

Rotation measure variation across M84

 Summary. VLA images of the linearly polarized emission from the weak radiogalaxy M84 (3C 272.1) with 3.9 arcsec resolution at 1.4 and 4.9 GHz show an
organized pattern of Faraday rotation measure across the radio source. This
pattern implies that there is a magnetoionic medium $\sim 10 \mathrm{kpc}$ in extent within
M84, in front of, but not mixed with, the radio-emitting plasma. There must be a
large-scale reversal in the magnetic field in this medium across the face of the
radio source. The medium may be responsible for the more diffuse component of
the X-ray emission from M84, and there is evidence that it is interacting with the
outflow in the two radio jets.

1 Introduction

 sources provide information about the distributions of ordered magnetic fields and ionized gas both within and in front of them (e.g. Burn 1966; Laing 1985). Indeed, it is difficult to determine the magnetic field configurations in the interstellar media of elliptical galaxies by any other means. Observations of the (weak) radio galaxies NGC 6251 by Perley, Bridle \& Willis (1984),
 most of the Faraday rotation affecting these sources is produced by foreground material, some of
 observations sample the distribution of Faraday rotation only along narrow radio jets. To obtain

 particularly interesting to study wide-lobed radio structures that are associated with galaxies for which there are also optical and X-ray data on the distributions of ionized material.
This paper reports observations of the distribution of Faraday rotation measure over such a radio source-3C 272.1 , identified with M84 (NGC 4374), a prominent elliptical galaxy in the core *The NRAO is operated by Associated Universities, Inc., under contract with The National Science Foundation.

of the Virgo Cluster. This radio source is about $3 \operatorname{arcmin}(13 \mathrm{kpc})$ in extent, and has a monochromatic power at 1.4 GHz of $P_{1.4}=1.9 \times 10^{23} \mathrm{~W} \mathrm{~Hz}^{-1}$ (assuming M84 to be at the distance $d=15.7 \mathrm{Mpc}$ derived for the Virgo Cluster by Mould, Aaronson \& Huchra 1980). The inner
$\sim 20 \operatorname{arcsec}(1.5 \mathrm{kpc})$ of the galaxy exhibits LINER-like optical emission lines of $\mathrm{H} \alpha$, [$\mathrm{O}_{\text {II }}$, [$\left.\mathrm{N}_{\text {II }}\right]$ $\sim 20 \operatorname{arcsec}(1.5 \mathrm{kpc})$ of the galaxy exhibits LINER-like optical emission lines of $\mathrm{H} \alpha,\left[\mathrm{O}_{\text {II }}\right]$, [$\mathrm{N}_{\text {II }}$]
and [$\left.\mathrm{S}_{\text {II }}\right]$ (Hansen, Nørgaard-Nielsen \& Jørgensen 1985), and is crossed by a dust lane approx-
 Hansen et al. 1985). There is also a soft X-ray source $\sim 90 \mathrm{arcsec}(7 \mathrm{kpc})$ in extent around the nucleus with a $0.5-3 \mathrm{keV}$ luminosity of $3 \times 10^{40} \mathrm{ergs}^{-1}$, converting the value derived by Forman, Jones \& Tucker $(1984,1985)$ to $d=15.7 \mathrm{Mpc}$. The X-ray source has been interpreted as thermal bremsstrahlung emission from an interstellar medium in M84 at a temperature $T \approx 10^{7} \mathrm{~K}$ whose density distribution can be approximated by a King model with a central electron density of $n_{\mathrm{e}} \approx 10^{-1} \mathrm{~cm}^{-3}$ and a core radius $a \approx 2 \mathrm{kpc}$ (Forman \& Jones 1982; Forman et al. 1985). The source is also embedded in the intracluster medium of the Virgo Cluster, which, at the 400 kpc distance of M84 from the cluster centre, has $n_{\mathrm{e}} \sim 2-3 \times 10^{-4} \mathrm{~cm}^{-3}$ and $T \sim 2-3 \times 10^{7} \mathrm{~K}$ (Stewart et al. 1984 and references therein).

2 Observations

We observed the radio source with the VLA in its A, B and C configurations at 1.413 and 4.885 GHz as shown in Table 1. The flux density scales of the observations were normalized to that of Baars et al. (1977) by observing 3C 286, whose flux density on this scale is 14.77 Jy at 1.413 GHz and 7.41 Jy at 4.885 GHz . The flux density normalization is believed to be accurate to ± 2 per cent at both frequencies. The phases were initially calibrated by interpolation from observations of the unresolved calibrators $1236+077$ (A configuration) and $1252+119$ (B and C configurations). The observations of these sources were also used to determine the on-axis instrumental cross-polarization properties. The zero point of the \mathbf{E} vector position angles, χ, was set by observations of 3 C 286 , which was assumed to have $\chi=33^{\circ}$ at both frequencies. The polarization position angle data were corrected for the effects of ionospheric Faraday rotation using measurements of electron content from the World Data Centre. The systematic errors in χ,
estimated from the scatter in the measurements for 3 C 286 , are $<1^{\circ}$ at 4.9 GHz and $<3^{\circ}$ at estimated from the scatter in the measurements for 3 C 286 , are $<1^{\circ}$ at 4.9 GHz and $<3^{\circ}$ at
1.4 GHz .
This paper presents polarimetry of 3 C 272.1 at $3.86 \mathrm{arcsec}(290 \mathrm{pc})$ resolution. The radio images were constructed, self-calibrated and deconvolved using aips image processing packages at NRAO and at Jodrell Bank. The shortest (projected) baselines in the data are 106 m at 1.4 GHz and 32 m at 4.9 GHz , corresponding to fringe separations of 6.8 arcmin at 1.4 GHz and 6.4 arcmin
at 4.9 GHz . As the individual lobes of 3 C 272.1 have diameters $<2 \mathrm{arcmin}$, the only scales to which our images might be insensitive would be those of any 'halo' that might surround both lobes. The integrated flux densities in our final images (estimated by ordinate summation) are

Table 1. VLA observational parameters.
Rotation measure variation across M84
6.35 Jy at 1.4 GHz and 2.79 Jy at 4.9 GHz . The integrated flux densities from single-dish observa-

 uch 'missing' emission would be only $26 \mu \mathrm{Jy}$ per CLEAN beam area at our resolution. Its contribution would therefore be well below the rms noise in our 1.4-GHz images, and below the
 cantly by the effects of any emission from 3C272.1 that has been inadequately sampled. We have also used observations made at 2.695 GHz with the Cambridge $5-\mathrm{km}$ telescope, communicated to us by J. M. Riley. These data, incorporating observations made on 64 baselines, were obtained and calibrated as described by Laing (1981). They were CLEANed and restored with an elliptical Gaussian beam of FWHM 3.86 arcsec in RA and 16.25 arcsec in Dec. Images at
 $2.7-\mathrm{GHz}$ results.

3 Total and polarized emission

3.1 TOTAL INTENSITY

Fig. 1 shows contours of the total intensity (Stokes I) at 4.9 GHz to illustrate the main structural
features of the radio source at 3.86 -arcsec resolution. An unresolved core in the nucleus of the galaxy is linked by two resolved jets to a pair of broad lobes. The jets leave the nucleus in position

Figure 1. Total intensity distribution at 4.9 GHz , from VLA C configuration data at 3.86 -arcsec resolution. Contours beam area.

$\stackrel{\circ}{6}$
Figure 2. Distributions of polarized intensity (upper panels) and \mathbf{E} vector position angles (lower panels) at 3.86 arcsec resolution at 1.4 GHz (left panels) and 4.9 GHz (right panels). (a) Contours are drawn at $0.72,1.44,2.2,3.6$,
 9 mJy per CLEAN beam area. These levels are chosen so that if the polarized intensity had the same spectral index as
the total intensity (i.e. if there was no depolarization) there would be the same number of contours at each location in both plots. The vectors in the lower panels have lengths proportional to the degree of polarization p at each frequency (the length of the vector corresponding to $p=1$ is shown at the upper right of each panel). No vectors are shown where clarity.

[^0]

steep brightness gradients. The steepest gradients occur at the north-west corner of the source, where the north jet deflects eastward and blends with more diffuse emission, and around the

 north jet is much brighter than the south jet for the first $\sim 10 \operatorname{arcsec}$ from the core, i.e. that the brightness symmetry displayed by the jets on the scale of Fig. 1 develops ~ 750 pc from the nucleus.

3.2 POLARIZED EMISSION

Fig. 2(a) and (b) display contours of the linearly polarized intensity $\left(P=\sqrt{Q^{2}+U^{2}}\right)$ at 1.4 and 4.9 GHz . Fig. 2(c) and (d) show vectors whose lengths are proportional to the degree of polarization $p=P / I$ and whose position angles χ are those of the observed \mathbf{E} vectors. Most of our conclusions about the polarization properties of the source are limited by the noise in the $1.4-\mathrm{GHz}$ data shown in Fig. 2(a) and (c). The distributions of degree of polarization p and of depolarization $D_{4.9}^{1.4}=p_{1.4} / p_{4.9}$ referred to here and in Section 6 have been corrected for the bias in the Ricean distribution of P (e.g. Wardle \& Kronberg 1974) using the values listed in Table 1 for the standard
The lobes and the jets are highly linearly polarized at 3.86 -arcsec resolution at both frequen-
cies. The degree of polarization $p_{4.9}$ at 4.9 GHz is between 0.15 and 0.3 over much of the jets, and

562 R. A. Laing and A. H. Bridle
is between 0.3 and 0.45 over much of both lobes. The highest values of $p_{4.9}$ are between 0.45 and
0.55 , and occur on the steep brightness gradients that separate the south 'inner lobe' from the
more diffuse emission around it - see Fig. 2(d). The main regions of low polarization at this
resolution are east of the north jet, south and east of the south jet, and near the centre of the south
lobe; in these regions $p_{4.9} \leqslant 0.05$ at some points. The apparently low degrees of polarization near
the edges of the jets may partly result from beam smearing of the \mathbf{E} vector pattern, as there are
significant changes in the orientations of neighbouring $4.9-\mathrm{GHz} \mathbf{E}$ vectors in these regions at this
resolution. Fig. 2(a) and (b) show that the distributions of the polarized intensity at 1.4 and
4.9 GHz are generally similar, except in a few localized regions which we discuss further in
Section 6 .

4 Rotation

4.1 e vector rotation between 1.4 and 4.9 GHz

The generally high degree of linear polarization at both frequencies allows us to map the rotation $\Delta \chi=\chi_{1.4}-\chi_{4.9}$ of the position angle χ of the observed \mathbf{E} vectors between 1.4 and 4.9 GHz over most of the source. Fig. 3 shows this position angle rotation $\Delta \chi$ in a vector display superimposed on selected intensity contours from Fig. 1. The values of $\Delta \chi$ are, of course, ambiguous to $\pm 180 n^{\circ}$. Fig. 3 displays rotation data without resolving this ambiguity, i.e. without imposing any assump-
tions about the value of n.

Fig. 3 reveals a coherent two-dimensional pattern of the rotation $\Delta \chi$ over the radio source. $\Delta \chi$ differs significantly from zero over much of both lobes and the jet, and adjacent measures of $\Delta \chi$ are strongly correlated. Whatever produces the rotation clearly has structure on a scale
$\geqslant 20 \operatorname{arcsec}(\geqslant 1.5 \mathrm{kpc})$. The high degree of ordering of the rotation suggests that n is constant over most of the source, so we initially take n to be zero. (We justify this assumption in Section 4.3).

4.2 equivalent rotation measure

We assume that the rotation is caused by the Faraday effect (Faraday 1846) in a magnetoionic medium. Figs 4 and 5 therefore present two further visualizations of the rotation pattern, obtained by converting it to an equivalent rotation measure $R M_{4.9}^{1.9}$ using the relation

$R M_{4: 9}^{1: 9}=\frac{\Delta \chi}{\lambda_{1.4}^{2}-\lambda^{2}{ }_{9.9}}$

i.e. by transforming it into the smallest range of $R M_{4.9}^{1.9}$ that is consistent with the $\Delta \chi$ data (see Section 4.3). The equivalent rotation measures range from $-35 \mathrm{radm}^{-2}$ to $+25 \mathrm{radm}^{-2}$. Fig. 4 shows a grey-scale representation of the distribution of $R M_{4: 9}^{1.9}$ superimposed on selected
contours from the total intensity map shown in Fig. 1. Values of the $R M$ are not represented in the grey-scale display in Fig. 4 wherever the polarized signal-to-noise is $<6: 1$ at either frequency. This criterion eliminates regions where the $R M$ values are less certain because of limited sensitivity or because $\chi_{1.4}$ or $\chi_{4.9}$ varies significantly across our 3.86 -arcsec beam.

The most striking feature of Fig. 4 is that the deviations from $R M_{4.9}^{1.4}=0$ oscillate over the source, the steepest gradients in $R M_{4: 9}^{1.9}$ being along position angle $50 \pm 2^{\circ}$. The largest positive rotations deflects eastwards. The largest positive rotations are in a band crossing the centre of the south lobe.

 Figure 5. Cuts through the equivalent Faraday rotation measure distribution along the tracks shown as solid lines in panel (d). Note that (a) and (b) have the same angular scale, and that the $R M$ data are again excised wherever the polarized signal-to-noise ratio is $<6: 1$ at either frequency. Representative 1σ errors are also shown.
Rotation measure variation across M84 563
gradients at the edges of the source - in both lobes, the loci of the highest positive and negative rotations cross the edges of the source near their steepest brightness gradients. There is also a
 the steep brightness gradient that separates this inner lobe from fainter emission to the southwest. As the position angles χ depend only on the ratios of the Stokes parameters Q and U,
instrumental effects cannot produce such a correlation between $R M$ and brightness gradient.
 jet and across the centre of the south lobe. There are also gradients of $\approx 3 \mathrm{radm}^{-2} \operatorname{arcsec}^{-1}$ near the edges of the north jet and at the south-east edge of the north lobe.
 shown as solid lines in Fig. 5(d). The profile taken along the jets, shown in Fig. 5(a), exhibits an abrupt change of the sign of the rotation measure across the nucleus of M84, from +15 to $-15 \mathrm{radm}^{-2}$ going from south to north. The principal variations of $R M$ are smooth and well
 no significant smaller scale structure in the rotation measure (they are not shown here as they have generally lower signal-to-noise ratio and add no further detail). There is, however, a small

 Figs 4 and $5(b)$. In the parts of the south lobe that are well removed from the jets, there is in Fig. 5(c)
Observations of the \mathbf{E} vector position angles at a third radio frequency are needed to decide whether the magnetoionic medium is in front of, or within, the radio source, and to establish whether there are ambiguities of $\pm 180 n^{\circ}$ in $\Delta \chi$. The only suitable intermediate-frequency data available to us are at 2.7 GHz from the Cambridge 5-km telescope at a resolution of 3.86 arcsec in RA by 16.25 arcsec in Dec. The beam of this instrument in declination is unfortunately similar to the scale of the fluctuations in $R M_{4.9}^{1.4}$ over much of the source. These $2.7-\mathrm{GHz}$ data do, however, permit a rough test of the χ versus λ^{2} law wherever $R M$ varies only slowly with declination, and also allow us to check for possible rotational ambiguities, using the following procedure.
 those at 1.4 and 4.9 GHz , assuming that $\Delta \chi \propto \lambda^{2}$ and $n=0$. We made this prediction using the observed values of $p_{4.9}$ to determine the values of Q / I and U / I at 2.7 GHz at this resolution. This only approximates the correct procedure, which would be to interpolate the $2.7-\mathrm{GHz} I$ distribu-
tion at 3.86 -arcsec resolution and hence to estimate Q and U directly; the approximation is a good -ң! cantly over the source. The resulting Q / I and U / I distributions were then convolved to the 16.25 -
 2.7 GHz was predicted from the smoothed Q / I and U / I distributions.
Fig. 6 shows vectors whose position angles are the differences $\Delta \chi$ between the predicted values

 point. If our assumption of minimal $R M$ is correct, these vectors should all be vertical, apart from

 the position angle differences in Fig. 6 is evidently dominated by the noise in the data, rather than

Figure 6. Distribution of the difference $\Delta \chi$ between observed and predicted \mathbf{E} vector position angles at 3.86 by
16.25 arcsec resolution at 2.7 GHz , assuming that the $R M$ has the minimum values consistent with the data at 4.9 and
1.4 GHz . The lengths of the vectors are proportional to the polarized intensities at 2.7 GHz . Vectors are drawn only
where the signal-to-noise ratio in the observed distribution is $>4: 1$.
by discrepancies from the λ^{2} law of rotation. The only significant differences between the predicted and observed vector orientations are also in regions of low polarized intensity These comparisons show that there is no $180 n^{\circ}$ ambiguity in $\Delta \chi$, that $n=0$, and that $\Delta \chi$ is at least approximately proportional to λ^{2} over most of the source. There is, however, a region at the south-eastern edge of the north lobe (from $\alpha \approx 12^{\mathrm{h}} 22^{\mathrm{m}} 34.2, \delta \approx+13^{\circ} 10^{\prime} 00^{\prime \prime}$ to $\alpha \approx 12^{\mathrm{h}} 22^{\mathrm{m}} 35.5$, $\delta \approx+13^{\circ} 10^{\prime} 25^{\prime \prime}$) containing some locally unusual rotation measure gradients, and possible departures from the $\Delta \chi \propto \lambda^{2}$ law. Part of this region also depolarizes significantly at 1.4 GHz (see Section 6).
At those points in the source where the higher-resolution maps show little variation in $R M_{4.9}^{1.4}$ across the Cambridge 2.7-GHz beam, we have directly tested the hypothesis that $\Delta \chi \propto \lambda^{2}$. Fig. 7 shows a few representative fits of this law to the data at such points. This analysis also shows no evidence for any deviation from the λ^{2} law over a maximum $\Delta \chi$ of 80°.

5 The magnetic field in the source

We have converted the values of $\chi_{4.9}$ to infinite frequency using the $\Delta \chi \propto \lambda^{2}$ law appropriate for a foreground Faraday screen as justified above. Fig. 8 shows the implied distribution of 'intrinsic' apparent magnetic field across the radio source at $3.86-\operatorname{arcsec}$ resolution. The field lines wrap around the edge of the 'inner' lobe in the south half of the source. In the jet-dominated regions, the field lines are generally perpendicular to the ridge line of the jet, but they stretch around the outside of the bend of the north jet (at the north-west corner of the source).

been well resolved, the field is generally perpendicular to the brightness gradient. The only significant exception to this occurs in the region between $\alpha \approx 12^{\mathrm{h}} 22^{\mathrm{m}} 34 \mathrm{~s} 2, \delta \approx+13^{\circ} 10^{\prime} 00^{\prime \prime}$ and $\alpha \approx 12^{\mathrm{h}} 22^{\mathrm{m}} 355.5, \delta \approx+13^{\circ} 10^{\prime} 25^{\prime \prime}$ along the south-eastern edge of the north lobe. This region has unusual rotation measure gradients and possible local departures from the $\Delta \chi \propto \lambda^{2}$ law (Section
These features are similar to magnetic field distributions commonly seen in radio lobes and two-sided radio jets in other active galaxies (e.g. Bridle \& Perley 1984; Burch 1979; Högbom 1979; van Breugel \& Fomalont 1984). This reinforces our conclusion that the observed \mathbf{E} vector rotation is caused by the Faraday effect with $\Delta \chi \propto \lambda^{2}$ over most of the source.

6 The magnetoionic medium

The above observations do not determine where the Faraday screen is located along the line-of-sight between us and 3C272.1. Several arguments suggest, however, that the screen is mainly
The source is at galactic coordinates $l=278^{\circ} 2, b=74.5$, a region of sky where the integrated rotation measures of other extragalactic sources are generally small. Simard-Normandin, Kronberg \& Button (1981) list the values of $R M$ for 11 extragalactic sources within 10° of 3 C 272.1 . The

 $-2.4 \pm 3.9 \mathrm{radm}^{-2}$, corresponding to a rotation $\Delta \chi$ of $-6 \pm 9^{\circ}$ between 4.9 and 1.4 GHz . We therefore expect the mean foreground (galactic) contribution to the $R M$ to be near zero. The $R M s$

Figure 8. The apparent (i.e. weighted by synchrotron emissivity and vector averaged) magnetic field distribution B_{a} over the source at 3.86 -arcsec resolution, after correction for the Faraday rotation measure distribution shown in Fig.
4 assuming that $\Delta \chi \propto \lambda^{2}$. The vector lengths are proportional to the degree of linear polarization $p_{4.9}$ at 4.9 GHz , as this measures the degree of orderliness of the magnetic field. The vector orientations show the directions of \mathbf{B}_{2}.
of the other 10 sources also provide no evidence for any systematic structure of the foreground $R M$ in this area of sky over scales of order 1-5 degrees.
These integrated $R M$ data do not give evidence for or against the existence of fluctuations in the galactic foreground $R M$ in this direction on scales smaller than those of the single-dish beams that were used to determine the $R M s$. Recent interferometric studies of $R M$ distributions across
extragalactic radio sources at a variety of galactic latitudes (Leahy 1985; Simonetti \& Cordes 1986) do, however, show that excursions of $\pm 25 \mathrm{radm}^{-2}$ in $R M_{4.9}^{1.9}$ over a scale of only a few arcmin, as in M84, would be unusual even in the regions at low galactic latitudes that show largescale $R M$ 'anomalies'. These interferometric studies show that, at high galactic latitudes, fore-

 mean, with fluctuations comparable to, or less than, the 'noise' in Fig. 5.
 across the nucleus of M84. This is also evidence against a galactic foreground origin for the screen,
 screen is unrelated to M84 itself.

 mixed with the radio-emitting plasma.
(i) $\Delta \chi \propto \lambda^{2}$ over a rotation of $\Delta \chi \approx 80^{\circ}$, which is consistent with the medium being in front of
the radio source, rather than being mixed with it (Burn 1966 ; Laing 1985).
(ii) In a mixed geometry, the radio polarization and Faraday rotation are produced by

Figure 9. Grey-scale representation of the distribution of the depolarization $D_{4.9}^{1.9}=p_{1.4} / p_{4.9}$ over the source, at 3.86-
arcsec resolution.

Figure 10. Plot of the rotation measure $R M_{4.9}^{1.4}$ against the depolarization $D_{9.9}^{1.9}=p_{1.4} / p_{4.9}$ for locations at 5 arcsec
intervals across the radio source, showing the lack of detailed correlation between these two quantities. The largest
uncertainties in individual data points are $\pm 4 \mathrm{rad} \mathrm{m}^{-2}$ in $R M$ and ± 0.3 in D; typical uncertainties are $2-3$ times
smaller.

(iii) The observed values of the depolarization $D_{4.9}^{1.4}=p_{1.4} / p_{4.9}$ (displayed as a grey-scale image in Fig. 9) show no detailed correlation with $R M_{4.9}^{1.4}$ (compare Figs 4 and 9), although there are some small regions of significant depolarization. If the thermal matter producing as much as $35 \mathrm{rad} \mathrm{m}^{-2}$
 predict a correlation between $D_{4.9}^{1.4}$ and $R M_{4.9}^{1.4}$, with $D_{4.9}^{1.4}$ decreasing to near zero in the regions of most deviant $R M$. Fig. 9 shows no evidence of a large-scale banded pattern in $D_{4}^{1.9}$ like that in $R M$
 5 arcsec intervals over the whole source, also shows no sign of a global correlation between depolarization and rotation over 3C272.1
(iv) The small scale of the observed $R M$ fluctuations, and the abrupt change in sign of the $R M$ across the nucleus of M84, make it unlikely that the fluctuations are imposed by medium that is distributed along the line-of-sight to M84 through the atmosphere of the Virgo cluster as a whole.
We therefore conclude that most of the observed rotation arises in a component of the interstellar medium of M84 that lies in front of the radio source
There is ample independent evidence for a significant interstellar medium in M84, namely the dust lane (Wade 1960; Hansen et al. 1985), the extended optical line emission (Hansen et al. 1985) and the extended soft X-ray source (Forman et al. 1984, 1985).
Hansen et al. estimate that the brightest optical line-emitting regions in M84 contain ionized

 Faraday rotation, such as that seen here, because the scale size that Hansen et al. deduce for the line-emitting clouds ($\leqslant 10^{-2}$ arcsec) is much smaller than our radio beam. This gas is much more

 inear polarization at centimetre wavelengths are anticorrelated.
The only region of 3 C 272.1 where an emission line feature imag
The only region of 3 C 272.1 where an emission line feature imaged by Hansen et al. overlaps the
adio source is at the north end of the south jet, about 8 arcsec south of the core. This is indeed the most depolarized part of the source, having $D_{4.9}^{1.4} \sim 0.3$, so it is possible that this depolarization feature is related to the presence of the emission line gas. The reality of the line feature in this region of the Hansen et al. data is questionable, however.
$D_{4.9}^{1.4}$ falls to ~ 0.45 for a few arcsec around $\alpha \approx 12^{\mathrm{h}} 22^{\mathrm{m}} 35^{\mathrm{s}} .2, \delta \approx+13^{\circ} 10^{\prime} 20^{\prime \prime}$, and to ~ 0.5 at a few places near the eastern edges of both jets, and on the western edge of the south lobe. The

 our Kq pəpeayा s. J!

 more diffuse, X-ray emission, as this covers much of 3C 272.1 (panel a).

 (ㅇ)

A slab of ionized gas with electron density $n_{\mathrm{e}} \mathrm{cm}^{-3}$, field strength $B \mu \mathrm{G}$ and thickness $L \mathrm{kpc}$ along the line-of-sight produces a Faraday rotation $R M=810 n_{\mathrm{e}} B L \mathrm{rad} \mathrm{m} \mathrm{m}^{-2}$. To produce $R M \approx 25 \mathrm{rad} \mathrm{m}^{-2}$ requires $\int n_{\mathrm{e}} B d l \approx 0.03 \mu \mathrm{Gcm}^{-3} \mathrm{kpc}$ for the foreground magnetoionic medium in
M84. To estimate the magnetic field strength that is needed in the X-ray emitting gas to meet this condition, we have integrated $\int n_{\mathrm{e}} d l$ through the front half of a King model atmosphere with a core radius of 2 kpc , a 0.5 to 3 keV luminosity of $3 \times 10^{40} \mathrm{erg} \mathrm{s}^{-1}$ and a temperature of $1.2 \times 10^{7} \mathrm{~K}$ (equivalent to 1 keV) - the mean parameters of M84's extended X-ray emission as estimated by
 the region $>1 \mathrm{kpc}$ from the centre of M84. We infer that an average line-of-sight field strength $\approx 0.15-0.3 \mu \mathrm{G}$ would be sufficient to produce the observed $R M$ if the magnetoionic medium is distributed as in this King model. A higher line-of-sight field, $\approx 1.5 \mu \mathrm{G}$, would be required if the medium is in a uniform slab whose thickness is similar to the $\sim 2 \mathrm{kpc}$ scale of the observed $R M$ fluctuations. In either case, the field strength in the Faraday-rotating medium would be well
 the radio spectrum is a power law between 10 MHz and 100 GHz , that equal energies reside in relativistic electrons and in 'ions', and that the lobes are fully filled with relativistic particles and field. The magnetic energy stored in the polarization-rotating medium need only be $\leqslant 1$ per cent
 of the X-ray, rather than the optical line, emission.
 frequency picture of the rotation in terms of minimal variations around the mean is incorrect, the mean line-of-sight component of the magnetic field in the Faraday-rotating screen must be oppositely directed in the regions producing the largest $R M$ excursions in the north and south radio lobes. This implies a large-scale organization of the field, such as might be produced by 'combing' of the field by the outflow associated with the radio source. The Faraday rotation data
do not, however, determine the three-dimensional structure of the field uniquely, so we will not do not, however, determine the three-dimensional structure of the field uniquely, so we will not
discuss a detailed model.
As the largest values of $R M$ occur in bands that cross the lobes on their steepest brightness gradients, one might wonder if n_{e} and/or B in these regions has been increased by an interaction with the radio source. The brightest X-ray emission appears to be anticorrelated with the radio emission, as shown by Fig. 11(b). The X-ray peak around the nucleus of M84 is elongated at right angles to the radio jets, suggesting that this gas may have participated in the collimation of the
jets. There is also an elongated region of enhanced X-ray emission ≈ 1 arcmin in extent to the west

 complicating the picture.

 (2)

 edges of the lobes that would suggest a sheath scale $<2 \mathrm{kpc}$.
 roughly orthogonal to the major axis of the lowest-brightness radio emission in $3 \mathrm{C} 272.1\left(32^{\circ}\right.$, see Fig. 1). This also suggests that the medium causing the Faraday rotation influences the shape of the radio source on scales of several kpc. Furthermore, the steepest $R M$ gradients align approximately with the major axis of the large-scale radio structure and with the minor axis of the integrated light of M84 on the scale of the radio source (33° at 1.5 arcmin from the nucleus - King 1978). This coincidence echoes the trend for radio sources to emerge near the stellar minor axes of elliptical galaxies, found by Palimaka et al. (1979), Guthrie (1979) and Shaver et al. (1982), although the physical basis of this trend is unclear.

7 Conclusions

As noted in Section 1, the results presented here are not the first evidence for a magnetoionic
 the Faraday rotation measure over the main jet in the giant radio galaxy NGC $6251\left(l=116^{\circ}\right.$, $b=+37^{\circ}$) and found evidence there for $R M$ variations o. over $120 \mathrm{rad} \mathrm{m}^{-2}$ on a scale of $\sim 15 \mathrm{kpc}$. In proportional to λ^{2}. These results make it certain that most of the rotation in NGC 6251 occurs in a foreground magnetoionic medium with $n_{\mathrm{e}} B L \sim 0.1 \mu \mathrm{G} \mathrm{cm}^{-3} \mathrm{kpc}$. The $R M$ gradients in NGC 6251 are also greatest near the centre of the galaxy; this strengthens the case that the medium is associated with NGC 6251 itself.

O'Dea \& Owen (1986) have detected $R M$ gradients of $\sim 20-30 \mathrm{rad} \mathrm{m}^{-2}$ over distances of $\sim 2-$ 10 kpc respectively along the jets in the head-tail radio galaxy NGC $1265\left(l=154^{\circ}, b=-13^{\circ}\right)$. Cornwell \& Perley (1985) have reported $R M$ gradients along the jets in 3C449 $\left(l=95^{\circ}\right.$, $b=-16^{\circ}$), and Leahy, Jägers \& Pooley (1986) have detected $R M$ gradients of up to $\sim 60 \mathrm{radm}^{-2}$ over $\sim 3 \mathrm{kpc}$ along the brighter jet in 3C66B $\left(l=140^{\circ}, b=-17^{\circ}\right)$. Both of these sources are, however, in a region of sky in which many extragalactic sources have unusually large negative
 the galactic magnetic field, and Simonetti \& Cordes (1986) show that the $R M$ gradients in the region are from three to 10 times greater than those at high galactic latitudes, on all scales that
they sampled. The $R M$ gradients across 3C 449 and 3C 66B might therefore contain significant components due to foreground material in our own Galaxy.

Finally, Greenfield, Roberts \& Burke (1985) have attributed the $R M$ difference between the A and B images of the gravitationally lensed quasar $0957+561\left(l=158^{\circ}, b=+48^{\circ}\right)$ to an interstellar medium in the lensing galaxy with $n_{\mathrm{e}} B L \approx 0.1 \mu \mathrm{Gcm}^{-3} \mathrm{kpc}$.

The shapes of the radio sources in these other galaxies restrict the mapping of their Faraday screens to 'profiles' along (almost) one-dimensional jets, or to single local estimates of Faraday
 measure across M84. To interpret this banded pattern physically, we need to know whether the

Acknowledgments

We thank Dr W. Forman and Dr F. Seward for sending us a FITs tape with the Einstein X-ray image of M84 before the HRI data were published. We also thank the staff of the Cambridge $5-\mathrm{km}$ telescope for obtaining the $2.7-\mathrm{GHz}$ data. We are indebted to M . Classic for valuable contributions to the data reduction at NRAO, and to Dr E. W. Greisen for coding the aIPS task
 Simonetti and J. V. Wall for valuable advice and criticism, and to an anonymous referee for
suggesting several improvements. The hospitality of the Aspen Center for Physics was much appreciated by both authors during the penultimate stage of writing this paper.

References

 Bride, A. H. \& Perley, R. A., 1984. Ann. Rev. Astr. Astrophys., 22, 319. Burch, S. F., 1979. Mon. Not. R. astr. Soc., 186, 519.Burn, B. J., 1966. Mon. Not. R. astr. Soc., 133, 67
Cornwell, T. J. \& Perley, R. A., 1985. In: Physics of Energy Transport in Extragalactic Radio Sources, Proc. 9th Faraday, M., 1846. Trans. R. Soc. Lond., 136, 1.
Forman, W. \& Jones, C., 1982. Ann. Rev. Ast. Astrophys., 20, 547. . Galaxies, p. 297, eds Mardirossian, F. Forman, W., Jones, C. \& Tucker, W., 1984. In: Clusters and Group
Giuricin, G. \& Mezzetti, M., Reidel, Dordrecht, Holland.
Forman, W., Jones, C. \& Tucker, W., 1985. Astrophys. J., 293, 102.
Greenfield, P. E., Roberts, D. H. \& Burke, B. F., 1985. Astrophys. J.
Greenfield, P. E., Roberts, D. H. \& Burke, B. F., 1985. Astrophys. J., 293, 370.
Guthrie, B. N. G., 1979. Mon. Not. R. astr. Soc., 187, 581.
Hansen, L., Nørgaard-Nielsen, H. U. \& Jørgensen, H. E.,
Heckman, T. M., Miley, G. K., Balick, B., van Breugel, W. J. M. \& Butcher, H. R., 1982. Astrophys. J., 262, 529 Högbom, J. A., 1979. Astr. Astrophys. Suppl., 36, 173.
King, I. R., 1978. Astrophys. J., 222, 1.
King, I. R., 1978. Astrophys. J., 222, 1.
Kotanyi, C. G. \& Ekers, R. D., 1979. As
Kotanyi, C. G. \& Ekers, R. D., 1979. Astr. Astrophys., 73, L1.
Laing, R. A., 1981. Mon. Not. R. astr. Soc., 195, 261.
Laing, R. A., 1981. Mon. Not. R. astr. Soc., 195, 261.
Laing, R. A., 1985. In: Physics of Energy Transport in
Laing, R. A., 1985. In: Physics of Energy Transport in Extragalactic Radio Sources, Proc. 9th NRAO Workshop, p
90, eds Bride, A. H. \& Eilek, J. A., NRAO, Green Bank, West Virginia.
Laing, R. A. \& Peacock, J. A., 1980. Mon. Not. R. astr. Soc., 190, 193.
Leahy, J. P., 1985 . PhD thesis, University of Cambridge.
Leahy, J. P., Jägers, W. J. \& Pooley, G. G., 1986. Astr. Astrophys., 156, 234.
O'Dea, C. P. \& Owen, F. N., 1986. Astrophys. J., 301, 841
Palimaka, J. J., Bridle, A. H., Fomalaontt E. B. \& Brandie, G. W., 1979. Astrophys. J., 231, L7.
Perley, R. A., Bridle, A. H. \& Willis, A. G., 1984. Astrophys. J. Suppl., 54, 292.
 Extragalactic Rordrecht, Holland.
Simard-Normandin, M. \& Kronberg, P. P., 1980. Astrophys. J., 242, 74.
Stewart, G. C., Canizares, C. R., Fabian, A. C. \& Nulsen, P. E. J., 1984. Astrophys. J., 278, 536.

[^0]: angles of $\sim-5^{\circ}$ and $+170^{\circ}$ and are fairly straight for $\sim 40 \operatorname{arcsec}$, at which distance from the core they both deflect to the east before merging with the broader lobe emission. The jets are surrounded by a broad, conical 'cocoon' of faint radio emission whose outer parts also blend with the lobes at the resolution of Fig. 1.

 The south lobe contains an 'inner lobe' that is separated from more diffuse outer structure by

