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ABSTRACT

Context. With the increasing knowledge of the terrestrial planets due to recent space probes it is possible to model their rotation with
increasing accuracy. Despite that fact, an accurate determination of Venus precession and nutation is lacking
Aims. Although Venus rotation has been studied in several aspects, a full and precise analytical model of its precession-nutation
motion remains to be constructed. We propose to determine this motion with up-to-date physical parameters of the planet
Methods. We adopt a theoritical framework already used for a precise precession-nutation model of the Earth, based on a Hamiltonian
formulation, canonical equations and an accurate development of the perturbing function due to the Sun.
Results. After integrating the disturbing function and applying the canonical equations, we can evaluate the precession constant Ψ̇
and the coefficients of nutation, both in longitude and in obliquity. We get Ψ̇ = 4474.′′35/Jcy ± 66.5, corresponding to a precession
period of 28 965.10± 437 years. This result, based on recent estimations of the Venus moment of inertia is significantly different from
previous estimations. The largest nutation coefficient in longitude with an argument 2LS (where LS is the longitude of the Sun) has a
2′′19 amplitude and a 112.35 d period. We show that the coefficients of nutation of Venus due to its triaxiality are of the same order
of amplitude as these values due to its dynamical flattening, unlike of the Earth, for which they are negligible.
Conclusions. We have constucted a complete theory of the rotation of a rigid body applied to Venus, with up-to-date determinations
of its physical and rotational parameters. This allowed us to set up a new and better constrained value of the Venus precession constant
and to calculate its nutation coefficients for the first time.
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1. Introduction

Among the planets of the Solar system, Venus shows peculiar
characteristics: its rotation is retrograde and very slow. Since
its 243.02 d period was determined by radar measurements
(Golstein 1964; Carpenter 1964), several authors have attempted
to explain these two characteristics. Goldreich and Peale (1970)
showed that thermally driven atmospheric tidal torques and en-
ergy dissipation at the boundary between a rigid mantle and a
differentially rotating liquid core are possible mechanisms to
maintaine the retrograd spin. Lago and Cazenave (1979) stud-
ied the past evolution of the rotation of Venus using the hy-
pothesis that only solar tidal torques and core-mantle coupling
have been active since its formation. They found it conceivable
that Venus originally had a rotation similar to the other plan-
ets and evolved for 4.5 × 109 years from a rapid and direct ro-
tation to the present slow retrograde one. Others authors pro-
posed different scenarios by supposing a high value of the initial
obliquity (Dobrovoskis 1980; Mc Cue & Dormand 1993). Yoder
(1995) gave a full account of the various internal mechanisms
acting on Venus’obliquity, such as core friction, CMB (core-
mantle boundary) ellipticity, and resonant excitations. Correia
and Laskar (2001, 2003; Correia et al. 2003), explored a large
variety of initial conditions in order to cover possible formation
and evolutionary scenarios. They confirmed that despite the vari-
ations in the models, only three of the four final spin states of
Venus are possible and that the present observed retrograd spin
state can be attained by two different processes: one prograde
and the other retrograde. Although these various studies concern
the evolution of Venus rotation on very long times scales, few

attempts have been made to accurately model the rotation for
short times scales. An analytical study of the rotation of a rigid
Venus model carried out by Habibullin (1995) with rather un-
commun parametrization, showing that Venus rotates almost
uniformly with negligible libration harmonics. In the following,
we propose an alternative construction of a rigid Venus rotation
model, contradicting to some extent these last results. First we
show the characteristics of Venus with respect to the correspond-
ing ones for the Earth (Sect. 2). We explain the parametriza-
tion of the rotation of a rigid Venus using the Andoyer variables
(Sect. 3). We then determine the reference points and planes to
study the rotational dynamics of Venus (Sect. 4). We give the
equations of motion and the analytical developments that al-
low us to obtain the precession and the nutation of the planet
(Sects. 5–7). Finally we give the precession, the tables of nuta-
tion and the polar motion of Venus (Sects. 8 and 9). We will dis-
cuss our results in Sect. 10. In this study we make some approx-
imations: we suppose that the relative angular distance between
the three poles (the poles of angular momentum, of figure and of
rotation) is very small as is the case for the Earth. Moreover we
solve a simplified system where the second order of the poten-
tial does not appear. Last, we suppose that the small difference
between the mean longitude and the mean anomaly of the Sun
which corresponds to the slow motion of the perihelion, can be
considered as constant. In Sects. 3 to 10, the orbital elements
of Venus and their time dependence are required to carry out
our numerical calculations. In these sections we used the mean
orbital elements given by Simon et al. (1994). These elements
are valid over 3000 years with a relative accuracy of 10−5. This
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Table 1. Comparison between the orbital (at J2000.0) and physical pa-
rameters of Venus necessary for our study and the corresponding ones
for the Earth.

Earth Venus
Semi-major axis 1.000001 U.A 0.723332 U.A
Eccentricity 0.0167 0.0068
Inclination 0 3.39
Ascending node 174.87 7667
Period of revolution 365.25 d 224.70 d
Density 5.51 g/cm3 5.25 g/cm3

Equatorial radius 6378 km 6051 km
Mass 5.97 × 1024 kg 4.87 × 1024 kg
Obliquity 23.43 2.63
Period of rotation 0.997 d –243.02 d
Triaxiality: A−B

4C −5.34 × 10−6 −1.66 × 10−6

Dyn. flattening: 2C−A−B
2C 3.27 × 10−3 1.31 × 10−5

B−A
2(2C−A−B) 0.0016 0.12

prevents our theory being used in long term calculations, our do-
main of validity being 3000 years.

2. Venus characteristics

From the point of view of its physical characteristics, Venus can
be considered as similar to sister of the Earth: the two planets
have roughly the same size, mass and mean density (see Table 1).

Despite this fact, the rotation of the two planets has with h
distinctive characteristics. First, the rotation of Venus is retro-
grade with a period of 243 days. Furthermore the obliquity of
Venus is very small (2.63) compared to that of the Earth (23.44).
Last, as we will see in the following, the perturbating function
for the rotational motion of the planets depends on the dynami-
cal flattening HV =

2C−A−B
2C and on the triaxiality TV =

A−B
4C . The

Earth has a fast rotation, therefore it has a relatively large dy-
namical flattening. Moreover its main moments of inertia A and
B according to the X and Y axes can be considered equal when
comparing them to C. Thus the coefficient of triaxiality is very
small with respect to the coefficient of dynamical flattening. On
the other hand, Venus has slow rotation. Therefore its coefficient
of dynamical flattening is less important than that of the Earth
but its coefficient of triaxility is of the same order as the coef-
ficient of dynamical flattening (see Table 1). For these reasons,
it is important to account for the effect of triaxiality on the ro-
tation of Venus and it is interesting to see what difference will
emerge with respect to the Earth’s rotation. In Table 1, for the
sake of clarity we have written the orbital parameters at J2000.0.
However throughout this paper the orbital parameters are con-
sidered as a function of time (containing terms of first and third
order in time).

3. Description of the motion of rotation
and torque-free motion of Venus

In order to describe in the most complete way the rotation for
a rigid model of Venus around its center of mass we need four
axes: an inertial axis (arbitrairly chosen), the figure axis, the an-
gular momentum axis, and the axis of rotation (see Fig. 1).

• As an inertial plane (0, X, Y) we choose the Venus osculat-
ing orbital plane at the epoch J 2000.0. We note �0V , the
intersection between this orbital plane and the mean equa-
tor of Venus at J2000.0, which is the reference point on the
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Fig. 1. Relation between the Euler angles and the Andoyer variables.

(0, X, Y) plane. The choice of this plane is natural because
we want to compute the variation of the obliquity of Venus
which is the angle between the orbit of Venus and the plane
normal to L.
• The angular momentum axis of Venus is the axis directed

along −→G, with G the amplitude of the angular momentum.
We denote h = �0V Q and I as respectively the longitude
of the node with respect to �0V and the inclination with re-
spect to (0, X, Y). g and J are the longitude of the node and
the obliquity of this same plane with respect to Q and to the
equatorial plane.
• The figure axis is the principal axis of Venus directed along

Oz and perpendicular to the equatorial plane. We choose it
so that it coincides with the axis of the largest moment of
inertia C. We denote 0x the axis that is pointed toward the
origin meridian on Venus, which can be defined in a conven-
tional way. The axis of the figure is determined with respect
to the inertial plane (O, X, Y) through the Euler angles h f , I f .
The parameter Φ ≈ l + g + h gives the position of the prime
meridian (O, x) with respect to �0V .
• The axis of rotation is determined through the variables hr, Ir,

i.e. the longitude of the node and the inclination with respect
to �0V and the orbit of Venus at J2000.0. For the sake of
clarity, these parameters are not represented in Fig. 1.

To describe the motion of the rotation of the rigid Earth,
Kinoshita (1977) used Andoyer variables. Therefore we have in-
troduced these variables to apply an analogous theory to Venus.
The Andoyer variables (1923) are (see Fig. 1):

– L the component of the angular momentum along the 0z axis;
– H the component of the angular momentum along the 0Z

axis;
– G the amplitude of the angular momentum of Venus;
– h the angle between �0V and the node Q between the orbital

plane and the plane normal to the angular momentum;
– g the angle between the node Q and the node P;
– l the angle between the origin meridian Ox and the node P;

This yields:

L = G · cos J et H = G · cos I (1)

where I, J are respectively the angle between the angular mo-
mentum axis and the inertial axis (O, Z), between the angular
momentum axis and the figure axis.

By using the spherical trigonometry in the triangle (P, Q, R)
(see Fig. 1), we determine the relations between the variables:

cos I f = cos I cos J − sin I sin J cos g (2)
sin(h f − h)

sin J
=

sin(Φ − l)
sin I

=
sin g
sin I f

· (3)
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Fig. 2. Motion of the orbit of Venus at the date t with respect to the same
orbit at J2000.0.

The angle J is supposed to be very small, so by neglecting the
second order we obtain (Kinoshita 1977):

h f = h +
J

sin I
sin g + O(J2) (4)

I f = I + J cos g + O(J2) (5)

Φ = l + g − J cot I sin g + O(J2). (6)

h f and I f correspond to the same definition as h and I, but for
the axis of figure instead of the axis of angular momentum. The
Hamiltonian for the torque-free motion of Venus corresponding
to the kinetic energy is:

F0 =
1
2

(
sin2 l

A
+

cos2 l
B

)
(G2 − L2) +

1
2

L2

C
(7)

where A, B,C are the principal moments of inertia of Venus.
Then the Hamiltonian equations are:

d
dt

(L,G,H) = − ∂F0

∂(l, g, h)
d
dt

(l, g, h) =
∂F0

∂(L,G,H)
·

The Hamitonian is the full energy of the system. We see the
Hamiltonian (7) corresponds to the kinetic energy.

4. Hamiltonian referred to a moving plane

This section is based on the pioneering work by Kinoshita (1977)
for the rotation of the Earth. As a new reference plane, we choose
the plane of the orbit of Venus at the date t instead of the fixed
orbital plane at J2000.0. The motion of this new plane is due to
the disturbances of the planets and it is defined by two angles
Π1 and π1 which depend on time (cf Fig. 2). In Sect. 4.3 we will
determine accuratly the numerical expressions of Π1 and π1.

4.1. Canonical transformations

We denote (G′,H′, L′, g′, h′, l′) as the new set of Andoyer canon-
ical variables, wich play the same role as (G,H, L, g, h, l) but
with respect to the new moving reference plane instead of the
inertial one. We denote I′ as the angle between the plane normal
to angular momentum and the orbit of Venus at t. To prove that
the transformation is canonical, we have to determine a comple-
mentary function E depending on the new variables:

Gdg + Hdh − F0dt = G′dg′ + H′dh′ − (F0 + E)dt. (8)

Because the tranformation does not depend on L, l these
two variables do not appear in (8). In a given spherical

NM
orbit of Venus at
J2000.0

g’−g

orbit of Venus at t
π1

Π1h’−

I’

−I1Π

plane normal to angular
momentum vector

O

Fig. 3. Details of the spherical triangle M, N, O of Fig. 2 which repre-
sents the motion of the orbit of Venus at the date t with respect to the
same orbit at J2000.0.

triangle (A, B, C) one can show that the following differential
relation stands (see appendix):

da = cosc · db + cos B · dc + sin b sin C · dA. (9)

Applied to the triangle (M, N, O) (see Fig. 3) this yields:

d(g′ − g) = cos I′ · d(h′ − Π1) − cos I · d(h − Π1)

+ sin(h′ − Π1) sin I′ · dπ1. (10)

Using the classical equation on the same triangle:

cos I = cos I′ cos π1 − sin I′ sin π1 cos(h′ − Π1). (11)

Then, multiplying both sides by G and adding – Fo dt, we get:

G · dg + H · dh − Fo · dt = G′ · dg′ + H′ · dh′ − K · dt (12)

where G = G′, H′ = G′ cos I′ et K = F0 + E with

E = H′(1 − cos π1) · dΠ1

dt

+ G′ sin I′ ·
[
dΠ1

dt
· sin π1 cos(h′ − Π1) (13)

− dπ1

dt
· sin(h′ − Π1)

]
. (14)

We see that the time does not appear explicitly in Fo but ap-
pears in the new Hamiltonian K through the variables π1 and
Π1 expressing the moving orbital plane. Thanks to (12), we
have shown that the transformation from (G,H, L, g, h, l) to
(G′,H′, L′, g′, h′, l′) is canonical.This canonical transformation
is given in detail in Kinoshita (1977). To calculate the new
Hamiltonian, we have to determine the values of h′−Π1, where h′
is an angle constructed on two different planes, the orbit of Venus
at J2000.0 and the orbit of Venus at the date t. It is difficult to
calculate this angle, so we can do a new transformation, chang-
ing h′ by hd where hd is the sum of two angles on the orbit of
Venus at the date t. This small transformation is particular to the
present study and was not done in other works (Kinoshita 1977;
Souchay et al. 1999).

We have hd = �0Vt M +MO where �0Vt is the so-called “de-
parture point” for Venus, which constitutes our new reference
point. The choice of this point is justified by the condition of
non-rotation wich characterizes it, described in detail by Guinot
(1979) and Capitaine et al. (1986). �0Vt is the natural point to
measure any motion along the moving plane. hd is given by the
equation:

hd = h + s (15)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=2
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Fig. 4. Motion of the orbit of Venus at the date t with regard to the orbit
at J2000.0.

with

s =
∫

(1 − cosπ1)dΠ1 (16)

To prove that this transformation is canonical, we can determine
a function E′ depending on the new variables such that:

H′dh′ − Kdt = H′dhd − (K + E′)dt. (17)

Because the tranformation does not depend on G and g, these
two variables do not appear in (17). Using Eq. (15) we have:

H′ds = −E′dt. (18)

Thus:

− H′
ds
dt
= E′. (19)

Notice that s is a very small quantity, so that to a first approxima-
tion E′ is negligible. Finally, we have a canonical transformation
with K′ as a new Hamiltonian of the system:

K′ = F0 + E + E′

= F0 +G′ sin I′ ·
[
dΠ1

dt
· sin π1 cos(hd − Π1)

− dπ1

dt
· sin(hd − Π1)

]
. (20)

4.2. Ecliptic coordinates of the orbital pole and reference
point �0V

To calculate the angles that characterize the moving plane of the
orbit of Venus at the date t, a reference point on the orbit of
Venus at J2000.0 is needed. For the Earth the reference point is
the vernal equinox �0 which coincides with the ascending node
of the ecliptic of J2000.0 with the celestial equator of the same
date. In a similar way we determine the coordinates of the as-
cending node �0V of the orbit of Venus at J2000.0 with respect
to the equator of Venus at this same date. To calculate the coor-
dinates of �0V we need −−→Pov, the unit vector directed towards the
orbital pole at t = 0 defined by:

−−→
Pov =

⎛⎜⎜⎜⎜⎜⎜⎝
sin i0 sinΩ0
− sin i0 cosΩ0
cos i0

⎞⎟⎟⎟⎟⎟⎟⎠ (21)

where i0 is the angle between the orbit of Venus and the ecliptic
at J2000.0.Ω0 is the longitude of the ascending node at the same
date. Simon et al. (1994) give:

i0 = 3.39466189 Ω0 = 76.67992019. (22)

orbital pole of Venus

pole of Venus

O

Io
Pv

Pov equator of Venus

orbit of Venus

u

oVγ

Fig. 5. Relation between the venusian orbital pole and the venusian pole
of angular momentum at the date t = 0.

The relative angular distance between the three poles (the poles
of angular momentum, of figure and of rotation) is supposed to
be very small, as is the case for the Earth. Throughout this study
we will consider that the three poles coincide. So we denote −→Pv
as the unit vector directed towards the pole of Venus at t = 0
defined by:

−→
Pv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos l0p cos b0
p

sin l0p cos b0
p

sin b0
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= P ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos δ0
p cosα0

p

sinα0
p cos δ0

p

sin δ0
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

where l0p and b0
p are the ecliptic coordinates, respectively the lon-

gitude and the latitude of the pole of Venus. P is the matrix that
converts equatorial coordinates to ecliptic coordinates. α0

p, δ
0
p are

the equatorial coordinates of the Venusian north pole with re-
spect to the equator at J2000.0. We take (α0

p, δ
0
p) according to

the IAU report on cartographic coordinates (1991) (Habibullin
1995).

α0
p = 272.76 δ0

p = 67.16. (24)

To determine �0V we use the following equations (see Fig. 5):

cos I0 =
−−→
Pov · −→Pv (25)

sin I0

−−−→
0�V

|0�V| =
−→
Pv ∧ −−→Pov ⇒ −→u =

−−−→
0�V

|0�V| =
−→
Pv ∧ −−→Pov

sin I0
(26)

where Pv and Pov are the unit vectors described previously, I0 is
the obliquity (angle between the axis of angular momentum and
the 0Z inertial axis) and −→u is the unit vector along

−−−−→
0�0V .

We finally obtain:

I0 = 2.634, b0
p = −0.103, l0p = 57.75. (27)

4.3. Determination of Π1 and π1

Using the previous section we can now determine the angles Π1
and π1, which are respectively the longitude of the ascending
node and the angle between the two orbital planes. The angle Π1
(see Fig. 4) is equal to the sum of the angle v and the angle v1
(see Fig. 6):

Π1 = v1 + v. (28)

The relationship between π1, v, i0, it,Ω0 andΩt are derived from
the spherical triangle (P,L,M):

cos π1 = cos i0 cos it + sin i0 sin it cos(Ωt − Ω0) (29)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=4
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cos v sin π1 = − sin i0 cos it + cos i0 sin it cos(Ωt −Ω0) (30)

sin v sin π1 = sin it sin(Ωt −Ω0) (31)

where i0, it are respectively the inclinations of the orbit of Venus
at J2000.0 and at the date t with respect to the ecliptic at J2000.0.
Ω0 et Ωt are the longitude of the ascending node respectively at
J2000.0 and at the date t. Simon et al. (1994) gave:

it = 3.39466189− 30.′′84437t − 11.′′6783t2 + 0.′′03338t3

Ωt = 76.67992019− 10008.′′4815t − 51′′3261t2 − 0.′′58910t3

where t is counted in thousands of Julian years starting from
J2000.0. In this section we choose to carry our calculations to
third order in time. The relationships between v1,b0

p and i0 are
derived from the spherical triangle (�OVGP) (see Fig. 7):

sin v1 sin i0 = sin b0
p. (32)

Using the Eqs. (29)–(31) we obtain:

v1 = 18.92

Π1(t) = v1 + v = 381348.′′ − 901.′′346 t − 0.0910822 t2

−0.′′000759571 t3 + O(t4) (33)

π1(t)=59.′′2626 t+0.0285354 t2+0.00028575 t3+O (t4) (34)

where t is counted in thousands of Julian years starting from
J2000.0. For the Earth we have:

Π1E(t) = 629543.′′ − 867.927 t + 0.′′1534 t2 (35)

+0.′′0000053 t3 + O(t4)

π1E(t) = 46.′′9973 t − 0.′′0335053 t2

−0.′′00012374 t3 + O(t4). (36)

The relative motion of the orbital plane at t with respect to the or-
bital plane at t = 0 is significantly greater for Venus than for the
Earth. We used here the mean orbital elements given by Simon
et al. (1994). These elements are valid over 3000 years with a
relative accuracy of 10−5 and thus so too are our results

5. The Hamiltonian of the system and the equation
of the motion of rotation

5.1. The equation of the motion of rotation

As explained in Sect. 4, the Hamiltonian related to the rotational
motion of Venus is:

K′′ = Fo + E + E′ + U (37)

where Fo is the Hamiltonian for the free motion, E + E′ is a
component related to the motion of the orbit of Venus, which
is caused by planetary perturbations. The expressions of Fo and
E + E′ have been set in the previous section. U is the disturb-
ing potential due to external disturbing bodies. Here the external
disturbing body is the Sun (the perturbation due to the planets
can be neglected), and its disturbing potential is given by:

U = U1 + U2

U1 =
GM′

r3

[
2C − A − B

2
P2(sin δ) +

A − B
4

P2
2(sin δ) cos 2α

]
(38)

U2 =

∞∑
n=3

GM′MVan
V

rn+1

⎡⎢⎢⎢⎢⎢⎣JnPn(sin δ)

−
n∑

m=1

Pm
n (sin δ) · (Cnm cos mα + S nm sin mα)

⎤⎥⎥⎥⎥⎥⎦ (39)

where G is the gravitationnal constant, M′ is the mass of the Sun,
r is the distance between its barycenter and the barycenter of
Venus. α and δ are respectively the planetocentric longitude and
latitude of the Sun (not to be confused with the usual equatorial
coordinates), with respect to the mean equator of Venus and with
respect to a meridian origin. The Pm

n are the classical Legendre
functions given by:

Pm
n (x) =

(−1)m(1 − x2)
m
2

2nn!
dn+m(x2 − 1)n

dn+mx
· (40)

The Hamiltonian equations are:

d
dt

(L′,G′,H′) = − ∂K′′

∂(l′, g′, h′)
(41)

d
dt

(l′, g′, h′) =
∂K′′

∂(L′,G′,H′)
· (42)

In the following the prime notations used above are omitted for
the sake of clarity. Using the following equations seen in Sect. 3:

cos I =
H
G

and cos J =
L
G
· (43)

The canonical Eqs. (41) and (42) become (Kinoshita 1977):

dl
dt
= − 1

G
sin J

∂K
∂J

(44)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=7
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dg
dt
=

1
G

[
cot J

∂K
∂J
+ cot I

∂K
∂I

]
(45)

dh
dt
= − 1

G sin I
∂K
∂I

(46)

and

dI
dt
=

1
G

[
cot I

dG
dt
− 1

sin I
dH
dt

]

=
1
G

[
1

sin I
∂K
∂h
− cot I

∂K
∂g

]
· (47)

Replacing I by J in the precedent equation yields the variation of
J. I is the obliquity and J is the small angle between the angular
momentum axis and the figure axis. To solve the six differen-
tial Eqs. (41) and (42), Kinoshita (1977) used the Hori’s method
(1966). Here we solve a simplified system, i.e. the potential U2
does not appear in our study. To know the motion of precession
and nutation of Venus, we have to solve only the following equa-
tions:

dI
dt
=

1
G

[
cot I

dG
dt
− 1

sin I
dH
dt

]

=
1
G

[
1

sin I
∂K
∂h
− cot I

∂K
∂g

]
(48)

dh
dt
= − 1

G sin I
∂K
∂I

(49)

where I characterizes the obliquity and h the motion of
precession-nutation in longitude. These equations can also be
written as:

dI
dt
=

1
G

[
cot I

dG
dt
− 1

sin I
dH
dt

]

=
1
G

[
1

sin I
∂U1

∂h
− cot I

∂U1

∂g

]
(50)

dh
dt
= − 1

G sin I
∂U1

∂I
(51)

Integrating these equations, we obtain the variations of the an-
gles h and I:

ΔI =
1
G

[
1

sin I
∂

∂h

∫
U1dt − cot I

∂

∂g

∫
U1dt

]
(52)

Δh = − 1
G sin I

∂

∂I

∫
U1dt. (53)

5.2. Development of the disturbing function

The disturbing potential (38) is a functions of the modified
Legendre polynomials P2(sin δ) and P2

2(sin δ) and of the plan-
etocentric longitude α and latitude δ of the Sun, with respect to
the mean equator of Venus and with respect to a meridian origin.
From the ephemerides we only know the longitude λ and the lat-
itude β of the Sun with respect to the orbit of Venus. So we use
the transformation described by Kinoshita (1977) and based on

the Jacobi polynomials, which expresses α and δ as a function
of λ and β. Applying this transformation we obtain:

P2(sin δ) =
1
2

(3 cos2 J − 1)

⎡⎢⎢⎢⎢⎢⎣1
2

(3 cos2 I − 1)P2(sin β)

− 1
2

sin 2IP1
2(sin β) cos 2(λ − h)

⎤⎥⎥⎥⎥⎥⎦
+ sin 2J

⎡⎢⎢⎢⎢⎢⎣ − 3
4

sin 2IP2(sin β) cos g

−
∑
ε=±1

1
4

(1 + ε cos I)(−1 + 2ε cos I)

P1
2(sin β) sin(λ − h − εg)

−
∑
ε=±1

1
8
ε sin I(1 + ε cos I)

P2
2(sin β) cos(2λ − 2h − εg)

⎤⎥⎥⎥⎥⎥⎦ + sin2 J

⎡⎢⎢⎢⎢⎢⎣3
4

sin2 IP2(sin β) cos 2g +
1
4

∑
ε=±1

ε sin I

(1 + ε cos I)P1
2(sin β) sin(λ − h − 2εg) − 1

16∑
ε=±1

(1 + ε cos I)2P2
2(sin β) cos 2(λ − h − εg)

⎤⎥⎥⎥⎥⎥⎦ (54)

and

P2
2(sin δ) cos 2α = 3 sin2 J

⎡⎢⎢⎢⎢⎢⎣ − 1
2

(3 cos2 I − 1)P2(sin β)

cos 2l +
1
4

∑
ε=±1

sin 2IP1
2(sin β) sin(λ − h − 2εl)

+
1
8

sin2 IP2
2(sin β) cos 2(λ − h − εl)

⎤⎥⎥⎥⎥⎥⎦
+

∑
ρ=±1

ρ sin J(1 + ρ cos J)

⎡⎢⎢⎢⎢⎢⎣ − 3
2

sin 2IP2(sin β) cos(2ρl + g)

−
∑
ε=±1

1
2

(1 + ε cos I)(−1 + 2ε cos I)

P1
2(sin β) sin(λ − h − 2ρεl − εg)

−
∑
ε=±1

1
4
ε sin I(1 + ε cos I)

P2
2(sin β) cos(2λ − 2h − 2ρεl − εg)

⎤⎥⎥⎥⎥⎥⎦

+
∑
ρ=±1

1
4

(1 + ρ cos J)2

⎡⎢⎢⎢⎢⎢⎣ − 3 sin2 IP2(sin β) cos(2l + 2ρg)

−
∑
ε=±1

ε sin I(1 + ε cos I)

P1
2(sin β) sin(λ − h − 2ρεl − 2εg)

+
∑
ε=±1

1
4

(1 + ε cos I)2

P2
2(sin β) cos 2(λ − h − ρεl − εg)

⎤⎥⎥⎥⎥⎥⎦. (55)
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Using (40) we obtain:

P2(sin β) =
1
2

(3 sin2 β − 1)

P1
2(sin β) = −3 sinβ(1 − sin2 β)

1
2

P2
2(sin β) = 3(1 − sin2 β)

where β is the latitude of the disturbing body with respect to the
orbit of Venus at the date t. In our problem the disturbing body
is the Sun, so that β = 0. This yields:

P2(sin β) = −1
2

P1
2(sin β) = 0

P2
2(sin β) = 3.

Assuming that the angle J is small (J ≈ 0),as it the case for the
Earth, (54) and (55) can be written:

P2(sin δ) =

[
−1

4
(3 cos2 I − 1) − 3

4
sin2 I cos 2(λ − h)

]
(56)

and

P2
2(sin δ) cos 2α =

⎡⎢⎢⎢⎢⎢⎣3
2

sin2 I cos(2l + 2g) +
∑
ε=±1

× 3
4

(1+ε cos I)2 · cos 2(λ − h−εl−εg)

]
. (57)

Thus the disturbing potential is simplified in the following form:

U1 =
GM′

r3

⎡⎢⎢⎢⎢⎢⎣2C − A − B
2

(
− 1

4
(3 cos2 I − 1)

−3
4

sin2 I cos 2(λ − h)
)

+
A − B

4

[
3
2

sin2 I cos(2l + 2g)

+
∑
ε=±1

3
4

(1 + ε cos I)2 · cos 2(λ − h − εl − εg)

]⎤⎥⎥⎥⎥⎥⎦. (58)

6. Determination of the precession and the nutation
of Venus

Replacing U1 in (52) and (53) we obtain:

Δh = − 1
G sin I

∂

∂I

∫ (
GM′

r3
[
2C − A − B

2[
− 1

4
(3 cos2 I − 1) − 3

4
sin2 I cos 2(λ − h)

]

+
A − B

4

[3
2

sin2 I cos(2l + 2g)

+
∑
ε=±1

3
4

(1 + ε cos I)2

cos 2(λ − h − εl − εg)
]]⎞⎟⎟⎟⎟⎟⎠dt (59)

ΔI =
1
G

⎡⎢⎢⎢⎢⎢⎣ 1
sin I

∂

∂h

∫ ⎛⎜⎜⎜⎜⎜⎝GM′

r3

[
2C − A − B

2[
− 1

4
(3 cos2 I − 1) − 3

4
sin2 I cos 2(λ − h)

]

+
A − B

4

[3
2

sin2 I cos(2l + 2g)

+
∑
ε=±1

3
4

(1 + ε cos I)2

cos 2(λ − h − εl − εg)
]]⎞⎟⎟⎟⎟⎟⎠dt

− cot I
∂

∂g

∫ ⎛⎜⎜⎜⎜⎜⎝GM′

r3

⎡⎢⎢⎢⎢⎢⎣2C − A − B
2[

− 1
4

(3 cos2 I − 1) − 3
4

sin2 I cos 2(λ − h)
]

+
A − B

4

[3
2

sin2 I cos(2l + 2g)

+
∑
ε=±1

3
4

(1 + ε cos I)2

cos 2(λ − h − εl − εg)
]⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠dt

⎤⎥⎥⎥⎥⎥⎦. (60)

To simplify the calculations, we study separately the components
depending on the dynamical flattening and those depending on
the triaxiality of Venus. As the dynamical flattening corresponds
to the symmetric part at the right hand side of (59) and (60)
although the triaxiality corresponds to the antisymmetric one, in
the following the coefficients depending on dynamical flattening
will be denoted with an index “s” and the coefficients depending
on the triaxility with an index “a”. Moreover the expression GM′

r3

in (59) and (60) can be replaced by GM′
a3 · a3

r3 where a is the semi-
major axis of Venus given by:

n2a3 = GM′. (61)

Finally we have the following equations:

Δhs = − 1
G sin I

∂

∂I

∫
W1dt (62)

ΔIs =
1
G

1
sin I

∂

∂h

∫
W1dt (63)

and:

Δha = − 1
G sin I

∂

∂I

∫
W2dt (64)

ΔIa =
1
G

⎡⎢⎢⎢⎢⎢⎣ 1
sin I

∂

∂h

∫
W2dt − cot I

∂

∂g

∫
W2dt

⎤⎥⎥⎥⎥⎥⎦ (65)

where

W1 =
GM′

a3

(a
r

)3
(
2C − A − B

2

[
−1

4
(3 cos2 I − 1)

− 3
4

sin2 I cos 2(λ − h)

])
(66)
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Table 2. Development of 1
2

(
a
r

)3
of Venus (the corresponding values for the Earth are in square brackets). t is counted in Julian centuries.

M LS Period
days cos×10−7 t cos×10−7

0 0 1
2

(
1 + 3

2 e2
)
= 5000344 [5002093] –96 [–105]

1 0 224,70 [365,26] 1
2

(
3e + 27

8 e3
)
= 101584 [250708] –7164 [–6305]

2 0 112,350 [182,63] 9
4 e2 = 1032 [6282] –146 [–316]

3 0 74.900 [121.753] 53
8 e3 = 200 [308] -40 [–23]

W2 =
GM′

a3

(a
r

)3
(

A − B
4

[3
2

sin2 I cos(2l + 2g)

+
∑
ε=±1

3
4

(1 + ε cos I)2

cos 2(λ − h − εl − εg)
])
. (67)

We adopt the following notations:

Δψ = Δh = (Δhs + Δha) (68)

Δε = ΔI = (ΔIs + ΔIa). (69)

As the rotation of Venus is retrograd the convention used is not
the same as IAU to the Earth.

7. Development of the disturbing function

Considering the level of accuracy and the time interval involved
(3000 y), truncating the function e to first order in time is a suffi-
cient approximation. Therefore we take the eccentricity of Venus
from Simon et al. (1994) as:

e = 0.0067719164− 0.0004776521t. (70)

7.1. Terms depending
on the dynamical flattening

To solve the Eqs. (62) and (63) which give the nutation coming

from the dynamical flattening, it is necessary to develop 1
2

(
a
r

)3

and ( a
r )3 cos 2(λ− h) with respect to time (i.e. with respect to the

mean anomaly and the mean longitude of Sun). Using Kepler’s
equation:

u − e sin u = n(t − t0) = M (71)

where u is the eccentric anomaly, e the eccentricity, n the mean
motion and M the mean anomaly of Venus, we have the follow-
ing classical development:

1
2

(a
r

)3
=

1
2

(
1 +

3
2

e2

)
+

1
2

(
3e +

27
8

e3

)
cos M

+
9
4

e2 cos 2M +
53
8

e3 cos 3M. (72)

For comparison we also give the corresponding coefficients of
the development of the Earth (see Table 2).

We have the following definition:

2λ = 2(ω + v) = 2(ω + M + (v − M)) = 2LS + 2(v − M) (73)

where λ is the true longitude of the Sun, ω the longitude of the
periapse of Venus, M the mean anomaly and LS the mean longi-
tude of the Sun. From Kepler’s equation we have the following
classical development:

v−M=

(
2e− e3

4

)
sin M+

(
5
4

e2− 11
24

e4

)
sin 2M+

13
12

e3sin 3M. (74)

From the trigonometric equation:

cos 2λ = cos 2LS cos 2(v − M) − sin 2LS sin 2(v − M) (75)

we obtain:
(a

r

)3
cos 2(λ − h) =

(a
r

)3
(cos 2LS cos 2(v − M)

− sin 2LS sin 2(v − M)). (76)

Using the developments (74) and (76) and the classical trigono-
metric relationships we obtain a development of ( a

r )3 cos 2(λ−h):

(a
r

)3
cos 2(λ − h) =

(
1 − 5

2
e2

)
cos 2LS

+

(
7
2

e − 123
16

e3

)
cos(2LS + M)

+ (−1
2

e +
1

16
e3) cos(2LS − M)

+

(
17
2

e2

)
cos(2LS + 2M)

+
845
48

e3 cos(2LS + 3M)

+
1

48
e3 cos(2LS − 3M).

(77)

The coefficients of this development are given in Table 3.
The periods in Tables 2 and 3 have been computed through

the mean elements of the planets given by the ephemerides
VSOP87 of Simon et al (1994). Because the eccentricity of
Venus is smaller than the eccentricity of the Earth, the coeffi-
cients of the development for Venus are smaller than the cor-
responding ones for the Earth, except for the leading one in
Table 3.

7.2. Terms depending on the triaxiality

To solve the Eqs. (64) and (65) it is necessary to develop
1
2 ( a

r )3 cos 2Φ, ( a
r )3 cos(2(λ−h)−2Φ) and ( a

r )3 cos(2(λ−h)+2Φ)
with respect to the mean anomaly M, the mean longitude LS of
Sun and to the angle l + g ≈ Φ according to (6). Using classical
trigonometric equations and developments similar to those used
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Table 3. Development of
(

a
r

)3
cos(2(λ−h) of Venus (the corresponding values for the Earth are in square brackets). t is counted in Julian centuries.

M LS Period
days cos×10−7 t cos×10−7

0 2 112,35 [182,62]
(
1 − 5

2 e2
)
= 9 998 853 [9 993 025] 161 [351]

–1 2 224,70 [365,22]
(
− 1

2 e + 1
16 e3

)
= −33859 [−83540] 2388 [2101]

1 2 74,90 [121,75]
(

7
2 e − 123

16 e3
)
= 236993 [584444] –16 718 [–14713]

2 2 56,17 [91,31]
(

17
2 e2

)
= 3898 [23730] –550 [–1193]

3 2 44.94 [73.05] 845
48 e3 = 54 [821] –4 [–20]

–3 2 –224.70 [–365.25] 1
48 e3 = 0[0] 0[0]

in Sect. 7.1, we obtain the following:

(a
r

)3
cos 2(λ − h − Φ) =

(
1 − 5

2
e2

)
cos(2LS − 2Φ)

+

(
7
2

e − 123
16

e3

)
cos(2LS + M − 2Φ)

+

(
−1

2
e +

1
16

e3

)
cos(2LS − M − 2Φ)

+

(
17
2

e2

)
cos(2LS + 2M − 2Φ)

+
845
48

e3 cos(2LS + 3M − 2Φ)

+
1
48

e3 cos(2LS − 3M − 2Φ) (78)

(a
r

)3
cos 2(λ − h + Φ) =

(
1 − 5

2
e2

)
cos(2LS + 2Φ)

+

(
7
2

e − 123
16

e3

)
cos(2LS + M + 2Φ)

+

(
−1

2
e +

1
16

e3

)
cos(2LS − M + 2Φ)

+

(
17
2

e2

)
cos(2LS + 2M + 2Φ)

+
845
48

e3 cos(2LS + 3M + 2Φ)

+
1
48

e3 cos(2LS − 3M + 2Φ) (79)

1
2

(a
r

)3
cos(2Φ) =

(
1
2
+

3
4

e2

)
cos(2Φ)

+

(
3
4

e +
27
32

e3

)
cos(M − 2Φ)

+

(
3
4

e +
27
32

e3

)
cos(M + 2Φ)

+
9
8

e2 cos(2M − 2Φ)

+

(
9
8

e2

)
cos(2M + 2Φ)

+
53
16

e3 cos(3M + 2Φ)

+
53
16

e3 cos(3M − 2Φ). (80)

These are given in Tables 4–6.

Table 4. Development of
(

a
r

)3
cos(2Φ) of Venus. t is counted in Julian

centuries.

M LS Φ Period
days cos×10−7 t cos×10−7

0 0 2 –121.51
(

1
2 +

3
4 e2

)
= 5000344 –48

1 0 2 –264.6
(

3
4 e + 27

32 e3
)
= 50792 –3582

1 0 –2 78.86
(

3
4 e + 27

32 e3
)
= 50792 –3582

2 0 2 1490.35
(

9
8 e2

)
= 516 –72

2 0 –2 58.37
(

9
8 e2

)
= 516 –72

3 0 2 195.26 53
16 e3 = 10 0

3 0 -2 46.34 53
16 e3 = 10 0

Table 5. Development of
(

a
r

)3
cos(2(λ− h)− 2Φ) of Venus. t is counted

in Julian centuries.

M LS Φ Period
days cos×10−7 t cos×10−7

0 2 –2 58.37
(
1 − 5

2 e2
)
= 9998853 161

–1 2 –2 78.87
(
− 1

2 e + 1
16 e3

)
= −33859 2388

1 2 –2 46.34
(

7
2 e − 123

16 e3
)
= 236993 –16 718

2 2 –2 38.41
(

17
2 e2

)
= 3898 –550

–3 2 –2 264.59 1
48 e3 = 0 0

3 2 –2 32.80 845
48 e3 = 54 –4

Table 6. Development of
(

a
r

)3
cos(2(λ− h)+ 2Φ) of Venus. t is counted

in Julian centuries.

M LS Φ Period
days cos×10−7 t cos×10−7

0 2 2 1490.35 (1 − 5
2 e2

V) = 9998853 161
–1 2 2 –264.6 (− 1

2 e + 1
16 e3) = −33859 2388

1 2 2 195.26
(

7
2 e − 123

16 e3
)
= 236993 –16 718

2 2 2 104.47
(

17
2 e2

)
= 3898 550

–3 2 2 224.70 1
48 e3 = 0 0

3 2 2 71.31 845
48 e3 = 54 –4

We note that the coefficients in Tables 5 and 6 are the same as
the coefficients of Table 3, because the calculations are similar
and they do not depend on the frequency associated with each
argument, but only on the eccentricity of Venus. Nevertheless
the corresponding periods are different because their calculation
includes the argumentΦ, the sideral rotation of Venus given by:

Φ ≈ l + g = −
(

2Π
TV

)
t (81)
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where TV is the sidereal period of the rotation of Venus. The
numerical value for TV is TV = 243.02 days. Notice also that
because the rotation is retrograde, Φ has a negative sign, and
that the period of LS (225 d) is close to the period of Φ (243 d).
Therefore the period for the leading componant 2LS + 2Φ in
Table 6 (1490.35 d) is much longer than the period of the leading
component 2LS − 2Φ in Table 5 (58.37 d). We have LS = ωo t,
M = ωoω t and Φ = ωr t where ωo = (2Π/224.70080)rd/d,
ωoω = (2Π/224.70082)rd/d and ωr = −(2Π/243.02)rd/d. The
very small difference between ωo andωoω is due to the longitude
of periapse ω which corresponds to a very low frequency. As a
consequence we do not change our calculations significantly by
considering that L̇S = Ṁ (LS = M + ω).

8. Precession and nutation which depend
on the longitude and obliquity

In the following, we calculate the precession and the nutation
of Venus depending on both the dynamical flattening and the
dynamical triaxiality.

8.1. Precession and the nutation of Venus depending
on the dynamical flattening

According to (62) and (63) we compute the precession-nutation
in longitude (Δhs) and obliquity (ΔIs) due to the dynamical flat-
tening:

Δhs = − 1
sin I

∂

∂I

∫
3

GM′

a3

1
G

(2C − A − B
2

)
W1dt (82)

= − Ks

sin I
∂

∂I

∫
W1dt

ΔIs =
1

sin I
∂

∂h

∫
3

GM′

a3

1
G

(2C − A − B
2

)
W1dt (83)

=
Ks

sin I
∂

∂h

∫
W1dt

where

W1 =

(a
r

)3
[
− 1

12
(3 cos2 I − 1) − 1

4
sin2 I cos 2(λ − h)

]
. (84)

Δhs andΔIs in (82) and (83) depend directly on the scaling factor
Ks:

Ks = 3
GM′

Ga3

[2C − A − B
2

]
· (85)

Using the third Kepler’s law we obtain:

Ks = 3
n2

ω

[
2C − A − B

2C

]
=

3n2

ω
HV (86)

where n is the mean motion of Venus. The dynamical flatten-
ing, defined as HV =

2C−A−B
2C , is a dimensionless parameter. We

supposed here to the first order of approximation that the com-
ponents ω1 and ω2 of the rotation of Venus are negligible with
respect to the componentω3 along the figure axis (0, z), as is the
case for the Earth (Kinoshita 1977). So we have

G = Aω1 + Bω2 +Cω3 ≈ Cω (87)

with the values of A, B, C adopted in Sect. 10 and that of the
dynamical flattening given which is deduced directly from them
(given in Table 1), we find:

Ks = −8957.′′55 ± 133.29/Julian. cy. (88)

Table 7. ΔΨs = Δhs: nutation coefficients in longitude of Venus de-
pending on its dynamical flattening.

Argument Period sin t sin cos
days arcsec arcsec/Julian cy arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 21 900 468 352 0
M 224.70 –889 997 62 765 61

2Ls + M 74.90 346 057 –24 412 –7
2Ls − M 224.70 –148 323 10 461 10
2Ls + M 56.17 4269 –602 0

2M 112.35 –4521 640 0

Table 8. Δεs = ΔIs: nutation coefficients in obliquity of Venus depend-
ing on its dynamical flattening.

Argument Period cos t cos sin
days arcsec arcsec/Julian century arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 –100 741 –16 0

2Ls + M 74.90 –15 919 1123 0
2Ls − M 224.70 6822 -481 0

2Ls + 2M 56.17 -196 27 0

In the case of the Earth, the scaling factor due to the gravitational
influence of the Sun is (Souchay et al. 1999):

KE
s = 3475.′′36/Julian. cy. (89)

Then we have the following result:

Ks

KE
s
=

⎛⎜⎜⎜⎜⎝ n2

n2
E

⎞⎟⎟⎟⎟⎠ ·
(
ωE

ω

)
·
(

HV

HE

)
≈ −2.577. (90)

Thus for Venus, the value of the constant of the precession-
nutation due to the Sun is roughly 2.6 times bigger that the cor-
responding one for the Earth. Through the development done
previously (cf Sect. 7) and according to the conventional nota-
tions (68) and (69), we get the precession and the nutation of
Venus depending on its dynamical flattening. We will see in the
following sub-section that the triaxiality does not contribute to
the precession. So we obtain the following result for the preces-
sion:

ψ̇ = Ks cos I
∫ (

1 +
3
2

e2

)
dt = 4474.′′35t − 0.021t2 (91)

where t is counted in Julian centuries. The nutation coefficients
in longitude and in obliquity are given respectively in Tables 7
and 8. All our results are given with respect to the moving orbit
at the date t.

These coefficients are of the same order of magnitude as
those for the Earth due to the action of the Sun found by
Kinoshita (1977) and Souchay et al. (1999). The largest nutation
coefficient has roughly a 2′′ amplitude whereas for the Earth it
has a 1′′ amplitude. As in the case of the precession, this dif-
ference comes from the larger value of the constant Ks and is
slightly compensated for after integration by the fact that the pe-
riod of revolution of Venus around the Sun (225 d) is shorter than
that of the Earth. The largest nutation coefficient in obliquity is
comparatively very small with a 0.1′′ amplitude whereas for the
Earth it has a 0.5′′ amplitude. The difference is due to the small
obliquity of Venus (I ≈ 3), our results depending on sin I.
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8.2. Precession and nutation of Venus depending
on dynamical triaxiality

Starting from (64) and (65), we can compute the nutations Δha

and ΔIa respectively in longitude and in obliquity, due to the
triaxiality of Venus:

Δha = − 1
sin I

∂

∂I

∫
3

GM′

a3

1
G

(A − B
4

)
W2dt

= − Ka

sin I
∂

∂I
W2dt (92)

ΔIa =

⎡⎢⎢⎢⎢⎢⎣ 1
sin I

∂

∂h

∫
3

GM′

a3

1
G

(A − B
4

)
W2dt

− cot I
∂

∂g

∫
3

GM′

a3

1
G

A − B
4

W2dt

⎤⎥⎥⎥⎥⎥⎦ (93)

=
Ka

sin I
∂

∂h

∫
W2dt − Ka cot I

∂

∂g

∫
W2dt (94)

where

W2 =

(a
r

)3 [1
2

sin2 I · cos(2Φ)

+
∑
ε=±1

1
4

(1 + ε cos I)2

· cos 2(λ − h − εΦ)
]
. (95)

Δha and ΔIa in (92) and (93) depend directly on the scaling
factor Ka:

Ka = 3
GM′

Ga3

[A − B
4

]
(96)

where M′, G, G and a have been defined previously. Still using
Kepler’s third law we get:

Ka = 3
n2

ω

[A − B
4C

]
· (97)

The triaxiality, defined as TV =
A−B
4C , is also, as HV, a dimension-

less parameter. here we assume again that:

G ≈ Cω. (98)

Then, with the value of the triaxiality (given in Table 1), we get:

Ka = 1131.′′23 ± 17.09 Julian/cy. (99)

In the case of the Earth, the scaling factor due to the gravitational
influence of the Sun is (Souchay et al. 1999):

KE
a = −5′′68 Julian/cy. (100)

Thus we have the following ratios:

Ka

KE
a
=

⎛⎜⎜⎜⎜⎝ n2
v

n2
T

⎞⎟⎟⎟⎟⎠ ·
(
ωE

ω

)
·
(

TV

TE

)
≈ −199.16. (101)

This result shows that the coefficients of nutation due to the triax-
ility are considerably larger for Venus than for the Earth. Thanks
to the development done previously (cf. Sect. 4.1) and according
to the Eqs. (92) and (93), we get the nutation of Venus depend-
ing on its triaxiality. The nutation coefficients in longitude and
in obliquity are given respectively in Tables 9 and 10. All our
results are given with respect to the moving orbit at the date t.

Table 9. ΔΨa = Δha: nutation coefficient in longitude of Venus depend-
ing on its triaxiality.

Argument Period sin t sin cos
days arcsec arcsec/Julian cy arcsec

10−7 10−7 10−7
2Φ –121.51 –5 994 459 58 0

2LS − 2Φ 58.37 –2 880 826 –46 0
M + 2Φ –264.6 –132 590 9351 –11

M − 2Φ + 2LS 46.34 –54 201 3823 0
M − 2Φ 78.86 39519 –2787 0

2LS + 2Φ 1490.35 38 866 0 0
−M − 2Φ + 2LS 78.86 13 179 –929 0

2M + 2Φ 1490.35 7587 –1058 –7
2M − 2Φ + 2LS 38.41 –739 104 0

2M − 2Φ 58.37 297 –41 0
M + 2Φ + 2LS 195.26 121 –8 0
−M + 2Φ + 2LS -264.66 23 –2 0
2M + 2Φ + 2LS 104.47 1 0 0

Table 10. Δεa = ΔIa: nutation coefficients in obliquity of Venus depend-
ing on its triaxiality.

Argument Period cos t cos sin
days arcsec arcsec/Julian cy arcsec

2Φ –121.51 275 453 –3 0
2lS − 2Φ 58.37 –132 365 –2 0
M + 2Φ –264.6 6093 –430 0

M − 2Φ + 2LS 46.34 –2491 176 0
2lS + 2Φ 1490.35 –1786 0 0
M − 2Φ 78.86 –1816 128 0

−M − 2Φ + 2LS 78.86 606 –43 0
2M + 2Φ 1490.35 –348 47 0

2M − 2Φ + 2LS 38.41 –35 5 0
2M − 2Φ 58.37 –14 2 0

M + 2Φ + 2LS 195.26 –6 0 0
−M + 2Φ + 2LS –264.6 –1 0 0
2M + 2Φ + 2LS 104.47 0 0 0
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Fig. 8. The precession and the nutation of Venus in longitude for a
4000 day time span.

For Venus, the largest nutation coefficient in longitude for
the terms depending on its triaxiality has a 0.′′6 amplitude and
the largest nutation coefficient in obliquity has a 0.′′03 amplitude.
Their period corresponds to half the period of rotation of the
planets, 121.5 d.

From the Tables 7 to 10, we choose to calculate numer-
ically from their analytical expression the precession-nutation
with respect to t, over a period of 4000 d. Figure 8 represents the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=8
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Fig. 9. The nutation in longitude of Venus depending on its dynamical
flattening (cyan) and depending on its triaxiality (blue) for a 4000 day
time span, from J2000.0.
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Fig. 10. The nutation in obliquity of Venus depending on its dynamical
flattening (cyan) and depending on its triaxiality (blue) for a 4000 day
time span, from J2000.0.
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Fig. 11. The nutation of Venus in longitude for a 4000 day time span,
from J2000.0

combined precession and nutation of Venus in longitude. The
periodic part stands for the nutation and the linear part for the
precession (see (91)). In Fig. 9 and Fig. 10, we represent the
nutation of Venus respectively in longitude and in obliquity de-
pending on its dynamical flattening (black curve) and its triax-
iality (red curve). In Figs. 11 and 12, we represent the nutation
respectively in longitude and in obliquity when combining the
two components above. In Figs. 8 to 12 we choose the 4000 d

0 1000 2000 3000 4000

�0.10

�0.05

0.00

0.05

0.10

temps�days�

nu
ta

tio
n

in
ob

liq
ui

ty
�a

rc
se

co
nd
�

Fig. 12. The nutation of Venus in obliquity for a 4000 day time span,
from J2000.0.

time span to clearly see the leading oscillations. Recall that our
study is valid over 3000 years. The nutation of Venus depend-
ing on its triaxiality is dominated by a sinusoid with a period
of 121.51 d and another one with a period of 58.37 d. On the
other hand the nutation depending on its dynamical flattening is
largely dominated by a single sinusoid with a period of 112.35 d.
We can also remark (Figs. 9 and 10) that the nutation coefficients
of Venus depending on its triaxiality are of the same order of
magnitude as the nutation coefficients depending on its dynami-
cal flattening, whereas for the Earth they are small and negligible
in comparison (Kinoshita 1997; Souchay et al. 1999). Two rea-
sons explain this:

– the ratio of scaling factors is Ka
Ks
= 1131

8953 ≈ 1
8 for Venus,

whereas for the Earth it is two orders of magnitude smaller:
KE

a

KE
s
= 5

3475 ≈ 1
695

– the frequency of the sidereal angle Φ̇ ≈ l̇ + ġ which enters
in the denominator during the integrations in (92) and (93) is
roughly 243 times larger for the Earth than for Venus.

Thus we have pointed out a significant difference between the
nutations of the two planets.

9. Motion of the pole of Venus in space

From the previous section, it is possible to describe the motion
of the pole of Venus with respect to its orbital plane at the date t.
The rectangular coordinates (Xp, Yp, Zp) of the pole are given by:

⎛⎜⎜⎜⎜⎜⎜⎝
Xp
Yp
Zp

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
− sin(I0 + ΔI) sin(h + Δh)
− sin(I0 + ΔI) cos(h + Δh)
cos(I0 + ΔI)

⎞⎟⎟⎟⎟⎟⎟⎠ (102)

The precession in longitudeΨ is given by

Ψ = Ψ̇t = −h = 4474.′′35t ± 66.5 (t in Julian/cy) (103)

I0 is the nominal value of the obliquity:

I0 = −ε0 = −2.63. (104)

Replacing ΔI and Δh by their numerical values from Tables 7
to 10, we show in Fig. 13 the motion of the Venus figure axis in
space over a one century time interval, for which the combined
motion of precession and nutation appears clearly.

From (103) we directly determine the period of precession
of Venus, i.e. 28 965.10± 437 years. It is slightly longer than the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=12
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Fig. 13. (X,Y) motion of Venus polar axis in space for a one century
time span.

period of precession of the Earth, i.e. 25712.4 y (Bretagnon et al.
1997). Notice that in the case of the Earth, the Moon contributes
roughly 2/3 and the Sun 1/3 to the precession rate. In the case of
Venus, only the Sun contributes significantly to the precession
rate. However, as we have shown in Sect. 8, this solar contribu-
tion is roughly 2.5 times greater than the corresponding one for
the Earth. This explains why the periods of precession are rather
equivalent.

10. Numerical values of 2C−A−B
2C

and A−B
4C and comparison of results

From the various calculations done in the previous sections, we
know that the accuracy in the determination of the precession
rate Ψ̇ and of the coefficients of nutation depends directly on
the quality of determination of the dynamical ellipticity HV =
2C−A−B

2C and of the triaxiality TV =
A−B
4C . Therefore for this pur-

pose it is crucial to obtain accurate values of the moments of in-
ertia. The value of ratio C

MR2 is inperfectly known. Kozlovskaya
(1966) obtained a value in the [0.321;0.360] interval, Shen and
Zhang (1988) in the [0.321;0.350] one and Yoder(1995) in the
[0.331; 0.341] one. Williams (private communication) gives the
following values relative to the differences of the moments of
inertia:

C − A
MR2

= 5.519 × 10−6,
C − B
MR2

= 3.290 × 10−6,

B − A
MR2

= 2.228 × 10−6 (105)

with these values and adopting C
MR2 = 0.3360, we get:

C − A
C
= 1.643 × 10−5,

C − B
C
= 9.79 × 10−6,

B − A
C
= 6.631 × 10−6. (106)

All our calculations in this paper have been done with these val-
ues. When studying the rotation of Venus, Habbibulin (1995)
has taken C

MR2 = 0.340 and the values of the Stokes parameters
obtained by Williams (1983):

C − A
C
= 2.3324 × 10−5,

C − B
C
= 1.2618 × 10−5,

B − A
C
= 1.0706× 10−5. (107)

Table 11. Comparison between our results computed with the recent
values of the moment of inertia and those obtained with the values of
Habbibulin et al. (1995).

Principal parameter Habbibulin (1995) This study

Triaxiality: A−B
4C −2.67 × 10−6 −1.66 × 10−6

Dyn. flattening: 2C−A−B
2C 1.70 × 10−5 1.31 × 10−5

KV
s −12275.′′32/cy −8957.′′55/cy ± 133.29

KV
a 1829.′′34/cy 1133.′′28/cy ± 17.09

Precession 6133.′′77t 4474.′′35t ± 66.5
Period of precession 21156 years 28 965.10 ± 436.99 years
Largest nutation

coefficient 3.′′00 2.′′19

In Table 11 we compare our results with those obtained by di-
rectly using the values of Habbibulin (1995) for the physical pa-
rameters of Venus, thus showing large differences.

Table 11 shows that the values of the moments of inertia are
crucial for our computations. The comparison with the final re-
sults computed by Habbibulin (1995) is not possible because
in his paper different angles, parametrisation and more com-
plex developments were used. In another study, Zhang (1988)
found a precession rate of 7828.′′6/cy corresponding to a period
of 16 555 years. Altough no precise information could be ex-
tracted from this paper, the difference is probably due to differ-
ent values of the moments of inertia. What we highlight here is
that different values of moment of inertia yield fairly different
results for the precession and the nutation as shown in Table 11.

11. Conclusion and prospects

In this paper we investigated by the rotation of Venus. We
adopted a well suited theory of the rotation of a rigid body set
up by Kinoshita (1977) and developed in full detail by Souchay
et al. (1999) for the Earth. In a first step we defined the refer-
ence frames to the various polar axes of the planet (axis of an-
gular momentum, rotation axis, figure axis) and on its moving
orbital plane. We have also given in full detail the parametriza-
tion of Venus rotation starting from the set of Andoyer canon-
ical variables with respect to the moving orbital plane. In par-
ticular we have determined precisely the motion of the orbit of
Venus at t with respect to the orbit at J2000.0, through the pa-
rameters Π1 and π1, for which we have given polynomial ex-
pressions. Moreover we have checked the value of the Venus
obliquity (263).

Then we calculated the disturbing function due to the
gravitational interaction with the Sun. Applying Kinoshita’s
Hamiltonian analytical developments, we calculated the preces-
sion constant of Venus, with a precision and an accuracy bet-
ter than in previous works (Habillulin 1995; Zhang 1988). Our
value for the precession in longitude is ψ̇ = 4474.′′35t/cy± 66.5.
which is more than two times larger than the corresponding term
for the Earth due to the Sun (ψ̇ = 1583.′′99/cy) and slightly
smaller than the combined effect of the Moon and of the Sun
for the Earth (ψ̇ = 5000.3′′/cy). We have shown that the ef-
fect of the very small value of the dynamical ellipticity of Venus
(HV = 1.31 × 10−5), which should directly lower the amplitude
of its precession and nutation, is more than fully compensated
for by its very slow retrograde rotation. Moreover, one of the
specificities of Venus is that its triaxiality (TV = −1.66 × 10−6.)
is of the same order as its dynamical ellipticity (see value above),
unlike what happens for the Earth for which it is consider-
ably smaller. Consequently, we have performed a full calcula-
tion of the coefficients of nutation of Venus due to the Sun and
presented the complete tables of nutation in longitude (ΔΨ) and

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912174&pdf_id=13
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obliquity (Δε) due both to the dynamical ellipticity and the triax-
iality.These tables have never been presented in previous works.
We think that this work can be a starting point for further studies
dealing with Venus rotation, for which it has set up the theo-
retical foundation (parametrization, equations of motion etc...),
such as a study of precession-nutation over a long time scale, the
calculation of Oppolzer terms, the effects of the atmosphere.

12. Appendix

Demonstration of Eq. (9):

da = cosc · db + cos B · dc + sin b sin C · dA.
Derivating the following classical relation:

cos a = cos b cosc + sin b sin c cosA

we obtain:

− sin a · da = (− sin b cosc + sin c cosb cosA) · db
+(− cosb sin c + sin b cosc cosA) · dc
+(− sin b sin c sin A) · dA. (108)

Dividing by – sin a we have the following equation:

da =

(
sin b cosc − sin c cosb cosA

sin a

)
· db

+

(
cos b sin c − sin b cos c cos A

sin a

)
· dc

+

(
sin b sin c sin A

sin a

)
· dA. (109)

In the spherical triangle A, B, C the following equations holds:

sin c
sin C

=
sin a
sin A

⇒ sin b sin c sin A
sin a

= sin b sin C.

Thus:

sin a cosC = cosc sin b − sin b cosc cosA

⇒ sin b cosc − sin c cosb cosA
sin a

= cosC

sin a cosB = cosb sin c − sin c cosc cosA

⇒ sin c cosb − sin b cosc cosA
sin a

= cosB

Replacing in (109), we obtain (9).
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