
 

 

 

Abstract 
 

We present a novel and effective algorithm for rotation 

symmetry group detection from real-world images. We 

propose a frieze-expansion method that transforms rotation 

symmetry group detection into a simple translation 

symmetry detection problem. We define and construct a 

dense symmetry strength map from a given image, and 

search for potential rotational symmetry centers 

automatically. Frequency analysis, using Discrete Fourier 

Transform (DFT), is applied to the frieze-expansion 

patterns to uncover the types and the cardinality of multiple 

rotation symmetry groups in an image, concentric or 

otherwise. Furthermore, our detection algorithm can 

discriminate discrete versus continuous and cyclic versus 

dihedral symmetry groups, and identify the corresponding 

supporting regions in the image. Experimental results on 

over 80 synthetic and natural images demonstrate superior 

performance of our rotation detection algorithm in 

accuracy and in speed over the state of the art rotation 

detection algorithms. 

1. Introduction 

 Symmetry is ubiquitous in natural and man-made images. 

Symmetric figures attract human attention within natural 

scenes [16]. Automatic symmetry detection on 2D or 3D 

images has been an active research area for over four 

decades [1, 2, 3, 4, 5, 11]. Symmetry is a type of shape 

regularity that plays an important role for object recognition 

and classification in computer vision [17]. A symmetric 

object can be characterized efficiently by its symmetry 

groups, yielding a low dimensional set of features for object 

representation, recognition, matching, segmentation and 

tracking.  

Figure 1 shows examples of the three distinct types of 

rotation symmetry groups about a fixed point in 2D 

Euclidean space [14]. We present a novel approach for 

detecting the three types of rotation symmetry groups in real 

world images. Our work makes the following specific 

contributions: (1) we propose a novel frieze-expansion 

method (Figure 2), which converts 2D rotational symmetry 

detection into a problem of 1D translation symmetry 

detection; (2) We propose a rotation symmetry strength 

(RSS) function that can be used to recursively evaluate 

potential centers of rotation symmetry on any given image; 

(3) our algorithm detects and discriminates all three rotation 
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(a) Input (c) Frieze-expansion (b) RSS map 

Figure 2: (a) Test image with multiple rotational centers and symmetry types. (b) Rotation Symmetry Strength (RSS) map overlaid on the 

original image (c) One sample of Frieze-expansion (d) Rotation symmetry group detection result 

(d) Found symmetry groups 
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Figure 1: Different rotation symmetry groups.     : n-fold cyclic 

group (pure rotation symmetry).     : n-fold dihedral group (rotation 

+ reflection symmetry) that contains a cyclic group (      ).           

: Continuous rotation with infinite reflection symmetries.  



 

 

symmetry groups using frequency domain analysis on the 

frieze-expansion patterns. Figure 2 demonstrates a sample 

rotation symmetry detection process from a natural photo. 

We evaluate our algorithm on more than 80 synthetic/real 

world images with single/multiple rotation centers and 

compare against the state of the art rotation detection 

algorithms (Section 5). 

2. Previous Work 

Symmetry detection and analysis has been a research 

topic not only in computer vision but also in mathematics, 

architecture, art and sciences [10]. In computer vision, 

many rotation symmetry detection algorithms have been 

proposed for 2D and 3D images [1, 2, 3, 4, 5, 11]. 

Some recent work [1, 2, 3] proposes to use local features 

such as edge, corner and boundary information for 

symmetry detection. In [3] the authors use local features 

from Gradient Vector Flow (GVF) to build a confidence 

map to detect rotation symmetry centers. Loy and Eklundh 

[1] use SIFT features to determine rotation symmetry 

centers. These local feature-based algorithms can be fast, 

however, selected local features are not always optimal for 

symmetry detection. For example, Loy and Eklundh [1], 

using SIFT features as key points, would fail to capture 

symmetric objects consisting of textureless regions (images 

I-5, I-6 and I-7 in Figure 9). They also frequently yield false 

positive incorrect symmetry centers supported only by very 

few points (2 or 3).  

Other approaches [4, 5, 11] search either the entire image 

or the whole parameter space. For example, the symmetry 

detection algorithm introduced for digital Papercutting [4] 

uses an edge-based feature set and searches through the 

whole 2D polar parameter space of reflection axes. These 

algorithms usually take much longer than local feature 

based algorithms, which is perhaps their biggest drawback. 

Autocorrelation has been used for symmetry detection for 

several applications [4, 7, 11]. Autocorrelation is useful for 

periodic pattern detection and has been used for signal 

processing [13]. Liu et al [7] introduce region of dominance 

to detect translation symmetry of frieze and wallpaper 

patterns, where autocorrelation is computed in frequency 

domain based on the Wiener-Khinchin [13] theorem.  

As a frequency-based symmetry detection algorithm, 

Keller and Shkolnisky [5]’s work is the most similar to ours. 

They use a polar fast Fourier transform (FFT) on the 

pseudo-polar grid to find signal repetition over angular 

direction for rotation symmetry detection. However, their 

polar FFT investigates pre-selected local areas and can not 

detect all existing symmetry types at different locations. 

They can not distinguish cyclic from dihedral symmetry, 

and are limited to detecting a single symmetry in each 

image.  

Table 1 shows a categorized comparison of our proposed 

algorithm with several state of the art rotation symmetry 

detection algorithms.   

3. Rotation Symmetry Detection 

In our work, a rotation symmetry group is characterized 

by the following four properties. 

1) Center of rotation symmetry,  

2) Number of fold (cardinality of the symmetry group), 

3) Type of symmetry group (Dihedral/Cyclic/O(2)), and 

4) Local supporting region (annulus). 

Our algorithm detects these four properties in two steps: 

rotation center detection and symmetry group analysis. A 

rotation symmetry-strength (RSS) map represents the 

symmetry strength at each pixel of the image by a 2D 

weighted map. Rotation center detection finds peaks in the 

RSS map. From the detected centers of rotation, a symmetry 

analysis step detects the rest of the symmetry group 

properties. 

3.1. Frieze-Expansion 

The existence of a rotational symmetry is usually 

supported by an annulus with or without a connected center 

point. If there is rotation symmetry about the center, this 

annulus contains repeating patterns along its circular 

direction (Figure 3 (a),(b)). In this work, we propose to 

detect rotation symmetry in a transformed space of the 

original image via frieze-expansion where the rotation 

symmetry on the circular band becomes translation 

symmetries on a frieze-expansion pattern (Figure 3 (b)). 

Given the location of a candidate rotation center, a diameter 

and a polar angle-step size (Figure 3 (a)), we re-align each 

diameter in parallel, from left to right, to form a horizontal 

pattern while advancing about the center angularly in the 

Detection 
GVF 

[3] 

Papercut 

[4] 

SIFT 

[1] 

FFT 

[5] 

Ours 

Dihedral 

/Cyclic/O(2)? 
No * No No Yes 

Concentric 

symmetry? 
No Yes No No Yes 

Symmetry map? Yes Yes No No Yes 

Time  

complexity ** 
O(      +I) O(K+I) O(P+I) O(I) O(I) 

Processing 

time (sec.) *** 
150 50 3 **** 25 

 
Table 1:  Comparison of the state of the art rotation symmetry 

detection algorithms *[4] is designed to detect dihedral and 

frieze groups only. **I(image size), P(number of key points), 

K(number of folds). B(see [3]) *** the average computing time 

on ten 150x150 images with a single rotation symmetry center. 

****Information  unavailable 

1−KB



 

 

original image (Figure 3(b)). If the candidate center location 

in the original image is indeed the center of a rotational 

symmetry, the converted frieze-expansion image becomes a 

true frieze pattern with non-trivial horizontal translation 

symmetry, and vice versa. 

Dihedral and cyclic groups are the only discrete rotation 

symmetry groups and O(2) is the only continuous symmetry 

group in 2D. There is a unique relation between the discrete 

rotation symmetry groups and frieze patterns. Frieze 

patterns have seven distinct symmetry groups [9]. If there is 

a rotation symmetry in an image, its frieze-expansion should 

fall into one of these seven groups. In other words, all types 

of frieze patterns, if we convert them back into circular 

regions, must have some type of rotation symmetry. This 

relation is used for our rotation symmetry analysis. Figure 4 

shows the seven frieze groups and their corresponding 

rotational symmetry groups.  

3.2. Discrete Fourier Transform 

We are now facing the task of translation symmetry 

detection or frequency detection from a special type of 

patterns: frieze-expansions. Two predominant approaches 

for translation symmetry analysis, among many other 

alternatives, are the discrete Fourier transform (DFT) 

method in the frequency domain and the auto-correlation 

method in the spatial domain. Based on Wiener-Khinchin 

theorem [13], we can establish the equivalence relation 

between the spectral density and the DFT of AC for the 

same input signal as follows (Figure 5): 

We perform a one-dimensional horizontal discrete 

Fourier transform (DFT) on each row of the 

frieze-expansion. The DFT coefficients are defined in 

Equations (1) and (2) below [12]:  

 

                              (1) 

 

 

                              (2) 

(c) (a) 

Figure 3: (a) Original image; a region is selected with the correct symmetry center. (b) Frieze-expansion; each diameter of the circle 

corresponds to a column of the frieze-expansion. (c) 1D DFT results; horizontal axis is the index of DFT basis and vertical axis is the same 

as the vertical axis of the frieze pattern. (a)~(c) are repeated for all image pixels to build RSS map. (d) Rotation symmetry strength (RSS) 

map overlaid on the original image. Once a center is detected, the corresponding DFT segmentation is performed on (c). (e)(f)(g) are the sum 

of absolute DFT coefficients of the segmented regions. (h)(i)(j) are the segmented frieze patterns from (b). (k) Final rotation symmetry group 

detection result. 
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(g) 
(j) (k) 

(f) 

(e) (h) 

(i) 

Figure 4: The correspondence between the seven frieze groups 

and the two rotation symmetry groups in 2D. 
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where X(k) is k
th
 coefficient of DFT (a(k) is real part and 

b(k) is imaginary part of the coefficient), N is the width of 

the frieze-expansion pattern and x(n) is the intensity value 

along a single row of the frieze-expansion. S(k) is the 

energy spectral density of the k
th
 DFT component. 

X(k) corresponds to the relative strength of all 

corresponding potential frequency. If one specific 

coefficient has a dominant peak value, there exists a 

translational symmetry in that x(n) row of the 

frieze-expansion. All possible phase differences between 

x(n) and one of the corresponding DFT components (sine or 

cosine wave) are inbetween 0 and π /2, which can be 

calculated by its spectral density from both sine and cosine 

waves of the same frequency. Due to the symmetric nature 

of DFT coefficients, only the first half of the set of the 

coefficients needs to be checked. 

The relation between the spectral density S(k) and the 

auto-correlation C(n) can thus be expressed as (also shown 

graphically in Figure 5): 
 
                  

(3) 
 
 
From (3) one can verify that autocorrelation and spectral 

density represent the same information in different domains. 

DFT decomposes autocorrelation into a set of frequency 

components with the highest coefficient assigned to the 

strongest component. Previous work [7] has used 

auto-correlation for finding the underlying lattice 

(translation symmetry) in frieze and wallpaper patterns via 

inverse FFT of the spectral density (for computational 

efficiency). 

Frequency analysis on the spectral density investigates 

regularity of autocorrelation by correlating with densely 

defined components (sine and cosine waves) rather than 

detecting coarse peak locations. Strong response to a DFT 

component means that there is a set of peaks or regular 

variation of corresponding frequency in the spatial domain. 

We do not have to compare all pairs of local maximum 

autocorrelation values in the spatial domain to find potential 

regularities. We just need the maximum spectral density 

value. Frequency analysis allows a more efficient way to 

perform peak finding and translation symmetry detection 

from the frieze-expansion. 

3.3. Rotation Symmetry Strength (RSS) Map 

If there is only one dominant coefficient in the DFT space, 

we can conclude that there is a symmetry. This is usually the 

case with synthetic images like Figure 1. Natural images 

usually show multiple dominant coefficients. We calculate 

rotation symmetry strength (RSS) from the DFT 

coefficients. RSS is a function of center position, radius r 

and angular step size   . In the rotation center detection step 

of our algorithm, the maximum radius inside the given 

image for each location is used and the angular step size is 

fixed to 2π/N. By fixing these parameters, RSS becomes a 

function of position only and can be represented as a two 

dimensional intensity map or RSS map. The 1
st
 DC 

coefficient is not used for RSS calculation.  

Let                represent the k
th
 spectral density of the r

th
 row 

of the frieze pattern at the center (x,y). With the angular step 

size 2π/ N, we have N points for each row of the frieze 
pattern and also N coefficients for each corresponding row 

of the DFT result (Figure 3(b), (c)). 
                       

    (4) 

 

First, the dominant density         among the first half of the 

energy spectrum satisfy the following condition:    

                

    (5) 
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Figure 5: Relation between spectral density S(k) and autocorrelation C(n). ((a)->(d)->(e)->(f)) is the processes of our algorithm, which is 

equivalent to using the DFT of autocorrelation ((a)->(b)->(e)->(f)). Peak finding algorithms [7] use (a)->(d)->(e)->(b)->(c) to reduce the 

time complexity.  * DC coefficients are not shown. 
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The existence of these dominant coefficients, however, 

does not always indicate the existence of a symmetry. We 

need to check the coincidence of k dominant coefficients to 

confirm that all indices of dominant coefficients are 

multiples of the smallest index. If all indices of dominant 

peaks satisfy this condition, we conclude that there is a 

rotational symmetry in the row. The RSS measure at 

position (x, y) is defined as,  

       

 

                        (6) 

  

 

 

           

 

where R is the total number of row of the frieze pattern. By 

computing the RSS score for expanded frieze patterns 

around the candidate rotation centers throughout the whole 

image, we can build a dense rotational symmetry strength 

map for the given image. This RSS map provides a 

quantitative symmetry measure at each pixel. Figure 3(d) 

shows an example of the RSS map overlaid on the original 

image, Figure 3(a). Higher values of RSS mean stronger 

likelihood of rotation symmetry at that location. Figure 6 

shows that higher fold, higher contrast and bigger region 

sizes contribute to higher RSS values, signifying a 

perceptually more symmetric pattern. 

3.4. Hierarchical Search 

Even though a full search at each pixel gives a more 

accurate RSS map, the processing time increases linearly 

with the image size. We use a hierarchical search algorithm 

to accelerate the rotation symmetry center detection 

process.  

We start from the observation that most rotation 

symmetry remains when an image is scaled down. 

Gradually reducing the size of the original input image, we 

form an image pyramid. We perform full search over the 

smallest image at the top of the pyramid. The initial RSS 

map provides several local peaks forming the potential 

centers of rotation symmetries. The initial symmetry map is 

then enlarged using bilinear interpolation to the size of the 

next level of the pyramid. Previously detected center 

candidate points and their neighborhood regions are then 

refined with image patches at a higher resolution level. This 

process is repeated until we reach the original image 

resolution (Figure 7). After we reach the final, highest 

resolution RSS map, we select the final candidate symmetry 

center points. 

The RSS map can be thought of as a symmetry saliency 

map, and we adopt a well-known peak visiting method 

called the inhibition-of-return mechanism [8] to extract 

local maxima in descending order of saliency. We continue 

to extract local maxima until the RSS value falls below a 

threshold, )()( RSSstdRSSmean ⋅+ β [15]. Ideally, the 

optimal values of α (equation 5) and β  can be determined 

by the RSS range within which the human eye can perceive 

a rotation symmetry. In our experiments, we use empirical 

values of 2 and 1.8 for α  and β  respectively for all 

images. 

4. Symmetry Group Analysis 

After rotation symmetry center detection, the DFT 

spectral density of each frieze-expansion is used to 

determine the number of fold, symmetry group types and the 

symmetry support region. The DFT spectral density image 

(Figure 3(c)) contains frequency information of each row, 

corresponding to each concentric band in the original image. 

This makes it possible to analyze in detail the symmetry of 

image patches around a given center.  

4.1. DFT Segmentation 

As can be seen in Figure 3(c), several consecutive rows 

may have the same peak distributions of DFT spectral 

density. This indicates a “frequency cluster” leading to one 

contiguous symmetry-supporting region. We can therefore 

differentiate one symmetry region from another type of 

symmetry region (bands) even though they share the same 

center. By grouping consecutive dominant peaks, we can 

delineate each symmetry region on both the converted frieze 
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Figure 7: A hierarchical search is used to efficiently detect 
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pattern and the original image. Figure 3(c) shows a 

segmented result. Figure 3(e) shows the summed DFT 

power spectrum of corresponding symmetry regions, from 

which we can decide the number of fold, as described next.  

4.2. Number of Folds 

From the DFT coefficient plot of each supporting region, 

we find the highest coefficient basis k. The number of fold 

corresponds to k-1. Note that we only consider AC 

coefficients. For example, the 7
th
 bases are cosine/sine 

waves with six cycles. This responds most strongly to 

six-fold rotation symmetry. In Figure 3, the summed up 

DFT density plot in (e) has a maximum peak at the 6
th
 

component and (g) has its maximum peak at the 5
th
 

component, which represents a 5-fold and a 4-fold rotation 

symmetry, respectively. The reader can verify this with 

respect to the corresponding frieze patterns in Figure 3(h) 

and (j). Figure 8 shows several fold decision examples from 

the DFT spectral density image. 

We can prove that if a frieze expansion has horizontal 

reflection symmetry along the center row (Figure 3(b)), the 

inverse frieze expansion in its image space has a rotation 

symmetry with even fold, otherwise it is odd. For example, 

the pattern in Figure 3(j) is reflected symmetrically in figure 

3(b), but the pattern in 3(h) is not. This helps to decide 

robustly the number of fold. 

4.3. Symmetry Group Classification 

From the observation of Figure 3(h) and (j), we know that 

a frieze-expansion pattern of cyclic symmetry has no 

vertical reflection, while a frieze-expansion pattern of 

dihedral symmetry have to have vertical reflection. By 

checking the existence of vertical reflection in a frieze 

pattern, we can differentiate cyclic from dihedral symmetry. 

Furthermore with the fold information, we can identify the 

motif of a frieze pattern [9] computationally. By flipping a 

motif horizontally and sliding it over the frieze pattern while 

calculating correlation, we can verify whether there is a 

periodic match or not. If there is, we conclude this region is 

dihedral, and if not, cyclic. In other words, if there is vertical 

reflection in the frieze pattern, it falls into the dihedral 

rotation symmetry group.  

One exceptional case is shown in Figure 3(f). Most of the 

coefficients are zero, signifying that the corresponding 

region of the original image is uniform, as in Figure 3(i). 

This indicates the existence of the continuous rotation 

symmetry group, O(2). 

4.4. Merging and Elimination  

Our algorithm investigates symmetry for each row in the 

expanded frieze pattern. Noise can cause detection failure in 

a narrow band and this could divide one symmetry region 

into multiple regions, even though they have the same 

symmetry characteristics. To avoid this, we merge 

consecutive symmetry regions if they share the same 

number of fold and symmetry type.  

For the same reason, a narrow region could be selected as 

one symmetry region even though it is not a symmetric 

region or is a symmetry region that is hardly perceived by 

the human eye due to its narrow width. We eliminate such 

narrow symmetry regions in post-processing.  

5. Experimental Result  

   We tested our algorithm on 80 images of various types to 

verify the strength and weakness of our algorithm. Figure 9 

shows 18 sample results. Each image presents some type of 

computational challenge in symmetry detection, such as 

intensity/color variation (I-1, I-4), concentric symmetry (I-3, 

I-6), minimum texture (I-5), continuous symmetry (I-7), 

occlusion (I-12, I-17), high order of symmetry (I-12, I-13), 

multiple symmetry types (I-3, I-6, I-14) and no symmetry 

(I-18). Our algorithm detects the rotation symmetry 

correctly under these adverse conditions. Test image I-5 

contains no texture, but our algorithm can perceive 4-fold 

rotation symmetry by its shading gradation. Test image I-12 

and I-17 show that our algorithm is robust to occlusion. This 

is because the non-occluded parts still maintain regularity 

and respond strongly to the corresponding cosine/sine 

waves in the DFT bases. Test image I-18 has no rotation 

Figure 8: Number of fold decision from DFT result. All DFT 

results are from our test images I-1, I-11, I-12, I-2 and I-5, 

respectively (Figure 9). Red arrows indicate the dominant 

coefficient, each of which corresponds to (a) 4th , (b) 15th , (c) 

23th , (d) 13th and (f) 5th  DFT coefficient. 

(e) 

(d) 

(c) 

(b) 

(a) 

Table 2: Quantitative experimental comparison on 80 images. 

Success rate is based on the true positive detection result. 

Method GVF[1] SIFT[3] Ours 

Center 44 % 85 % 82 % 

Fold N/A 39 % 84 % 

Cyclic/ 

Dihedral N/A N/A 88 % 

 



 

 

symmetry in it, and our algorithm gives a null result.    

Table 2 shows quantitative comparison results of our 

proposed algorithm and two state of the art rotational 

symmetry detection algorithms [1, 3]. 

One limitation of our algorithm is that it fails to find a 

correct center of rotation when the symmetry object is 

skewed so that the frieze-expansion of the object shows 

distorted translation symmetry. In I-14, one small cactus at 

the left upper corner is out of the search range and two other 

small cacti are not detected. Skewing of the texture (inside 

of I-11 and I-17) causes a wrong fold detection result. One 

starfish of I-16 has a D6 result because one leg of another 

starfish is nearby, so the starfish looks like it has 6 legs. 

6. Conclusion 

We introduce a novel and effective rotational symmetry 

detection algorithm. Frieze expansion and its analysis 

reveal the close relation between rotation symmetry groups 

and frieze groups. Guided by this tight coupling of two 

distinct types of symmetry groups and using the discrete 

Fourier transform (DFT), we build a rotation symmetry 

strength (RSS) map over the whole image. Our algorithm 

converts all spatial domain information into the frequency 

domain using DFT, which decomposes the frieze-expansion 

of the original image into a mixture of sine and cosine waves 

representing different types of symmetries in the original 

image. Our method has a time complexity independent of 

the rotation symmetry fold number and image complexity 

(Table 1). Our algorithm is simple to implement and detects 

centers of rotation symmetries, rotation group types, 

concentric symmetries and order of symmetry groups. 

Experimental results on a dataset of synthetic and natural 

images show the superiority of our algorithm over previous 

state-of-the-art algorithms (Table 2). All test images and 

more experimental results can be found at our research 

webpage (http://vision.cse.psu.edu/rotsym.htm). 
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Synthetic image Natural image 

Desc. Image RSS map Result Desc. Image RSS map Result 

[I-1] 
C3 

   

[I-10] 
D4 

No 

symmetry 

inside 
   

[I-2] 
D12 

   

[I-11] 
C14 

   

[I-3] 
D4,C5 

SO(2) 

Concentric 

symmetries 
   

[I-12] 
D22 

Occlusion 

High 

texture 
   

[I-4] 
C3 

Different 

color 
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 Figure 9: Experimental results on 16 sample images. Each image demonstrates different types of symmetry characteristic and challenging 

conditions. Most detection results show correct center location and symmetry regions, regardless of image and symmetry type. See text for 

more discussion of these results.  


