1

5

2

4

3

6

Fig. 7 Result of hierarchical clustering using Euclidean distance on raw data. None of the signals
was clustered correctly

Dynamic Time Warping can be used to mitigate the out-of-phase problem. Indeed,
we were able to obtain perfect clustering result using DTW. However, we would like
to emphasize that DTW is computationally expensive – it is a quadratic algorithm
whereas the bag-of-patterns approach is linear.

As expected, CDM produced just as good clustering result as the bag-of-patterns
and as DTW did. However, the repeated saving of data to the disk makes it less
efficient compared to the bag-of-patterns technique.

For our next experiment on hierarchical clustering, we used the time series
datasets shown in Fig. 4. The data, obtained from different domains, have diverse
structures. The datasets contain: winding (1 & 2), sunspot (3 & 4), power consump-
tion (5 & 6; 9 & 10), ECG (7 & 8; 11 & 12; 15 & 16; 17 & 18; 19 & 20), respiratory
(13 &14), shuttle (21 & 22), flutter (23 & 24), and balloon (25 & 26). Although our
method does not require the input time series to have the same length, the raw
Euclidean distance does. Thus we keep each dataset at length 1000. We compared
our approach with the following methods: (1) Euclidean distance on raw time series
(“raw Euclidean Distance”), (2) DTW on raw time series, and (3) Euclidean distance
on DFT coefficients.

Figure 8 shows the dendrogram produced by hierarchical clustering using the raw
Euclidean distance. Since each class consists of a pair of time series, we can easily
check at the loweset-level of the dendrogram the branches separating pairs of time
series. We adapt the metric proposed by Keogh et al. (2004), and compute Q, which
is the number of correct birufications divided by thirteen, the number of pairs in the
data. The Q-value ranges between 0 and 1, where a Q-value of 1 denotes perfect
clustering. We can see that out of thirteen pairs of datasets, only three pairs are
successfully clustered together. The Q-value is thus 0.23. As illustrated in Fig. 9,
DTW shows some improvement over Euclidean distance and correctly clusters all
but two pairs of data (i.e. 3 & 4, 21 & 22). The Q-value is 0.85 for DTW.

Next, we compare our representation with another well-known time series rep-
resentation, Discrete Fourier Transform (DFT) (Agrawal et al. 1993). DFT approx-
imates the signal with a linear combination of basis functions, and its coefficients
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Clustering using Euclidean Distance
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Fig. 8 Clustering result using Euclidean distance on the raw data. Only three pairs of data are cleanly
clustered together (15 & 16; 23 & 24; 25 & 26)

Clustering using Dynamic Time Warping
Unconstrained

complete linkage
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Fig. 9 Clustering result using Dynamic Time Warping on the raw data. All but two pairs of time
series (3 & 4; 21 & 22) are clustered correctly
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Clustering using 100 DFT coefficients

Fig. 10 Clustering results using 100 DFT coefficients and Euclidean distance. Four pairs of data are
correctly clustered (17 & 18; 19 & 20; 23 & 24; 25 & 26)

represent global contribution of the signal. One of the advantages of DFT is that
it offers dimensionality reduction. As demonstrated by Agrawal et al. (1993), most
“energy” concentrates on the first few DFT coefficients. Therefore, we can use only
a few DFT coefficients to approximate the data, while still preserving the general
shape of the data. If we use all the coefficients, then we get the equivalence of the
original sequence. In this experiment, we used 100 coefficients (compared to 1,000
data points in the raw data). Similar to the raw Euclidean distance, only four pairs of
data are correctly clustered. Figure 10 shows the result. The Q-value for DFT is 0.31.

Figure 11 shows the clustering result produced by our Bag-of-Patterns approach.
Again, the histograms for the patterns are shown in the middle of the figure. The
parameters used are n = 100, w = 6, α = 4, with no numerosity reduction, and with
complete linkage for clustering. However, it turns out that the option for numerosity
reduction and the choice of linkage in this experiment have no effect in clustering
accuracy. As the figure shows, all thirteen pairs are correctly clustered. The Q-value
for the Bag-of-Patterns representation is 1. The Q-values for the various techniques
are summarized in Table 2.

The results above are promising. However, these time series are still relatively
short, and they have very diverse structures. To see how our algorithm handles very
long sequences, and on data with less diverse structures, we performed hierarchical
clustering on the ECG dataset presented by Keogh et al. (2004). This dataset, which
we will call ECG1, contains 20 ECG records that form 4 clusters. Details on the
datasets can be found in the paper (Keogh et al. 2004). Each record is of length
15,000. The parameters we used are n = 300, w = 6, α = 4. The clustering result
for CDM can be found in (Keogh et al. 2004). Our results are comparable to that of
CDM – both methods were able to correctly identify all four clusters, regardless of
the high level of noises and misalignments in the data (see Fig. 12).
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Fig. 11 Clustering results using our approach. All pairs of data are successfully clustered

To measure the hierarchical clustering results quantitatively, one way is to draw a
line vertically on the dendrogram so that the line partitions the data into k clusters
(k = 4 in this example). We can then determine the cluster membership by looking
at the data grouped under each node that intersects with the line. Figure 12 shows an
example. Each “block” of data (shaded/non-shaded) denotes one cluster, with a total
of four clusters. Objects in each cluster share a common node. Once we obtain the
cluster membership, we can evaluate clustering quality using any existing clustering
validity measures. More specifically, we compare our cluster labels with the true
labels, and compute the clustering quality using the evaluation method proposed by
Gavrilov et al. (2000). The evaluation method compares the similarity between two
sets of cluster labels, and returns a number between 0 and 1 denoting how similar the
sets of clusters are. Ideally, we would like the number to be as close to 1 as possible.
For the Bag-of-Patterns approach, the clustering accuracy is 1 (i.e. perfect clustering).

We compare our results with three other methods: Euclidean distance on the raw
data, DTW on the raw data, and Euclidean distance on DFT coefficients. The results
are shown in Figs. 13, 14, and 15, respectively. Clustering accuracy for all techniques
compared is summarized in Table 3.

For the final comparison, we converted the time series to DFT coefficients, and
clustered the data on the coefficients. We tried different resolutions (100–1,000
coefficients, or 0.67%–6.67% of data), but obtained poor results regardless of the
resolution. The result shown in Fig. 15 uses 1,000 DFT coefficients.

While CDM produces similar results (see Keogh et al. 2004 for the dendrogram),
our approach offers several advantages. With our approach, we cluster on the pattern
histograms. This allows us to see the distribution of patterns from these pattern his-

Table 2 Clustering quality in Q-value for Euclidean distance, DTW, DFT, and the Bag-of-Patterns

Euclidean distance DTW DFT Bag-of-Patterns

Q-values 0.23 0.85 0.31 1
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Clustering using Bag of Patterns
n = 300, w = 6, a = 4, numerosity reduction = ON

single linkage

1

2

3

4

16

20

17

19

18

Fig. 12 Clustering result on 20 ECG datasets, using our bag-of-patterns approach. Each record
is 15,000 points long. The clusters (according to the partitions indicated by the vertical line) are:
cluster1: {6, 7, 8, 9, 10}, cluster2: {16, 17, 18, 19, 20}, cluster3: {11, 12, 13, 14, 15}, cluster4: {1, 2, 3, 4, 5}.
The clustering accuracy is 1

tograms, and gain insights on the underlying structures of the data. Furthermore, the
Bag-of-Patterns representation is fast to compute and has a linear time complexity.

4.1.2 Partitional clustering

Although the visualization power of hierarchical clustering provides a sanity check
for our representation, it has limited utility due to its poor scalability. The most
commonly used data mining clustering algorithm is k-means (Bradley et al. 1998;
Lin et al. 2004; McQueen 1967). The basic intuition behind k-means (and in general,
iterative refinement algorithms) is the continuous reassignment of objects into
different clusters, so that the intra-cluster distance is minimized.

Fig. 13 Clustering result on raw ECG1 data using Euclidean Distance. The clusters (according to the
partitions indicated by the vertical line) are: cluster1: {13}, cluster2: {2, 3, 4, 5, 11, 12, 14, 15}, cluster3:
{6, 7, 9, 16, 17, 18, 29, 20}, cluster4: {1, 8, 10}. The clustering accuracy is 0.56



J Intell Inf Syst (2012) 39:287–315 303

1

8

6

2

7

9

10

3

5

4

17

19

20

18

0

7

9

0

8

Clustering using Dynamic Time Warpinng
Warping window size = 1500

single linkage

Fig. 14 Clustering result on ECG2 using Dynamic Time Warping. The clusters (according to the
partitions indicated by the vertical line) are: cluster1: {13}, cluster2: {16, 17, 18, 19, 20}, cluster3: {11,
12, 14, 15}, cluster4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The clustering accuracy is 0.72

We performed k-means using the Euclidean distance on (1) the raw data, and (2)
the bag-of-patterns representation. CDM is not included in this experiment, as it’s
unclear how to define the centroid of a cluster (Keogh et al. 2004).

Clustering result using Discrete Fourier Transform (DFT) and Euclidean Distance
1000 coefficients (6.67% of energy)
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Fig. 15 Clustering result on ECG1 data using 1000 DFT coefficients (6.7% of the time series). The
clusters (according to the partitions indicated by the vertical line) are: cluster1: {13}, cluster2: {3},
cluster3: {7, 9, 16, 18, 19, 20}, cluster4: {1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17}. The clustering accuracy is
0.47
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Table 3 Clustering quality in Q-value for Euclidean distance, DTW, DFT, and the Bag-of-Patterns

Euclidean distance DTW DFT CDM Bag-of-Patterns

Clustering accuracy 0.56 0.72 0.47 1 1

For this experiment, we extracted 250 records from the PhysioNet archive. Each
record contains 2,048 points. These records are extracted from various databases
containing different vital signs, or patients with different heart conditions. We
separated the records into 5 classes, and labeled them according to the databases
that they are extracted from. We will call this dataset ECG2. Figure 16 shows one
example from each of the 5 classes in ECG2 dataset.

We ran k-means algorithm 30 times, and recorded the clustering labels obtained
from the run with the smallest objective function (i.e. sum of intra-cluster distances).
We then compare our cluster labels with the true labels, and compute the cluster-
ing quality using the evaluation method proposed by Gavrilov et al. (2000). Our
approach achieves the best clustering quality (0.71 vs. 0.46). The parameters we used
are n = 160, w = 4, α = 6. The results are shown in Table 4 (the row labeled “k-

means”).

4.2 Classification

Classification of time series has attracted much interest from the data mining commu-
nity (Geurts 2001; Keogh and Kasetty 2002; Nanopoulos et al. 2001; Ratanamahatana
and Keogh 2004; Radovanovic et al. 2010; Wei and Keogh 2006; Ye and Keogh
2009; Mueen et al. 2011; Xing et al. 2011). For the classification experiments,
we will consider the most common classification algorithm, the nearest neighbor
classification.

4.2.1 ECG2 dataset

To demonstrate the effectiveness on 1-nearest-neighbor classification, we used the
same ECG2 dataset described in the previous section. We used the leave-one-out
cross validation, and counted the number of correctly classified objects, cc. The
accuracy is the ratio of cc and the total number of objects (i.e. 250). The parameters
used are the same as those for the clustering experiments, i.e. n = 160, w = 4,

Fig. 16 One example from
each of the 5 classes in ECG2
dataset

Examples from each of the 5 classes of ECG2 data
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Table 4 Accuracy of our approach on clustering, classification, and discord discovery on ECG2
compared to other methods. Our approach achieves the best accuracy for all tasks. All numbers
are between 0 and 1

Euclidean distance DTW (ww = 200) CDM Bag-of-Patterns

k-means 0.46 N/A N/A 0.71

1-NN 0.44 0.73 0.69 0.996

Discord 0.35 N/A N/A 0.85

α = 6. For this experiment, we also added DTW and CDM. We used the same SAX
parameters for CDM as the Bag-of-Patterns method. We make no claim that this is
the best performance for CDM, as the parameters were chosen to match ours (which
were arbitrary choices) rather than trained. Better selection of parameters might
have resulted in better accuracy for CDM (or our method). The accuracy results are
shown on the second row, labeled 1-NN, in Table 4. The improvement over the other
methods is astounding. For our approach, the accuracy of 0.996 means that there is
only 1 misclassified object, out of 250 objects.

4.2.2 Gun datasets

In this experiment, we repeated the experiments shown on the Gun dataset used
in Keogh et al. (2004). The Gun dataset consists of four time series extracted from
video sequences in which two actors with and without a replica gun perform a series
of actions: draw the gun; aim at the target; and return it to the holster. The four time
series represent the following: (A) Actor 1 with gun; (B) Actor 1 without gun; (C)
Actor 2 with gun; and (D) Actor 2 without gun. We followed the same experimental
settings described by Keogh et al. (2004), and extracted 20 random subsequences of
length 1,000 from each of the sequences, obtaining a total of 80 sequences of length
1,000. This was divided into 2 classification problems. The first is a 4-class problem
that classifies the four acts, and the second is a 2-class problem that differentiates
between the two actors. More details on the Gun dataset can be found in Keogh
et al. (2004).

We ran 1-NN classification using the leave one out approach for validation using
Euclidian Distance, DTW, CDM, and Bag-of-Patterns. The dataset was z-normalized
prior to discretization (for CDM and Bag-of-Patterns) or classification. We used
SAX parameters n = 128, n = 16 and α = 3, with numerosity reduction for both CDM
and Bag-of-Patterns. The results are given below. The 2-class problem is relatively
easy, and all techniques achieved very good results. However, for the 4-class problem,
Bag-of-Patterns is the only one that achieves perfect accuracy (Table 5).

Table 5 Error rates on the Gun dataset for four different techniques

Euclidian distance DTW (ww = 100) CDM Bag-of-Patterns

4 Classes 0.40 0.20 0.05 0.00

2 Classes 0.01 0.00 0.00 0.00



306 J Intell Inf Syst (2012) 39:287–315

4.2.3 UCR datasets and parameter training

Additionally, we conducted more comprehensive classification experiments using the
datasets provided on the UCR Classification/Clustering Homepage (Keogh et al.
2006a). Since each dataset is divided into training set and testing set, we trained
all the parameters from the training sets: n (sliding window size), w (number of
segments), and α (alphabet size). For each dataset, we tried sliding window lengths
that range between 15% and 36% of the time series length. For completeness, we
tested w that range from 2 to n/2, doubling w each time (i.e. w = 2, 4, 8. . . n/2).
The alphabet size, α, ranges from 3 to 10. We noticed that when the alphabet size
is increased to a certain level, too many unique patterns are created, causing the
classification quality to deteriorate. So we limited the size of pattern dictionary
at 20,000. This helped speeding up the training by not considering alphabet sizes
greater than the value that created this many patterns for any given n. Note that this
threshold is optional – it is used merely to speed up the training. The parameters that
result in the smallest errors on the training sets were used to classify the testing sets.
The numerosity reduction option is turned off, since we observe that considering
every subsequence results in slightly better accuracy for this experiment.

Once we determined the best parameters from training, we converted the test
sets into the Bag-of-Patterns representation, and used 1-NN to classify the series. To
be consistent with the results shown on the UCR Classification/Clustering website
(Keogh et al. 2006a), we report the error rates instead of accuracy. Our results are
shown as the last column in Table 6, along with the best parameters obtained from the
training phase. For comparison, we also copied the error rates for the raw Euclidean
Distance and DTW (with and without learning the warping window size) from the
website. We also tried to use CDM to classify the data, but did not get very good
results. However, the authors have made it clear that CDM is suitable for long time
series (Keogh et al. 2004). Most time series in this data collection are too short for
CDM to perform well.

For each dataset, the technique that yields the smallest error rate is highlighted. In
case of a tie, all techniques with the best error rate are highlighted. The bottom row
of the table shows the total number of “wins” for each technique: 9 for our approach,
3 for Euclidean distance on the raw data, 6 for DTW with warping window, and 8 for
DTW with no warping window.

Overall, the Bag-of-Patterns and the constraint-less DTW have comparable clas-
sification accuracy. However, there is a significant difference between their time
complexities. The linear complexity of the Bag-of-Patterns representation and its
ability to capture structural information make it a promising representation for time
series.

To get a better understanding on the type of datasets that the Bag-of-Patterns
representation is more suitable for, we examined the OSU Leaf dataset, for which the
Bag-of-Patterns approach achieved much better accuracy than the other methods.
We examined class 1 and class 2, and randomly selected two time series from each
of the two classes. The four time series are plotted in Fig. 17. The time series in
the top plot are from class 2, and the time series in the bottom plot are from class
1. Looking at the data, it seems obvious why the shape-based methods fail: the
data in the same class do not seem to resemble one another, or are out of phase.
On the other hand, the Bag-of-Patterns approach is able to capture their structural
differences. We observe that most time series that the Bag-of-Patterns approach does
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Fig. 17 (Top) Time series #3
and #15 from the OSU
Training set. Both of them
belong to class 2. (Bottom)
Time series #133 and #187
from the OSU Training set.
Both of them belong to class 1
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well on are relatively long. In addition, at least four out of nine datasets for which
the Bag-of-Patterns outperforms (or ties with) others are time series converted from
shape data or video sequences. In other words, rotation or shift distortions might be
present in the data, as Fig. 17 shows. In Section 5, we will investigate this further and
demonstrate the utility of the Bag-of-Patterns representation on rotation-invariant
matching. For now, we will contend ourselves by noting that the Bag-of-Patterns
approach works better than shape-based approaches when data are out of phase,
or when the ordering of the patterns is not critical (e.g. shape data, repetitive video
sequences, and physiological measurements), whereas shape-based approaches work
best when the ordering of the patterns is important (e.g. stock market data).

4.2.4 Distance measures for Bag-of-Patterns

In the next experiment, we investigate different distance measures that we can
use on the bag of patterns representation. So far we have been using Euclidean
distance, and it seems to work well. However, as cosine similarity is more commonly
used for the bag of words representation for text data, we would like to see how
cosine similarity compares to Euclidean distance for our representation. In addition,
for text data, weighted term frequency is often recorded rather than raw term
frequency. A well known term weighting scheme is called tf-idf (term frequency-
inverse document frequency). With tf-idf, a term is weighted highly if it is frequent in
relevant documents, but infrequent in the document collection as a whole. Terms
that appear in virtually all documents would be weighted the lowest (Manning
et al. 2008). Due to its popularity with text data, we would like to see whether this
weighting scheme offers similar advantage for our data. We repeated the previous
classification experiments on UCR data using the Bag-of-Patterns representation
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with the following variations: (1) raw frequency and Euclidean distance (this is
reported in Table 6); (2) raw frequency and cosine similarity; and (3) tf-idf and cosine
similarity (a typical combination for text data). The results are shown in Table 7.
Similar to the previous experiment, we learned the best parameters using the training
set. We copied the column “1-NN Bag of Patterns Euclidean” from the last column
of Table 6 for easy comparison. Again, we record the number of “wins” for each
technique at the bottom of the table. As the results demonstrate, Euclidean distance
outperforms cosine similarity, and raw frequency outperforms weighted frequency.
This is an interesting result, though not completely surprising, as the SAX words
converted from time series might not have the same distribution as the terms in
document data (i.e. Zipf distribution).

4.3 Discord/anomaly detection

A discord is defined as the data object that is the least similar to the rest of the dataset
(Keogh et al. 2006b), i.e. it has the largest nearest neighbor distance. A discord can
be seen as an anomaly in the data. In this section, we conducted discord/anomaly
detection experiments, using our Bag-of-Patterns representation and comparing
it with Euclidean distance on the raw data. The dataset we used is ECG2. We
considered one class of ECG2 data at a time (recall that each class contains 50 ECG
records), and manually inserted an anomaly by randomly choosing one other ECG
record that belongs to a different class. For each class, we repeated this experiment
20 times, which resulted in a total of 100 runs. We then compared the accuracy, or
the percentage of discords found, of our approach with the accuracy of Euclidean
distance on the raw data. The accuracy results are shown in the last row of Table 4
above.

One of the reasons that our approach works so much better than the Euclidean
distance is that the ECG data are not at all aligned, even for datasets in the same
class. Another reason is that sometimes an ECG data might contain local anomalies
within the data; such anomalies can easily throw off the distances computed using the
shape-based approach.

We conclude this experiment by noting that the definition of discord can be easily
extended to top k-discords. Applying k-discords discovery algorithm will allow us to
find both global (i.e. data that do not belong in the cluster) and local (i.e. anomalies
that occur within one time series) anomalies.

In next section, we demonstrate the utilities of the Bag-of-Patterns representation
with a case study. More specifically, we demonstrate that the representation is
rotation invariant, and that such invariance is particularly useful on certain types
of data such as shapes.

5 Case study: rotation-invariant shape matching

With the rapid growth of computer storage technology, massive image or shape
databases are created and stored for many disciplines such as medicine and science.
The problem of efficiently searching and retrieving items that are similar to a given
query from the database has been a focus of research in the past decade. One great
challenge with shape mining and matching is that the approaches used must be
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Fig. 18 A shape is converted
to time series. The y-axis is the
distance from the center of
mass to the outline of the
shape

invariant to different kinds of distortions such as rotation and scale (Keogh et al.
2006c). One way to represent shapes data is to convert them into sequences, or
time series. Figure 18 shows an example of one such technique that converts a shape
into a sequence of values (Keogh et al. 2006c). Recent studies have shown that such
representations produce promising results for various data mining tasks (Keogh et al.
2006c; Wei et al. 2006)

While there are several variants of the conversion method, one advantage that
is common to all of them is that the simple representation of time series makes
it easier to handle many kinds of distortions, such as rotation. One approach to
overcome rotation-related distortion is to create multiple copies of the original shape
at different rotation angles, and exhaustively match the query shape against all the
copies. This can be achieved easily if we convert the shape into a time series of length
m. To generate all possible rotations, we simply shift the time series one point at a
time (Keogh et al. 2006c), as illustrated by the matrix S below. The first time series
S1 = [s1, s2, . . . sm] represents the original shape, and all the subsequent ones are its
rotated versions (note the wrap-around at the end of the time series).

s =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

s1, s2, s3, ..., sm−2, sm−1, sm

s2, s3, s4, ..., sm−1, sm, s1

:

:

sm, s1, s2, s3, ..., sm−2, sm−1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(4)

This new dataset S represents the shape in all possible rotations. The rotation
invariance is thus achieved by exhaustively searching through all the rotated versions
of the shape. Clearly, this approach imposes a high computational cost, as the shape
dataset is now m times larger (there are m copies for each shape). While there are
techniques to speed up the search (Keogh et al. 2006c), we show that we can achieve
rotation invariance without artificially generating different rotations. The intuition
is to use the Bag-of-Patterns representation for the shape time series data. Since
the Bag-of-Patterns representation consists of a combination of local patterns, the
rotation information becomes irrelevant and not needed.

We used the five shape datasets from Table 6 in this experiment: Face (four),
Face (all), Fish, OSU Leaf, and Swedish Leaf. To demonstrate the rotation-invariant
property of our approach, we randomly rotated every object in the testing set. The
classification error rates are reported in Table 8. The other methods that we compare
with are the raw Euclidean distance, and DTW with 10% warping window size. For
clarity, we also copied the results recorded on Table 6 for the un-rotated data. As
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the results show, for the Bag-of-Patterns representation, the rotations did not make
much difference in the classification accuracy. However, the classification quality
drastically worsened for both the raw Euclidean distance and DTW. We repeated the
experiments 4 times for the raw Euclidean distance and our approach, using different
random rotations each time, and the results were very similar to what we obtained
for the first random rotations. The averages from the four sets of random rotations
are shown in parentheses.

Note if we had exhaustively searched all possible rotations, the results for the
raw Euclidean distance and DTW would have been comparable to their respective
results shown in Table 6 (see Keogh et al. 2006a for results on such experiments).
However, our goal was to show that without increasing the sizes of the datasets by
the artificial generation of different rotations, our approach did just as well as the
distortion-free case. With this experiment, we conclude that our approach is indeed
rotation-invariant without needing any manipulation of the data.

6 Conclusion

Most existing work on time series similarity search focuses on finding shaped-based
similarity. While these shape-based approaches work reasonably well for short time
series data, the accuracy typically degrades if the sequences are long. For long
time sequences, it is more appropriate to measure the similarity by looking at their
higher-level structures, rather than point-to-point, local comparisons. The need for
structure-based representation is similar to that for textual data: if we are to compare
two documents, it’s more meaningful to use a higher-level representation instead of
comparing strings using edit distance.

In this work, we proposed a structural similarity measure using a histogram-
based representation. Similar to the bag-of-words representation for textual data,
our approach counts the frequency of occurrences of each pattern in the time series.
We then compare the frequencies (or the histograms) of patterns in the time series
to obtain a similarity measure.

Our experimental results show that our approach is superior to existing leading
approaches in the tasks of clustering, classification, and discord discovery. Further-
more, our approach has several advantages over existing structure-based similarity
measures. Specifically, our approach considers local structures as well as global struc-
ture, by using subsequences to build our final representation. Our representation
allows users to understand the pattern distribution by examining the histograms.
Furthermore, our representation is suitable for streaming data, since the frequency
vectors are built incrementally. We demonstrate that the representation also allows
rotation-invariant matching without having to manipulate the data.

We would like to note that since our approach determines similarity based on
structures of the data, the input sequences should be reasonably long, or long enough
such that the structures (or lack of structures) can be meaningfully captured and
summarized. For short time series, off-the-shelf distance measures such as Dynamic
Time Warping, Euclidean distance or dimensionality reduction techniques work
reasonably well. This coincides with the observations made by Keogh et al. (2004).
Nevertheless, our representation does well on some of the short time series.

For future work, we would like to extend the representation for multivariate
time series data. In addition, instead of extracting fixed-length subsequences to
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form the pattern vocabulary, we would like to explore the potential to extract more
meaningful, variable-length patterns.

7 Integrity of research

All experiments conducted in this paper comply with the current laws of the United
States.

The authors declare that they have no conflict of interest.
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