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ROTATION TO SIMPLE LOADINGS

USING COMPONENT LOSS FUNCTIONS:

THE OBLIQUE CASE

Robert I. Jennrich

University of California at Los Angeles

July 30, 2004

Component loss functions (CLFs) similar to those used in orthogonal ro-

tation are introduced to define criteria for oblique rotation in factor analysis.

It is shown how the shape of the CLF effects the performance of the criterion

it defines. For example it is shown that monotone concave CLFs give crite-

ria that are minimized by loadings with perfect simple structure when such

loadings exist. Moreover, if the CLFs are strictly concave, minimizing must

produce perfect simple structure whenever it exists. Examples show that

methods defined by concave CLF perform well much more generally. While

it appears important to use a concave CLF the specific CLF used is less

important. For example the very simple linear CLF gives a rotation method

that can easily outperform the most popular oblique rotation methods pro-

max and quartimin and is competitive with the more complex simplimax and

geomin methods.

Key words: Component loss criteria, factor analysis, geomin, gradient

projection, loading polish, promax, quartimin, simplimax, sorted absolute
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loading plots.

Requests for reprints should be sent to Robert I. Jennrich, Department of Mathemat-

ics, University of California, Los Angeles, CA 90095.
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1 Introduction

The rotation problem in factor analysis arises from a desire to find a simple

and contextually meaningful relation between items and factors. At first this

search was restricted to the use of orthogonal factors, but frequently better

results can be obtained by allowing the factors to be oblique which is the case

considered here. Oblique rotation methods that rotate factors to produce

simple loading matrices are called direct methods by Harman (1976). Indirect

methods based on rotating factors to produce simple reference structures are

mostly of historical interest. Only direct methods are considered.

Unfortunately simple loading matrices are not well defined. Thurstone

(1935, p.156) has set forth a number of general principals which vaguely

stated say a large number of small loadings are what one should attempt to

achieve. Actually Thurstone’s conditions are precise, but in general unattain-

able and hence can only be approximated.

At first attempts were made to approximate Turnstone’s conditions by

visually rotating hyperplanes in two dimensional plots in an effort to max-

imize the number of items close to the hyperplanes. This number is called

a hyperplane count. Eber (1966) attempted to implement this procedure

analytically, but the hyperplane count criterion has serious discontinuities

that make analytic rotation difficult. A break through came when Katz

and Rohlf (1974) replaced the zero-one hyperplane count for each item by a

smooth function of its hyperplane distance. They considered a two param-

eter family of such functions. Rozeboom (1991) introduced a more flexible

four parameter family and applied it directly to the loadings rather than to

hyperplane distances. He also allowed the possibility that the function be an

arbitrary growth function. We begin with this degree of generality and, as

Rozeboom did, apply the functions directly to the loadings.

More specifically we consider a class of criteria that are defined by an
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arbitrary component loss function (CLF) similar to that considered by Jen-

nrich (2004(a)) for orthogonal rotation. This is evaluated at the absolute

value of each component λir of a loading matrix Λ. The sum of these losses

is the value of the corresponding CLF criterion at Λ.

This CLF approach, or what might be called a generalized hyperplane

count approach, has been largely overlooked which is unfortunate because a

method so historical, natural, and simple needs to be more carefully consid-

ered if for no other reason than to understand why it should not be pursued.

A basic question is how the shape of a CLF affects the performance of

the corresponding method. A number of theoretical results address this ques-

tion. For example a loading matrix is said to have perfect simple structure

if each row has at most one nonzero element. One might argue that a mini-

mum requirement for any proper rotation method is that it is optimized by

perfect simple structure when it exists. It is shown assuming only that a

CLF is concave (i.e., curved downward) and nondecreasing is sufficient to

guarantee this. Moreover, if the CLF is strictly concave optimization must

produce perfect simple structure whenever it exists. Results like these are

important because they provide some clear simple guidance for constructing

CLF criteria.

Numerical comparisons demonstrate the theoretical results and show how

CLF rotation relates to other forms of oblique rotation. Very simple forms of

CLF rotation can handily outperform the most popular methods of oblique

rotation, promax (Hendrickson and White, 1964) and direct quartimin (Jen-

nrich and Sampson, 1966), and compete well with some of the best methods

including geomin (Yates, 1987, p. 46) and simplimax (Kiers, 1994).

The theory and computing in the oblique case is somewhat more diffi-

cult than in the orthogonal case, but as mentioned oblique applications are

generally of greater interest.
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2 Rotation to simple loadings

Let Λ be a factor loading matrix and let Q(Λ) be the value of an oblique

rotation criterion at Λ. Consider minimizing Q(Λ) over all oblique rotations

of an initial loading matrix A, that is over all

Λ = A(T ′)−1

where T is an arbitrary non-singular matrix with columns of unit length. A

minimizing Λ is called an oblique rotation of A corresponding to Q. Different

criteria Q produce different rotations of A. The factor correlation matrix for

oblique rotation is

Φ = T ′T

To minimize Q over all oblique rotations of A the derivative free gradient

projection (GP) algorithm of Jennrich (2004(b)) was used. The only problem

specific information required by this algorithm is a formula for the value of Q

at an arbitrary loading matrix Λ. A number of criteria considered have local

minima. We dealt with this by arbitrarily defining the best rotation produced

from 100 random starts of the GP algorithm to be the operational minimizer

of the rotation criterion used. Random starts were also used by Kiers (1994)

and Browne (2001), but they restricted them to be orthogonal. This is not

sufficient because it is possible that random orthogonal starts, even an infinite

number, will not produce a global minimizer. Following Roseboom (1991)

oblique random starts have been used. By an oblique random start we mean a

rotation matrix T whose columns are independently generated and randomly

selected from a unit sphere of appropriate dimension.

Unless otherwise noted, in every application, including the simulations,

the GP algorithm, which is strictly monotone, converged to a stationary

point. GP algorithms for oblique and orthogonal rotation together with
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examples of their use, may be downloaded from http://www.address. For

the derivative free case Matlab and R(=S) versions are given.

3 Component loss rotation criteria

Let Λ be a p by k loading matrix with components λir. A rotation criterion

Q of the form

Q(Λ) =
∑ ∑

h(|λir|)

will be called a component loss criterion (CLC). The function h is its defining

component loss function (CLF). From this point of view Q(Λ) is the total

loss for the components of Λ and the rotation problem is to minimize this

total loss. At this point h is any real valued function whose domain is all

nonnegative values. As noted, Katz and Rohlf (1974) and Rozeboom (1991)

considered criteria of this form.

The component loses are functions of |λir| rather than of λ2
ir as they were

in the orthogonal case (Jennrich, 2004(a)). This choice is motivated by a

desire to simplify the statements of theorems below.

The simplest example of a CLF is the linear CLF defined by

h(|λ|) = |λ|

Other examples include the cubic CLF

h(|λ|) = |λ|3

the basic concave CLF

h(|λ|) = 1− e−|λ|

and the quadratic right constant CLF

h(|λ|) =


|λ|2/.3 |λ| ≤ .3

1 |λ| > .3
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These are plotted in Figure 1. The basic concave CLF is called a monomolec-

ular growth curve and is a member of the Katz and Rohlf (1974) family of

CLFs. The quadratic right constant CLF is designed to encourage loadings

less than 0.3 and as will be seen is related to the simplimax criteria. Note

that the linear and basic concave CLFs are concave and nondecreasing. The

basic concave CLF is also strictly concave. These, as will be shown, are desir-

able properties. There are many concave CLFs. Calling the strictly concave

CLF above the basic concave CLF is an arbitrary choice, but one that will

be used extensively.

CLFs that differ only by an additive constant or a positive constant mul-

tiplier give CLC that are equivalent because they have the same minimizers.

4 Concavity and perfect simple structure

A loading matrix has perfect simple structure if it has at most one nonzero

loading in each row. What constitutes simple structure is widely debated,

but it is clear that perfect simple structure is the simplest possible structure.

A desirable property of an analytic rotation criterion is that it be optimized

by a loading matrix with perfect simple structure when such a loading matrix

exists, that is when there is a rotation of A with perfect simple structure. It

will be shown that if a CLF is concave and nondecreasing, the corresponding

CLC has this property.

Lemma 1: If Λ and Λ̂ are rotations of A and all elements in the i-th row

of Λ̂ are zero except possibly for λ̂is, then

|λ̂is| ≤ |λi1|+ · · ·+ |λik|

Proof: Because Λ = A(T ′)−1, A = ΛT ′ and the i-th row ai of A is given

by

ai = λi1t
′
1 + · · ·+ λikt

′
k
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Figure 1: (a) Linear CLF. (b) Cubic CLF. (c) Basic concave CLF. (d)

Quadratic right constant CLF.
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where tr is the r-th column of T . Since the tr have unit length,

‖ai‖ ≤ |λi1|+ · · ·+ |λik| (1)

Similarly A = Λ̂T̂ ′ and because all but the s-th element in the i-th row of Λ̂

are zero

ai = λ̂ist̂
′
s

Hence ‖ai‖ = |λ̂is| and the assertion of the lemma follows from this and (1).

Lemma 2: If h is concave, h(0) = 0, and u1, · · · , uk are nonnegative,

then

h(
∑

ur) ≤
∑

h(ur)

Moreover, if h is strictly concave and at least two ur are not zero, the in-

equality is strict.

Proof: Clearly the first assertion holds when all ur = 0. Assume now

that at least one ur 6= 0. Then

ur = (1− ur∑
ur

)0 +
ur∑
ur

∑
ur

is a convex combination of 0 and
∑

ur. Because h is concave

h(ur) ≥ (1− ur∑
ur

)h(0) +
ur∑
ur

h(
∑

ur) =
ur∑
ur

h(
∑

ur)

Assume now that at least two ur are not zero and h is strictly concave. Then

for some r, ur/
∑

ur is not equal to zero or one and the inequality is strict.

Summing on r completes the proof.

Theorem 1: If there is an oblique rotation Λ̂ of A that has perfect simple

structure and if h is a concave and nondecreasing CLF, then Λ̂ minimizes the

corresponding CLC over all oblique rotations of A. Moreover, if h is strictly

concave and any minimizer must have perfect simple structure.

Proof: By adding a constant if necessary we may assume without loss of

generality that h(0) = 0. Then given i, for some s,

∑
r

h(|λ̂ir|) = h(|λ̂is|)
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Let Λ be any rotation of A. Using Lemma 1 and the monotonicity of h

h(|λ̂is|) ≤ h(
∑
r

|λir|)

Because h is concave and h(0) = 0 it follows from Lemma 2, that

h(
∑
r

|λir|) ≤
∑
r

h(|λir|)

Using the first equality and the last two inequalities

∑
r

h(|λ̂ir|) ≤
∑
r

h(|λir|)

Summing on i proves the first assertion.

Assume now that h is strictly concave and Λ does not have perfect simple

structure. Then some row i, Λ must have at least two nonzero values and

from Lemma 2 for this i the second inequality above must be strict. As

a consequence Λ cannot minimize the corresponding CLC. This proves the

second assertion.

The second assertion of Theorem 1 says that when the CLF is strictly

concave CLF rotation must produce perfect simple structure whenever it

exists.

As we will see shortly the concavity assumption in Theorem 1 is necessary.

The nondecreasing assumption is also necessary. Consider, for example, the

CLF, h(|λ|) = −|λ|3 which is concave but decreasing rather than nondecreas-

ing. The corresponding CLC approaches minus infinity as the factor loading

matrix approaches infinity which happens as the rotation matrix T becomes

singular. Thus any perfect simple structure rotation of A, if it exists, will

fail to minimize this CLC. This shows that the conclusion of Theorem 1 can

fail when the nondecreasing CLF assumption is not satisfied.

Theorem 1 identifies some CLC that are optimized by loading matrices

with perfect simple structure. Other criteria also have this property. Carroll’s
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(1953) quartimin criterion which is not a CLC can be expressed in the form

Q(Λ) =
∑ ∑

s 6=r

∑
i

λ2
irλ

2
is (2)

If Λ has perfect simple structure, Q(Λ) = 0 which is the smallest value Q(Λ)

can have. Thus if Λ is also a rotation of A, it minimizes the quartimin

criterion over all rotations of A.

Before turning to some perfect simple structure examples we need to deal

with an algorithm problem that arises with the use of concave nondecreasing

CLFs. Note that if h is a concave nondecreasing CLF the only way h(|λ|)

can be differentiable function of λ at λ = 0 is if h is constant which is a very

uninteresting case. Thus if h is not constant the corresponding CLC is not

differentiable at Λ if Λ has a zero component.

This raises two problems when attempting to minimize a CLC defined

by a concave nondecreasing CLF if the minimizing Λ has one or more zero

components. Minimization becomes numerically difficult and especially so

with algorithms that use gradients. Moreover, stationarity is not defined

making it difficult to monitor convergence and be assured the algorithm has

at least reached a stationary point.

One way to deal with these problems is to round corners. Figure 2(a)

is a plot of h(|λ|) on λ when h is a linear CLF. To round the corner at

λ = 0 one can approximate h(|λ|) on a small interval −ε ≤ λ ≤ ε by a

parabola. Moreover, this may be done so the values and derivatives of the

parabola and h(|λ|) agree at λ = ±ε. Such an approximation is shown in

Figure 2(b) using ε = .1 and Figure 2(c) using ε = .01. In the latter case the

approximation is almost invisible. For any ε > 0, however, the approximation

makes the corresponding CLC differentiable at values of Λ having one or

more zero components. We call this modification an epsilon modification.

The details for this in the general case are given in the Appendix. For our
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Figure 2: A plot of h(|λ|) on λ when h is a linear CLF (a), a modified linear

CLF with ε = .1 (b), and a modified linear CLF with ε = .01 (c).

applications an epsilon modification with ε = .01 was used whenever required

for computational purposes.

The matrix A in Table 1 has perfect simple structure. Because the linear

CLF is concave and non-decreasing, it follows from Theorem 1 that A mini-

mizes the corresponding CLC. The second matrix in Table 1 is the computed

rotation of A using a linear CLF. It agrees exactly with A to the precision

displayed. The third matrix in Table 1 was computed using the cubic CLF.

This CLF is strictly convex rather than concave. The poor result shows how

badly the conclusion of Theorem 1 can fail when the concavity assumption

does not hold.
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Table 1: A perfect simple structure loading matrix A, a CLF rotation of A

using a linear CLF, and a CLF rotation of A using a cubic CLF.

A linear cubic

1 0 0 1.00 .00 .00 .60 .60 .37

1 0 0 1.00 .00 .00 .60 .60 .37

1 0 0 1.00 .00 .00 .60 .60 .37

0 1 0 .00 1.00 .00 -.69 .31 .63

0 1 0 .00 1.00 .00 -.69 .31 .63

0 0 1 .00 .00 1.00 -.44 .77 -.69

The second matrix in Table 1 is also the computed quartimin rotation of

A. As noted this is expected for quartimin rotation because A has perfect

simple structure.

5 Thurstone type simple structure

As precisely defined a loading matrix with Thurstone (1935, p156) simple

structure has a fair number of exact zeros. We will say a loading matrix has

simple structure of Thurstone type if it has one or more exact zeros. The

matrix A in Table 2 does not have perfect simple structure, but it does have

Thurstone simple structure and simple structure of the Thurstone type.

The second matrix in Table 2 is a rotation of A using a linear CLF. To the

precision displayed it very nearly re-produces the Thurstone simple structure

of A. The third matrix in Table 2 is a quartimin rotation of A. It produces

a much cruder approximation to the Thurstone simple structure of A. The

fourth matrix in Table 2 is a rotation of A using the basic concave CLF. Like

the linear CLF it very nearly re-produces the Thurstone simple structure of

13



Table 2: Linear CLF, quartimin, and basic concave CLF rotations of A.

A linear quartimin basic concave

1 0 0 1.00 -.01 -.01 1.05 -.10 -.10 1.00 -.00 -.00

0 1 0 -.01 1.00 -.01 -.01 1.02 -.15 -.00 1.00 -.00

0 0 1 -.01 -.01 1.00 -.01 -.15 1.02 -.00 -.00 1.00

.89 .45 0 .89 .44 -.01 .89 .37 -.15 .89 .45 -.01

.89 0 .45 .89 -.01 .44 .89 -.15 .37 .89 -.01 .45

0 .71 .71 -.01 .70 .70 -.14 .62 .62 -.01 .71 .71

A. Note that although this is not a perfect simple structure example the two

concave CLF methods motivated by Theorem 1 work very well.

The following theorem shows that A is at least a local minimum of a CLC

defined by an appropriate CLF.

Theorem 2 Let Λ̂ be a rotation of A that has Thurstone type simple

structure and let c > 0 be less than the smallest nonzero absolute loading in

Λ̂. If h(u) is constant for all u ≥ c and h(0) ≤ h(u) for all u ≥ 0, then Λ̂ is

a local minimizer of the CLC defined by h.

Proof: We may assume without loss of generality that h(0) = 0. Note

that |λ̂ir| > 0 if and only if |λ̂ir| > c. Let Λ be another rotation of A. If Λ is

sufficiently close to Λ̂, |λir| > c if and only if |λ̂ir| > c. Thus for Λ sufficiently

close to Λ̂

∑
i

∑
r

h(|λ̂ir|) =
∑ ∑
|λ̂ir|>c

h(|λ̂ir|) =
∑ ∑
|λir|>c

h(|λir|) ≤
∑

i

∑
r

h(|λir|)

This completes the proof.

Theorem 2 applies to almost any CLF that becomes constant sufficiently

soon. The Theorem is weak in the sense that it guarantees only a local rather

than a global minimum. The local minimum may of course also be global.
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Note that .3 is less than the smallest nonzero absolute loading in A of

Table 2. Thus the quadratic right constant CLF in Figure 1 satisfies the

assumptions of Theorem 2. The theorem implies that A is a local minimum

of the corresponding CLC. Using this CLC, the GP algorithm produced A

to 6.61 decimal places. This provides empirical support for the theorem.

6 The more general case

Perfect simple structure and Thurstone simple structure don’t occur in prac-

tice. They are at best idealizations. Unfortunately, there is no generally

accepted broadly applicable definition of simple structure. It is generally

felt, however, that a loading matrix with a fair number of small values is

simpler than one with mostly intermediate values. Motivated by this, we

consider methods designed to produce as many small loadings as possible.

Because many rotation criteria, including all mentioned thus far, are influ-

enced more by large rows of A than by small rows, and this generally does not

seem desirable, one is motivated to normalize the rows of A before rotation

begins. This is called Kaiser normalization (Kaiser, 1958). Such a modifica-

tion makes the resulting method invariant with respect to row scaling. While

we will not demand this be done, in order to avoid the normalization issue,

in our examples we use initial loading matrices A with normalized or nearly

normalized rows.

Note, however, if a rotation of an initial loading matrix A has perfect

simple structure this is also true for a row scaled form of A. Thus if the

hypotheses of Theorems 1 and 2 hold for an initial loading matrix A they

also hold for a row normalized form of A. As far as these theorems are

concerned one can use A or a row normalized form of A. This should not,

however, motivate one to ignore row scaling in practice.
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6.1 Some other rotation methods

Because of their wide availability in statistical software promax and quar-

timin are by far the most popular methods of oblique rotation. Two newer

attractive methods are geomin and simplimax. These methods are used for

empirical comparison with CLF methods. There definitions follow.

Promax may be viewed as orthogonal rotation with oblique polish. The

version considered here begins with an orthogonal varimax rotation of an

initial loading matrix A. The components of the result are raised to the third

power and the resulting matrix is used as a target for an oblique procrustes

rotation of A. The result of this second rotation is the promax rotation of

A.

Quartimin is defined by the criterion given in (1).

Geomin is defined by the criterion

Q(Λ) =
∑

i

(
∏
r

λ2
ir)

1/k

Like the component loss criterion for a concave CLF, this criterion is not a

differentiable function of a loading λir when λir = 0. In practice this problem

is resolved by replacing λ2
ir by λ2

ir + ε for some ε. Like Browne (2001) we use

ε = .01.

Simplimax is defined by the criterion

Km(Λ) =
∑

i

∑
r

[λ2
ir ≤ λ2

(m)]λ
2
ir

where [·] is one when its argument is true and zero otherwise and λ2
(m) is the

m-th smallest value of the λ2
ir. The simplimax criterion is minimized when

the sum of squares of the m smallest loadings is as small as possible. The

parameter m may be viewed as the number of target zeros for the criterion.

Although at first it appears to be, the simplimax criterion is not a CLC

because

[λ2
ir ≤ λ2

(m)]
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is a function of all the components of Λ and not just of λir. The standard

way to minimize Km, however, is to compute λ(m) from the current value of

Λ and holding this fixed minimize, or at least reduce, the value of the CLC

with CLF

h(|λ|) = [λ2 ≤ λ2
(m)]λ

2

Thus Km might be called an iteratively re-defined CLC criterion.

As we will see next, although they are different criteria, simplimax and

CLC using quadratic right constant CLFs can and often do produce the same

loadings.

Let Qb be the CLC defined by the quadratic right constant CLF

h(|λ|) =


(λ/b)2 |λ| ≤ b

1 |λ| > b

When b = .3 this is the quadratic right constant CLF in Figure 1.

The following theorem may be found in Jennrich (2004(a)).

Theorem 3: If for a loading matrix Λ̂, b is strictly between λ̂2
(m) and

λ̂2
(m+1), then Λ̂ is a local minimum of Km if and only if it is a local minimum

of Qb.

Theorem 3 says that the local minima of Km for various m can be found

among the local minima of Qb for various b and conversely. In this sense

simplimax and quadratic right constant CLF methods are equivalent even

though the rotation criteria used are not.

7 Comparisons using some familiar data

To continue it will be helpful to at look at some familiar more realistic prob-

lems then the simple examples considered thus far. These will be used to

compare the linear and basic concave CLF methods with the promax, quar-

timin, geomin, and simplimax methods identified in the previous section.
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7.1 Twenty four psychological tests

Harman (1976, Table 10.9) gave an initial loading matrix A obtained from a

maximum likelihood extraction of four factors from a subset of psychological

tests data collected by Holzinger and Swineford (1939). This matrix has

been used extensively by many authors to demonstrate and compare rotation

methods. Because the use of simplimax differs somewhat from that of the

other four methods, it will be discussed in a separate subsection.

7.1.1 Promax, quartimin, geomin, and basic concave CLF

For the promax, quartimin, and geomin methods the identity start and all

100 random starts gave the same criterion value. Apparently for these data

and methods random starts are not required. That was almost the case for

the basic concave CLF method. It gave the minimum criterion value using

the identity and 96 of the 100 random starts.

The rotations produced are quite similar. This is suggested by the sim-

ilarity of the sorted absolute loading plots (Jennrich, 2004(a)) in Figure 3.

Table 3 displays the promax and basic concave CLF rotations. The simpli-

max rotation in Table 3 will be discussed later. In the table large values

are boldfaced. A value in a row is large if its magnitude (absolute value) is

greater than half the magnitude of the largest value in the row. In Table 3

the large values for the promax and basic concave CLF rotations are, except

for two, all in the same positions. Actually the promax, basic KR, and quar-

timin, and qeomin rotations differ in at most two positions. Thus all four of

these methods give quite similar results.

7.1.2 Simplimax

Using simplimax is more complicated than using the methods of the previous

subsection. One must specify the number of target zeros m and the number

18
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Table 3: Promax, basic concave CLF, and simplimax m = 60 rotations of

the 24 psychological tests data.

Promax Basic concave CLF Simplimax m=60

.77 -.03 -.02 .00 .72 -.01 .06 .01 .75 -.01 .03 -.02

.49 .00 -.05 .00 .46 .02 .00 .00 .47 .02 -.02 -.02

.65 .01 -.21 .01 .62 .04 -.14 .00 .60 .02 -.15 -.02

.57 .12 -.07 -.06 .53 .14 .00 -.05 .54 .14 -.02 -.08

-.01 .79 .11 -.04 -.01 .73 .17 .00 .02 .78 .10 -.05

-.02 .82 -.07 .08 .02 .78 -.01 .10 .01 .82 -.07 .05

.00 .89 .05 -.14 .00 .83 .11 -.08 .01 .88 .05 -.14

.23 .54 .12 -.07 .21 .51 .18 -.02 .25 .55 .12 -.07

-.03 .88 -.10 .07 .01 .83 -.04 .09 -.01 .87 -.10 .04

-.24 .06 .92 .01 -.30 .00 .91 .10 -.09 .10 .83 .07

.01 .04 .47 .29 .01 .01 .49 .31 .12 .07 .43 .29

.23 -.16 .73 -.09 .13 -.18 .74 -.01 .32 -.12 .68 -.04

.47 .02 .44 -.13 .38 .01 .49 -.06 .51 .05 .44 -.11

-.13 .11 -.03 .61 -.02 .10 .00 .56 -.04 .14 -.03 .55

-.01 .01 -.04 .57 .07 .01 -.01 .52 .06 .04 -.04 .52

.36 -.12 -.14 .54 .43 -.10 -.08 .49 .41 -.09 -.10 .48

-.10 .02 .12 .61 -.02 .00 .15 .57 .01 .05 .11 .57

.25 -.18 .22 .42 .27 -.18 .26 .41 .33 -.14 .22 .40

.17 .03 .04 .34 .20 .03 .09 .32 .22 .05 .05 .31

.32 .29 -.06 .19 .34 .28 .01 .19 .34 .30 -.03 .16

.37 .01 .34 .07 .32 .00 .39 .11 .42 .04 .33 .08

.32 .27 -.05 .19 .34 .27 .02 .19 .34 .29 -.02 .16

.46 .24 .07 .07 .44 .24 .14 .10 .48 .26 .09 .06

.02 .27 .44 .16 .01 .23 .47 .20 .11 .30 .40 .17
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of random starts to be used. Kiers (1994) suggested making a scree plot

that displays the operationally optimal values of the simplimax criterion on

a range of values of m. The hope is that the scree plot will show a clear jump

immediately following some value of m. The recommendation then is to use

this value of m for simplimax rotation. Unfortunately there is not always a

clear jump.

Figure 4 shows a scree plot for the 26 psychological tests data. The range

of m is from 46 to 74 in steps of 4. The plot is very smooth with no sign of a

jump. Clearly some method other than the scree plot must be used to choose

m. In the plot the lowest value of m = 46 corresponds to a simplimax target

with average row complexity two and the largest value m = 74 corresponds

to a target with average row complexity one.

One alternative to the scree plot is to look directly at the loading matrices

produced by a selection of values of m. Table 4 displays the simplimax

loadings for m = 50, 60, 70. The value m = 60 corresponds to an average

target row complexity of 1.5 which is the average row complexity for the

rotations in the previous subsection. The m = 50 rotation in Table 4 is

unsatisfactory because of the many large loadings in the first column. The

m = 60 and m = 70 rotations are quite similar, the author at least would

have difficulty choosing between them.

Table 3 displays the the simplimax m = 60 rotation together with the

promax and basic concave CLF rotations. These are all quite similar. This

together with observations from the previous subsection show that promax,

quartimin, geomin, basic concave CLF, and simplimax with m = 60 give very

similar rotations for the 24 psychological tests problem and in particular that

the CLF method worked as well as the alternative methods considered.
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Figure 4: Simplimax scree plot for the 24 psychological tests data
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Table 4: Simplimax rotations of the 24 psychological tests data using

m = 50, 60, 70

m=50 m=60 m=70

.24 .47 -.05 .32 .75 -.01 .03 -.02 .72 -.02 .05 .06

.13 .33 -.01 .17 .47 .02 -.02 -.02 .45 .01 .00 .03

.03 .54 -.02 .18 .60 .02 -.15 -.02 .57 .02 -.14 .05

.18 .38 .09 .18 .54 .14 -.02 -.08 .53 .13 -.01 -.03

.68 -.12 .58 -.26 .02 .78 .10 -.05 .02 .77 .12 -.03

.63 .02 .56 -.39 .01 .82 -.07 .05 -.03 .81 -.05 .09

.61 -.07 .68 -.29 .01 .88 .05 -.14 .03 .87 .07 -.13

.57 .02 .40 -.06 .25 .55 .12 -.07 .24 .53 .14 -.04

.62 .03 .61 -.42 -.01 .87 -.10 .04 -.04 .86 -.08 .08

.98 -.86 .07 .21 -.09 .10 .83 .07 -.09 .05 .85 .04

.82 -.37 -.05 .06 .12 .07 .43 .29 .03 .02 .45 .33

.67 -.43 -.08 .45 .32 -.12 .68 -.04 .33 -.16 .71 -.05

.55 -.07 .05 .38 .51 .05 .44 -.11 .52 .02 .46 -.08

.59 -.06 -.10 -.32 -.04 .14 -.03 .55 -.20 .09 -.03 .64

.50 .02 -.17 -.23 .06 .04 -.04 .52 -.10 .00 -.04 .61

.41 .32 -.27 -.04 .41 -.09 -.10 .48 .25 -.13 -.09 .60

.69 -.16 -.17 -.22 .01 .05 .11 .57 -.16 .00 .11 .65

.60 -.02 -.26 .10 .33 -.14 .22 .40 .20 -.19 .23 .48

.45 .06 -.09 -.05 .22 .05 .05 .31 .12 .02 .06 .38

.46 .22 .13 -.07 .34 .30 -.03 .16 .27 .28 -.01 .23

.58 -.05 -.02 .24 .42 .04 .33 .08 .38 .00 .35 .12

.46 .21 .12 -.07 .34 .29 -.02 .16 .27 .26 -.01 .24

.51 .21 .14 .09 .48 .26 .09 .06 .43 .24 .12 .12

.85 -.34 .15 .00 .11 .30 .40 .17 .06 .26 .42 .20
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7.1.3 Computation

Minimizing the simplimax criterion was considerably more difficult than min-

imizing the criteria in Section 7.1.1. Rather than producing the same crite-

rion value from all or almost all 100 random starts, many different values were

produced. Table 5 gives convergence results for the 9 values of m that were

considered. The minimum count value is the number of random starts that

produced the minimum observed value of the criterion. A minimum count

value of 1 is disturbing because it suggests that more starts may produce a

smaller minimum criterion value. The failure count value is the number of

random starts from which the rotation algorithm failed to converge within

1000 iterations. Only m = 48 and m = 50 produced algorithm failures. In

contrast to simplimax, the algorithms of the Section 7.1.1 all had minimum

counts of at least 96 and failure counts of zero.

7.2 Thurstone’s box problem

Starting with a collection of 20 boxes Thurstone (1947) constructed 26 vari-

ables defined by simple linear and nonlinear functions of the box dimensions

x, y and z. The definitions of these variables are given in the first column

of Table 6. A three factor initial loading matrix A was extracted from data

generated using these variables. For this we used the A given by Cureton and

Mulaik (1975). Like the 24 psychological tests data in Harman this matrix

has been used extensively to demonstrate and compare rotation methods.

Table 6 contains promax, quartimin and geomin rotations of A. The pro-

max and quartimin rotations in Table 6 can be considered failures (Kiers,

1994; Browne, 2001) because the factors do not appear to have a clear re-

lation to the box dimensions x, y and z used in the formulas to generate

the variables. In this regard quartimin does somewhat better than promax.
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Table 5: Simplimax random start summary for the 24 psychological tests

data. “m” is the simplimax parameter. “Qmin” is the minimum criterion

value out of 100 random starts. “min count” is the number of random starts

that had the minimum criterion value. “failure count” is the number is the

number times the algorithm failed to converge within 1000 iterations.

m Qmin min count failure count

46 0.1236 1 1

50 0.1613 1 0

54 0.2456 1 0

58 0.3508 2 0

60 0.4189 14 0

62 0.5120 23 0

66 0.7814 2 0

70 1.1001 7 0

74 1.5543 20 0
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For quartimin in every row but two, the smallest absolute loadings can be

associated with the missing dimensions in the formula for the corresponding

variable. This is far from the case for promax. A second reason for calling

these rotations failures is that one can do much better. For example for the

geomin rotation in Table 6 the factors are clearly related in an appropriate

way to the box dimensions x, y and z.

Table 7 contains the basic concave CLF, simplimax m=27, and linear CLF

rotations for the box problem. Like the geomin rotation these rotations are

far superior to the promax and quartimin rotations in Table 6. In each case

the factors are clearly related in an appropriate way to the box dimensions

x, y and z. Indeed the geomin, basic concave CLF, simplimax m=27, and

linear CLF rotations are very similar.

The parameter value m = 27 for simplimax rotation was used by Kiers

who obtained it from a scree plot that displayed a large jump following

m = 27. It is also the value suggested by the formulas in the first column of

Table 7, but one cannot expect to have this form of information in general

practice.

While the geomin, basic concave CLF, linear CLF, and simplimax ro-

tations are very similar in this example there are reasons for preferring the

first three of these to simplimax. One is that when using simplimax one must

choose a value for the parameter m and this requires a scree plot or some

other method. Another is the local minimum problem. This is displayed

in Table 8. Simplimax had 80 local minima. That means that 80 distinct

minima were generated from the 100 random starts. The other methods

considered had at most 16. For simplimax only 2 of the 100 random starts

produced the operational minimum while for the other methods at least 23

did this. One feels it is quite likely these methods have reached a global

minimum. While this is probably true for simplimax as well, without the
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Table 6: Promax, quartimin, and geomin rotations for Thurstone’s box data.

formula promax quartimin geomin

x .60 -.24 .73 1.33 .35 .61 .99 -.02 -.01

y .67 .65 -.05 .68 1.36 .73 .06 .94 .05

z .85 -.36 -.44 .35 .41 .80 -.00 .06 .97

xy .79 .33 .42 1.25 1.14 .84 .64 .64 -.01

xz .92 -.41 .14 1.02 .45 .88 .60 .00 .65

yz .91 .18 -.36 .55 1.07 .92 -.02 .61 .64

x2y .77 .08 .58 1.37 .86 .80 .84 .38 .01

xy2 .78 .49 .20 1.03 1.30 .84 .39 .81 .03

x2z .83 -.37 .39 1.19 .41 .81 .79 -.02 .42

xz2 1.02 -.44 -.07 .89 .50 .97 .44 .03 .86

y2z .85 .37 -.28 .59 1.22 .88 -.02 .77 .45

yz2 .92 -.00 -.41 .49 .87 .90 -.03 .44 .78

x/y -.04 -.78 .60 .50 -.88 -.10 .75 -.83 .01

y/x .04 .78 -.60 -.50 .88 .10 -.75 .83 -.01

x/z -.18 .16 .97 .84 .04 -.13 .82 .01 -.83

z/x .18 -.16 -.97 -.84 -.04 .13 -.82 -.01 .83

y/z -.15 .96 .29 .25 .92 -.04 -.01 .85 -.80

z/y .15 -.96 -.29 -.25 -.92 .04 .01 -.85 .80

2x + 2y .77 .40 .36 1.17 1.20 .83 .55 .71 -.02

2x + 2z .92 -.44 .10 .96 .41 .87 .56 -.02 .69

2y + 2z .92 .19 -.34 .58 1.08 .92 -.01 .62 .63

(x2 + y2)1/2 .77 .39 .34 1.16 1.18 .82 .54 .70 -.01

(x2 + z2)1/2 .90 -.42 .08 .92 .42 .86 .53 -.01 .68

(y2 + z2)1/2 .90 .20 -.31 .60 1.08 .91 .02 .62 .60

xyz .98 .05 .08 1.06 1.00 .98 .45 .48 .47

(x2 + y2 + z2)1/2 .95 .10 -.01 .94 1.03 .96 .34 .53 .49
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Table 7: Basic concave CLF, simplimax, and linear CLF rotations of Thur-

stone’s box data.

formula concave CLF simplimax linear CLF

x .99 -.01 -.01 .99 -.01 -.01 .99 -.01 .00

y .07 .94 .05 .06 .94 .04 .07 .94 .06

z .00 .07 .96 .01 .05 .97 .01 .07 .96

xy .64 .64 -.01 .63 .65 -.02 .64 .64 .00

xz .60 .01 .65 .60 .00 .65 .60 .01 .65

yz -.02 .61 .65 -.02 .61 .64 -.01 .61 .65

x2y .84 .39 .01 .83 .39 .01 .84 .39 .01

xy2 .39 .81 .04 .38 .82 .03 .39 .81 .04

x2z .79 -.01 .42 .79 -.02 .42 .79 -.01 .42

xz2 .45 .03 .86 .45 .02 .86 .45 .04 .86

y2z -.01 .77 .46 -.02 .76 .45 -.01 .77 .46

yz2 -.02 .44 .79 -.02 .43 .78 -.02 .44 .79

x/y .74 -.82 .01 .75 -.83 .02 .74 -.82 .00

y/x -.74 .82 -.01 -.75 .83 -.02 -.74 .82 .00

x/z .81 .01 -.82 .81 .02 -.82 .81 .01 -.82

z/x -.81 -.01 .82 -.81 -.02 .82 -.81 -.01 .82

y/z -.00 .84 -.79 -.02 .86 -.80 .00 .84 -.79

z/y .00 -.84 .79 .02 -.86 .80 .00 -.84 .79

2x + 2y .55 .71 -.01 .55 .72 -.02 .55 .71 -.01

2x + 2z .56 -.02 .69 .56 -.03 .69 .56 -.02 .69

2y + 2z .00 .62 .63 -.00 .61 .63 .00 .62 .63

(x2 + y2)1/2 .54 .70 -.00 .54 .71 -.01 .54 .70 .00

(x2 + z2)1/2 .53 -.00 .68 .53 -.01 .68 .53 .00 .68

(y2 + z2)1/2 .02 .62 .60 .02 .61 .60 .03 .62 .60

xyz .46 .48 .47 .45 .48 .46 .46 .48 .47

(x2 + y2 + z2)1/2 .35 .53 .49 .34 .53 .48 .35 .53 .4928



Table 8: Random start summary for the box data. “min count” is the num-

ber of random starts out of 100 that had the minimum criterion value. “local

minima” is the number of distinct local minima generated. “failure count”

is the number of times the algorithm failed to converge in 1000 iterations.

“identity start” is the ability “Y” of the identity start to produce the oper-

ational minimum.

Method min count local minima failure count identity start

promax 100 1 0 Y

quartimin 100 1 0 Y

qeomin 30 4 0 N

basic concave CLF 23 13 0 N

linear CLF 24 16 0 N

simplimax 2 80 3 N

results from the other methods or the formulas in Table 6, facing 80 local

minima and an operational minimum count of 2 would not be too reassuring.

One can always take more random starts, but how many?

One can use CLF rotation to produce starting values for other forms of

rotation or equivalently use other forms of rotation to polish CLF rotation.

Figure 5 is a sorted absolute loading plot for the basic concave CLF rota-

tion of the box data. Because of the large gap between the 27th and 28th

absolute loadings, the plot suggests using m = 27 for simplimax rotation.

This provides an alternative to the scree plot for choosing m. Using this

value of m and the basic concave CLF rotation matrix T as a starting value

for the simplimax algorithm gives the simplimax rotation in Table 7 without

additional random starts. Thus the simplimax rotation in Table 7 is also a
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Figure 5: Sorted absolute loading plot for the basic concave CLF rotation of

the box data.

basic concave CLF rotation with simplimax polish.

We have not to this point illustrated Theorem 3. This theorem suggests

an appropriate quadratic right constant CLF rotation may produce the same

result as simplimax. To illustrate this note that using Figure 5, the quadratic

right constant CLF in Figure 1 satisfies Theorem 3 when m = 27. Using

this CLF to polish the basic concave CLF rotation produced the simplimax

rotation as suggested by the theorem.
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8 Choosing a CLF

It is interesting to note in how similar the basic concave and linear CLF

rotations are in the Tables 1 and 7 that display both. While not displayed

this similarity was also true for the 24 psychological tests data in Table 3.

Consider the parameterized family of strictly concave CLFs defined by

hb(|λ|) = 1− e−|λ|/b

When b = 1 this is the basic concave CLF. Because CLFs that differ by a

positive multiplier define equivalent criteria, when comparing CLFs it helps

to re-scale them so they all have the value one when |λ| = 1. This eliminates

irrelevant differences when making comparisons. Figure 6 displays re-scaled

versions of the CLFs, hb for b = .5, 1, 2,∞. The b = ∞, CLF is the linear

CLF. This labeling is motivated by the fact that when re-scaled hb(|λ|) ap-

proaches |λ| as b → ∞. The parameter b may be viewed as a measure of

convexity or more precisely an inverse measure of convexity.

The criteria in Figure 6 were compared using the box data. A rotation

was obtained for each value of b and a measure of agreement computed for

each pair. Given a pair of rotations Λ1 and Λ2 the number of decimal places

of agreement was computed using

agree = − log10(‖Λ1 − Λ2‖/(pk)1/2)

where ‖M‖ denotes the Frobenius norm of the matrix M . Table 9 displays

the agreement. The agreement between the basic concave and linear CLF

rotations observed in Table 7 seems to hold for a variety of values of the

parameter b. This suggests that when using concave CLFs the degree of

convexity is not a critical factor.
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Figure 6: Comparison of scaled concave CLFs, hb

Table 9: The number of decimal places of agreement between rotations of

the box data using several concave CLFs, hb.

b = 1 b = 2 b = ∞

b = .5 3.43 3.03 2.70

b = 1 3.22 2.77

b = 2 2.95
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9 Discussion

We have investigated the use of CLFs for oblique rotation extending the

work of Jennrich (2004(a)) for orthogonal rotation. These functions assign a

loss to each component of a loading matrix and oblique rotation is used to

minimize the total loss. Given the simplicity and directness of this approach

it is surprising that it has received so little attention.

The CLF approach has some nice theoretical properties. The most im-

portant of these is that when a CLF is concave and nondecreasing the cor-

responding criterion is minimized by a loading matrix with perfect simple

structure if there is such a loading matrix. This motivates using concave

CLFs. These appear to work well not only for perfect simple structure appli-

cations, but in the examples considered for Thurstone simple structure and

more general applications as well. Indeed this also applies to the simplest

of all concave CLFs which is the linear CLF. The corresponding CLC is ar-

guably the simplest of all rotation criteria that are functions of the absolute

loadings. These include all criteria known to the author. That linear CLF

rotation works as well as some of the best methods available in the cases

considered is quite surprising. Why, one wonders, has this not been observed

earlier? One possible reason is that until now there has been no theory to

point to the importance of concave CLFs. Another may be a computational

problem associated with using concave CLFs.

The computational problem is that CLC defined by concave CLFs are

not differentiable at a loading matrix with one or more zero values. We have

dealt with this by rounding concave CLFs at the origin. This provides a good

approximation to a truly concave CLF, but puts a strain on the optimization

algorithm used because the resulting CLC, while differentiable, is not very

smooth at a loading matrix with one or more small loadings which are the

loading matrices of greatest interest. We have not discussed this computing

33



issue because our GP algorithm worked well enough. This issue, however,

deserves further investigation.

In our presentation we have focused on the basic concave CLF rather than

on the linear CLF. In hind site this may have been a mistake because the

linear CLF appears to work as well as the basic CLF and is simpler. It seems

important to use a concave CLF, but the choice of concave CLF seems less

important. To avoid what at present seems to be unnecessary complexity,

the author recommends using the simple linear CLF.

In the examples the geomin, simplimax, and the concave CLF methods

worked quite well. It is perhaps worth noting that geomin, which is not a

CLF method, has a concave CLF flavor. To see this note that the geomin

criterion can be written in the form

Q(Λ) =
∑

i

exp(
∑
r

h(|λir|)

where

h(|λ|) = 2 log(|λ|)/k

is a concave CLF.

10 Appendix: Epsilon modification

If h has a nonzero right derivative at zero, then h(|λ|) is not a differentiable

function of λ at λ = 0. To fix this choose an ε > 0, let

b =
h′(ε)

2ε
and a = h(ε)− bε2

and let

hε(u) =


a + bu2 0 ≤ u ≤ ε

h(u) u > ε

For small values of λ

hε(|λ|) = a + bλ2
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and this is differentiable at λ = 0. Moreover, h and hε have the same value

and derivative at ε. To see this note that

hε(ε) = a + bε2 = h(ε)

The left derivative of hε at ε is

2bε = h′(ε)

which is also the right derivative of hε at ε. Thus hε is differentiable at ε and

h′
ε(ε) = h′(ε).
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