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Abstract—We present a new statistical model for characterizing
texture images based on wavelet-domain hidden Markov models.
With a small number of parameters, the new model captures both
the subband marginal distributions and the dependencies across
scales and orientations of the wavelet descriptors. Applying to the
steerable pyramid, once it is trained for an input texture image,
the model can be easily steered to characterize that texture at any
other orientation. Furthermore, after a diagonalization operation,
we obtain a rotation-invariant model of the texture image. We also
propose a fast algorithm to approximate the Kullback–Leibler
distance between two wavelet-domain hidden Markov models.
We demonstrate the effectiveness of the new texture models in re-
trieval experiments with large image databases, where significant
improvements are shown.

Index Terms—Hidden Markov models, image retrieval, Kull-
back–Leibler distance, rotation invariance, steerable pyramids,
texture characterization, wavelets.

I. INTRODUCTION

W
ITH the explosive growth of multimedia databases and

digital libraries, there is high demand for effective and

efficient tools that allow users to search and browse through

such collections. The focus of this paper is on the use of texture

information for image retrieval applications. Some of the most

popular texture extraction methods for retrieval are based on

filtering or wavelet-like approaches [1]–[7]. Essentially, these

methods measure energy (possibly weighted) at the output of

filter banks as extracted features for texture discrimination. The

basic assumption of these approaches is that the energy distri-

bution in the frequency domain identifies a texture. In an image

retrieval system, once those features are extracted from each

image (in the Feature Extraction step), distances between fea-

ture sets of the query image and of each candidate image in the

database are computed (in the Similarity Measurement step).
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Typically, the similarity measure is chosen using heuristic argu-

ments, for example the Euclidean distance or its weighted ver-

sions between the feature vectors [8].

An alternative approach is to set up the image retrieval in a

statistical framework by jointly considering the two problems of

feature extraction (FE) and similarity measurement (SM) into a

joint modeling and classification scheme, while taking into ac-

count the complexity constraint for such applications [9]. In this

framework, the FE step becomes a maximum likelihood (ML)

estimator for model parameters of image data, and the SM step

amounts to computing the Kullback–Leibler distances between

the models of the query and of each candidate image. The frame-

work is asymptotically optimal in terms of retrieval error prob-

ability, and thus the similarity measurement has a sound theo-

retical justification.

Using the statistical framework, a natural extension of the

wavelet subband energy method for texture retrieval is to model

each texture by the marginal densities of its wavelet subband

coefficients. In [10], [9], we applied this framework to a simple

model where wavelet coefficients in each subband are indepen-

dently modeled by a generalized Gaussian density (GGD). This

method leads to a significant improvement in the retrieval rate

over the traditional wavelet subband energy method using both

the pyramid wavelet transform and wavelet frames, while re-

quiring comparable computational time.

While having low complexity, the marginal distribution

model ignores some important texture-specific information,

notably the dependencies of wavelet descriptors across scales

and orientations. Furthermore, like most other wavelet-based

texture analysis methods, the extracted features are sensitive

to the orientation of the analyzed image. This is a drawback

in the retrieval applications since a same texture can appear at

different orientations in the image database.

In this paper, we address these problems by using a coherent

statistical model that captures both wavelet subband marginal

distributions and inter-subband dependencies, while being ro-

tation invariant. The proposed model uses a wavelet domain

hidden Markov tree [11] and steerable pyramids [12]. Rotation

invariance is achieved via a diagonalization of the covariance

matrices in the model.

A. Related Works

Several authors have developed rotation invariant texture

features. Kashyap and Khotanzad [13] developed a circular

simultaneous autoregressive model for the extraction of rota-

tion invariant texture features. Chen and Kundu [14] modeled
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the features of wavelet subbands as a hidden Markov model

(HMM). These models are trained using texture samples with

different orientations that are treated as being in the same

class. Greenspan et al. [15], Haley and Manjunath [16] used

the magnitude of a discrete Fourier transform in the rotation

dimension of features obtained from a multiresolution filtering.

Yet another rotation invariant method proposed by Wu and

Wei [17] that first converts two-dimensional (2-D) texture

images into a (one-dimensional) 1-D signal via spiral sampling,

and then applies a HMM on the subband features of the 1-D

signal. A comparative study of several rotation invariant texture

analysis methods was performed by Fountain et al. [18].

Most rotation invariant texture analysis methods were de-

signed for the classification problem, where the classes are de-

fined a priori. Therefore, these methods are not suitable for the

retrieval application, where each database image forms a sepa-

rate class and must be individually trained.

B. Main Contributions

First, this work enhances the recent technique on wavelet-do-

main hidden Markov models (WD-HMM) [11] for better

dealing with images by incorporating the dependency of

wavelet coefficients across orientations. Second, by replacing

the standard wavelet transform with an overcomplete repre-

sentation via steerable pyramids [19], we obtain a steerable

statistical model that can facilitate rotation invariant appli-

cations. Third, for the WD-HMMs to be used effectively in

the image retrieval application, we derive a fast algorithm to

compute the distance between two WD-HMMs. Finally, our

experiments with WD-HMMs in the image retrieval application

provide a large scale evaluation of their capacity in discrimi-

nating among many different texture classes.

The outline of this paper is as follows. In the next section, we

briefly review the statistical framework for image and texture

retrieval. Section III discusses the original WD-HMM [11] for

one-dimensional signals and presents our extension for 2-D im-

ages that takes into account the cross-orientation dependency of

wavelet coefficients. By replacing the standard wavelet decom-

position with the steerable pyramid [19], Section IV describes

a WD-HMM that can be steered to characterize a given texture

at any orientation and thus lead to a rotation-invariant model.

Section V describes a fast algorithm to approximate the Kull-

back–Leibler distance between two WD-HMMs, which is cru-

cial for the retrieval application. Experimental results on several

texture databases are given in Section VI.

II. IMAGE RETRIEVAL IN A STATISTICAL FRAMEWORK

A. General Setting

We start by briefly reviewing the statistical framework for

image retrieval [9]. The problem of searching for the top im-

ages similar to a given query image from a database of total

images ( ) can be formulated as a multiple hy-

potheses problem. The query image is represented by its data

set , which is typically obtained after a

pre-processing stage (like wavelet transform). Each candidate

image in the database is assigned with a

hypothesis . The goal is to select among the possible hy-

potheses the best ones (with a ranking order) that describe

the data from the query image.

Suppose that each hypothesis is modeled by a probability

density function (PDF), denoted by where is a set

of model parameters. With this setting, the extracted features for

the image is the estimated model parameter , which is com-

puted in the FE step. We denote the space of model parameters

as .

Consider that the query data was drew

from a model for the query image. Optimal retrieval

(with minimum error probability) is obtained by searching for

that maximizes . For large , this can be shown as

equivalent to minimizing the Kullback–Leibler distance (KLD)

or the relative entropy [20] between the two PDFs and

(1)

Under the same asymptotic condition ( is large), if the FE

step uses a consistent estimator, which ensures the estimated pa-

rameter converges to the true parameter , then the distance

(1) can be computed using the estimated model parameters

and . For such consistent estimator, we could employ the ML

estimator [21], which means that for the query image, it com-

putes

(2)

In summary, by combining FE and SM into a joint modeling

and classification framework, the following retrieval scheme is

asymptotically optimal:

Feature Extraction: Given the data from each image, ex-

tracting features as estimated model parameters using a consis-

tent estimator such as the ML estimator.

Similarity Measurement: To select the top matches to

a query, the images in the database are ranked based on the

KLDs between the estimated model for the query and estimated

models for each image.

The advantage of this scheme is that the SM step can be com-

puted entirely on the estimated model parameters, which are

typically small in size, so that it can meet the timing constraint

of the image retrieval application. The method is generic as it

allows the use of any feature data and statistical models for in-

dexed images. Such image models can incorporate the knowl-

edge from perceptual studies to closely match human judgment.

Let us emphasis that, the joint consideration of the two steps

FE and SM here is only conceptually, which proves the opti-

mality of our scheme. Computationally, the two steps are per-

formed separately, and thus they fit in the traditional setting of

the image retrieval application.

B. Texture Retrieval Using Generalized Gaussian Density

For wavelet-based texture retrieval, instead of simply de-

scribing each subband by its energy measurements, one could

use an estimated marginal density. Experiments show that a

good PDF approximation for marginal distribution of wavelet
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coefficients in a subband is the generalized Gaussian density

(GGD) [22], [6], which is defined as:

(3)

where is the Gamma function, i.e.,

.

Thus, under the GGD model, each wavelet subband is repre-

sented by two parameters and : is the width of the PDF

peak (variance), and is inversely proportional with the de-

creasing rate of the peak. There exists a closed form expression

for the KLD between two GGDs [9]

(4)

Assume that wavelet subbands are independent, the overall

KLD between two images is simply the sum of KLDs across

subbands. Experiments in [9] show that the GGD and KLD

method lead to significant improvements in retrieval rates over

the energy method. Furthermore, the GGD model can be sim-

plified to closely resemble, and thus provide a justification, for

the weighted Euclidean distance between -norms of wavelet

subbands.

III. WAVELET-DOMAIN HIDDEN MARKOV MODELS

A. Scalar Model

Recently, Crouse et al. [11] proposed a new framework

for statistical signal processing based on wavelet-domain

hidden Markov models (WD-HMMs). It provides an attractive

approach to model both the non-Gaussian statistics and the

persistence across scale property of wavelet coefficients that are

often found in real-world signals. The concept of WD-HMM is

briefly reviewed in this section together with the introduction

of the notation.

In a WD-HMM, to each wavelet coefficient at level ,

(the index is such that corresponds to the

coarsest wavelet scale, while the scaling coefficients are disre-

garded in the WD-HMM) there is an associated discrete hidden

state with the probability mass function

. Conditioning on its state , the

coefficient follows a Gaussian density. Since the wavelet

coefficients are obtained from convolutions with filters that have

zero sum (the wavelet high-pass filters), they can be assumed to

have zero-mean. Furthermore, to reduce the number of parame-

ters in the models, wavelet coefficients at the same subband are

tied together to share the same statistics. If we take , the

marginal distribution wavelets coefficients at the th level

can be written as a mixture of two Gaussian densities

(5)

where , and denotes the zero-mean

Gaussian density with variance , i.e.,

. In this model, and have physical in-

terpretation as the probabilities of the wavelet coefficient

being in the states “small” and “large,” respectively. Small coef-

ficients can be considered as outcomes of a small variance prob-

ability density function, whereas large cofficients can be consid-

ered as outcomes of a large variance density.

There is an inter-scale dependency, most notably between a

wavelet coefficient at a coarse level (parent) to the four coeffi-

cients at the next intermediate level that correspond to the same

location (children) in the image [see Fig. 2(a)]. In order to cap-

ture this persistence across scales, there are state transition prob-

ability matrices for the parent child link between the hidden

states

(6)

Here is the probability that a child coefficient at the

level is in the state given its parent coefficient is in the

state . In other words, across scale, the states of the wavelet

coefficients follow a Markov chain. With this, we can relate the

state probability at level with the state probability at the parent

level by

(7)

If we denote , then (7) can be written as

. Hence,

for all (8)

Therefore, the WD-HMM for a tree of wavelet coefficients

(also called hidden Markov tree model) is completely defined

by a set of model parameters:

(9)

where is the number of wavelet tree levels. The result is a sta-

tistical model that effectively captures both the marginal and the

joint parent-child distributions of wavelet coefficients. More-

over, there exists an efficient Expectation-Maximization (EM)

algorithm for fitting a WD-HMM to observed signal data using

the ML criterion [11].

Originally developed for 1-D signals, the WD-HMM has

been generalized for images in segmentation [23] and denoising

[24] applications. For images, the wavelet transform leads to a

decomposition with three orientations, often called horizontal

(H), vertical (V) and diagonal (D). The authors in [23], [24]

took a simple approach by considering these three orientations

separately, thus requiring three independent WD-HMMs to

characterize an image, one for each orientation. We refer to

those models as scalar WD-HMMs.

Fig. 1 shows a typical example of the histogram of the wavelet

coefficients from an image subband, together with the plot of

the subband marginal density function obtained from the trained

WD-HMM. By construction, the estimated marginal density is

a mixture of two Gaussian densities as given in (5). For compar-

ison we also show the fitted GGD using the ML estimator [9].

As can be seen from the figure, the WD-HMM provides a close
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Fig. 1. Example of wavelet subband coefficient histogram fitted with the marginal distribution curves by WD-HMM and GGD model.

(a) (b)

Fig. 2. Tree structures on the WD-HMMs. In the scalar WD-HMM, there are three scalar models, whereas in the vector WD-HMM, there is one vector model.
(a) Scalar model. (b) Vector model.

match to the GGD in terms of modeling the marginal distribu-

tion from a wavelet subband. However, the WD-HMM is more

expressive than the GGD model by including the dependencies

between parent-child coefficients across scales.

B. Vector Model

The underlying assumption for the scalar WD-HMM ap-

proach is that wavelet coefficients at different orientations

are independent. However, experiments in [25] show the

importance of the cross-correlation of each subband with other

orientations at the same scale in characterizing texture images.

To enhance the capacity of WD-HMM in capturing the

cross-orientation dependency of wavelet coefficient, we pro-

pose to group coefficients at the same location and scale into

a vector and then model these vectors by a single multidi-

mensional WD-HMM [see Fig. 2(b)]. The result is one vector

WD-HMM for the whole input image.

More specifically, denote the wavelet coefficients at the ori-

entation ( for H, V, D, respectively), scale and

location as . The grouping operation will produce vectors

of coefficients

Note that can be seen as the result of the inner products be-

tween the input image with the three local directional wavelet

functions at scale and location [26]

The marginal distribution function of the wavelet coefficient

vectors at the level in the vector WD-HMM with tying

is expressed as

(10)

Here, denotes the zero-mean multivariate Gaussian

density with covariance matrix , i.e.,

(11)

where is the number of orientations (in this case ).

The wavelet coefficient vectors are then organized into

a quad-tree structure that connects each vector to its four

children at the next intermediate level of the same location

[see Fig. 2(b)]. The parent child link relationships of
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these vectors are captured in the same way as in (6) for the

scalar WD-HMM. Thus, an image is modeled by one vector

WD-HMM with a set of parameters:

(12)

Therefore, in a vector WD-HMM, wavelet coefficients at the

same scale and location but different orientations are “tied up” to

have a same hidden state. The justification for this is that around

the edges in an image, wavelet coefficients at all orientations

have a high probability of being significant; whereas in smooth

regions, all wavelet coefficients are small. In addition, in the

vector WD-HMM, the across orientation dependencies are cap-

tured via the nondiagonal entries in the covariance matrices of

the multivariate Gaussian densities (11).

Since any marginal density from a multivariate Gaussian den-

sity is also a Gaussian density, from (10), the marginal density

for each wavelet subband in a vector WD-HMM is also a mix-

ture of two zero-mean Gaussian densities. Thus, one can expect

that the vector WD-HMM also captures the subband dependent

marginal probability distributions of wavelet coefficients as the

scalar WD-HMM.

In [27], Fan and Xia proposed a different way of grouping

wavelet coefficients across orientation for the 2-D WD-HMM,

in that each combination of the three hidden states for three

wavelet coefficients at the same location and scale is represented

by a single state. If the number of the hidden states for each

wavelet coefficient is two, then there will be eight states for

each wavelet coefficient vector, and thus each transition matrix

is . Their method leads to a model with a large number of

parameters, , where is the number of wavelet decom-

position levels. This increases the computational and storage

costs significantly, which might not be suitable for the image

retrieval application.

C. Relations Between Models

In this section we draw the connections between the general-

ized Gaussian density (GGD) model and the scalar and vector

WD-HMMs. As already discussed, all of these models capture

the subband-dependent marginal probability density function.

This is a crucial point since psychological research on human

texture perception suggests that two homogeneous textures are

often difficult to discriminate if they produce similar marginal

distributions of responses from a bank of filters [28].

In [10], by simply modeling those PDFs by GGDs, we ob-

tained good retrieval results, compared to the traditional sub-

band energy approach. The scalar WD-HMM adds on extra tex-

ture-specific information by capturing the inter-scale dependen-

cies (via the state transition matrices). The vector WD-HMM

furthermore adds on the inter-orientation dependencies infor-

mation (via the nondiagonal entries in the covariance matrices)

in characterizing textures.

Table I shows the number of free parameters needed to de-

scribe each image using different models, when the wavelet

transform is decomposed with levels. Note that due to the

row sums property, each has only two free parameters. The

covariance matrices are symmetric, thus they contain six free

parameters each.

TABLE I
NUMBER OF FREE PARAMETERS NEEDED TO SPECIFY DIFFERENT MODELS FOR

AN IMAGE WHEN THE WAVELET TRANSFORM IS TAKEN TO J LEVELS

IV. ROTATION INVARIANCE USING STEERABLE WD-HMM

A. Steerable WD-HMM

Both the scalar and the vector WD-HMMs described above

have drawbacks in that they are sensitive to the orientation of

the input image. This problem has roots in the standard wavelet

transform. If the image is rotated, then in the wavelet domain

the wavelet coefficients change completely. In fact, the wavelet

coefficients of the rotated image are not just be simply rotated,

but are also modified.

One way to remedy this situation is to replace the standard

wavelet decomposition with the steerable pyramid [12], [19].

The steerable pyramid is a linear multiscale, multi-orientation

image decomposition where the basis functions are directional

derivative operators. This transform satisfies the shiftability in

the orientation condition, which means that at a fixed location

and scale the response at an arbitrary orientation is equals to a

linear combination of coefficients corresponding to the oriented

basis functions at that location and scale. More specifically, De-

note and as the vectors of the steerable pyramid coeffi-

cients at fixed scale and location for an input image and its

rotated copy by respectively, then we have

(13)

The columns of are a set of interpolation functions that de-

pend only on the rotation angle and the steerable basis func-

tions. Furthermore, orientation shiftability ensures the orienta-

tion invariance of response power [12], i.e., for

any . This is equivalent [29] to saying that is an orthogonal

matrix, i.e., . As a bonus, the steerable pyramid rep-

resentation is also translation-invariant.

Proposition 1: Suppose that

is the vector WD-HMM

on a steerable pyramid of an image. Then the corre-

sponding model for the rotated version of that image by

is .

The only change is the covariance matrices

(14)

Proof: Using (10) and (13), we can write the marginal dis-

tribution function of the coefficient vectors at the level of

the rotated texture as
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since the Jacobian . Using the fact

that is an orthogonal matrix again, by manipulating (11) we

have

Thus, is also a mixture of two zero-mean multi-

variate Gaussian densities which has the same probability mass

function for the hidden state as in , whereas the

covariance matrices are transformed by (14). Combining this

across scales we obtain the desired result.

As a result, the vector WD-HMM on a steerable pyramid is a

steerable model. In other words, one can train a WD-HMM for

a single orientation of a texture and then steer this model, with

a simple transformation, to describe that texture at any other

orientation.

B. Rotation Invariance Using Steerable WD-HMM

Using the steerable WD-HMM above, we now develop a ro-

tation-invariant model for texture retrieval. Recall that the only

difference between the steerable WD-HMMs and of a

given texture and its rotated version is among the covariance

matrices. These covariance matrices are related by (14), or

and are said to be orthogonally equivalent [29].

Using the Takagi’s factorization [29], we factor each covari-

ance matrix in the steerable WD-HMM into a product

(15)

where is the orthogonal matrix whose columns are the

normalized eigenvectors of and is the diagonal ma-

trix containing the real, nonnegative eigenvalues of in de-

scending order. This factorization is always possible since all

covariance matrices are symmetric and positive semidefinite.

Let be an eigenvalue of . That means there exists a

vector such that . Using (14), we have

or

If we denote , then . Hence, is also

an eigenvalue of . Thus, the diagonalization operation on the

rotated model leads to

for all

In summary, given a steerable WD-HMM, we can factorize

the covariance matrices into the form of (15), where the

matrices are responsible for the orientation of the input image

while the matrices contain rotation-invariant texture infor-

mation. Thus we have the following result.

Proposition 2: The diagonalized steerable WD-HMM

(16)

is a rotation-invariant model.

Remark 1: In practice one estimates a WD-HMM for an

input image via the EM algorithm using the ML criterion. So

the rotation invariant property of the estimated model relies

on the assumption that the ML solution of the WD-HMM is

unique and the EM training algorithm is able to find it.

V. KULLBACK–LEIBLER DISTANCE BETWEEN WD-HMMS

The statistical framework in Section II suggests that the Kull-

back–Leibler distance (KLD) should be used to compute the

dissimilarity between WD-HMMs. An additional advantage of

using the KLD is that since it is defined directly on the extracted

model’s parameters, therefore with rotation-invariant models it

leads to a rotation-invariant image retrieval system.

However, there is no closed form expression for the KLD be-

tween hidden Markov tree models. A simple solution is to re-

sort to a Monte-Carlo method for computing the integral in the

KLD [30], [31]. More specifically, from the query model we

randomly generate a data set as wavelet coefficient trees (each

tree consists of a coefficient or a vector coefficient at the coarsest

level and all of its descendants), and then compute its likelihood

against each candidate model. With this method, for an accurate

approximation of the KLD, the generated data set has to contain

a large number of trees. This can be prohibitively expensive in

the retrieval application, where the distance has to be computed

for a large number of images in the interactive mode. Further-

more, due to the “random” nature of the Monte-Carlo method,

the approximations of the distance could vary in different com-

putations. In [32], we propose a fast algorithm to approximate

the KLD between two general dependent tree models. Apply

this to the WD-HMMs, due to the tying of parameters, the algo-

rithm is significantly simplified and is described next.

Consider the KLD between two vector WD-HMMs and

that are defined in (12). Essentially, the proposed algorithm

employs the “upward” procedure to compute an upper bound

for the KLD between two WD-HMMs by successively using

the following inequality.

Lemma 1 [32]: The KLD between two mixture densities

and is upper bounded by

(17)

with equality if and only if , for all .

Here denotes the KLD between two probability

mass functions and

(18)

Denote to be the conditional probability density of the

wavelet coefficient subtrees that have root from a node at level

, given the state of that node is . The key property of the

WD-HMM is that given the state of a node in the wavelet co-

efficient tree, the wavelet coefficients attached to that node and

its subtrees are independent. Thus, applying the chain rule of

the KLD, we have
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since there are four subtrees at each node, and these subtrees

share the same statistics.

Let be the th row vector of the transition probability

matrix , then by applying (17) to the above equation, we ob-

tain

(19)

Denote

and

Then, (19) can be written in a more compact form as

(20)

For the KLD between two zero-mean -dimensional Gaus-

sians, we have the following closed form expression [33]

trace (21)

Initially, at the lowest level , we simply have

And finally, at the top level

Thus, we can use (20) recursively upward to compute an

upper bound for . This bound is tighter, hence provides

a more accurate approximation of the true KLD, when the two

models’ parameters are close. This property makes the proposed

bound particularly fits to the retrieval application. Recall that the

task of a retrieval system is to find a small set of images that are

similar to the query image. For candidate images with model pa-

rameters that are significantly different with the query’s model,

the proposed upper bound will “overestimate” the true KLD, but

this does not matter since we will discard these images anyway.

For candidate images with model parameters that are close to

the query’s model, the proposed bound will be closer to the true

KLD, thus leads to accurate selection and ranking of top similar

images.

Fig. 3. Texture images from the VisTex collection that are used in the
experiments; from left to right and top to bottom: Bark0, Bark6, Bark8,
Bark9, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9,
Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5,
Food8, Grass1, Leaves8, Leaves10, Leaves11, Leaves12, Leaves16, Metal0,
Metal2, Misc2, Sand0, Stone1, Stone4, Terrain10, Tile1, Tile4, Tile7, Water5,
Wood1, and Wood2.

The algorithm has low computational complexity that is

linear with the number of wavelet decomposition levels. For

instance, with the rotation invariant WD-HMMs described

in Section IV-B, approximating a KLD requires about

multiplications and additions. In other words, the cost

of approximating the KLD between WD-HMMs using the

proposed algorithm is compatible to computing the Euclidean

distance between feature vectors.

VI. EXPERIMENTAL RESULTS

A. Databases

We use two texture databases in our experiments. In a first

series of experiments, we evaluate the retrieval effectiveness of

both scalar and vector WD-HMMs against the GGD method in

a large database. For this, we used the same 40 VisTex [34]

textures that were tested in [9], and displayed them in Fig. 3.

These are real world images from different natural
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Fig. 4. Texture images from the rotate collection that are used in the experiments. The images are at 0 . From left to right and top to bottom are Bark, Brick,
Bubbles, Grass, Leather, Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

scenes. Only gray-scale levels of the images (computed from

the luminance component) were used in the experiments. Since

we define similar textures as subimages from a single original

one, we selected texture images whose visual properties do not

change too much over the image.

Each of the original images was divided into 16

nonoverlapping subimages, thus creating a test data-

base of 640 texture images. Furthermore, to eliminate the effect

of common range in the gray level of subimages from a same

original image and to make the retrieval task less biased, each

subimage was individually normalized to zero-mean and unit

variance before the processing.

The second image collection is used to test the rotation-in-

variant property of WD-HMMs. It consists of 13

Brodatz texture images that were rotated to various degrees be-

fore being digitized [35]. Fig. 4 displays the original textures at

the 0 or nonrotated position. From these images, we first con-

struct the nonrotated image set by dividing each of the original

0 image into 16 nonoverlapping subimages. Next,

we construct the rotated image set by taking four nonoverlap-

ping subimages each from the original images at 0,

30, 60, and 120 . Both databases contain 208 images that come

from 13 texture classes. The nonrotated set serves as the ideal

case, where all images in a same class have the same orienta-

tion, for the rotated set.

In retrieval experiments, a simulated query image is any one

of images in a database. The relevant images for

each query are defined as the other 15 subimages from the same

original image. Following [5] we evaluated the performance in

terms of the percentage of relevant images among the top 15

retrieved images.

B. Effectiveness of WD-HMMs

For this series of experiments, we used the standard discrete

wavelet transform (DWT) with Haar filters and three decom-

position levels. We chose three levels of decomposition for our

experiments since most of the texture information of our data-

base is concentrated in those three levels.

Fig. 5 details the retrieval performance on the database of 640

textures images from the VisTex collection by using three sta-

tistical models: GGD, scalar WD-HMM and vector WD-HMM,

to characterize wavelet coefficients. For comparison, we also

show the performance of the common approach that uses the

wavelet subband energies, i.e., and norms, from each

subband as extracted features and uses the variance-weighted

Euclidean distance between feature vectors for similarity mea-

surement (for more details of this method, see [5], [9]).

We observe that all of the statistical methods outperform the

traditional energy-based method. The scalar WD-HMM method

gives compatible results to the GGD method, whereas the vector

WD-HMM method significantly improves the retrieval rates in

many texture classes, as well on average (Table II). Focusing

on the WD-HMM methods, we see that the vector model out-

performs the scalar model in almost all texture classes. This is

consistent with the argument in Section III-B that the vector

model is more precise in characterizing textures as it includes

the inter-orientation dependency information.

C. Effectiveness of Rotation Invariance

In the second series of experiments, we test the rotation in-

variant property of the steerable WD-HMM that is described

in Section IV-B. We use a steerable pyramid having two direc-

tions and three levels of decomposition. Fig. 6 shows the com-

parison of the performances in average percentages of retrieving

relevant images for the nonrotated set, the rotated set without

using rotation invariant model, and the rotated set with rotation

invariant model.

First, we compare the retrieval results obtained from the non-

rotated set to the rotated set, without using rotation invariance.

We see that textures which have similar results for both sets
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Fig. 5. Average retrieval rates for individual texture class using standard wavelet transform with Haar filters and three decomposition levels.

Fig. 6. Average retrieval rates for individual texture class using order one steerable filters and three decomposition levels for nonrotated set, rotated set without

rotation invariance and rotated set with rotation invariance.

(Bark, Bubbles, Grass, Weave) are the ones that have no strong

direction, as those textures are not affected by rotation. More-

over they all have very distinct texture patterns. Textures which

are most seriously affected by rotation (Brick, Leather, Pigskin,

Raffia, Straw, Water, Wood, Wool) are the ones that are strongly

directional.

By contrast, the retrieval results obtained for the rotated set

with rotation invariance are almost the same as those from the
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TABLE II
AVERAGE RETRIEVAL RATES OVER THE WHOLE DATABASE FOR

DIFFERENT METHODS IN FIG. 5

nonrotated set. Thus, the rotation invariant model is indeed in-

sensitive to the orientation of the analyzed image. The results

obtained by exploiting the rotation invariance are very conclu-

sive. The average retrieval rate for the rotated set improves by

36.68% when the rotation invariance is effective. The improve-

ment is more striking for the strong directional textures.

VII. CONCLUSION AND DISCUSSION

We have introduced a new statistical model for images, the

vector WD-HMM, as an extension of the WD-HMM from 1-D

to 2-D. The model captures both the subband marginal dis-

tributions and the dependencies of wavelet coefficients across

scales and orientations. By applying the vector WD-HMM to

the steerable pyramid, we obtain a steerable model that can

be diagonalized to become rotation invariant. To facilitate the

use of WD-HMMs in the image retrieval application, we de-

rive a fast algorithm to approximate the Kullback–Leibler dis-

tance between two WD-HMMs. Experimental results indicate

that the new WD-HMM improves the texture retrieval perfor-

mance compared to the independent subband model. The rota-

tion invariant property was also tested, and results obtained were

consistent with the theory.
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