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Rotation-Invariant Texture Classification
Using a Complete Space-Frequency Model

George M. Haley and B. S. Manjunath, Member, IEEE

Abstract—A method of rotation-invariant texture classification
based on a complete space-frequency model is introduced. A
polar, analytic form of a two-dimensional (2-D) Gabor wavelet
is developed, and a multiresolution family of these wavelets
is used to compute information-conserving microfeatures. From
these microfeatures a micromodel, which characterizes spatially
localized amplitude, frequency, and directional behavior of the
texture, is formed. The essential characteristics of a texture
sample, its macrofeatures, are derived from the estimated selected
parameters of the micromodel. Classification of texture samples is
based on the macromodel derived from a rotation invariant subset
of macrofeatures. In experiments, comparatively high correct
classification rates were obtained using large sample sets.

Index Terms—Gabor filters, texture classification, wavelets.

I. INTRODUCTION

T
HE SPECTRUM of texture analysis techniques ranges

from those focusing on structural features to those empha-

sizing statistical modeling. In most statistically oriented tech-

niques within the last 15 years [6], [11], [15], [16], [20], the

image is modeled as a Markov random field (MRF) of pixels.

In these approaches, the relationships between the intensities

of neighboring pixels are statistically characterized. These

methods have proven very effective for texture segmentation

and classification. More recently, feature-based approaches

have been introduced. Features are typically extracted using

Gabor functions [3], [4], [7], [24], [26], [28] or wavelet basis

functions [8], [12], [23]. Feature-based methods are often less

computationally intensive and more effective than MRF-based

approaches.

The general approach to developing rotation-invariant tech-

niques has been to modify successful nonrotation-invariant

techniques. Since general MRF models are inherently de-

pendent on rotation, several methods have been introduced

to obtain rotation invariance. Kashyap and Khotanzad [21]

developed the “circular autoregressive” model with parameters

that are invariant to image rotation. Choe and Kashyap [9]

introduced an autoregressive fractional difference model that

has rotation- (as well as tilt- and slant-) invariant parameters.

Cohen et al. [10] extended a likelihood function to incorporate
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rotation (and scale) parameters. To classify a sample, an

estimate of its rotation (and scale) is required.

For feature-based approaches, rotation-invariance is

achieved by using anisotropic features. Porat and Zeevi [27]

use first- and second-order statistics based upon three spatially

localized features, two of which (dominant spatial frequency

and orientation of dominant spatial frequency) are derived

from a Gabor-filtered image. Leung and Peterson [22] present

two approaches, one that transforms a Gabor-filtered image

into rotation-invariant features and the other of which rotates

the image before filtering; however, neither utilizes the spatial

resolving capabilities of the Gabor filter. You and Cohen [29]

use filters that are tuned over a training set to provide high

discrimination among its constituent textures. Greenspan et

al. [17] and Haley and Manjunath [19] use rotation-invariant

structural features obtained via multiresolution Gabor filtering.

In both of those approaches, rotation invariance is achieved

by using the magnitude of a discrete Fourier transform (DFT)

in the rotation dimension. Haley and Manjunath also use

statistical features that are rotation invariant.

The approach defined herein is novel in the following

respects:

• the basis for classification is a complete feature space

model;

• Rotation invariance is achieved by transforming Gabor

features into rotation invariant features (using autocor-

relation and DFT magnitudes) and by utilizing rotation

invariant statistics of rotation dependent features;

• A polar form of a two-dimensional (2-D) Gabor function

that is truly analytic (frequency causal) is introduced.

The motivation for the complete feature space model is to

exploit the benefits of both model-based and feature-based

approaches. The underlying assumption is that conserving

information (spatial, spectral and directional characteristics)

will result in maximizing classification performance. For clas-

sification purposes, “information” is defined as data useful

in discriminating between different texture types. Unless the

set of texture types is known and fixed, all feature data is

potentially important for discrimination. To ensure that the

method is as robust as possible, minimal data is discarded.

To conserve information in feature space, an invertible

transform is required. While there are several viable options,

including orthogonal wavelet transforms, Gabor wavelets were

chosen for their desirable properties, as follows.

• Gabor functions achieve the theoretical minimum space-

frequency bandwidth product [13], [14], [18], i.e., spatial

resolution is maximized for a given bandwidth.
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• Gabor functions are used as (nonorthogonal) basis func-

tions for exact signal representation.

• A narrowband Gabor function closely approximates an

analytic function. Signals convolved with an analytic

function are also analytic, allowing separate analysis of

the magnitude (envelope) and phase characteristics in the

spatial domain.

• The magnitude response of a Gabor function in the

frequency domain is well-behaved, having no sidelobes.

• Gabor functions appear to share many properties with the

human visual system [25].

While Gabor functions are a good choice, the standard forms

can be further improved. Under certain conditions, very low

frequency effects (e.g., due to illumination and shading vari-

ations) can cause a significant response in a Gabor filter,

leading to misclassification. An analytic form is introduced

to minimize these undesirable effects. In the flower petal

configuration of the 2-D Gabor function, the polar form allows

for superior frequency domain coverage, improves rotation-

invariance and simplifies analysis, compared to the standard

2-D form.

The method for establishing a model is as follows.

1) Transform image samples into Gabor space.

2) Transform the Gabor space samples into a microfeature

space that completely segregates the rotation dependent

information from the rotation independent.

3) Estimate parameters of the microfeature-based micro-

model, which characterizes spatially localized amplitude,

frequency and directional behavior of the texture in

microfeature space. A sample’s micromodel parameters,

its macrofeatures, provide a more global description of

the sample.

4) Estimate parameters of the macrofeature-based macro-

model.

Classification of texture samples is based on the rotation-

invariant components of the macromodel. Section II provides

a review of Gabor space analysis and presents the true ana-

lytic and 2-D polar forms of the Gabor function. Section III

explains the transformation of the Gabor space sample into

microfeatures. In Section IV, the micromodel and macromodel

are developed. Experimental results are presented in Section V

and conclusions, in Section VI.

II. GABOR FUNCTIONS

A. One-Dimensional Gabor Function

A Gabor function is the product of a Gaussian function and

a complex sinusoid. Its general one-dimensional (1-D) form is

(1)

(2)

Thus, Gabor functions are bandpass filters. Gabor functions

are used as complete, albeit nonorthogonal, basis sets. It has

Fig. 1. Response of Gabor function at ! = 0 versus bandwidth.

been shown that a function is represented exactly [18] as

(3)

where , and , and are

all parameters and .

B. An Analytic Gabor Function

exhibits a potentially significant response at

and at very low frequencies. This manifests itself as an

undesirable response to interimage and intraimage variations

in contrast and intensity due to factors unrelated to the texture

itself, potentially causing misclassification. Cases include:

• sample images of a texture with differences in average

intensity;

• images with texture regions having differences in contrast

and/or intensity (Bovik [3] has demonstrated that region

boundaries defined in segmentation using unmodified

Gabor filters vary according to these differences between

the regions);

• images with uneven illumination.

The response to a constant-valued input (i.e., ) relative

to the response to an input of equal magnitude at can

be computed as a function of octave bandwidth [3]:

(4)

where and

and is the half bandwidth. This plot is shown in Fig. 1.

It is interesting to note that the response at depends

upon the but not .

There are two approaches to avoiding these problems:

preprocessing the image or modifying the Gabor function.

Normalizing each image to have a standard average inten-

sity and contrast corrects for interimage, but not intraimage,

variations. Alternative methods of image preprocessing are

required to compensate for intraimage variations, such as point

logarithmic processing [3] or local normalization.

An equally effective and more straightforward approach is

to modify the Gabor function to be analytic1 by forcing the real

1 Since GS(!) 6= 0 for ! � 0, a Gabor function only approximates an
analytic function.
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and imaginary parts to become a Hilbert transform pair. This

is accomplished by replacing the real part of

with the inverse Hilbert transform of the imaginary part

:

(5)

The Fourier transforms of the real and imaginary parts of

are, respectively, conjugate symmetric and conjugate

antisymmetric, resulting in cancellation for :

.
(6)

Because it is analytic, possesses several advantages

over for for many applications including texture anal-

ysis:

• improved low frequency response since

for small and ;

• simplified frequency domain analysis since

for ;

• reduced frequency domain computations since

for ;

These advantages are achieved without requiring additional

processing. Thus, it is an attractive alternative for most texture

analysis applications.

C. Two-Dimensional Gabor Function: Cartesian Form

The Gabor function is extended into two dimensions as

follows. In the spatial frequency domain, the Cartesian form is

a 2-D Gaussian formed as the product of two 1-D Gaussians

from (2):

(7)

where is the orientation angle of ,

and . In the spatial domain, is

separable into two orthogonal 1-D Gabor functions from (1)

that are, respectively, aligned to the and axes:

(8)

As in (3), an image is represented exactly [1], [2]2 as

(9)

where

, and are constants; and

. Approximations to are

obtained by using [25]

(10)

provided that the parameters are chosen appropriately.

2 The proofs in the references are based on the standard, not analytic, form
of the Gabor function.

D. Two-Dimensional Gabor Function: Polar Form

An alternative approach to extending the Gabor function

into two dimensions is to form, in the frequency domain, the

product of a 1-D analytic Gabor function (the subscript is

omitted to indicate that the concepts are generally applicable

to the standard form as well) of radial frequency and a

Gaussian function of orientation :

(11)

(12)

where and . Thus, (11) is

a 2-D Gaussian in the polar, rather than Cartesian, spatial

frequency domain. The frequency domain regions of both

polar and Cartesian forms of Gabor functions are compared

in Fig. 2.

In the Cartesian spatial frequency domain, the 3 dB

contour of the Cartesian form is an ellipse, while the polar form

has a narrower response at low and a wider response at high

. When arranged as “flower petals” (equally distributed along

a circle centered at the origin), the polar form allows for more

uniform coverage of the frequency domain, with less overlap

at low frequencies and smaller gaps at high frequencies. The

polar form is more suited for rotation invariant analysis since

the response always varies as a Gaussian with rotation. The

Cartesian form varies with rotation in a more complex manner,

introducing an obstacle to rotation invariance and complicating

analysis.

E. Multiresolution Representation with Gabor Wavelets

The Gabor function is used as the basis for generating a

wavelet family for multiresolution analysis. Wavelets have

two salient properties: the octave bandwidth and the octave

spacing are both constant, where is

the center frequency. The filter spacing is achieved by defining

(13)

where is the highest frequency in the wavelet family.

Constant bandwidth requires that be inversely proportional

to :

(14)

where

is a constant. The orientations of the wavelets are defined as

(15)

where is the starting angle, the second term is the angular

increment, and and are both integers such that .
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Fig. 2. The �3 dB contours of Cartesian and polar Gabor functions of varying bandwidths. The angular �3 dB width of the polar Gabor functions is 45�.

Fig. 3. A family of 2-D polar form Gabor wavelets in the polar spatial
frequency domain, with S = 3; R = 8; !0 = 3�=2, and �0 = 22:5�.
Regions of � �3 dB response is indicated by shading. The scale (s) and
orientation (r) indexes are indicated inside each filter’s response region.

Using (13)–(15) in (11), the 2-D Gabor wavelet family is

defined as

(16)

(17)

where and , the sampling intervals, are inversely pro-

portional to the bandwidths corresponding to . Fig. 3 depicts

an example wavelet family of this form.

As in (9), an image is represented using the polar wavelet

form of the Gabor function from (17):

(18)

Approximations to are obtained as in (10):

(19)

and parameters , and are chosen appropri-

ately. Instead of a rectangular lattice, a polar Gabor wavelet

representation has the shape of a cone.

III. MICROFEATURE REPRESENTATION

A. Transformation into Gabor Space

As described in Section II, a set of 2-D Gabor wavelets

can represent an image. Assuming that the image is spatially

limited to , , where

and represent the number of samples in their respective

dimensions, and is bandlimited to ,3 the number

of Gabor wavelets needed to represent the image is finite.

Substituting from (19) for in (18), a

texture image is approximately represented using the polar

wavelet form of the Gabor function as

(20)

3 For sampled texture images, the upper frequency bound is enforced,
although aliasing may be present since natural textures are generally not
bandlimited. It is both reasonable and convenient to assume that, for textures
of interest, a lower frequency bound !L > 0 exists below which there is no
useful discriminatory information.
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Fig. 4. us; r(nx; ; ny) in response to a sinusoidal input texture oriented at 120�.

where parameters , and are chosen

appropriately. Note that the subscript is added to and

to indicate their dependencies on and . Thus, a texture

image is represented with relatively little information loss by

the coefficients .

Following Bovik et al. [4], is interpreted as a

channel or band of the image tuned to

the carrier frequency (13), oriented at angle

(15) and sampled in the spatial domain

at intervals of and . Since is formed

by convolution with a narrowband, analytic function (19),

is also narrowband and analytic, and is therefore

decomposable into amplitude and phase components that can

be independently analyzed as follows:

(21)

where and

. contains information about

the amplitude and amplitude modulation (AM) characteris-

tics of the texture’s periodic features within the band, and

contains information about the phase, frequency

and frequency modulation (FM) characteristics. For textures

with low AM in band , is approximately

constant over . For textures with low FM in band ,

the slope of with respect to is nearly

constant.

Both and are rotation-dependent

and periodic in such that

(22)

(23)

(24)

Rotating by produces a circular shift in of

for and for .

The characteristics of are clearly illus-

trated by using a sinusoidal input,

. Both AM and FM are nonexis-

tent. The Gabor space representation that follows from

(21) is , where

and is a constant

for a given and . From (16)

For each and , is a plane in the spatial domain

with a slope of .

B. Local Frequency Estimation

While contains essential information about a

texture, it is not directly usable for classification. However, lo-

cal frequency information can be extracted from

as follows:

(25)

and

(26)

where and are gradient estimation functions,

is the orientation of the Gabor function, and

is the direction

of the gradient vector. is a spatially localized

estimate of the frequency along the direction , and

is the direction of maximal phase change rate,

i.e., highest local frequency. For the preceding sinusoidal

input example, for ,

and when is outside that range. The

behavior of for the example is shown in Fig. 4.
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Fig. 5. Transformation from Gabor coefficients into microfeatures.

C. Transformation into Microfeatures

To facilitate discrimination between textures,

is further decomposed into microfeatures that contain lo-

cal amplitude, frequency, phase, direction, and directionality

characteristics. This decomposition is depicted in Fig. 5. In

the following, for simplicity, is assumed to be even. The

microfeatures are defined to be

(27)

(28)

(29)

(30)

(31)

(32)

contains the amplitude envelope information

from . Because of the periodicity of (22),

Fig. 6. as; r(nx; ny) and fAs; p(nx; ny) in response to a sinusoidal input
texture oriented at 120�. fAs; p(nx; ny) does not depend upon the rotation
of the input.

only components are needed in the sum in (27). Eliminat-

ing the redundant components from the circular autocorrelation

allows complete representation by the compo-

nents of . It is rotation-invariant because the

autocorrelation operation eliminates the dependence on , and

thus, on . For a sinusoid input, is a Gaussian

in , and is the autocorrelation of a Gaussian

in , as shown in Fig. 6.

contains the frequency envelope information

from . Similar to , has

periodicity. Since is real is

conjugate symmetric in , and consequently, its

components are sufficient for complete representation. It is

rotation-invariant because the DFT operation maps rotationally

induced shifts into the complex numbers’ phase components,

which are removed when the magnitude operation is per-

formed.

contains the directionality information from

. Since

, only the components with odd are nonzero. For

the same reason as , is rotation-

invariant.

, , and

contain the direction information from . Because

and are conjugate symmetric
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Fig. 7. Textures with similar microfeatures.

in , they are represented completely by their

components. However, the component is

always zero since the DFT’s are on real sequences in

both cases. has the same nonzero indexes

as . , , and

are inherently rotation-variant since the

phases of the DFT contain all of the direction information.

Since all transformations in this decomposition are in-

vertible (assuming boundary conditions are available), it is

possible to exactly reconstruct from their micro-

features. Thus, , , ,

, , and provide

a nearly exact representation of .

IV. THE TEXTURE MODEL

A. The Texture Micromodel

A texture may be modeled as a vector-valued ran-

dom field , where

, and are vectors containing the

microfeature components for all and or indexes. It is

assumed that is stationary and has a multivariate Gaussian

distribution. For simplicity, a non-Markovian model is chosen.

Given these assumptions, the micromodel for texture is

stated as

(33)

where and ,

are the mean and covariance of , respectively, and is the

number of microfeatures.

B. Macrofeatures

While microfeatures can be used to represent a texture

sample, microfeatures are spatially localized and do not char-

acterize global attributes of textures. For instance, consider

the textures in Fig. 7. Most of the spatial samples in the

upper-right and lower-left quadrants of texture A would be

classified as texture B based on microfeatures alone. Fur-

thermore, , and are rotation-dependent, making

them unsuitable for rotation-invariant classification.

For classification, a better texture model is derived from

the micromodel parameters, and . For instance, for

the two textures shown in Fig. 7, the standard deviations of

, and provide excellent discrimination informa-

tion not available in the microfeatures themselves. A texture

’s macrofeatures are defined to be

(34)

where . For texture ,

, and describe amplitude, frequency and

directionality characteristics, respectively, of the “carrier.”

, and describe a texture’s amplitude mod-

ulation, frequency modulation, and directionality modulation

characteristics, respectively. ,

and are all rotation-invariant because the micro-

features upon which they are based are rotation-invariant.

, and capture the directional modula-

tion characteristics. While , and are rotation-

dependent, their variances are not. Means of , and

are directional in nature and are not used as classification

features. For simplicity, off-diagonal covariance terms are not

used, although they may contain useful information.

C. The Texture Macromodel

For purposes of classification, a texture is modeled as a

vector-valued Gaussian random vector with the conditional

probability density function

(35)

where and

are the mean and covariance of , respectively,

is the number of macrofeatures, and is an estimate of

based on a sample of texture . This is the texture macromodel.

The parameters and are estimated from statistics

over samples for each texture :

and

(36)

where is the estimate of based on sample of texture .

V. EXPERIMENTAL RESULTS

Experiments were performed on two groups of textures. The

first group comprises 13 texture images [30] digitized from

the Brodatz album [5] and other sources. Each texture was
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Fig. 8. Textures from the first group. Each texture was digitized at rotations of 0�, 20�, 60�, 90�, 120�, and 150�. Table I summarizes the results for
rotation invariant classification for these textures.

digitized at rotations of 0 , 30 , 60 , 90 , 120 , and 150 as

512 512 pixels, each of which was then subdivided into

16 128 128 subimages. Fig. 8 present the 120 rotations

of these images. The second group comprises 109 texture

images from the Brodatz album digitized at 0 with 512

512 pixels at 300 dpi resolution, each of which was then

subdivided into 16 128 128 subimages. A polar, analytic

Gabor transform was used with parameter values ,

( octave) and

( 3 dB width of 90 ).

Two types of feature analysis were performed for the

group of 13 textures. Feature parametric analysis characterizes
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Fig. 9. Feature parametric analysis for FFFCA (p = 0; p = 1, and s = 2); and for FFFCF (s = 2). The presentation format for FFFCA (p = 0) is
unique since the features are normalized to have a sum of 1.0 for each texture.

feature types by the scale ( ), rotation frequency ( ) and/or

autocorrelation index ( ). Quality analysis focuses on the dis-

crimination capabilities of a single feature across all textures.

Many of the feature values have been normalized for improved

presentation.

Classification performance was demonstrated with both

groups of textures. Half of the subimages (separated in

a checkerboard pattern) were used to estimate the model

parameters (mean and covariance) for each type of texture,

while the other half were used as test samples. Features were

extracted from all of the subimages in an identical manner.

To reduce filter sampling effects at high frequencies due to

rotation, the estimation of model parameters was based on

the features from subimages at all rotations in the first group

of images.

A. Feature Parametric Analysis

Recall that represents the amplitude envelope informa-

tion. Referring to Fig. 9, at , is particularly high for

weave at ( 60%) and brick at ( 50%). Visually

distinct textures such as straw and leather have similar

signatures. For , the most directional textures (water,
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Fig. 10. Feature parametric analysis for FFFCY (s = 2); FFFAM (q = 0); FFFFM (q = 1); FFFYM (s = 1); and FFFDMA (s = 1).

wood, straw, and brick) had the lowest values, especially at

higher values of . For all textures, generally decreased

with increasing , except for raffia at , which had two

maxima ( and ). The behavior of raffia is due

to its bidirectional structure. The Gabor response of raffia has

two peaks separated by 90 , manifested as two maxima in the

autocorrelation ( corresponds to 90 ).

For , which represents the frequency envelope infor-

mation from , most textures had values that decreased

with increasing . Notable exceptions are wool and weave.
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Fig. 11. Feature quality for carrier amplitude and carrier frequency characteristics, FFFCA (p = 0) and FFFCF (q = 0). Amplitude modulation and frequency
modulation characteristics, FFFAM (q = 0) and FFFFM (q = 0). Feature quality for carrier directionality characteristics, FFFCA (p = 1) and FFFCF (q = 3).

The features for wool increased from having relatively low

values at to having the highest values at .

At , wool had the lowest value for but a

relatively high value for . Weave had relatively low

values at but the highest values at . At

, weave exhibited a very distinctive signature, with

the lowest values for all except , which had an

average value.
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Fig. 12. Feature quality for carrier directionality FFFCY (q = 3), and directionality modulation characteristics, FFFFM (q = 2), FFFYM (q = 3), FFFDMA
(q = 2), FFFDMF (q = 1), and FFFDMY (q = 3).

Referring to Fig. 10, for , higher the values cor-

responded to stronger directionality. Strongly unidirectional

textures had values that peaked at and decreased

rapidly with increasing . Textures with low directionality

tended to peak at . Raffia, bubbles and weave had

distinctive signatures, with raffia and bubbles having relatively

high values at both and , and weave increasing

with (at ) instead of decreasing or peaking at .

For , the most amplitude-uniform textures, raffia and

weave, had the lowest values overall. The differences in

intensity levels between bricks is reflected in its relatively high

values, particularly at low frequencies (higher ). The large

variations in the strength of the wood grain patterns resulted

in high values for higher frequencies. Weave and brick had

unique signatures for .

For , the multidirectional textures weave and raffia (for

higher frequencies) and wool and brick (for lower frequencies)

had the highest values for . Weave had a particularly

complex variation over and .

For , the textures with a single predominant orientation

monotonically increased with ; all others had a minimum at

and a maximum at .
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TABLE I
CLASSIFICATION PERFORMANCE FOR FIRST GROUP OF TEXTURES

For , the textures with the most consistent direction,

water and wood, had the lowest values. The value for leather

for was significantly lower than that for grass, one

of the few features distinguishing the two. Textures generally

increased with except for multidirectional textures (wool,

raffia, brick), for which the values at were the lowest

at their principal frequencies. Again, weave had a peculiar

signature over all .

The values for (not shown) were generally similar

to those for . However, there were several notable

exceptions. The signatures for water and wood were quite

different. For instance, for , their values were

similar in , but in the values for wood were

much higher in wood than in water. Wool had a particularly

dramatic depression at , .

For all textures at decreased with increasing

, except for weave which had its minimum at . At

, wood and water had the lowest values for , raffia

and wood for and wool and brick for . At ,

weave had a very low value for .

B. Feature Quality Analysis

Figs. 11 and 12 graphically present examples of the relative

quality of the features used. The shaded area at the top of

each bar represents . For a given feature, the greater the

vertical separation between shaded areas for a set of textures,

the greater the discrimination capabilities provided by that

feature for those textures. The following identifies textures

for which the example features provided notably good dis-

crimination (defined as roughly nonoverlapping regions

between a texture and most similar textures): Most features

FFFCA(p = 0) grass (s = 0; 1); wool (s = 2); weave (s = 2; 3); brick

(s = 3);

FFFCF(q = 0) sand, wood (s = 0); weave (s = 1; 3); raffia (s = 2);

FFFAM(q = 0) sand, leather, water (s = 0); wood (s = 0; 1); weave

(s = 2); brick (s = 2; 3);

FFFFM(q = 0) bubbles, grass, wool, water, wood, straw, brick (s = 0);

weave (s = 1; 2);

FFFCA(p = 1) straw (s = 0); bubbles (s = 0; 1); raffia, wood

(s = 0; 1; 2); brick (s = 3);

FFFCF(q = 3) very similar to FFFFM(q = 0);

FFFCY(q = 3) sand, leather, water (s = 0); wood (s = 0; 1); weave

(s = 2); brick (s = 2; 3);

FFFFM(q = 2) water (s = 0); weave (s = 2);

FFFYM(q = 3) none;

FFFDMA(q = 2) raffia (s = 0; 1; 2); straw (s = 1); wood (s = 2);

FFFDMF(q = 1) water (s = 0; 1; 2);

FFFDMY(q = 3) bubbles (s = 0); raffia (s = 1; 2); wood (s = 2);

provided very good discrimination for particular textures, at

least for some values of and . While, for some features,

discrimination quality generally deteriorated as and/or

increased, exceptions were evident. For wool and pigskin, the

most difficult texture pair to differentiate in the experiments,

( ) and ( ), were

particularly useful discriminators.

C. Classification

A model of each type of texture was established using half

of its samples to estimate mean and covariance, the parameters

required by (35). For the other half of the samples, each was

classified as the texture that maximized . Because of

rank deficiency problems in the covariance matrix due to high

interfeature correlation, off-diagonal terms in the covariance

matrix were set to zero. This is believed to have had a

significant adverse effect on classification performance.

Classification performance for the first group of textures

(at different rotations) is presented in Table I. Out of a

total of 624 sample images, 604 were correctly classified

(96.8%). The misclassification rate per competing texture type

is (100–96.8%)/12 0.27%. Bark was misclassified as brick,

bubbles, pigskin, sand, and straw; sand as bark; pigskin as

bark and wool; grass as leather; leather as grass and straw;

wool as bark and pigskin; water as straw; and wood as straw.

Classification performance for the second group of textures

(the complete Brodatz album) is presented in Table II. Out of

a total of 872 sample images, 701 were classified correctly

(80.4%). The misclassification rate per competing texture type

is (100–80.4%)/108 0.18%. Perhaps some comments are in

order regarding the classification rate. Many of the textures in

the Brodatz album are not homogeneous. Some examples of

such textures with less than 50% classification are shown in

Fig. 13. Although one can use a selected subset of textures,

it will make comparisons between different algorithms more

difficult. Notice (in Fig. 13) that the D58 texture has similar

segments to those of the other three textures shown, and not

surprisingly, 50% of misclassified images from these textures

were classified as D58. Examples of some homogeneous

textures that resulted in 100% classification are also shown

in Fig. 13. Finally, for comparison purposes, when using the

same subset of the Brodatz album used by Chang and Kuo

[8], 100% of the samples were correctly classified.

VI. CONCLUSIONS

The approach described herein has proven to be an effective

method of rotation-invariant texture classification. However,

there is potential for substantial improvement in the classi-

fication stage. Performance was limited by using a model
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TABLE II
CLASSIFICATION PERFORMANCE FOR THE SECOND GROUP OF TEXTURES

(a)

(b)

Fig. 13. (a) Some examples of nonhomogeneous textures. About 50% of the sample patterns from D2, D7, and D73 were classified as D58. (b) Few
examples of homogeneous texture patterns with 100% classification rate.

based on a variance vector rather than a covariance matrix.

This implies that the features are independent, when in fact

there is a high degree of interdependence as manifested in the

covariance matrices. This is comparable to using Euclidean

distance rather than a Bayesian distance, which has been

shown to result in over a tenfold reduction in performance

in a similar application [8]. An alternate approach would be to

orthogonalize the features using a Karhunen–Loeve transform.

This approach would have the ancillary benefit of fitting the

Gaussian assumption better, since many of the histograms

observed were very non-Gaussian. However, a much larger

sample set would be required.
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The concepts described herein may be used in other ap-

plications. The two level modeling approach facilitates an

integrated texture segmentation/classification scheme. Seg-

mentation could be performed using only the micromodel,

followed by classification using the macromodel. Microfea-

tures are potentially useful features for classification of images

other than textures.

Finally, an approach worthy of future consideration is the

development of a rotation invariant Markovian model based on

microfeatures. While the complexities would be considerable,

it may provide significant improvements in classification (as

well as segmentation) performance by combining the strengths

of Markovian model-based and feature-based approaches.
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