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Abstract—This paper presents a novel rotation-invariant image
retrieval scheme based on a transformation of the texture infor-
mation via a steerable pyramid. First, we fit the distribution of
the subband coefficients using a joint alpha-stable sub-Gaussian
model to capture their non-Gaussian behavior. Then, we apply a
normalization process in order to Gaussianize the coefficients. As
a result, the feature extraction step consists of estimating the co-
variances between the normalized pyramid coefficients. The sim-
ilarity between two distinct texture images is measured by mini-
mizing a rotation-invariant version of the Kullback–Leibler Diver-
gence between their corresponding multivariate Gaussian distribu-
tions, where the minimization is performed over a set of rotation
angles.

Index Terms—Fractional lower-order moments (FLOMs), ro-
tation-invariant Kullback–Leibler divergence (KLD), statistical
image retrieval, steerable model, sub-Gaussian distribution.

I. INTRODUCTION

S
INCE the last few decades, information has been gathered

and stored at an impressive rate on large digital databases.

Examples include multimedia databases containing audio, im-

ages, and video. The search of large digital multimedia libraries,

unlike the search of conventional text-based digital databases,

cannot be realized by simply searching text annotations. Be-

cause of the amount of details in multimedia data, it is difficult to

provide automatic annotation without human support. The de-

sign of completely automatic mechanisms that extract meaning

from this data and characterize the information content in a com-

pact and meaningful way is a challenging task.

Content-based image retrieval (CBIR) is a set of techniques

for retrieving relevant images from a database on the basis of

automatically derived features, which accurately specify the in-

formation content of each image. We can distinguish two major

tasks, namely feature extraction (FE) and similarity measure-

ment (SM). In the FE step, a set of features constituting the

so-called image signature is generated after a preprocessing step

(image transformation) to accurately represent the content of a

given image. This set has to be much smaller in size than the

original image, while capturing as much of the image informa-

tion as possible. During the SM step, a distance function is em-
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ployed which measures how close each image in the database is

to a query image, by comparing their signatures.

Typical low-level image features, such as color [1], shape [2],

and texture [3], are commonly used in CBIR applications. In this

work, we focus on the use of texture information for image re-

trieval. Loosely speaking, the class of images that we commonly

call texture images includes images that are spatially homoge-

neous and consist of repeated elements, often subject to some

randomization in their location, size, color, and orientation. Pre-

viously developed texture extraction methods include multiori-

entation filter banks and spatial Gabor filters [4]. The basic as-

sumption for these approaches is that the energy distribution in

the frequency domain identifies a texture. These retrieval sys-

tems use simple norm-based distances (e.g., Euclidean distance)

on the extracted image signatures, as a similarity measure.

In this work, we consider the tasks of FE and SM in a

joint statistical framework. Thus, in our approach, the FE

step becomes a maximum likelihood (ML) estimator of the

model parameters fitting the given image data, while the SM

step employs a statistical measure of similarity, such as the

Kullback–Leibler divergence (KLD) [5], between probability

density functions having different model parameters. In this

setting, optimal retrieval is asymptotically achieved. Using this

statistical approach, a simple extension of the energy-based

methods for texture retrieval is to model each texture by the

marginal densities of the transform coefficients. This is moti-

vated by the results of recent physiological research on human

texture perception, which suggest that two homogeneous tex-

tures are often difficult to discriminate if they produce similar

marginal distributions of responses from a filter bank [6].

The development of retrieval models in a transform-domain is

based on the observation that often a linear, invertible transform

restructures the image, resulting in a set of transform coefficients

whose structure is simpler to model. Real-world images are char-

acterizedbyasetof“features,” suchas textures,edges, ridges, and

lines. For such images, the two-dimensional (2-D) wavelet trans-

form has been shown to be a powerful modeling tool, providing

a natural arrangement of the wavelet coefficients into multiscale

and oriented subbands representing the horizontal, vertical, and

diagonal edges [7]. Texture information is modeled using the first

or second order statistics of the coefficients obtained via a Gabor

wavelet transform [8], or an overcomplete wavelet decomposi-

tion constituting a tight frame [9].

On the other hand, considering a statistical framework, tex-

ture is modeled by joint probability densities of wavelet sub-

band coefficients. Until recently, wavelet coefficients have been

modeled either as independent Gaussian variables or as jointly

Gaussian vectors [10]. However, it has been pointed out that

the wavelet transforms of real-world images tend to be sparse,
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resulting in a large number of small coefficients and a small

number of large coefficients [11]. This property is in conflict

with the Gaussian assumption, giving rise to peaky and heavy-

tailed non-Gaussian marginal distributions of the wavelet sub-

band coefficients [11], [12].

Experimental results have proven that the generalized

Gaussian density (GGD) is a suitable member of the class

of non-Gaussian distributions for modeling the marginal be-

havior of the wavelet coefficients [11], [13]. Computationally

tractable image retrieval mechanisms based on a combination

of overcomplete wavelet-based texture and color features are

described in [14], where the similarity measure between the

GGD models is based on the Bhattacharrya distance. Recently,

the GGD models have been also introduced in a statistical

framework for texture retrieval in CBIR applications, by jointly

considering the two problems of FE and SM [15].

In recent work, we showed that successful image processing

algorithms can achieve both superior noise reduction and feature

preservation if they take into consideration the actual heavy-

tailed behavior of the signal and noise densities [16], [17]. We

demonstrated that successful modeling of subband decompo-

sitions of many texture images is achieved by means of sym-

metric alpha-stable ( ) distributions [18], [19], which very

often provide a better fit of the non-Gaussian heavy-tailed dis-

tributions than the GGD, thus motivating their use in our CBIR

model. After extracting the model parameters, we ana-

lytically derived the KLD between two distributions. Our

formulation improved the retrieval performance, resulting in a

decreased probability error rate for images with distinct non-

Gaussian statistics [20], compared with the GGD model.

However, the majority of current approaches does not take

into account the important interdependencies between different

subbands of a given image, which can be employed in order to

provide a more accurate representation of the texture image pro-

file. Huang studied the correlation properties of wavelet trans-

form coefficients at different subbands and resolution levels, ap-

plying these properties on an image coding scheme based on

neural networks [21]. Portilla and Simoncelli developed an al-

gorithm for synthesizing texture images by setting different con-

straints on the correlation between the transform coefficients

and their magnitudes [22].

The theory of Markov random fields has enabled a new gen-

eration of statistical texture models, in which the full model is

characterized by statistical interactions within local neighbor-

hoods [23]. Recently, a new framework for statistical signal pro-

cessing based on wavelet-domain hidden Markov models has

been proposed [24], [25]. It provides an attractive modeling of

both the non-Gaussian statistics and the property of persistence

across scales in a wavelet decomposition.

In this paper, we proceed by grouping the wavelet subband

coefficients and considering them as samples of a multivariate

sub-Gaussian random process, which is characterized by the

associated fractional lower-order statistics. Within the frame-

work of sub-Gaussian processes, we use the notion of covari-

ation instead of the second-order covariance, in order to ex-

tract possible interdependencies between wavelet coefficients at

different image orientations and scales. The joint sub-Gaussian

modeling preserves the heavy-tailed behavior of the marginal

distributions, as well as the strong statistical dependence across

orientations and scales.

A desirable property in a CBIR system is rotation invari-

ance. This is a topic that has been previously pursued by var-

ious researchers. Greenspan et al. [26] and Haley and Manju-

nath [27], [28] employed rotation-invariant structural features,

using autocorrelation and DFT magnitudes, obtained via mul-

tiresolution Gabor filtering. Recently, a rotation-invariant image

retrieval system based on steerable pyramids was proposed by

Beferull-Lozano et al. [29]. In this system, the correlation ma-

trices between several basic orientation subbands at each level

of a wavelet pyramid are chosen as the energy-based texture

features. Mao and Jain [30] presented a multiresolution simul-

taneous autoregressive (MR-SAR) model where a multivariate

rotation-invariant SAR (RISAR) model is introduced, which is

based on the circular autoregressive (CAR) model.

A second category of methods achieving rotation invari-

ance includes the implementation of a hidden Markov model

(HMM) on the subband coefficients of the transformed image.

Do and Vetterli [25] derived a steerable rotation-invariant sta-

tistical model by enhancing a recently introduced technique on

wavelet-domain HMM [24]. Liu and Picard [31] exploited the

effectiveness of the 2-D Wold decomposition of homogeneous

random fields, in order to extract features that represent per-

ceptual properties described as “periodicity,” “directionality,”

and “randomness.”

The above-mentioned rotation-invariant CBIR techniques

can be classified in two classes. The first class includes

techniques where the FE step consists of computing rota-

tion-invariant texture features, while the SM step consists of

applying a common similarity function, such as the Euclidean

distance and the KLD. The second class includes techniques

where the FE step consists of estimating the parameters of a

so-called steerable model and then applying a rotation-invariant

version of a common similarity function (e.g., KLD), during

the SM step.

In this paper, we describe a novel technique belonging to the

second class. First, we design a new steerable model, which is

based on the joint sub-Gaussian modeling of the coefficients of

a steerable pyramid incorporating dependence across orienta-

tions and scales. Then, we apply a Gaussianization procedure

on the steerable pyramid coefficients, by jointly considering

them as samples of a multivariate sub-Gaussian distribution,

viewed as a special case of a Gaussian scale mixture (GSM).

After the Gaussianization step, we derive an analytical expres-

sion for a rotation-invariant version of the KLD between multi-

variate Gaussian densities (including the rotation angle between

textures), avoiding the use of a computationally heavy Monte

Carlo method, usually employed to approximate the KLD in the

non-Gaussian case [25].

Our system has several advantages with respect to the

HMM-based methods. First, HMMs require the use of an

expectation-maximization (EM) algorithm, which in some

cases may not converge, for the estimation of the model pa-

rameters (hidden state variables and statistics of a Gaussian

mixture). On the other hand, our proposed method incorporates

dependence across space, orientations and scales, combined

in an efficient way of estimating the multipliers of the multi-
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variate sub-Gaussian model, which are necessary to perform

the Gaussianization. Besides, by exploiting the statistical de-

pendencies between subbands at adjacent scales, we insert the

same first-order Markovian dependence as in HMMs, but in a

simpler way. Also, for the heavy-tailed modeling, we use

distributions, which are often better than GGDs.

The rest of the paper is organized as follows. In Section II,

we briefly review the probabilistic setting for a CBIR problem.

In Section III, we justify the choice of the multivariate sub-

Gaussian model for the joint modeling of the wavelet coef-

ficients. In Section IV, we develop a rotation-invariant CBIR

system by applying a Gaussianization procedure on the coeffi-

cients of a steerable pyramid. In Section V, we apply our scheme

to a set of textures and evaluate the retrieval performance. Fi-

nally, in Section VI, we provide conclusions and directions for

future research.

II. STATISTICAL CBIR

Let denote the feature space and

be a set of independent feature vectors as-

sociated to a query. Also, let be the set of class

indicators associated with the image classes in the database. De-

note the probability density function (PDF) of the query feature

vector space by and the PDF of class by .

The design of a retrieval system in a probabilistic framework,

consists of finding an appropriate map . These maps

constitute the set of similarity functions.

The goal of a probabilistic CBIR system is the minimiza-

tion of the probability of retrieval error, that is, the probability

. Hence, if we provide the system with a set of

feature vectors drawn from class , we want to minimize the

probability that the system will return images from a class

different from . It can be shown [32] that the optimal similarity

function, that is, the one minimizing , is the Bayes

or maximum a posteriori (MAP) classifier

(1)

where is the likelihood for the th class and

its prior probability. Under the assumption that all classes are

a priori equally likely, the MAP classifier reduces to the ML

classifier

(2)

When the number of feature vectors is large, application of

the weak law of large numbers [33] to (2) results in the following

equation:

(3)

where denotes the KLD or relative entropy between

the two densities, and .

The problem of retrieving the top images similar to a

given query image, can be formulated as a multiple hypothesis

problem. The query image is represented by a feature data

set, , obtained after a transformation step,

and each image in the database, ( ), is assigned

with a hypothesis . Therefore, the problem of retrieving the

top images consists of selecting the images in the data-

base that are closer in terms of best hypotheses to the data of

the given query image.

Under the assumption that all hypotheses are a priori equally

likely, the optimum rule resulting in the minimum probability

of retrieval error is to select the hypotheses with the highest

likelihoods among the . Thus, the top matches correspond

to the hypotheses, for which

A computationally efficient implementation of this setting is

to adopt a parametric approach. Then, each conditional PDF

is modeled by a member of a family of PDFs, denoted

by , where is a set of model parameters to be speci-

fied. In this framework, the extracted signature for the image

is the estimated model parameter , computed in the FE step.

Then, implementation of (3) gives the optimal rule for retrieving

the top similar images to the given query image .

1) Compute the KLDs between the query density

and the density associated with image in the

database,

(4)

2) Retrieve the images corresponding to the smallest

values of the KLD.

The KLD in (4) can be computed using consistent estimators

and , for the model parameters. The ML estimator is a

consistent estimator [5] and for the query image it gives

(5)

We can also apply a chain rule [33], in order to combine the

KLDs from multiple data sets. This rule states that the KLD

between two joint PDFs, and , where

are assumed to be independent data sets, is given by

(6)

III. STATISTICAL MODELING OF WAVELET SUBBAND

COEFFICIENTS VIA JOINT SUB-GAUSSIAN DISTRIBUTIONS

In this section, we introduce the family of multivariate sub-

Gaussian distributions justifying this choice in terms of an ac-

curate approximation of the marginal and joint densities of the

transform coefficients.
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A. Family of Multivariate Sub-Gaussian Distributions

We first give the definition for the family of univariate sym-

metric alpha-stable ( ) distributions, before introducing the

family of multivariate sub-Gaussian distributions. The dis-

tribution is best defined by its characteristic function [34]

(7)

where is the characteristic exponent, taking values

, ( ) is the location parameter, and ( ) is

the dispersion of the distribution. The characteristic exponent is

a shape parameter, which controls the “thickness” of the tails of

the density function. The smaller the , the heavier the tails of

the density function. The dispersion parameter determines

the spread of the distribution around its location parameter, sim-

ilar to the variance of the Gaussian. A distribution is called

standard if and . The notation means

that the random variable follows a distribution with pa-

rameters , , .

In general, no closed-form expressions exist for most

density and distribution functions. Two important special cases

of densities with closed-form expressions are the Gaussian

( ) and the Cauchy ( ). Unlike the Gaussian den-

sity which has exponential tails, stable densities have tails fol-

lowing an algebraic rate of decay ( , as

, where is a constant depending on the model parame-

ters), hence, random variables following distributions with

small values are highly impulsive.

An important characteristic of non-Gaussian distribu-

tions is the nonexistence of second-order moments. Instead, all

moments of order less than do exist and are called the frac-

tional lower order moments (FLOMs). In particular, the FLOMs

of a random variable , are given by [18]

(8)

where

(9)

The model parameters can be estimated using the

consistent ML method described by Nolan [35], which gives

reliable estimates and provides the tightest possible confidence

intervals.

Extending the model to heavy-tailed random vectors

leads to the multivariate sub-Gaussian distribution1 [18].

1) Definition 1: Any vector distributed as ,

where is a positive -stable random variable and

is a zero-mean Gaussian random

vector, independent of , with covariance matrix , is called

a sub-Gaussian random vector (in ) with underlying

Gaussian vector .

1In the following, instead of saying sub-Gaussian S�S variable/vector/dis-
tribution, we simply use the term sub-Gaussian variable/vector/distribution.

A multivariate sub-Gaussian distribution, with underlying co-

variance matrix , is often denoted by . In this work,

the transform coefficients at different subbands are tied up in

vectors and are assumed to be samples of an distri-

bution, which can be viewed as a variance mixture of Gaussian

processes [36].

It is important to note that covariances do not exist for the

family of random variables, due to the lack of finite vari-

ance. Instead, we measure correlation between transform coef-

ficients using a quantity called covariation [18], which plays

an analogous role for random variables to the one played

by covariance for Gaussian random variables. Let and be

jointly random variables with , zero location

parameters and dispersions and , respectively. Then, for

all , the covariation of with is given by

(10)

where, for any real number and , we use the notation

The covariation coefficient of with , is defined by

(11)

Note the asymmetric nature of the covariation and the covaria-

tion coefficient, as opposed to the usual second-order moments.

Consider the sub-Gaussian random vector ,

where the underlying Gaussian vector

with covariance matrix . Then, the covariations between the

components of , , are given by [18]

(12)

Note that only if . During the FE step,

it is necessary to estimate the covariations from the transform

coefficients of the images. In the next section, we describe how

this estimation is performed.

B. Estimation of Covariations

By applying (8) on we have

(13)

Let the vectors constitute a set of

independent realizations of an distribution, where

, . Now, observe

that we can find an estimation of by multiplying an

estimated value of and the ML estimation of . The

value of is estimated via the FLOM [37], which is very

simple and computationally efficient, in addition to being
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unbiased and consistent. For two jointly random variables

with , and a set of independent observations

, the FLOM estimator is defined as

follows:

(14)

Thus, the covariation estimator between the components of a

sub-Gaussian vector is given by

(15)

where the dispersion can be estimated using the ML esti-

mator, described in [35].

We define the covariation matrix , the matrix having as el-

ements the covariations. Then, the estimated covariation matrix

, is the matrix with elements . Once these

covariations are estimated from the data, we can estimate the

elements of the underlying covariance matrix, , using

(12)

(16)

which are consistent and asymptotically normal, that is, the dis-

tribution of the above estimators tends to a normal distribution,

as the number of observations tends to infinity.

Notice that the estimation of covariations and, consequently,

the estimation of the covariation matrices, requires the specifica-

tion of the parameter . We compute the optimal as a function

of the characteristic exponent by finding the value of that

minimizes the standard deviation of the estimator for different

values of . For this purpose, we studied the influence of

the parameter on the performance of the covariation estimator

given by (15) via Monte Carlo simulations.

We generated two real ( ) random variables,

, , where and are indepen-

dent, standard random variables and are

real coefficients. The true covariation of with is

. We generated independent

samples of and and calculated the covariation estimator by

means of (15) for different values of in the range (0, 2]. We

ran Monte Carlo simulations for different values of

. We randomly selected, without loss of generality,

the coefficient values to be equal to , ,

, . Fig. 1 displays the standard deviation

of the estimator as a function of the parameter and

for different values of .

Table I shows results on the performance of the estimator.

We include the mean of the estimator, the standard deviation in

parentheses and the value of , for which the smallest standard

deviation is achieved by the estimator. We also note that we

Fig. 1. Curves representing the standard deviation of the covariation estimation
as a function of the parameter p for the ĉ estimator.

TABLE I
PERFORMANCE OF THE COVARIATION ESTIMATOR

obtained similar experimental results for different values of the

coefficients .

In our proposed CBIR system, we need to estimate the

covariations between the components of the sub-Gaussian

vectors, which are special cases of random variables.

We repeated the above Monte Carlo simulations using two

sub-Gaussian random variables, , .

By definition, and can be viewed as random vari-

ables with dispersion and , respectively. We generate a

sample of a sub-Gaussian random variable by first generating a

sample drawn from a distribution

and then by generating a sample drawn from a zero-mean

Gaussian distribution with variance , which is viewed as a

variable (with or depending on

whether the Gaussian part corresponds to the variable or

, respectively).
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Fig. 2. Curves representing the standard deviation of the covariation estimation as a function of the parameter p for � = 1:2, 1.5, and 25 dispersion pairs
(
 ; 
 ), using the ĉ estimator.

TABLE II
OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC EXPONENT�

Fig. 2 displays the curves representing the standard deviation

of the FLOM covariation estimator as a function of , for two

values of and 25 pairs of dispersions , with the dis-

persions ranging in the interval (0, 3.5), which corresponds to

the dispersions estimated from the wavelet subbands of some se-

lected images used in our experiments (obtained from the USC,

SIPI database2, cf. Fig. 7).

For each , we observe that all the curves are minimized in a

common interval on the axis, and actually the optimal values

for are close to each other. We repeated the procedure for

and for a given , we defined the optimal as

the mean of the optimal values of its corresponding 25 curves,

corresponding to the 25 pairs of dispersions. In Section V, we

use the values, shown in Table II, for the optimal as a function

of . This table is used as a lookup table in order to find the

optimal for every by linearly interpolating these

values.

C. Joint Sub-Gaussian Modeling of Wavelet Coefficients

In this section, we justify the selection of the family of

sub-Gaussian distributions as a statistical modeling tool for the

2http://sipi.usc.edu/services/database.

wavelet coefficients of texture images and, as an example, we

show results on modeling data obtained by applying standard

2-D, orthogonal, discrete wavelet transform (DWT) on real

texture images. Similar results are obtained when using other

types of wavelet transforms, such as a steerable wavelet trans-

form, which is more convenient to achieve rotation invariance.

The 2-D orthogonal DWT expands an image using a certain

basis, whose elements are scaled and translated versions of

a single prototype filter. In particular, the DWT decomposes

images in dyadic scales, providing at each resolution level

one low-pass subband approximation and three spatially ori-

ented wavelet subbands. There are interesting properties of

the wavelet transform [7] that justify its use in CBIR sys-

tems. Locality (image content is localized in both space and

frequency), multiresolution (image is decomposed at a nested

set of dyadic scales), and edge detection (wavelet filters op-

erate as local edge detectors). Because of these properties, the

wavelet transforms of real-world images tend to be sparse,

resulting in a large number of small magnitude coefficients

and a small number of large magnitude coefficients. In our

modeling, we employ all the subbands except the low-pass

residual, since it does not present this sparsity behavior, but

an average of the original image. Importantly, this property

is in conflict with the Gaussian assumption, giving rise to

peaky and heavy-tailed non-Gaussian marginal distributions of

the wavelet subband coefficients, which leads us to use joint

sub-Gaussian distributions.

In our proposed retrieval scheme, we proceed by using a sta-

tistical model that captures both wavelet subband marginal dis-

tributions and intersubband correlations. Various experimental

results have shown the importance of the cross correlation of

each subband with other orientations at the same decomposi-

tion level in characterizing the texture information [38].

Our joint modeling is performed by tying up the wavelet

coefficients at the same or adjacent spatial locations, levels,

and subbands to form a sub-Gaussian vector. This modeling

of the subband coefficients preserves the heavy-tailed behavior

of their marginal distributions. Notice that the components of a
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Fig. 3. Modeling of the horizontal subband at the first level of decomposition
of the Flowers.6 image with theS�S and the GGD depicted in solid and dashed
lines, respectively. The estimated parameters for the S�S distribution have the
values � = 1:76, 
 = 0:08 while the GGD has parameters � = 0:11 and
� = 1:02. The dotted line denotes the empirical APD.

sub-Gaussian vector are highly dependent, as illustrated in [18],

and this makes the joint sub-Gaussian model appropriate for

capturing the cross dependencies between different subbands,

since around features, such as edges and lines, the wavelet coef-

ficients at all subbands are dependent in the sense that they have

high probability of being significant.

Next, we assess the effectiveness of a density function

for the approximation of the empirical density of the subband

coefficients, near the mode and on the tails. In our data mod-

eling, the statistical fitting proceeds in two steps: first, we assess

whether the data deviate from the normal distribution and we

determine if they have heavy tails by employing normal proba-

bility plots [39]. Then, we check if the data is in the stable do-

main of attraction by estimating the characteristic exponent

directly from the data and by providing the related confidence

intervals. As a further stability diagnostics, we employ the am-

plitude probability density (APD) curves that

give a good indication of whether the fit matches the data

near the mode and on the tails of the distribution.

Fig. 3 compares the and GGD fits for a selected sub-

band of a certain image. Clearly, the density is superior

to the GGD, following more closely both the mode and the tail

of the empirical APD, than the exponentially decaying GGD.

Table III shows the ML estimates of the characteristic exponent

together with the corresponding 95% confidence intervals, for

a set of ten textures (real-world 512 512 natural scene im-

ages) obtained from the MIT Vision Texture (VisTex) database,

decomposed in three levels using Daubechies’ 4 (’db4’) filters

[40]. It can be observed that the confidence intervals depend on

the decomposition level. In particular, they become wider as the

level increases since the number of samples used for estimating

the parameters gets smaller because of the subsampling

that takes place between scales. This table also demonstrates

that the coefficients of different subbands and decomposition

levels exhibit various degrees of non-Gaussianity, with values

TABLE III
S�S MODELING OF WAVELET SUBBAND COEFFICIENTS OF TEXTURE

IMAGES FROM THE VISTEX DATABASE, USING DAUBECHIES’ 4 FILTER

AND 3 DECOMPOSITION LEVELS. ML PARAMETER ESTIMATES AND95%
CONFIDENCE INTERVALS FOR THE CHARACTERISTIC EXPONENT �

of varying between 0.9 (close to Cauchy) and 2 (close to

Gaussian).

IV. ROTATION-INVARIANT CBIR WITH GAUSSIANIZED

STEERABLE PYRAMIDS

The property of rotation invariance is very desirable in a tex-

ture retrieval system. An important problem with the standard

wavelet transform is that it lacks the translation and rotation in-

variant properties. This results in a mismatch of the retrieval

process when the image orientation varies. In fact, the wavelet

coefficients of the rotated image will be completely different,

in the sense that they will not be simply rotated versions of the

wavelet coefficients of its original version.

A way to overcome this problem is to replace the standard

wavelet transform with a steerable pyramid [41], [42], which is

a linear multiscale, multiorientation image decomposition pro-

duced by a set of orientation filters, generated by a set of basis
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functions (directional derivative operators). Steerable pyramids

are overcomplete and possess the desired properties of rotation

invariance and (approximate) translation invariance.

In this section, we design a rotation-invariant CBIR tech-

nique, which is based on the joint sub-Gaussian modeling of a

steerable pyramid coefficients, incorporating dependence across

space, angles and scales. In particular, we construct a steerable

model, relating the fractional lower-order statistics of a rotated

image with that of its original version, and then apply a Gaus-

sianization process on the steerable model by employing the

local statistical behavior of the coefficients, which are grouped

into appropriate spatial neighborhoods. The similarity measure-

ment between two images is performed by deriving a rotation-

invariant similarity function, which effectively performs angular

alignment between the images.

A. Steerability of the Pyramid Subband Coefficients

In the case of a database containing images along with rotated

versions of them, we are interested in finding features which are

as “steerable” as possible, that is, given the features of an image

oriented at an angle , we should be able to obtain the features

corresponding to the same image rotated at an angle , without

having to re-extract the features from the rotated image.3

Let represent the value of a transform coefficient at

a spatial location ( ), orientation , and level

( ). In a steerable pyramid with basic orienta-

tions (subbands), at each level , given the basic coefficients

, the transform

coefficient for any angle is given by [29]

(17)

where is the set of steering func-

tions.

Let and denote the sampled correlation matrices, with

elements given by the correlations between pairs of subbands

(at a given decomposition level ) of the original image and its

rotated version , respectively. The following proposition [29]

establishes the relation between and .

Proposition 1 ([29]): The matrices and are related as

follows:

(18)

where

...
...

...
...

(19)

Proof: The proof of Proposition 1 follows easily by direct

computation and making use of the properties of the steering

functions .

It can be easily shown that the above proposition holds if

and are the covariance matrices, with elements the covari-

3Through the next sections, we consider counterclockwise rotation.

ances between pairs of subbands at the th decomposition level

of the images and , respectively.

In our work, the basic angles are taken to be equispaced,

which makes an orthogonal matrix for any , i.e.,

, and, thus, in this case, and become

orthogonally equivalent.

Under a joint sub-Gaussian assumption, the coefficients of the

basic orientations (subbands) at a given level are modeled

as joint sub-Gaussian vectors , with denoting the

underlying covariance matrix corresponding to the subbands at

the th level. In particular, the elements of are the covariances

between the components of the Gaussian part, . Let denote

the underlying covariance matrix corresponding to the th level

subbands of the rotated image . Then, it is straightforward to

verify that Proposition 1 holds by replacing and with

and , respectively.

The pyramid coefficients at a given subband are assumed to

follow a sub-Gaussian marginal distribution. So, the coefficients

corresponding to the basic orientation at level can be ex-

pressed as

(20)

where is the Gaussian part of the vector.

From (17), the transform coefficient at level , at any angle is

(21)

Notice that (21) shows that the pyramid subband coefficients

of a rotated image at an angle , are also sub-Gaussian random

variables with the same characteristic exponent as that one of the

corresponding subbands of the original (nonrotated) image, and

with a Gaussian part which is the rotated version of the original

Gaussian part at the same angle . Therefore, it can be seen that

if one is able to estimate accurately the multiplier , it would

be possible to normalize the coefficients dividing them

by , and work with the Gaussianized coefficients .

This is convenient because, as it will become clearer later, it

is easier to use appropriate and simple (analytical) similarity

functions with the Gaussianized coefficients.

In order to accurately estimate the multiplier , we consider

dependence across orientations, scales, and space, which results

in an improved statistical model for natural images. We achieve

this by defining an appropriate neighborhood for each coeffi-

cient, which is then modeled as a sub-Gaussian random vector.

This joint sub-Gaussian modeling is followed by a Gaussianiza-

tion procedure, which results in a steerable pyramid whose coef-

ficients are jointly Gaussian (Gaussianized steerable pyramid).

There are several reasons that justify the Gaussianization

step.

a) The normalized transform domain can be well modeled

statistically, using only second-order covariances between

pairs of subbands.

b) The similarity measurement can be performed using an

analytical expression for the KLD between two multi-
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variate Gaussian distributions, avoiding computationally

complex methods, such as the Monte Carlo method.

c) The normalized pyramid allows to perform easily steer-

ability in the feature space.

B. Variance-Adaptive Local Modeling Using Multivariate

Sub-Gaussian Distributions

The dependencies between the coefficients forming a cer-

tain neighborhood, including in general coefficients located at

a small spatial region and at different orientations and scales,

can be modeled using a homogeneous random field with a spa-

tially changing variance. This requirement can be realized by

modulating the vector of coefficients constituting the neighbor-

hood (node of the field) with a hidden scaling random variable

(multiplier), as follows:

(22)

where is a zero-mean Gaussian random vector and a pos-

itive scalar variable independent of ( denotes equality in

distribution). A vector that can be written like this, is said to

follow a GSM distribution [43]. Notice that when the multiplier

is drawn from a distribution, this is exactly the case of

a multivariate sub-Gaussian model.

Two basic assumptions are made in order to reduce the di-

mensionality of these models. 1) The probability structure is

defined locally; in particular, the probability density of a coeffi-

cient when conditioned on the rest of neighbors, is independent

of the coefficients outside the neighborhood. 2) All such neigh-

borhoods obey the same distribution (spatial homogeneity).

The construction of a global probabilistic model for images,

based on these local descriptions, needs the specification of a

neighborhood structure for each subband coefficient, and the

distribution of the multipliers, which we have already speci-

fied that it is a member of the family of distributions. We

extract the interdependencies between coefficients at different

orientations, levels and spatial positions, by utilizing their joint

sub-Gaussian statistics: Let denote a generic -dimen-

sional neighborhood of the coefficient at the spatial

position ( ), orientation ( ), and

level ( ). This neighborhood is supposed to be

drawn of an random vector.

C. Gaussianization of the Multivariate Sub-Gaussian Model

An important property of a GSM model is that the proba-

bility density of a -dimensional GSM vector is Gaussian

when conditioned on . Combining this property with (22), it is

clear that the normalized vector follows a joint Gaussian

distribution. The probability density of conditioned on is

given by

(23)

From (23), it can be seen that the ML estimator for the multiplier

is

(24)

where the estimator is explicitly written as a function of to

emphasize the assumption of locality. This simplifies the com-

putational procedure for the Gaussianization of the steerable

pyramid subband coefficients, as we assume that the multipliers

associated with different neighborhoods are estimated indepen-

dently, even though the neighborhoods are overlapping.

In our implementation, we estimate, as explained in Sec-

tion III-B, the underlying covariance matrix , corre-

sponding to the basic orientation at the th level, by

employing the neighborhoods of all coefficients (or a subset

of them, which is computationally efficient, at the cost of a

reduced estimation accuracy) at the given orientation ( ,

). This procedure has the advantage of resulting

in a computationally efficient way to estimate the hidden

multiplier and normalize the subband coefficients. Also, our

technique avoids the use of a GMM, as in other approaches

[25], which requires complicated EM algorithms to estimate

the multipliers, nested in a Markovian manner. We must also

note that the multipliers in [25] are discrete, whereas in our

model they vary in a continuous fashion.

Summarizing, the steps of our Gaussianization method are as

follows.

1) Decompose the given image into levels and orienta-

tions per level, via a steerable pyramid.

2) For each decomposition level , .

For each orientation , , at the th level:

a) Estimate the covariance matrix using (16).

b) For each coefficient , :

• Construct the corresponding neighborhood

• Estimate the multiplier using (24).

• Compute the normalized coefficient

.

From (24), it is obvious that the estimation accuracy for the

multiplier depends on the accurate estimation of the underlying

covariance matrix and the neighborhood structure.

D. Computation of Interlevel Covariations

The multiplier estimation, as well as the construction of an

image signature which we describe later on, may require the in-

volvement of coefficients or the computation of covariations be-

tween subbands at different levels. Using the standard pyramid

decomposition, we move from level to the next coarser level

by subsampling the output of a low-pass filter. As a result,

the subbands at the th level are 1/4 in size than those of the

th level (since we are dealing with images), which is undesired

since the covariation estimation includes summations between

vectors of equal length. Subsampling is good for compression

and for saving memory and complexity when performing the de-

composition. However, subsampling introduces some aliasing

[41], which is not good for extracting features. There are two

ways to avoid this.

a) Instead of subsampling the output of the filters, we can

upsample the filters and perform the filtering without sub-

sampling their outputs. In addition to avoiding aliasing, it

allows us also to keep the same number of coefficients

across scales, which favors the computation of covaria-

tion matrices across scales.
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TABLE IV
NEIGHBORHOOD SHAPES USED IN THE MEASUREMENT OF THE GAUSSIANIZATION PERFORMANCE

b) Using Fourier domain filtering, simply by multiplying the

DFT of the image with the DFT of the filter and then taking

the inverse DFT to obtain the subband coefficients. We

follow the frequency-domain approach since, although,

both implementations should give approximately the same

values, the frequency-domain implementation is more

exact as it does not suffer from the finite-length constraint

that is imposed on the filters for the convolution.

Besides, the estimation ofcovariationassumes two jointly sub-

Gaussian random variables, i.e., with equal characteristic expo-

nent values. The values of , estimated from the different orien-

tation subbands using a steerable pyramid without subsampling,

are close to each other but not equal. This problem is overcome by

making use of the asymmetry in the definition of the covariation.

• From (15), we observe that the free parameter affects the

second variable (as an exponent).

• The intuitive idea is to use the estimated characteristic ex-

ponent, , corresponding to the second variable (subband)

in order to estimate the covariation: for instance, in order to

estimate we first estimate from and then as-

sume that follows a distribution with the same , while in

order to estimate , we estimate from and then

assume that also follows a distribution with that . This

procedureexploits thedifferencesbetweenthesubbands, re-

garding their distribution.

We also use this approach for the estimation of the covariations

between subbands at the same decomposition level.

E. Neighborhood Construction

There is a tradeoff between the computational complexity and

the neighborhood size. This can be seen from (24), where the

estimated stable multiplier depends on the inverse of the un-

derlying covariance matrix . The computational complexity

increases as the neighborhood size increases, since the com-

plexity to estimate and to calculate its inverse, , depends

on its dimension ( ). It is clear that it is not computation-

ally feasible to construct all possible neighborhoods for each

subband coefficient in order to select the optimal neighborhood,

because of the large amount of combinations.

In this section, we examine the performance of our Gaussian-

ization procedure with respect to different neighborhoods, also

taking into consideration the computational limitations. For this

purpose, we implement the Gaussianization process using the

neighborhoods shown in Table IV.

For a given subband coefficient , the formation of

some of the above neighborhoods requires the inclusion of co-

efficients at the same spatial location of the subbands but at the

next coarser scale. In order to associate coefficients between ad-

jacent levels, we use the frequency-domain implementation of

the steerable pyramid, without subsampling the output of the fil-

ters, as described in Section IV-D. In this case, it results in sub-

bands with equal size at all decomposition levels. Then, the co-

efficient at the corresponding spatial location of the next coarser

subband is simply .

We tested the performance of our Gaussianization procedure

with respect to the neighborhood structure, by implementing

it on a set of 5, randomly selected textures of size 512 512

from the Brodatz database with the following code numbers: 1.

1.1.01, 2. 1.1.04, 3. 1.1.08, 4. 1.2.08, 5. 1.5.04, along with their

rotations at 30 , 60 , 90 , and 120 . We applied a three-level

pyramid decomposition with four orientations per level, thus

obtaining a total of 300 subbands. After the Gaussianization, at

each subband, we calculated the relative entropy ( ) between

the histogram (with 256 bins) and the Gaussian PDF fitting the
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Fig. 4. Histogram of the neighborhood indices in terms of resulting in the best
Gaussianization performance for a set of 300 subbands.

normalized subband coefficients, as a fraction of the histogram

entropy ( )

(25)

where is the probability density of the center of the

th bin, as estimated from the histogram, and is the cor-

responding value of the fitting Gaussian PDF with parameters

estimated from the normalized coefficients. The best choice for

the neighborhood structure corresponds to the smallest fraction

.

Fig. 4 displays the histogram of the neighborhood indices (cf.

Table IV), for the 300 subbands. The vertical axis is the relative

frequency of each neighborhood shape (horizontal axis), whose

selection resulted in the smallest fraction (25) for the above sub-

bands. For the given set of textures, the choice of the tenth neigh-

borhood shape results in the best Gaussianization performance

for most of the pyramid subbands.

Notice that, for a given coefficient , this neighbor-

hood contains coefficients from the same subband only. Thus,

the vector used in the estimation of the multiplier [cf.

(24)], exploits only intrasubband dependencies. Gaussianiza-

tion of pyramid subband coefficients at a given orientation and

level is performed by forming the corresponding vectors ,

containing their 5 5 neighborhood at the same orientation and

level. Then, by inserting these vectors in (15) and combining

with (16) the underlying covariance matrix, , is estimated for

this set of neighborhoods. Finally, for each coefficient at that

subband, the corresponding multiplier is estimated by sub-

stituting its associated vector and matrix in (24).

F. Feature Extraction

After the normalization procedure, the marginal and joint sta-

tistics of the coefficients at adjacent spatial positions, orienta-

tions and levels are close to the Gaussian distribution. Then, to

extract the features, we simply compute the covariance

matrix at each decomposition level.

Thus, for a given image , decomposed in levels, a possible

signature is given by the set of the covariance matrices

(26)

where is the covariance matrix of the th decomposi-

tion level. Due to the symmetric property of the covari-

ance matrix, the total size of the above signature equals:

. The signature contains

only the across orientation, second-order dependence at a

given decomposition level. Because of the strong dependence

across scales and orientations, we may obtain a better (more

complete) signature by considering in addition the across levels

dependence as expressed by the covariance matrices between

consecutive levels. In this case, the signature of an image is

the following:

(27)

where denotes the (in general, asymmetric) covariance

matrix corresponding to the subbands at levels and . In

particular, the element is equal to the covariance

of the th subband at level with the th subband at the next

lower level . The enhanced signature contains more

texture-specific information than the signature at the cost of

an increased computational complexity, since its size equals

Notice that, although neighborhood 10, which does not in-

clude dependencies across levels, was best for Gaussianization,

regarding the design of a retrieval scheme, the dependence

across orientations and levels is very useful in extracting a more

accurate profile of the texture information.

G. Similarity Measurement

In recent work [29], a Gaussian assumption for the marginal

and joint distributions of the steerable pyramid coefficients re-

sults in a deterministic rotation-invariant similarity measure, be-

tween two images and . If we use the signature , this mea-

sure takes the form of (28), shown at the bottom of the page,

where denotes any of the common matrix norms (however,

a good choice is the Frobenius norm, which gives an indication

of the “matrix amplitude”). If the texture information is repre-

sented by the signature , the similarity function is modified

(28)



TZAGKARAKIS et al.: ROTATION-INVARIANT TEXTURE RETRIEVAL 2713

by omitting the second sum, which corresponds to interlevel de-

pendencies.

In our method, we construct and employ a novel statistical

rotation-invariant similarity function. After the Gaussianization

procedure has been applied, we model the distribution of each

decomposition level in the case of using , as well as the joint

distribution between consecutive levels in the case of using ,

using a multivariate Gaussian density (MvGD). The similarity

between two images is measured by employing the KLD be-

tween MvGDs. Consider the case in which the texture informa-

tion of each image is expressed using the signature , that is,

each decomposition level, as well as each pair of adjacent de-

composition levels, is associated with a covariance matrix.

Given two images and , let , be the set of orientation

subbands at the th decomposition level and , be

the set of orientation subbands at two adjacent levels and

, following zero-mean MvGDs with covariance matrices ,

, and , , respectively. The KLD between two

corresponding levels is given by [5]

(29)

In the same way, the KLD between two corresponding pairs of

adjacent levels is given by

(30)

We define the overall KLD between images , to be equal to

the following sum:

(31)

In our problem, we deal with image databases which may

contain rotated versions of a given image. Notice from (18), it

follows that:

(32)

where is the th level covariance matrix and is the

covariance matrix between levels and , of a rotated version

of image at an angle , .

Consider to be the query image and to be a

counterclockwise rotation, by an angle , of the original image

in the database. In a real application, of course, the value

of is unknown. Thus, the distance between the th levels of

and ( and , respectively) is defined as the minimum

KLD between and , where the minimization is over a

set of possible rotations , and, thus, it is necessary to perform

an angular alignment by finding the optimum . The notation

means a clockwise rotation of image . By noticing that

and substituting (32) into (29), we

obtain that the KLD between the th level of an image and a

clockwise rotation of image by an angle ( and , re-

spectively), is given by

(33)

Similarly, we obtain the KLD between two corresponding pairs

of adjacent levels, , by replacing the covari-

ance matrices , with the covariance matrices ,

, respectively. Finally, the overall KLD between and

is defined as

(34)

which results in the following proposition:

Proposition 2: Let and be the signatures cor-

responding to the normalized coefficients of the steerable pyra-

mids for two given homogeneous textures and , respectively.

The rotation-invariant KLD between the two textures takes the

form of (35), shown at the bottom of the page.

Proof: The proof of Proposition 2 follows by direct com-

putation, after the substitution of (33) in (34).

If we employ the signature instead of , the derivation

of the KLD between two distinct textures and is straight-

forward by implementing the above proposition, omitting the

terms which contain the covariance matrices ,

and replacing with .

Notice that, when and are two rotated versions of the

same image, the angle for which the minimum is achieved

in (35) should be close to the exact relative angle between

and , that is, the angle one needs to rotate clockwise in

order to get . Thus, a way to evaluate the performance of the

above rotation-invariant KLD, is to verify whether the estimated

angle is actually close to the real relative angle between two

physically rotated versions of the same image. Besides, it may

also be useful on its own for many practical applications to find

out approximately this relative angle. Fig. 5 illustrates this by

showing the function given by (35) for the Bark

texture sample obtained from the Brodatz database.

It is also important to note that, in our implementation, the

steering functions have only odd harmonics, which oscillate at

(35)
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Fig. 5. (a) Bark physically rotated at 30 and 120 and (b) D(IkQ)(�) for
J = 4. Notice that the minimum is achieved for � = 90 , which is the exact
relative angle between the two texture samples.

some finite speed. Thus, the number of local minima of (35),

as a function of , can be at most equal to twice the number

of independent harmonics (which happens to be equal to the

number of basic harmonics). In addition, the distance between

any two consecutive local minima is lower bounded making it

possible to search for them in a few nonoverlapping angular

intervals [44], which is useful in order to speed up the search

for the optimal angle .

V. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our overall CBIR

system and compare it with the performance of the method

presented in [25], which can be considered as a representative

for the rotation-invariant texture retrieval schemes based on

wavelet-domain HMMs.

In order to evaluate the retrieval effectiveness of our CBIR

system and perform the comparison with the HMM-based

method, we apply the same experimental setup as in [25].

In particular, the image database consists of 13, 512 512

Brodatz texture images obtained from USC SIPI database (cf.

Fig. 7). Each of them was physically rotated at 30 , 60 , and

120 , before being digitized. Then, the texture image dataset

is formed by taking 4 nonoverlapping 128 128 subimages

each from the original images at 0 , 30 , 60 , and 120 . Thus,

the dataset used in the retrieval experiments contains 208

images that come from 13 texture classes. We implemented a

three-level steerable pyramid decomposition with basic

orientations, , , which means that the steering

functions are [42]

The histogram of the estimated characteristic exponent values

for the 208 textures is shown in Fig. 6. We observe that only 28%

of the textures exhibit Gaussian statistics.

In the following illustration, the query is anyone of the

nonoverlapping 128 128 subimages in the dataset. The

relevant images for each query are defined as the other 15

Fig. 6. Histogram of the estimated values for the characteristic exponent, �,
for the set of 208 texture images of size 128� 128.

Fig. 7. Texture images from the VisTex database, from left to right and top to
bottom: 1) Bark, 2) Brick, 3) Bubbles, 4) Grass, 5) Leather, 6) Pigskin, 7) Raffia,
8) Sand, 9) Straw, 10) Water, 11) Weave, 12) Wood, and 13) Wool.

subimages from the same original 512 512 image. The re-

trieval performance is evaluated in terms of the percentage of

relevant images among the top 15 retrieved images.

We evaluate the performance of the retrieval scheme, which

employs the signatures and as the set of extracted fea-

tures, containing intra- and interscale dependencies and the ro-

tation-invariant KLD as the similarity measure. We compare the

performance of this retrieval scheme with that obtained by min-

imizing the Frobenius norm of the differences between the cor-

responding covariance matrices [29] after the Gaussianization

procedure, as well as with the performance obtained by mini-

mizing the corresponding Frobenius norm between sample cor-

relation matrices (Gaussian assumption) without applying the
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TABLE V
AVERAGE RETRIEVAL RATE (%) IN THE TOP 15 MATCHES

Gaussianization step. Finally, we also perform a comparison be-

tween the retrieval efficiency of our proposed method and that

of the HMM-based retrieval scheme [25].

Table V shows the performance, in average percentages of

retrieving relevant images in the top 15 matches, of our CBIR

system and of the two methods that employ the Frobenius norm

during the SM step and make a Gaussian and non-Gaussian as-

sumption for the marginal and joint statistics of the pyramid sub-

band coefficients, respectively.

Comparing the average retrieval rates corresponding to the

first two methods of the table, we conclude that the fractional

lower-order statistics provide better approximations of the

joint statistics between coefficients at adjacent orientations and

scales, than the second order moments. Of course, both methods

employ the covariance matrices between pairs of subbands,

but in the first scheme (non-Gaussianized and Frobenius) the

sample covariances are estimated using the raw subband coef-

ficients without Gaussianization, while in the second scheme

[ (or ) and Frobenius] the covariances are estimated after

the implementation of the Gaussianization procedure, which

exploits lower-order moments, since the estimation is based

on covariations. The comparison between the retrieval rates of

the second and third methods, verifies the fact that a statistical

similarity function (KLD) is preferable than a deterministic one

(Frobenius norm), for the same set of extracted features.

Notice that, as we have already mentioned, the efficiency and

the computational cost of the Gaussianization process strongly

depend on the choice of the neighborhood shape. In particular, a

neighborhood with a sufficient number of coefficients from dif-

ferent orientations and scales is required to achieve an increased

Gaussianization performance, resulting in an increased compu-

tational complexity. However, the observation of the retrieval

rates in Table V reveals that the rotation-invariant KLD still pre-

serves a high retrieval performance even when the neighborhood

size is small, and, thus, the Gaussianization is not so accurate,

in contrast with the performance of the rotation-invariant Frobe-

nius distance, which decreases in the case of a small neighbor-

hood such as the one corresponding to the neighborhood index

1. Thus, in the case of a CBIR system with limited computa-

tional power, we can use a small neighborhood at the cost of a

reduced Gaussianization performance, while at the same time

maintaining an increased retrieval efficiency by employing the

rotation-invariant KLD instead of the Frobenius distance. Be-

sides, as we note in the following section, the computational

Fig. 8. Average percentages (%) of correct retrieval rate for individual texture
class.

complexity of the two similarity measures is approximately the

same, supporting the choice of the rotation-invariant KLD as

the most appropriate function for the implementation of the SM

step.

As shown in Table V, the use of the tenth neighborhood type

combined with the enhanced signature , results in an im-

proved retrieval performance with respect to the other combina-

tions. This is consistent with the above analysis, since the tenth

neighborhood type results in the best Gaussianization perfor-

mance for most of the 300 constructed subbands and since the

enhanced signature contains more texture-specific information

than the signature. We can also observe that by choosing

the tenth neighborhood type, the average retrieval rate using

the rotation-invariant Frobenius norm (28) is very close to the

rate corresponding to the rotation-invariant KLD. This is due

to the improved Gaussianization performance, compared with

that corresponding to the first neighborhood type, which results

in an increased performance of the Frobenius norm that is best

suited for Gaussian distributions. However, the statistical sim-

ilarity function (KLD) remains superior than the deterministic

Frobenius norm.

Fig. 8 shows the average percentages of correct retrieval rates

for each one of the 13 texture classes, for our CBIR scheme

using the enhanced signature and the HMM-based method.

It is clear that the proposed method results in a superior retrieval

performance for the majority of the texture classes, compared

with the performance of the HMM-based method. Notice that

there are three classes (4, 5, and 9) for which the implementation

of the HMM-based method gives a higher retrieval rate, than the

rate corresponding to our method. The reason for this behavior

is that these three classes are exactly those with the greatest por-

tion of characteristic exponent values near or equal to 2. This

means that the Gaussian assumption, made by the HMM-based

method, is more appropriate in describing the statistical depen-

dencies between the subband coefficients.

A. Computational Complexity

In the following, we compare the computational complexity

of our CBIR method with the one based on HMMs [25], as well

as the method that makes a Gaussian assumption for the distri-

bution of the subband coefficients and uses the Frobenius norm

as the similarity function [29]. For this purpose, let
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denote the dimension of the original image, which is decom-

posed via an -level steerable pyramid with basic orienta-

tions (without subsampling when moving from level to the next

coarser level ) and to be equal to the size of the neighbor-

hood used in the Gaussianization process. In addition, let de-

note the number of matrices contained in the selected signature,

which varies depending on whether we exploit only intralevel

dependencies or both intra- and interlevel dependencies.

In particular, our method consists of three main steps, namely

1) the Gaussianization process, 2) the FE, and 3) the SM, while

the other two methods consist only of the FE and SM steps. Re-

garding our CBIR scheme, the computational cost of the Gaus-

sianization step is approximately equal to

, where the constant in the

notation is in the order of 3 or 4 depending on the size of the

signature. The cost of the FE step, which consists of the di-

rect computation of covariance matrices, is roughly equal to

. Finally, the similarity measurement is performed by

minimizing the rotation-invariant version of the KLD presented

in Proposition 2. As was mentioned in Section IV-G, in the case

of , the number of local minima in (35) is

at most equal to 4. In our implementation, we divided the

interval into 4 nonoverlapping subintervals of equal length. Due

to the high smoothness of the function inside the operator,

with respect to , we applied the Newton’s method for the min-

imization of that function in each interval, using the middle of

the interval as an initial choice. The algorithm converged in, at

most, five steps in each interval, while the cost of each step is in

the order of where the constant factor is less than 4

and its value depends on whether we employ the standard ( )

or the enhanced ( ) signature. Thus, the computational com-

plexity of the SM step is quite low, while the main cost of our

method is due to the Gaussianization step.

Regarding the third method (Gaussian assumption and Frobe-

nius norm), the computational complexity of the FE step is equal

to that of our method, since it also consists of the computation of

covariances. Besides, we applied the Newton’s method for the

minimization of (28) during the SM step, resulting in approxi-

mately the same number of operations as the KLD. However, as

it was mentioned above, the choice of the KLD favours an in-

creased retrieval performance even when the selected neighbor-

hood does not result in a good Gaussianization of the subband

coefficients.

Although the computational complexity of the HMM-based

method is difficult to be estimated due to the iterative algorithms

it employs, we try to give a rough approximation of it in order

to compare with our method. The FE step of the HMM-based

method consists of estimating hidden states using the

EM algorithm and eigenvalues corresponding to the co-

variance matrices of the Gaussian densities used in the model.

Here is the number of wavelet tree levels. The Expectation

step of the EM algorithm is more difficult due to the increased

interplay between the states. Besides, for an HMM, the com-

plexity of each iteration of EM is linear in the number of ob-

servations, that is, the subband coefficients, and this linearity

may involve a large multiplicative constant depending on the

number of hidden states and the number of iterations required

to converge. Thus, it is quite clear that the complexity of the EM

algorithm is at least as much as that of the Gaussianization step

in our method, while the complexity for estimating the covari-

ance matrices and calculating the corresponding eigenvalues is

almost equal to the cost for estimating only the covariance ma-

trices in our method. Finally, since there is no closed form ex-

pression for the KLD between HMMs, the method presented

in [25] employed Monte Carlo simulations for computing the

integral in the KLD, which, for the same dataset of textures,

consists of about 64 iterations. Instead, the smoothness of the

rotation-invariant KLD of our CBIR system guarantees a much

lower computational cost during the SM step, as we mentioned

above.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the design of a rotation-invariant

CBIR system based on a multivariate sub-Gaussian ( )

modeling of the coefficients of a steerable wavelet decomposi-

tion. We exploited the variance adaptation of the coefficients

in small regions at different orientation subbands and levels,

by applying a Gaussianization procedure. Then, the FE step

consists of simply estimating second-order moments between

orientation subbands at the same and at adjacent levels. This

process takes also into account the actual heavy-tailed behavior

of the coefficients, represented by the fractional lower-order

statistics (covariations) between pairs of subbands. We achieve

rotation invariance by constructing an appropriate rotation-in-

variant version of the KLD between zero-mean multivariate

Gaussian densities. The experimental results showed an in-

creased average retrieval performance in comparison with the

performance of previous methods based on second-order statis-

tics estimated directly from the original subband coefficients,

without implementing the Gaussianization. We also conclude

that a statistical similarity function, such as KLD, is preferable

than the deterministic Frobenius norm.

Future research directions, which could further result in

an improved retrieval system with decreased probability of

retrieval error, are the following. First, the main assumption

throughout the present work was the stationary behavior of

texture content. That is, we assumed that the distribution of

the subband coefficients, which is closely related with the

texture-specific information, is invariable within each subband.

Instead, we could consider a nonstationary approach by permit-

ting a locally adapted distribution, that is, by spatially adapting

the characteristic exponent and the dispersion parameters.

This can also be used in segmentation applications, since the

different “objects” contained in a picture can be viewed as local

intensity variations.

Regarding the task of similarity measurement between two

distinct images, we weighted the contribution of interlevel de-

pendencies in the same way as the intralevel ones, resulting in

an overall similarity function that is written as a sum of partial

distances. We could further improve the power of the similarity

measure by considering some kind of chain rule for the KLD

between two images [5].

In Section IV, we evaluated the performance of a Gaussian-

ization procedure applied on the subband coefficients of a steer-

able pyramid. For this purpose, we preserved the same neighbor-

hood type across subbands, for every image in the database. Ob-
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viously, it is computationally unfeasible to check the Gaussian-

ization performance for all possible neighborhood formations.

However, we expect an improved Gaussianization performance

and consequently better retrieval performance, by performing

some reduced complexity adaptation of the optimal neighbor-

hood type across subbands and images.
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