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INTRODUCTION

The presence of a stable leading edge vortex (LEV) is a key feature

in the unexpectedly high performance of insect wings during

hovering flight (Maxworthy, 1979; Ellington et al., 1996; Dickinson

et al., 1999; Srygley and Thomas, 2002). Whereas a LEV is shed

after a few chord lengths of travel on a translating 2D model of an

insect wing (Dickinson and Götz, 1993; Dickinson, 1994; Miller

and Peskin, 2004; Lentink et al., 2008), it remains stably attached

on a 3D model wing that revolves about its base (Dickinson et al.,

1999; Usherwood and Ellington, 2002; Birch et al., 2004). Van Den

Berg and Ellington (Van Den Berg and Ellington, 1997) note that

the spiral LEV generated by their mechanical model of a hawkmoth

wing is remarkably similar to the spiral LEV generated by delta

and swept wings (Ellington et al., 1996; Van Den Berg and

Ellington, 1997). The spiral LEVs on such swept wings are stabilized

by spanwise flow induced by wing sweep, suggesting that spanwise

flow is similarly critical to the stability of LEVs on insect wings

(Ellington et al., 1996; Van Den Berg and Ellington, 1997).

Specifically, the growth of the LEV on insect wings might be

stabilized by spanwise flow in the core of the LEV, driven by the

dynamic pressure gradient associated with the velocity gradient

along the flapping wing, by ‘centrifugal’ acceleration in the boundary

layer, or by the induced velocity field of the spiral vortex lines

(Ellington et al., 1996). An additional hypothesis is that the flow

induced by the strong tip vortices of low aspect ratio insect wings

stabilizes the LEV by greatly lowering the effective angle of attack

(Birch and Dickinson, 2001). An attempt to block spanwise flow

using a variety of baffle found little or no effect on LEV strength

or stability (Birch and Dickinson, 2001), but these experiments do

not clearly identify a unique explanation for LEV stability.

In this study, we start by showing experimentally that neither the

swept wing analogy nor induced flow due to the tip vortex can fully

explain LEV stability on fly wings. Based on the notion that

revolving insect wings also stabilize LEVs (Dickinson et al., 1999;

Usherwood and Ellington, 2002; Birch et al., 2004) we then apply

the Navier–Stokes equations for flapping wings using a coordinate

transformation that attaches the frame of reference to the surface

of the flapping wing [these equations have been derived in the

accompanying paper (Lentink and Dickinson, 2009)]. This analysis

shows how wing kinematics can potentially stabilize the LEV on a

revolving wing. Based on the two governing dimensionless numbers,

Rossby number (Ro), which measures Coriolis acceleration, and
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SUMMARY

The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex

(LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical

mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly

wings we expressed the Navier–Stokes equations in a rotating frame of reference attached to the wing’s surface. Using these

equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis

acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless

stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a

dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined

which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is

stabilized by the ‘quasi-steady’ centripetal and Coriolis accelerations that are present at low Rossby number and result from the

propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a

flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV

integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further

suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most

relevant for insect flight (100<Re<14,000). LEVs are stable and continue to augment force even when they burst. These and similar

findings for propellers and wind turbines at much higher Reynolds numbers suggest that even large flying animals could

potentially exploit LEV-based force augmentation during slow hovering flight, take-offs or landing. We calculated the Rossby

number from single-wing aspect ratios of over 300 insects, birds, bats, autorotating seeds, and pectoral fins of fish. We found

that, on average, wings and fins have a Rossby number close to that of flies (Ro=3). Theoretically, many of these animals should

therefore be able to generate a stable LEV, a prediction that is supported by recent findings for several insects, one bat, one bird

and one fish. This suggests that force augmentation through stably attached (leading edge) vortices could represent a convergent

solution for the generation of high fluid forces over a quite large range in size.

Supplementary material available online at http://jeb.biologists.org/cgi/content/full/212/16/2705/DC1
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dimensionless stroke amplitude (A*), which is a measure of the

unsteadiness of the flow, we then carry out a set of experiments to

determine whether any of these dimensionless numbers mediate

LEV stability through their corresponding accelerations. Using both

flow visualization and force measurements we show that Ro, and

not A*, appears to explain LEV stability. We then compare our

theoretical and experimental findings with literature on other wings

and fins in nature and technology.

MATERIALS AND METHODS

The basic methods used for dynamically scaling an insect wing have

been described previously (Dickson and Dickinson, 2004). We

constructed a model Drosophila melanogaster wing from 2.0mm

thick clear acrylic plate with a (single) wingspan bs of 0.187m and

surface area S of 0.0167m2. Mean chord width c is defined as S/bs.

Here and elsewhere our wing parameters (bs, S and c) refer to single

wings, not a bilateral wing pair. The force sensor connects the robot

arm with the wing base, which results in a wingtip radius R of

0.254m. The wing was attached to a force transducer in series with

a 3degree of freedom actuator which was connected to a translating

robot arm immersed in a 1m�1m�2m tank filled with either oil

or water. The Reynolds number was calculated as: Re=(cUg)/ ν, in

which c is average chord length, Ug the average velocity at the radius

of gyration Rg (Ellington, 1984) and ν the kinematic viscosity. The

tank was filled with thick mineral oil (density ρ=840 kg m–3;

ν=140�10–6 m2 s–1) to obtain Re=110, thin mineral oil

(ρ=830kgm–3; ν=11.0�10–6 m2 s–1) to obtain Re=1400 and water

(ρ=998kgm–3; ν=1.004�10–6 m2 s–1) to obtain Re=14,000.

In our experiments we used the following kinematic patterns for

flapping: sinusoidal motion for stroke position and smoothed

trapezoidal for angle of attack motion (Dickinson et al., 1999). We

based the stroke amplitude of 70° in our experiments on the free

flight kinematics of six slowly hovering fruit flies (Fry et al., 2003).

Insect wing kinematics has features such as advanced wing rotation,

a U-shaped stroke plane and a small hump in the angle of attack

motion, which we neglect here, even though some of these features

are known to improve insect flight performance (e.g. Dickinson et

al., 1999). Note that we use amplitude in the mathematical sense,

which is equal to half the total wing amplitude as defined by

Ellington (Ellington, 1984). In each flapping trial, the robot flapped

for six complete periods [at averaged flapping frequencies of

0.22Hz at Re=110, 0.23Hz at Re=1400 and 0.20Hz at Re=14,000].

The geometric angle of attack amplitude α0 was varied from 0 to

90° with steps of 4.5° [for definitions of flapping kinematics see

Sane and Dickinson, and Lentink and Dickinson (Sane and

Dickinson, 2001; Lentink and Dickinson, 2008)]. The unidirectional

revolving and translating wing kinematics consisted of a constant

velocity stroke with constant acceleration and deceleration to begin

and end the stroke. The duration of the acceleration was 10% of

the stroke for both revolving and translating wings. As with flapping

trials, α0 was varied from 0 to 90° in steps of 4.5° The revolving

wing swept over an arc of 320°; the travel distance of the translating

wing was calculated such that it moved over a similar distance to

the revolving wing at its radius of gyration.

We generated a range of Rossby numbers (Ro) for a particular

Reynolds number (Re=1400) by elongating the robot arm by factors

of 1.27 and 1.53, which increased Ro at the radius of gyration to

3.6 and 4.4, respectively. The unidirectionally and reciprocally

translating wing kinematics (Ro=�) were obtained by setting the

stroke amplitude of the robot arm to zero and translating the stage

to which it was fixed. The stroke amplitudes for the Ro=3.6, 4.4

and � cases were calculated under the condition that the actuator

disc area (Stepniewski and Keys, 1984), swept by the wing during

the stroke, was identical to within a precision of <0.1%. The average

Reynolds number at Rg varies <0.5% for unidirectional and <5%

for reciprocating kinematics.

Flow visualization using air bubbles

We released small air bubbles at the leading edge (~25mm apart)

and trailing edge (~30mm apart) of the wing into the oil (at Re=110

and 1400). Air was transported to the leading and trailing edges

using a 2mm thin tube glued flush to the edge of the 2mm thick

wing such that the flow was minimally disturbed by the tube. We

made holes in the tube, marked with a white dot of paint, using

insect pins. The air bubbles released through these holes rise upward

because they are not neutrally buoyant and thus do not form perfect

streak lines. Although we were able to minimize upward velocity

through minimizing bubble size by puncturing the tubing with the

smallest available insect pins (for fruit flies), we could not control

the bubble size accurately, resulting in differently sized bubbles with

different upward speeds. Finally, we note that the bubbles initially

perform trail following, yielding a higher upward velocity for

bubbles in a group compared with individual bubbles. In general,

however, the flow visualization matches the previously performed

particle image velocimetry measurements well. This method is,

therefore, particularly suited for simple 3D LEV visualization

because the bubbles will be drawn into strong vortices with low

pressure cores resulting in tight spirals while weaker and wider

vortices will result in wider spirals of bubbles. In addition, the

bubbles will be driven preferentially inward (from wingtip to base)

under centrifugal loading, because of their low density. Thus,

bubbles that flow outward reliably indicate outward flow.

We visualized the flow around translating and revolving wings

with either unidirectional or reciprocating stroke kinematics for

α0=0, 18, 36, 45, 54, 72 and 90° For image recording we used a

digital monochrome Basler camera: 656�491, sampling at

100framess–1. For flapping wings we obtained visualizations for

six flap periods. We excluded the first cycle and determined the

time of bursting for the subsequent five periods at Re=1400. The

moment of bursting was defined as the moment at which we first

noted the appearance of a white cloudy, spiral-like, accumulation

of bubbles in the vortex (which is a qualitative definition). The

images have been enhanced with the Auto Contrast function of

Photoshop (8.0, Adobe) and the online movies are compressed with

VirtualDub (1.5.10, www.cole2k.net).

Lift and drag measurements

The lift and drag forces acting on the wing were measured with a

custom-built force sensor as previously described (Dickinson et al.,

1999; Birch and Dickinson, 2001; Birch et al., 2004; Dickson and

Dickinson, 2004). For post-processing we down-sampled the

measurements at 300Hz, which is still approximately 1400 times the

flapping frequency. The force signals were filtered offline using a

zero phase delay low-pass 4-pole digital Butterworth filter. The cut-

off frequency was determined such that it corresponded with an

average distance traveled of 0.3 chord lengths at Rg. This distance is

at least 10 times lower than the distance over which a LEV is known

to shed (Dickinson, 1994; Dickinson and Götz, 1993). The forces of

the wing with reciprocating kinematics (six flaps) were averaged over

four cycles (2nd to 5th) whereas they were averaged between 70%

and 90% of the stroke period for wings with unidirectional kinematics

(to exclude the start and stop transient). The final values were obtained

as an average of three trials, except for the unidirectionally translating

case at Re=110 and the swept wing polars for which N=1.

D. Lentink and M. H. Dickinson
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For a fair comparison among experiments we calculated how

effectively a wing generates force for equal dynamic pressures,

which is the standard approach in engineering and animal flight

literature. These force coefficients were calculated based on the mean

dynamic pressure 1/2ρVg
2

__

which we calculated using a blade element

method (Ellington, 1984; Dickinson et al., 1999; Sane and

Dickinson, 2001; Dickson and Dickinson, 2004). The lift coefficient

was calculated as CL=2L/ρSVg
2

__

whereas the drag coefficient was

calculated as CD=2DVg/ρS(Vg
2

__

)3/2 in which Vg is the velocity at the

radius of gyration, ρ the density and S the wing surface area.

According to this definition, CD reduces to the classic drag

coefficient for the translational kinematics. For revolving wing

kinematics, CD is the mean drag coefficient, which is equal to the

power coefficient in the case that the local drag coefficient does not

change along the wing’s radius.

RESULTS

Test of existing hypotheses

Using the dynamically scaled fly wing (Drosophila melanogaster)

(Dickson et al., 1999; Dickson and Dickinson, 2004) to measure

forces and visualize flows, we first tested whether wing sweep

and tip effects alone could stabilize a LEV on a fly wing that was

translating (but not revolving) at fixed velocity. We systematically

varied sweep angle from 0 to 60° over a large range of angles of

attack (0 to 90°). The results, performed at Re 110 and 1400, show

that wing sweep cannot stabilize the LEV (Fig. 1A; supplementary

material Movie 1). Further, the results at zero sweep angle indicate

that the presence of a tip vortex is also insufficient to stabilize the

LEV (Fig. 1B; supplementary material Movie 2). It is important to

note that the exact same wing generates a stable LEV and elevated

forces when revolved at constant angular velocity around its base

(Fig. 1C; supplementary material Movie 3), as found by others

(Dickinson et al., 1999; Usherwood and Ellington, 2002; Birch et

al., 2004). The translating swept fly wing not only rapidly shed

its LEV but actually generated less lift than the unswept wings at

Reynolds numbers of 110 and 1400 (Fig. 2). Thus, a strict analogy

of the mechanisms that operate to stabilize LEVs on swept wing

aircraft does not appear to hold for insect wings. In addition, the

shed LEV and low performance of an unswept, translating wing

indicate that tip effects alone cannot generate a stable LEV, at

least not at the aspect ratio of our model fly wing. Tip effects,

however, do appear to explain LEV stability on wings with very

low aspect ratios close to one and less (Winter, 1936; Ringuette,

2007).

These preliminary experiments motivated us to explicitly

examine the role of revolving, propeller-like, motion in LEV

stability. When hovering, most insects flap their wings back and

forth in a roughly horizontal stroke plane. At each stroke reversal,

the wings rapidly flip over and change direction, during which

time the forces and flows are highly unsteady. The LEV created

at the start of one stroke sheds, and a new counter-rotating LEV

forms as the wing flips over and reverses direction (Poelma et

al., 2006). However, during each half-stroke (i.e the upstroke and

the downstroke), the motion is ‘propeller-like’ in that the wing

revolves around its base at a roughly constant angle of attack

(Usherwood and Ellington, 2002). Our working hypothesis was

that some feature of the fluid dynamics intrinsic to this revolving,

propeller-like motion is responsible for the stability of the LEV.

We explored this hypothesis by first identifying a complete list

of rotation-based fluid accelerations that theoretically could be

responsible for LEV stability, which we then tested

experimentally.

Navier–Stokes equations for flow near a flapping wing

We developed a simple theoretical framework to identify the

dimensionless numbers that might influence flow near wings

undergoing both unidirectional (propeller-like) and reciprocating

(insect-like) motion during hovering conditions. A key feature of

our analysis is that it accommodates a continuous range of stroke

kinematics from pure revolving to pure translational motion. The

analysis is continuous because translation represents the limiting

case of a wing revolving over an infinitesimal angle about an infinite

radius (Fig.3A); in this sense a translating wing performs hovering

flight around an infinite turning radius. For a consistent comparison

among experiments, three key conditions are met with good

approximation. First, the area swept by the revolving wing is kept

constant, thereby maintaining constant Froude efficiency

(Stepniewski and Keys, 1984). Second, the dimensionless stroke

amplitude (A*) at the radius of gyration (Ellington, 1984) is kept

constant to ensure that wing–wake interactions (Birch and

Dickinson, 2003) are similar. Finally, Re at the radius of gyration

is kept constant as well (Fig.3A). The most convenient theoretical

framework for such an analysis is a dimensionless form of the

Navier–Stokes equations, expressed in a non-inertial frame of

reference fixed to the revolving wing in hovering flight [for

B

s=1c s=3c

s=3cs=1c

A

s=8c 

C

Fig. 1. The leading edge vortex (LEV) sheds from a translating model insect

wing, regardless of its sweep angle, whereas it remains stably attached

when the wing revolves. The LEV is visualized at Reynolds number

Re=110 and 1400 with small air bubbles released at the leading and

trailing edges of the wing. The distance (s) traveled by the wings is given in

chord lengths c at the radius of gyration Rg. (A) LEVs are unstable on

swept wings, shown for 40° sweep at α=36° and Re=1400. (B) The LEV is

also unstable on the same wing without sweep. (C) Revolving the same

wing results in a LEV that remains stably attached, shown for clarity at

Re=110 and s=8c, where s is the distance traveled in chord lengths.
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derivation see Lentink and Dickinson (Lentink and Dickinson,

2008)] (see also Vanyo, 1993; Greitzer et al., 2004). The

dimensionless fluid acceleration due to net viscous and pressure

forces acting on a fluid ‘particle’ in an inertial frame ainert is related

to that in the rotating frame aloc by (Baruh, 1999):

ainert = aloc + (aang + acen + aCor) , (1)

where:

aang = 1/A* � Ω
.

� r , (2)

acen = 1/Ro � Ω � (Ω � r) (3)

and

aCor = 1/Ro � 2Ω � uloc . (4)

Here, Ω is the angular velocity and Ω
.

is the angular acceleration of

the rotating frame, and r and uloc are the position and velocity of a

fluid volume in the rotating frame, respectively (Fig.3B). The

angular acceleration is inversely proportional to A*, which is a

measure of dimensionless stroke amplitude:

A* = Φ0R/c , (5)

where Φ0 is the stroke amplitude in radians, R is wing length, and

c is the average chord length. This term expresses the amplitude as

the number of chord lengths traveled.

The three terms enclosed in brackets in Eqn1 are the angular

(aang), centripetal (acen) and Coriolis (aCor) accelerations. Physically,

these three accelerations result from the wing’s kinematics and are

enforced on the air close to the wing’s surface, which can neither

flow through nor slip with respect to the wing at its surface (Vanyo,

1993; Greitzer et al., 2004). We illustrate the three rotational

accelerations that result from the dominant angular velocity due to

stroke (Lentink and Dickinson, 2008) in Fig. 3B. The first

component, aang, is the manifestation of the angular acceleration of

the wing around its base, which results locally in a chordwise

acceleration (Fig.3B). This term is absent on a wing that revolves

unidirectionally at constant angular speed, but will be present if the

angular velocity changes, as with reciprocating back and forth

motion (Fig.3A). The second term, acen, represents the centripetal

acceleration, which is directed spanwise towards the wing’s base

(Fig.3B). The third term, aCor, represents the Coriolis acceleration;

its direction depends on the direction of local fluid velocity uloc

(Fig.3B). Both the centripetal and Coriolis accelerations (acen and

aCor) are ‘quasi-steady’ in that they depend on the instantaneous

value of the angular velocity Ω of the wing. This is in contrast to

the angular acceleration (aang), which depends on changes in angular

velocity Ω
.
. Note that we consider accelerations (Eqns2–4, Fig.3B)

instead of the analogous ‘fictitious forces’, which point in the

opposite direction (Vanyo, 1993; Greitzer et al., 2004).

D. Lentink and M. H. Dickinson
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A
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0
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1
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C
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0
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1

CL
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B

α

Re=110

0°
30°
60°

Fig. 2. Sweep does not increase the lift created by a translating fruit fly

wing at Re=110 and 1400. (A) The lift (CL)–drag (CD) polar shown for

Re=110 (B) and Re=1400 (C) represents the dimensionless lift (L) and

chordwise drag (Dchord) forces obtained by varying the angle of attack (α)

from 0 to 90° in steps of 4.5°. We tested this for wing sweeps from 0°,

indicated with black, to 60°, indicated with red, in increments of 10°

sweep.

inertial

B

A

ΩstrokeΩstrokeu loc

aCor

spanwise flow

RgRg

V(r)

actuator
disk area

sg

purely revolving

purely translating

revolving + translating

x

y

z

.
Ωstroke

ΩstrokeΩstroke

u locaCor

aang acen

r

chordwise flow

ΩstrokeΩstroke

Fig. 3. (A) Framework used to analyze fluid accelerations on translating and

revolving wings. The area of the actuator disc is constant within the model.

Rg is the radius of gyration, sg the number of chord lengths traveled at Rg

during a full stroke, and V(r) is the velocity distribution along the wing’s

radius r. (B) In the wing-bound frame, the fluid close to the wing

experiences three accelerations due to the wing’s stroke kinematics: an

angular acceleration aang, a centripetal acceleration acen and a Coriolis

acceleration aCor. Note that uloc is the local velocity in the wing-bound

frame, Ωstroke is the angular velocity due to stroke, Ω
.

stroke is the angular

acceleration due to stroke and r is the position of a particle of fluid in the

rotating frame.
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The magnitudes of the three acceleration terms aang, acen and aCor

are scaled with respect to the fluid’s convective acceleration (in the

local frame), which results in the three individual dimensionless

numbers in Eqns2–4. In the special case of hovering flight, both

the centripetal and Coriolis accelerations are inversely proportional

to the Rossby number Ro (Rossby, 1936; Lentink and Dickinson,

2008). From now on we will use the dimensionless length scales

A* and Ro to quantify the angular, centripetal and Coriolis

accelerations. For a revolving wing, Ro is equal to Rg/c, the ratio

of the radius of gyration divided by the mean chord length. Ro is

infinite for wings that translate, because the radius of gyration is

infinitely large (Fig.3A). It is convenient to calculate the Rossby

number with respect to wingtip radius, R, rather than radius of

gyration:

Ro = R/c , (6)

because this value is equivalent to the aspect ratio of a single wing

ARs and is easily extracted from the biological literature (for details,

see Lentink and Dickinson, 2008). Typical values of Ro (based on

wingtip radius) for insect wings cluster near 3 (Fig.12), which

immediately suggests that rotational accelerations may be significant

(note Rg/c�1.5 because Rg�0.5R for insects). For a reciprocating

wing, A* is equal to A/c; the ratio of stroke amplitude A to mean

chord length c. Again, we consider the stroke amplitude at the wing’s

tip instead of the radius of gyration, for simplicity. Note that for a

unidirectional revolving wing A, and therefore A*, is infinite.

What is the relative importance of aang, acen and aCor for insect

wings? In hovering flight, the ratio of A* to Ro (the quotient of

Eqns 5 and 6) is Φ0, where Φ0 is the amplitude (in radians) of the

harmonic function that defines the reciprocating motion of the wing

(see definitions of A* and Ro in Eqns 5 and 6). Φ0 ranges from

about 0.6 to 1.5 for insects (Ellington, 1984). Therefore A* is of

the same order of magnitude as Ro across insects, order one, which

suggests that aang, acen and aCor have similar magnitudes as well.

This holds true not just for insects but also for larger animals under

continuous or transient hovering conditions. Further insight can

be gained by coarsely evaluating the rotational accelerations at

the start, middle and end of each stroke assuming that the back

and forth motion is roughly harmonic, a reasonable assumption

for many insects (Ellington, 1984). At the end and start of the

stroke both acen and aCor are minimal because Ω is zero, whereas

Ω
.

and thus aang are maximal and scaled by 1/A*. However, these

conditions are probably of little importance in LEV stability,

because the LEV sheds and reforms (with opposite sense) during

stroke reversal (e.g. see Poelma et al., 2006). At midstroke, when

LEV stability is at issue, acen and aCor are maximal and scaled by

1/Ro, whereas aang is near zero. This simple analysis suggests that

LEV stability might be mediated by the rotational accelerations

acen and aCor and not by the unsteady acceleration aang. The primary

goal of the following experimental analysis is to explicitly test

this theoretical prediction.

Dependence of LEV dynamics on dimensionless numbers

We performed a series of flow visualizations and force

measurements on revolving (Ro=2.9) and translating (Ro=�) fly

wings undergoing unidirectional (A*=�) and reciprocating (A*=3.5)

motion for angles of attack amplitudes between 0 and 90° The finite

values of Ro and A* are representative of slowly hovering fruit flies

in free flight (Fry et al., 2003) and are close to the mean value found

for many insects. (Note that Ro=� corresponds with 1/Ro=0, i.e.

Coriolis and centripetal accelerations are zero. Similarly, A*=�

indicates zero angular acceleration.)

The LEV is stable on a unidirectionally revolving wing (Ro=2.9,

A*=�; Fig. 1C; supplementary material Movie 3), as found in prior

studies (Dickinson et al., 1999; Usherwood and Ellington, 2002;

Birch et al., 2004), but not on a unidirectionally translating wing

(Ro=�, A*=�; Fig.1B; supplementary material Movie2). The LEV

is also stable on a reciprocally revolving wing (Ro=2.9, A*=3.5),

but not on a reciprocally translating wing (Ro=�, A*=3.5; Fig. 4A;

supplementary material Movies 4 and 5). These results are similar

at Re 110 (fruit fly scale) and 1400 (house fly or bee scale;

supplementary material Movie 6). In summary, reciprocating

motion (finite A*) is not sufficient to stabilize a LEV. Rather, LEV

stability appears only to require the low Ro resulting from

revolving propeller-like motion.

Although we observed a stable LEV at both Re 110 and 1400

on both unidirectionally and reciprocally revolving wings, the

flow structure was not identical for these Re numbers, as found

previously (Birch et al., 2004). In particular, the LEVs generated

in experiments at Re 1400 exhibited spiral bursting under both

unidirectional and reciprocating motion (Fig. 4B; supplementary

material Movie 7). The ‘bursting’ of a spiral vortex is a

phenomenon that is thought to be initiated by deceleration of the

core flow (Greenwell, 2002) and has been described for delta

wings operating above a Re of about 1000. For a unidirectional

revolving wing, the LEV bursts immediately after startup at angles

of attack above 18°, whereas for the reciprocating case the LEV
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Fig. 4. Influence of Rossby number Ro on LEV stability. (A) LEV visualized

on wing undergoing revolving reciprocating motion (Ro=2.9, A*=3.5) or

translational reciprocal motion (Ro=�) at α=36°. The visualizations were

made at s=4c at the radius of gyration, near the end of the stroke (4.4c). At

Re=1400, the LEV bursts (b) halfway along the wing (Ro=2.9), but remains

stably attached. (B) Top panel: close up of a LEV exhibiting spiral bursting

(sb) at Re=1400 midway through the stroke at α=45°. Bottom panel: at the

end of the stroke for α=18° at midstroke we observed that the burst LEV

was λ-shaped; it split up into two ‘dual vortices’ near the tip, of which the

bottom one, below the red line, burst spiral-like (b). (C) Observations of the

occurrence of a stable LEV and the onset of spiral bursting within a stroke

of a reciprocally revolving wing (Ro=2.9) at Re=1400. The LEVs are stable

for all angles of attack and exhibit spiral bursting midstroke for α>18°, of

which the start is indicated with a circle (diameter is larger than the s.d.

calculated over five strokes).

THEJOURNALOFEXPERIMENTALBIOLOGY



2710

bursts after the wing almost reaches the midstroke position when

the wing starts to decelerate (Fig. 4C). On our model insect wing,

the LEV remained coherent after it burst, resulting in a ‘turbulent’

volume of rotating fluid whose position remained stable with

respect to the wing. Examples of spiral bursting are shown in

Fig. 4A for the end of a stroke at an angle of attack α=36° at

midstroke and in Fig. 4B for midstroke at α=45° [note α=90°–α0

for flapping wings (Sane and Dickinson, 2001)]. Similar to Lu

et al. (Lu et al., 2006), we observed in a few cases a double LEV

structure with a small LEV in front of a larger burst LEV (Fig.4B).

We summarize our basic flow visualizations in Fig.5 using

cartoons to indicate the basic flow structure at different values of

A*, Ro and Re. It shows that revolving wings (Ro=2.9) mediate

compact and stable spiral LEVs, whereas the LEV is unstable for

translating wings (Ro=�). Reciprocating motion (A*) does not

modify LEV stability, but at small stroke amplitudes it does,

D. Lentink and M. H. Dickinson
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∞
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translating

unidirectional-revolving
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Fig. 5. Flow cartoons that summarize our flow

visualization experiments as a function of Re, Ro

and A*. Low Ro (2.9) results in stable LEVs, A* (3.5,

�) does not modify this and higher Re (110 to 1400)

induces vortex bursting, but does not affect the

stable attachment of the LEV with respect to the

wing. Re=110 represents fruit flies and Re=1400

house flies. Triangles represent unidirectional stroke

kinematics, circles represent reciprocating stroke

kinematics. Ro is indicated by color: yellow, Ro=2.9;

blue, Ro=�, as used in Fig. 6.
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Fig. 6. The lift and drag coefficients of revolving wings (low Ro) are larger than those generated by translating wings (high Ro) at Re=110, 1400 and 14,000.

The lift (CL)–drag (CD) polars shown are obtained by varying the angle of attack from 0 to 90°. in steps of 4.5°. Triangles represent unidirectional stroke

kinematics, circles represent reciprocating stroke kinematics. Ro is indicated by color: yellow, Ro=2.9; blue, Ro=�; white, Ro=3.6 and Ro=4.4. (A,B) At

Re=1400, the lift and drag coefficients depend directly on Ro for both unidirectional and reciprocating stroke kinematics. The force augmentation of the

unstable LEV on the translating reciprocating wing in B is still substantial compared with the performance of a unidirectional translating wing (A). (C,D) Force

augmentation at low Ro is found from Re=110 to 14,000.
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however, keep the LEV close to the wing as it sheds the unstable

LEV in time and forms a new one (with opposite sense) during

every stroke reversal (A*=3.5). For higher stroke amplitudes this

does not work because the LEV sheds before stroke reversal;

unidirectional translational motion being the limiting case (A*=�).

Reynolds number does not seem to affect LEV stability within the

range examined. An increasing Reynolds number does, however,

modify LEV integrity as it induces vortex bursting on revolving

wings. On translating wings we did not observe vortex bursting but

the flow did become more erratic after a tight vortex was formed

and started to separate from the wing, suggesting a transition to

turbulent flow.

Dependence of force coefficients on dimensionless numbers

One critical question in assessing the efficacy of LEVs at different

Re is whether a burst LEV still augments the force generated by

the wing. To address this, we measured the forces generated by the

model fly wing under different kinematic conditions. Comparing

the lift and drag coefficients (CD and CL) generated at Re=110 and

1400 under the four kinematic conditions discussed above (the four

combinations of Ro and A* in Fig.5) indicates that bursting does

not result in a loss of force augmentation (Fig.6A–C; Fig.7). On

the contrary, force coefficients are actually elevated at higher Re,

as has previously been reported (Birch et al., 2004). The presence

of a stably attached LEV at low Ro (revolving motion) was in all

cases accompanied by an increase of the lift and drag coefficients

relative to the Ro=� case (translational motion).

To test whether LEV stability and force augmentation depend

directly on Ro, we varied Ro for both a unidirectionally and a

reciprocally revolving wing. This was achieved experimentally by

extending the wing away from its rotational axis to create Ro values

of 3.6 and 4.4 (Re=1400). Force augmentation decreased with

increasing Ro (Fig.6A,B), consistent with the general prediction that

the LEV is stabilized at low Ro. However, we saw no evidence for

LEV shedding in our force or video records under these conditions.

We speculate that within the permissive range of low Ro the precise

magnitude of rotational accelerations may influence equilibrium

conditions and determine the strength and efficacy of the LEV.

The observation that the LEV was stable even after it had burst

encouraged us to test whether LEV force augmentation might extend

to even higher Re. At Re 14,000 (hummingbird scale) we continued

to find force augmentation (Fig.6D). In Fig.7 it can be seen that

aerodynamic force polars of flapping, spinning and translating wings

depend only weakly on Re. Important Re effects do, however, still

exist as the minimum drag coefficient at zero lift, CD0, decreases

with increasing Reynolds number.

Efficacy of flapping, spinning and translating fly wings

In the past, performance analyses of insect wings have been focused

primarily on maximum lift production, which is augmented by the

LEV, but how efficient is this high-lift mechanism? To assess

aerodynamic efficacy, we constructed ‘performance polars’ using

two relevant indices: glide number, CL/CD, and power factor,

CL
3/2/CD (e.g. Ruijgrok, 1994; Wang, 2008). The required power

for a certain amount of lift decreases with increasing power factor.

Fig.8 shows how force and performance polars are related. We

further illustrate the effect of decreasing CD0, which increases

performance; the corresponding performance maxima occur at lower

angles of attack for lower CD0. The power factor is maximal (Fig.8,

circle) at an angle of attack that is slightly higher than the one for

which the glide number is maximal (Fig.8, square) (Ruijgrok, 1994).

Insects use reciprocally revolving wings to generate lift, whereas

helicopters use spinning blades and airplanes simply translate their
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Fig. 7. Lift and drag augmentation of the LEV varies little with Reynolds

number. (A) Unidirectionally translating wing. (B) Unidirectionally revolving

wing. (C) Reciprocally revolving wing; star represents fruit fly kinematics.

The force polars at Re 1400 and 14,000 overlap for angles of attack lower

than 45°. The main effect of a low Reynolds number (110) is that it damps

both lift and drag force.
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wings through air. Based on Fig.7 we can readily infer that flapping

and spinning fly wings generate easily up to twice as much lift and

drag force compared with translating fly wings for 110<Re<14,000.

But which kinematics generates lift most efficiently? For

Re=110–14,000 we find that the spinning fly wings perform up to

100% better than flapping fly wings and up to 50% better than

translating fly wings, as measured by power factor (Fig.9). Further,

for 1400<Re<14,000 we find that translating wings also outperform

flapping wings, whereas flapping fly wings slightly outperform

translating wings at Re=110 (fruit fly scale). Our measurements show

that fruit flies actually flap their wings with kinematics that are near

optimal with respect to power factor; their wing kinematics results

in a hovering performance that matches well the peak performance

for our simplified robot kinematics at Re=110 (Fig.9). As Reynolds

number increases, the angle of attack corresponding with minimum

power decreases, indicating that less prominent LEVs result in

maximal hover efficiency. This analysis, however, assumes that

power factor is the most appropriate measure of general

performance. If maximum lift were limiting, one would reach quite

different conclusions as maximum lift occurs at roughly α=45°, quite

independent of Re.

DISCUSSION

Using a dynamically scaled robot fly wing we visualized the flow

and measured the corresponding lift and drag forces that result from

a range of wing kinematics at 110<Re<1400. We tested swept wings

and revolving and translating wings undergoing unidirectional and

reciprocating motion. This allowed us to determine which kinematics

results in stable LEVs, maximum lift augmentation and maximum

aerodynamic performance. Ultimately this test allowed us to

determine which dimensionless number and corresponding rotational

accelerations best predict LEV stability.

Rossby numbers of order one mediate stabile LEVs

Our results suggest that the centripetal acen and Coriolis aCor

accelerations mediate the stability of a LEV on a unidirectional and

reciprocally revolving insect wing (Fig.5), and that these rotational

accelerations are inversely proportional to Rossby number (Ro). The

decrease in force augmentation from Ro=2.9 to 3.6 to 4.4 (Fig.6A,B)

suggests that LEV stability is confined to Ro of order one or lower.

However, high aspect ratio revolving wings still experience

significant rotational accelerations near the root were the radial

position r is small compared with chord length c and thus could

locally support a stable LEV. This effect is likely responsible for

the higher than expected forces found near the hub of high aspect

ratio wind turbine blades where local Ro=r/c is less than 3 (Tangler,

2004), a phenomenon that has been confirmed by computational

fluid dynamic (CFD) simulations (Beom-Seok et al., 2002). Locally

at r/c<3 the Coriolis and centripetal accelerations are high as the

local values are inversely proportional to the local Rossby number

r/c, irrespective of the Rossby number that represents the whole

wing (R/c), which is high for high aspect ratio wings. The LEV

visualizations of Lu et al. (Lu et al., 2006) on flapping high aspect

ratio wings (Ro=1.3–10) suggest that the most prominent LEV (they

found dual vortices for Re>640) is indeed confined to the base region

where local Ro is approximately lower than 3. This confirms the

idea that a slender wing can locally support a stable LEV near the

base where the local Rossby number r/c<3, which yields locally

significant rotational flow accelerations.

Our theoretical prediction and experimental confirmation suggest

that rotational accelerations mediate LEV stability, but how are acen

and aCor physically involved? On wind turbines, operating at Re of

order 106, acen has been attributed to centrifugal pumping (e.g.

Lindenburg, 2004; Vanyo, 1993; Greitzer et al., 2004), which results

in an outward spanwise flow near the hub. At the hub the blade

undergoes so-called ‘3D stall’ and generates elevated lift forces

resulting in local lift coefficients well above 2 (Tangler, 2004). The

flow pattern in the hub region of a wind turbine, where local Ro is

similar to that of insect wings, is distinct from the pattern more

distally, where the slender blades are said to undergo ‘2D stall’

(Beom-Seok et al., 2002; Tangler, 2004; Lindenburg, 2004).
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Fig. 9. Spinning fly wings outperform translating and flapping fly wings at

110<Re<14,000 (A–C). The same symbols are used as in Figs 6 and 7.

Maximal power factor represents the minimum aerodynamic power required

to hover. Fruit fly kinematics is indicated with a star; note that this

corresponds approximately to minimal power required to hover (maximal

power factor) at Re=110, at which they operate. At higher Re, fruit fly

kinematics also do well for hovering at minimal power, although the power

factor is slightly below optimal (B,C).
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For simple rotating discs, the outward radial fluid flow mediated

by centripetal acceleration of the disc is well known (e.g. Vanyo,

1993). The radial flow is limited to a boundary region known as

the Ekman layer (Fig.10). The corresponding Ekman number,

Ek=ν/Ωc2, is a measure of the ratio of viscous forces to Coriolis

accelerations in this boundary layer. In the case of revolving discs

and wings, Ek is equal to Ro/Re; hence, one can independently

choose any pairwise combination of Ek, Ro and Re as the set of

characteristic dimensionless numbers (Vanyo, 1993; Greitzer et al.,

2004). The first set, Re and Ro, is preferable for analyses of

biological flight, because Re is more widely reported in the literature.

In the Ekman layer, the fluid at the surface of the spinning disc has

the same angular velocity as the disc (due to the no-slip condition

at the surface) and therefore undergoes a centripetal acceleration

acen equal to that of the spinning disc, supported by a radial friction

force fcen. A bit higher above the surface of the disc, the fluid is

pulled along in a tangential direction because of friction, but at the

same time it slips outward radially. It slips because there is not a

large enough friction force (from the gradient of radial velocity) to

support the full centripetal acceleration acquired by the fluid at the

disc’s surface. While slipping radially outward the fluid particle

undergoes Coriolis acceleration aCor in a tangential direction,

because it speeds up to match the higher tangential velocity outward

and changes direction (it rotates while pulled along by the disc).

This Coriolis acceleration is supported by a tangential friction force

fCor that results from the tangential flow gradient in an axial direction.

Even higher above the disc’s surface the boundary layer ceases to

exist. Because mass is conserved, the outward radial flow of fluid

must be supplied with ‘fresh’ fluid that flows towards the disc in

an axial direction. This process is called Ekman pumping.

The region of outward radial flow on top of a spinning disc is also

a conspicuous feature found on top of insect wings (Maxworthy, 1979;

Ellington et al., 1996; Birch and Dickinson, 2001; Birch et al., 2004;

Poelma et al., 2006) and near the hub of both propellers

(Himmelskamp, 1947) and wind turbines (Tangler, 2004; Lindenburg,

2004) where Ro is low locally. In fact, Ekman-like boundary layer

profiles have been calculated for wind turbine blades (Dumitrescu

and Cardos, 2003). Important historic evidence for spanwise flow on

a propeller at low Ro can be found in Himmelskamp (Himmelskamp,

1947), a classic reference in wind turbine literature. In Fig.11, we

reproduce his visualizations of spanwise flow on a low aspect ratio

propeller. Early spanwise flow visualizations and measurements on

insect wings suggested that spanwise flow is confined primarily to

the fluid region occupied by the core of the LEV (Maxworthy, 1979;

Ellington et al., 1996). Later digital particle image velocimetry (DPIV)

measurements of unidirectional and reciprocating revolving model

fruit fly wings have show that spanwise flow is not primarily

confined to the LEV, but extends all the way to the trailing edge

(Birch and Dickinson, 2001; Birch et al., 2004; Poelma et al., 2006).

Concurrently to the spanwise flow there is significant flow in an

orthogonal direction, parallel to the axis of rotation, which suggests

Ekman-like pumping. This flow is even visible quite far from the

wing’s surface (Birch et al., 2004; Poelma et al., 2006). The region

of radial flow and the orthogonal flow towards the ‘hub’ of the wing

on inclined reciprocating and unidirectional revolving insect wings

indicate the presence of an Ekman-like boundary layer, although

because of ‘flow separation’ its spatial extent is much larger (Fig.12A)

(Vanyo, 1993).

Our measurements and the observations for spinning discs, wind

turbines and a propeller suggest that the spanwise flow results from

‘centrifugal pumping’ as the fluid near the wing’s surface slips

radially outward. The fluid slips because there is not enough

friction to support the full centrifugal acceleration acen that the

fluid requires at the wing’s surface (Fig. 12A,B). In these cases,

the centripetal acceleration also results from a net specific force

directed towards the wing base (fcen in Fig. 12B) that is presumably

composed of both a pressure component and the friction

component that would be present on a spinning disc (Fig. 10). All

these findings strongly suggests that centrifugal pumping due to

wing rotation at low Ro can be found for both low and high Re –

from insect wings to wind turbine blades.

The observation that the region of separated spanwise flow (which

includes the LEV, Fig.5) stays stably attached to a revolving wing

implies that it is subject not only to a centripetal acceleration acen

but also to a continuous acceleration in the chordwise direction.

The required acceleration for this kinematic condition is precisely

the Coriolis term aCor (similar to the flow on spinning discs). This

implies that the spanwise flow driven by acen is stabilized with

respect to the wing through aCor, which must be supplied by a net

specific chordwise force that points in the direction of travel (fCor

in Fig.12B). Lindenburg (Lindenburg, 2004) showed that if aCor is

supported by a fore–aft pressure gradient acting across the region

of spanwise flow it could account for the elevated forces generated

close to the hub of a wind turbine. Whether this force augmentation

model works quantitatively for flapping insect wings is unknown,

but could be examined in future research.
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Fig. 10. Boundary layer on a spinning disc [after Vanyo (Vanyo, 1993)]. A

rotating boundary layer is commonly referred to as the Ekman layer and

the axial flow towards the wing, needed to balance the radial flow, is

referred to as Ekman pumping. The boundary layer velocity profile is self-

similar in that it scales with angular velocity multiplied by radial distance.

Therefore, the velocity profiles shown depict the whole velocity field. The

pressure field is rotationally symmetric and does not vary with radius; it

only varies with the axial distance from the disc. The forces needed to

support Coriolis and centrifugal accelerations are therefore solely due to

friction, which is proportional to the velocity gradient. Whereas solving the

Navier–Stokes equations on revolving wings is practically impossible in the

inertial (lab) reference frame, because of the surface tracking needed, in

the special case of spinning discs it is easiest to solve the equations in the

inertial (lab) frame. The reason for this is that the disc surface fills an

infinite plane and does not need to be tracked, which simplifies the

mathematics dramatically. Note that Ω is the angular velocity of the disc

and the fluid particle that sticks to it, Ω�<Ω; r, radial vector; urad, radial

velocity; acen, centripetal acceleration; aCor, Coriolis acceleration; fCor,

normalized coriolis force; fcen, normalized centripetal force.
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Our qualitative analysis of centripetal and Coriolis acceleration

holds globally for the whole region of spanwise flow, but perhaps

not in detail. For calculating the detailed acceleration distribution,

and corresponding local directions, the velocity field is needed. Sun

and Wu (Sun and Wu, 2004) calculated this velocity field around

a unidirectional revolving insect wing at Re=480 using CFD. Based

on the velocity field they computed the ‘fictitious forces’, which

point in the opposite direction to the corresponding rotational

accelerations (Vanyo, 1993; Greitzer et al., 2004). Their computation

of the spanwise components of the ‘Coriolis force’ and ‘centrifugal

force’ in the boundary layer flow for an angle of attack of 40°

confirms that Coriolis and centrifugal accelerations are indeed

significant. They further found that the radial pressure gradient force,

due to the linear spanwise velocity distribution, is even larger and

concentrated in the LEV, which can therefore explain spanwise flow

in the whole LEV at Re=480. But the pressure gradient force is also

significant in other regions where there is no spanwise flow. In the

light of this, we note that the DPIV measurements of Birch et al.

(Birch et al., 2004) at Re=110 and 1400 show significant chordwise

velocity in extended regions below, in front of, and above a fly

wing, without spanwise flow. This is significant, because in this

region viscous effects from the wing’s surface are negligible, so the

viscous ‘centrifugal pumping’ mechanism cannot work. The pressure

gradient force in this region is, however, non-zero because chordwise

flow varies radially from wing root to tip, which again should drive

a spanwise flow if such gradients were effective, but this does not

seem to be the case. Thus, there appears to be no one-to-one link

between spanwise flow and pressure gradient force throughout the

flow field around a fly wing at both low and high Re. Most likely

spanwise flow due to a pressure gradient is primarily confined to

the core of the LEV. Aono and co-workers (Aono et al., 2008) further

show that little spanwise flow and pressure gradient exists in the

LEV of a fruit fly at Re=134, while they do find significant spanwise

flow behind the LEV. For a hawkmoth at Re=6300 they did find

strong spanwise flow and pressure gradient in the LEV. These

findings of spanwise flow agree with our findings as well as those

of Birch et al. (Birch et al., 2004). Aono and co-workers further

suggest that Coriolis and centripetal accelerations are the likely

candidates for explaining the spanwise flow they found behind the

LEV on fruit fly wings.
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Fig. 11. Elevated forces and spanwise flow on a stubby operating

propeller at Ro<2 and Re=280,000. (A) These unique tuft-based

flow visualizations made by Himmelskamp (Himmelskamp, 1947)

have never been published in a journal and are therefore

reproduced here. The advance ratio J of the propeller is calculated

as the ratio of forward speed and wing tip speed; it varies from

0.124, almost hovering conditions, to 0.459, forward flight

conditions. The tufts indicate increasingly strong spanwise flow at

low advance ratios approaching hover conditions. This spanwise

flow corresponds with elevated lift. (B) For completeness we have

also reproduced a sketch of the propeller and the measured

section lift coefficients, based on pressure measurements at radial

stations, published by Schlichting (Schlichting, 1979). Note that R

is the wing tip radius, r the local radius, α the angle of attack and

Ca the section lift coefficient. The maximum section lift coefficient

of 3 is well above the maximum lift coefficient generated by the

same airfoil in a wind tunnel (dashed line). Inboard sections, where

Ro is lowest, correspond with maximum lift, which is also due to

the twist in the propeller blade.
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Integrating all these observations, including our theoretical

predictions and experimental confirmation, we conclude that: (1)

the spanwise flow in the core of the LEV of an insect, when present,

is most likely to be driven by the spanwise pressure gradient; (2)

the spanwise flow in the extended viscous flow region behind the

LEV can be explained best by centrifugal pumping, directly

analogous to that found on spinning discs, propeller blades and wind

turbine blades.

LEV integrity is mediated by Re and A*

Similar to findings of vortex breakdown by van den Berg and Ellington

(van den Berg and Ellington, 1997) and Lu et al. (Lu et al., 2006)

we found that the LEV on a fly wing exhibits spiral bursting at Re

1400. Spiral bursting is a phenomenon that has been described for

delta wings operating above a critical Re of about 1000, and is thought

to be initiated by core flow deceleration (Greenwell, 2002). If we

assume that the flow around an insect wing, including the core of the

LEV, accelerates when the wing accelerates, we can qualitatively

understand why the LEV starts to burst near midstroke when the wing,

and therefore the LEV’s core, starts to decelerate. This shows that,

although A* does not affect LEV stability, the corresponding angular

acceleration can mediate LEV integrity. Vortex bursting may explain

the erratic velocity vectors in the LEV found during previous

quantitative flow measurements under similar conditions (Birch et

al., 2004). Finally, our measurements show that the force coefficients

do not decrease as a result of vortex bursting (Figs5 and 6). This

suggests that LEV-based force augmentation is robust to high Re

number effects.

Comparing old and new LEV stability hypotheses

How do our findings relate to the previous ones that resulted in

the swept wing analogy and tip vortex hypothesis? We found that

LEV stability induced by the tip vortex does not seem to work

for fly wings at Re=110 and 1400 (Figs 1 and 2), although there

is evidence for higher Reynolds numbers that translating stubbier

wings with an aspect ratio of roughly one (and less) does generate

stable LEVs (Winter, 1936; Ringuette, 2007). Ellington and co-

workers (Ellington et al., 1996) suggested that three mechanisms

could potentially explain how spanwise flow could be generated.

Our theoretical analysis, experimental test and literature survey

show that ‘centrifugal’ acceleration in the boundary layer is the

likely mechanism at the low Re of fruit flies. At high Re, the

pressure gradient force can explain spanwise flow in the LEV

core, whereas centrifugal pumping can explain spanwise flow

behind the LEV. The region of spanwise flow is clearly not

confined to the LEV core alone, at low and high Reynolds

numbers, and its spatial distribution above an inclined wing

depends strongly on Reynolds number (Birch et al., 2004; Aona

et al., 2008). Our analysis further indicates that Coriolis

acceleration is equally important in the stable attachment of the

LEV, because this acceleration is an indispensable kinematic

condition for the stable attachment of spanwise flow with respect

to a revolving wing. All these experiments support, however, the

hypothesis that spanwise flow balances the formation of vorticity

at the leading edge and drains it into the tip vortex (Maxworthy,

1979; Ellington et al., 1996). The importance of Ro, and not Re,

in determining LEV stability suggests further that vorticity

transport in the large ‘Ekman-like’ separated flow region behind

the LEV could be equally critical in maintaining this balance at

low Re, compared with vorticity transport found in the LEV at

high Re. We infer this from a prior study that suggests that the

outward spiral flow within the core is Re dependent (Birch et al.,

2004), whereas those results as well as our own suggest that LEV

stability is not. Further, a direct analogy between LEVs on swept

and revolving wings does not seem to hold for equally shaped

wings operating at equally low Reynolds numbers, because we

did not observe stable LEVs or force augmentation for swept fruit

fly wings (Figs 1 and 2). In other experiments with high aspect

ratio swept bird wings (Apus apus) a stable LEV was found

(Videler et al., 2004; Lentink et al., 2007), but no significant force

augmentation (lift coefficients lower than one) for
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Fig. 12. Proposed 3D flow structure of a stable LEV and feasibility of its

general use by flying animals. (A) Sketch of the local flow field on a

revolving fruit fly wing at Re=110 and 1400 based on previously published

particle image velocimetry (PIV) data (Birch et al., 2004) and Figs 1, 4 and

5. Spanwise flow is present in the whole region on top of the wing and

convects the accumulating vorticity in the LEV towards the tip vortex.

(B) The large spanwise flow region of the wing is mediated by the

rotational accelerations acen and aCor, which results in an Ekman-like

boundary layer, similar to that on spinning discs and wind turbine blades.

The accelerations are balanced by the corresponding normalized

centripetal (fcen) and Coriolis (fCor) forces in the flow that can be composed

out of pressure and friction forces. (C) Rossby number of animal wings

assuming zero advance ratio as a function of body mass (N=319 in total).

The average values are close to those found for fruit flies (Ro=2.9): insects

Ro=3.1 (s.d.=1.1, N=98), hummingbirds Ro=3.7 (s.d.=0.3, N=65), bats

Ro=3.3 (s.d.=0.4, N=39) and birds Ro=3.2 (s.d.=1.18, N=117). The circles

with a black outline represent values that are directly based on the aspect

ratio of one wing. Circles without a black outline represent values for which

we corrected the aspect ratio of the tip-to-tip distance between paired

wings and total wing surface such that we obtained the single-wing aspect

ratio comparable to the calculation of the wingtip Rossby number. This

amounted to subtracting the distance contributed by the body width

between the wing bases. Information on this and all the insect, bird,

hummingbird and bat wing morphology references can be found in

Appendix 1. The constant–Reynolds number lines are calculated assuming

an average CL of 1.5 and represent the Reynolds numbers of our

experiments and that of Himmelskamp (Himmelskamp, 1947); details are

given in Appendix 2.
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12,000<Re<77,000 (Lentink et al., 2007). This suggests that a

direct analogy between LEVs on swept and revolving wings does

not hold at higher Reynolds numbers either.

Link between Rossby number and ‘quasi-steady’ lift theory

This study supports an earlier notion that the aerodynamic force

generation of insects might be considered ‘quasi-steady’,

excluding the complications that occur during stroke reversal

(Dickinson et al., 1999; Sane and Dickinson, 2001; Usherwood

and Ellington, 2002). Quasi-steadiness implies that the

instantaneous value of the flow velocity is more important than

its instantaneous rate of change for understanding and predicting

the aerodynamic forces, in particular wing lift (Sane and

Dickinson, 2001). Our theoretical framework supports this idea,

because the ‘quasi-steady’ rotational accelerations acen and aCor

are responsible for LEV stability, whereas the unsteady angular

acceleration aang is not. This is not to say that unsteadiness is not

significant in insect flight. The translational reciprocating case

resulted in an unstable LEV that still significantly augmented

force, as found by Wang et al. (Wang et al., 2004), but this force

is less than that found for revolving wings (Fig. 6). Further, LEV

stability is less important for insects that employ considerably

smaller stroke amplitude than fruit flies. For example, unloaded

hovering bees use a narrow stroke amplitude (Φ0=0.78 rad,

compared with 1.2 rad for a fruit fly) resulting in a lower

dimensionless stroke amplitude. Recent experiments indicate that

bees depend more strongly on unsteady force augmentation at the

start and end of the stroke (Altshuler et al., 2005), at which point

angular acceleration is maximal and the rotational accelerations

are minimal. This implies that unsteady lift mechanisms such as

added mass effects and wake capture (Dickinson et al., 1999)

become increasingly more significant, compared with ‘quasi-

steady’ forces based on the stable LEV, when the dimensionless

stroke amplitude decreases.

Lift augmentation at Reynolds numbers higher than 14,000

Our experiments (110<Re<14,000) and the experiments of others

on a propeller (Re=280,000) and wind turbines (Re of order 106)

suggest that lift augmentation is continuous in the inertial flow

regime for Rossby numbers of order one. Ellington and Usherwood

(Ellington and Usherwood, 2001) found, however, that revolving

model hawkmoth wings operating at 10,000<Re<50,000 failed to

produce high lift. The reason for this is unclear, and their findings

for Re=10,000 contrast with ours at Re=14,000 and the high force

coefficients found for quail wings at Re=26,000 by Usherwood

and Ellington (Usherwood and Ellington, 2002). It could well be

that airfoil shape plays a critical role in the apparent lift crisis for

the thin and sharp model hawkmoth-like wings at

10,000<Re<50,000. Schmitz (Schmitz, 1942) found such a

phenomenon for airfoils through wind tunnel experiments within

this same range. He found that thin and sharp airfoils outperformed

blunt and thick airfoils at low Re and vice versa at high Re. For

these airfoils there exists a critical Re below which its lift

decreases and its drag increases drastically. This is due to the

presence of laminar separation bubbles and transitions to turbulent

boundary layer flow that dominate airfoil performance at

intermediate Re. This is relevant because the spinning wings tested

by Ellington and Usherwood (Ellington and Usherwood, 2001)

(at intermediate Re) featured thin and sharp, sub-critical, airfoils

whereas the propeller (Himmelskamp, 1947) and wind turbine

blades at high Re (Tangler, 2004) featured thick and blunt, super-

critical airfoils. Ellington and Usherwood (Ellington and

Usherwood, 2001) tentatively conclude that the LEV is unstable

on revolving wings at Re≥10,000 because of a lack of spanwise

flow that stabilizes the LEV. The spanwise flow visualization of

Himmelskamp (Himmelskamp, 1947) on a propeller at

Re=280,000 (Fig. 11) and visualizations of stable LEVs on wind

turbine blades (Beom-Seok et al., 2002), propeller fans (e.g.

Simonich et al., 1992) and ship screws (e.g. Kerwin, 1986)

operating at similar angles of attack and Ro, but at higher Re,

contradict this idea. The work of Hubel and co-workers (Hubel,

2006) shows that a model goose flapping in the intermediate

Reynolds number regime can, indeed, generate a stable LEV during

forward flight. We conclude therefore that there is significant

evidence that LEV-based force augmentation could exist

continuously from revolving fruit fly wings to wind turbine blades

at low Ro, but more research on the influence of airfoil shape on

LEV generation, stability and force augmentation in the

intermediate 10,000<Re<100,000 is needed.

Force augmentation of revolving wings in nature and

technology

In summary, the single condition for LEV stability and maximal

force augmentation appears to be a sufficiently low Ro. Thus, the

use of LEVs to augment forces may be more widely distributed

among swimming and flying animals than previously appreciated.

In Fig. 12C, we show the results of a literature survey plotting Ro

for hovering wings as a function of body mass. The distribution

indicates that many large animals possess wings with a sufficiently

low Ro to create stable LEVs (note that Ro at the all-important

radius of gyration is roughly 50% lower than Ro calculated at the

wing tip in Fig. 12C). This is not to suggest that all animals larger

than insects can hover or create LEVs when flying at cruising

speed, but that there is no aerodynamic reason why they could not

make use of this mechanism during slow hovering flight or short

take-off and landing when their advance ratio is small and Ro is

of order one (e.g. see Fig. 11, spanwise flow decreases for higher

advance ratios). LEVs, under low Ro conditions, have indeed been

found on the wings of bats during hovering flight (Muijres et al.,

2008). The elevated forces we measured at Re 14,000, a value

appropriate for hummingbirds, is consistent with the putative

observation of LEVs on hummingbird (Altshuler et al., 2004;

Warrick et al., 2005) and quail (Usherwood and Ellington, 2002)

wings. Finally, Hubel and co-workers found a stable LEV near

the base of a flapping goose model in forward flight (Hubel, 2006).

The local Rossby number is much lower near the wing base, like

on wind turbine blades (see also Lentink and Dickinson, 2008),

and can therefore locally support a stable LEV, even at relatively

high advance ratios.

Because Reynolds number and stroke amplitude are not critical

features in LEV stability, we think that a LEV could be an efficient

high-lift mechanism for slow hovering animals, small and big.

Our experiments suggest that aerodynamic efficiency is maximal

for smaller LEVs generated at lower angles of attack, at

increasingly higher Reynolds number (Figs 8 and 9). Total

hovering efficiency, however, depends not only on aerodynamic

efficiency but also on the efficiency of the muscles that drive the

wing. During hovering, animal weight is balanced by vertical

thrust, which is proportional to the product of lift coefficient,

flapping frequency squared, and stroke amplitude squared. Noting

that flapping frequency is confined to a narrow band for high

muscle efficiency (McMahon, 1984), and that stroke amplitude

is limited to 180° or less, a high maximum lift coefficient clearly

helps to accommodate both the high vertical thrust needed to

D. Lentink and M. H. Dickinson
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balance weight during hovering and the much lower thrust needed

during cruising.

Our theoretical frame work represents air and water equally

well. The pectoral fins of many swimming animals flap similar

to the wings of flying animals, not only for generating lift but

also for generating drag to maneuver. Fig. 6 shows that revolving

wings (unidirectional and reciprocating) not only generate more

lift for their surface area but also generate much more drag at

very high angles of attack, well beyond 45° For angles of attack

above 45°, the attached leading and trailing edge vortex (LEV

and TEV) on the model fly wings are surprisingly similar to the

ones recently observed on the pectoral fin of a sun fish [Lauder

and Madden in Bandyopadhyay et al. (Bandyopadhyay et al.,

2008)]. The Rossby number based on the single-wing aspect ratio

of fish pectoral fins is often low. For seven species described in

the literature we found Ro=2.5 on average with s.d.=0.7

(references in Appendix 1), low enough values of Ro for stable

LEVs. For completeness we also estimated an average Ro value

of 3.7 for autorotating seeds (s.d.=1.14, N=26, references in

Appendix 1). This suggests that a stable LEV could also explain

the elevated lift forces found for these botanical structures

(Azuma and Yasuda, 1989). We have recently tested this using

3D DPIV and will report the results elsewhere. With respect to

technology, we envisage that micro air vehicles could more easily

mimic nature and generate a stable LEV by simply adopting the

only constraint for a stable LEV and force augmentation –

revolving a wing continuously at low Rossby number, which is

more efficient than flapping the same wing.

APPENDIX 1

Rossby numbers of animal wings from insects to birds

APPENDIX 2

The relationship between Ro, mass and Re

The Reynolds and Rossby number (based on wing radius; single-

wing span) in hovering flight are given by:

and

where Reg is the Reynolds number at the radius of gyration. Note

that b is the wing span, S the wing surface area and ARs the single-

wing aspect ratio. Force equilibrium in hovering flight requires that

the following relation holds:

where W is the weight, L the time-averaged lift, CL� the time-averaged

lift coefficient, m the mass and g the gravitational constant. We now

approximate the time-averaged velocity with the r.m.s. time-

averaged velocity which results in:

Combining Eqns A1, A2 and A4, we obtain the Reynolds number

as a function of the total mass and the wingtip Rossby number for

hovering flight:

We plotted Reynolds number isolines of hovering animal wings in

Fig.12C by assuming a time-averaged lift coefficient of 1.5 for the

full weight range from insects to birds. In doing so, we assume the

animal is making use of a LEV and operates at a high lift coefficient

of CL=1.5. This approximation suffices for the Reynolds number

of which the exact value is less relevant.

=
ρU c

μ
(3.1) (A1)

g
Reg

×
ρ

μ2
×

2c2

S
=

mg

CL

×
ρ

μ2
×

1

Ro

mg

CL

Reg =
ρUg c

μ
≈ (A5).

  

Ug ≈ Ug
2 =

  

mg

C
L
1 / 2ρS

(A4).

  
W = L → CL1 / 2ρUg

2 S = mg , (A3)

  
Ro = ARs =

b2

2S
=

b

2c
, (A2)

Table A1. Source of wing data

Insect wing data Azuma, 2006

Ellington, 1984

Lehmann and Dickinson, 1998

Marden, 1987

Hummingbird wing data Altshuler, 2001

Chai and Millard, 1997

Stiles et al., 2005

Bat wing data Hartman, 1963

Jones et al., 2003

Norberg et al., 2000

Vaughan et al., 2004

Bird wing data Slater Museum, 2005–2006*

Tennekes, 1997

Fish pectoral fin data Hove et al., 2001

Combes and Daniel, 2001

Walker and Westneat, 2002

Walker, 2004

Autorotating seed wing data Azuma and Yasuda, 1989

Yamada and Suzuki, 1999

*Online Wing collection of the Slater Museum of Natural History, University

of Puget Sound, http://www.ups.edu/x5662.xml.
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Fig. A1. Rossby numbers had only to be corrected for insects and birds.

For insects we made use of photos of insects with extended wings, which

resulted in an accurate correction (yellow circles without outline in

Fig. 12C). For the corrected bird values (blue circles without outline in

Fig. 12C) we could not obtain such accurate photos and proceeded as

follows. First, we obtained a large data set of aspect ratios based on the

full wing span (Tennekes, 1997). Subsequently, we compared these values

with the ones for which we also obtained an accurate value of the single-

wing aspect ratio (Slater Museum, 2005–2006, Online Wing collection of

the Slater Museum of Natural History, University of Puget Sound, Tacoma,

WA, USA; http://www.ups.edu/x5662.xml) and determined the required

correction factor C based on the difference. We correlated the correction

factor C to the aspect ratio of the full wing divided by two, AR/2. This factor

was used to estimate the single-wing aspect ratio of the remaining bird

wings with a conservative extrapolation r value for albatrosses (AR/2<7.5)

that is close to one.
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LIST OF ABBREVIATIONS
α wing angle of attack

α0 wing angle of attack amplitude

Φ0 wing stroke amplitude (half the total stroke amplitude Φ)

ν kinematic viscosity

ρ fluid density

Ω angular velocity of the rotating frame

Ωstroke angular velocity due to wing stroke

Ω
.

angular acceleration of the rotating frame

Ω
.

stroke angular acceleration due to wing stroke

Ω� angular velocity of the fluid separated from the fly wing

aang angular acceleration

acen centripetal acceleration

aCor Coriolis acceleration

ainert acceleration with respect to inertial coordinate system

aloc acceleration with respect to local coordinate system

A* stroke amplitude

AR tip to tip wing aspect ratio

ARs single-wing aspect ratio

b burst vortex (Fig. 4)

bs single-wing span

c average wing chord length

C correction factor wing aspect ratio data

CL lift coefficient

CD drag coefficient

CD0 drag coefficient at zero lift

CFD computational fluid dynamic

D drag force

Dchord chordwise drag force

DPIV digital particle image velocimetry

Ek Ekman number

fcen specific centripetal force (per unit of volume)

fCor specific Coriolis force (per unit of volume)

g gravitational constant

J advance ratio

L time-averaged lift

L lift force

LEV leading edge vortex

m mass

N number of experiments

r magnitude of radius vector

r position of a fluid particle in the rotating frame

R wing radius

Rg wing radius of gyration

Re Reynolds number

Reg Reynolds number at the radius of gyration

Ro Rossby number

r.m.s. root mean square

s distance traveled in chord lengths

S single-wing area

sb spiral burst vortex (Fig. 4)

s.d. standard deviation

sg number of chord lengths traveled at Rg during a full stroke

(Fig. 3)

Ug average velocity at the radius of gyration

uloc velocity in local coordinate system

V velocity along wing radius

W weight

(x, y, z) local coordinate system

We gratefully acknowledge Will Dickson for help with the experimental setup,
valuable suggestions and proof reading the manuscript, and Andrew Straw for
helping with the video set-up. We also thank Douglas Althshuler for valuable
comments and lending his waterproof force sensor. And we thank Ulrike Müller,
Jim Usherwood, Mees Muller, John Dabiri and GertJan van Heijst for valuable
comments. We acknowledge Koert Lindenburg for proof reading the manuscript
and mathematical derivations. We thank Johan van Leeuwen for hearty support,
encouragement and proof reading of the various versions of the manuscript.
Finally D.L. wishes to thank Peter Bakker, Hester Bijl and Bas van Oudheusden
for helping him obtain travel bursaries for this research. This research is
supported by travel bursaries of the Netherlands Organization for Scientific
Research, the Journal of Experimental Biology and the J. M. Burgerscentrum for
fluid dynamic research and NWO-ALW grant 817.02.012 to D.L. and a Grant from

the National Science Foundation (IBN-0217229) and Packard Foundation (2001-
17741A) to M.H.D.

REFERENCES
Altshuler, D., Dudley, R. and Ellington, C. P. (2004). Aerodynamic forces of

revolving hummingbird wings and wing models. J. Zool. Lond. 264, 327-332.
Altshuler, D. L. (2001). Ecophysiology of hummingbird flight along elevational

gradients: an integrated approach. PhD Thesis, Univerisity of Texas at Austin, USA.
Altshuler, D. L., Dickson, W. B., Vance, J. T., Roberts, S. P. and Dickinson, M. H.

(2005). Short-amplitude high-frequency wing strokes determine the aerodynamics of
honeybee flight. Proc. Natl. Acad. Sci. USA 102, 18213-18218.

Aono, H., Liang, F. and Liu, H. (2008). Near- and far-field aerodynamics in insect
hovering flight: an integrated computational study. J. Exp. Biol. 211, 239-257.

Azuma, A. (2006). The Biokinetics of Flying and Swimming. Reston, VA: AIAA Books.
Azuma, A. and Yasuda, K. (1989). Flight performance of rotary seeds. J. Theor. Biol.

138, 23-53.
Bandyopadhyay, P. R., Beal, D. N. and Menozzi, A. (2008). Biorobotic insights into

how animals swim. J. Exp. Biol. 211, 206-214.
Baruh, H. (1999). Analytical Dynamics. New York: McGraw-Hill.
Beom-Seok, K., Jeong-Hwan, K., Koji, K., van Rooij, R. P. and Young-Ho, L.

(2002). 3D Numerical predictions of horizontal axis wind turbine power
characteristics of the scaled Delft university T40/50 model. Nagoya, Japan: Fifth
JSME-KSME Fluids Engineering Conference.

Birch, J. M., Dickinson, M. H. (2001). Spanwise flow and the attachment of the
leading-edge vortex on insect wings. Nature 412, 729-733.

Birch, J. M., Dickinson, M. H. (2003). The influence of wing-wake interactions on the
production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257-2272.

Birch, J. M., Dickson, W. B. and Dickinson, M. H. (2004). Force production and flow
structure of the leading edge vortex on flapping wings at high and low reynolds
numbers J. Exp. Biol. 207, 1063-1072.

Chai, P. and Millard, D. (1997). Flight and size constraints: hovering performance of
large hummingbirds under maximal loading. J. Exp. Biol. 200, 2757-2763.

Combes, S. A. and Daniel, T. L. (2001). Shape, flapping and flexion: wing and fin
design for forward flight. J. Exp. Biol. 204, 2073-2085.

Dickinson, M. H. (1994). The effects of wing rotation on unsteady aerodynamic
performance at low Reynolds numbers. J. Exp. Biol. 192, 179-206.

Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic performance of
model wings at low Reynolds numbers. J. Exp. Biol. 174, 45-64.

Dickinson, M. H., Lehmann, F. O. and Sane, S. P. (1999). Wing rotation and the
aerodynamic basis of insect flight. Science 284, 1954-1960.

Dickson, W. B. and Dickinson, M. H. (2004). The effect of advance ratio on the
aerodynamics of revolving wings. J. Exp. Biol. 207, 4269-4281.

Dumitrescu, H. and Cardos, V. (2003). Rotational effects on the boundary-layer flow
in wind turbines. AIAA J. 42, 408-411.

Ellington, C. P. (1984). The aerodynamics of insect flight I-VI. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 305, 1-181.

Ellington, C. P. and Usherwood, J. R. (2001). Lift and drag characteristics of rotary
and flapping wings. In Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle
Applications. (ed. T. J. Mueller). Reston, VA: AIAA books.

Ellington, C. P., Van den Berg, C., Willmott, A. P. and Thomas, A. L. R. (1996).
Leading-edge vortices in insect flight. Nature 384, 626-630.

Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003). The aerodynamics of free-flight
maneuvers in Drosophila. Science 300, 495-498.

Greenwell, D. I. (2002). Simple engineering model for delta-wing vortex breakdown. J.
Aircraft 40, 402-405.

Greitzer, E. M., Tan, C. S. and Graf, M. B. (2004). Internal Flow Concepts and
Applications. Cambridge: Cambridge University Press.

Hartman, F. A. (1963). Some flight mechanics of bats. Ohio J. Sci. 53, 59-65.
Himmelskamp, H. (1947). Profile investigations on a rotating airscrew. Dissertation

Göttingen 1945, Reports and Translations No. 832.
Hove, J. R., O’Bryan, L. M., Gordon, M. S., Webb, P. W. and Weihs, D. (2001).

Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many
fins: kinematics. J. Exp. Biol. 204, 1459-1471.

Hubel, T. (2006). Untersuchungen zur instationären Aerodynamik an einem
vogelähnlichen Flügelschlagmodell, PhD thesis, TU Darmstadt, Fachbereich
Biologie.

Jones, G., Webb, P. I., Sedgeley, J. A. and O’Donnell, C. F. J. (2003). Mysterious
Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates
insect prey. J. Exp. Biol. 206, 4209-4216.

Kerwin, J. E. (1986). Marine propellers. Annu. Rev. Fluid Mech. 18, 367-403.
Lehmann, F. O. and Dickinson, M. H. (1998). The control of wing kinematics and

flight forces in fruit flies (Drosophila spp.). J. Exp. Biol. 201, 385-401.
Lentink, D. and Dickinson, M. H. (2009). Biofluiddynamic scaling of flapping, spinning

and translating fins and wings. J. Exp. Biol. 212, 2691-2704.
Lentink, D., Müller, U. K., Stamhuis, E. J., de Kat, R., van Gestel, W., Veldhuis, L.

L. M., Henningsson, P., Hedenström, A., Videler, J. J. and van Leeuwen, J. L.
(2007). How swifts control their glide performance with morphing wings. Nature 446,
1082-1085.

Lentink, D., Muijres, F. T., Donker-Duyvis, F. J. and van Leeuwen, J. L. (2008).
Vortex-wake interactions of a flapping foil that models animal swimming and flight. J.
Exp. Biol. 211, 267-273.

Lindenburg, C. (2004). Modelling of Rotational Augmentation Based on Engineering
Considerations and Measurements. London: European Wind Energy Conference.

Lu, Y., Shen, G. X. and Lai, G. J. (2006). Dual leading-edge vortices on flapping
wings. J. Exp. Biol. 209, 5005-5016.

Marden, H. J. (1987). Maximum lift production during takeoff in flying animals. J. Exp.
Biol. 130, 235-258.

Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by
insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47-63.

D. Lentink and M. H. Dickinson

THEJOURNALOFEXPERIMENTALBIOLOGY



2719LEV stability on revolving fly wings

McMahon, T. A. (1984). Muscles, Reflexes and Locomotion. Princeton, NJ: Princeton
University Press.

Miller, L. A. and Peskin, C. S. (2004). When vortices stick: an aerodynamic transition
in tiny insect flight. J. Exp. Biol. 207, 3073-3088.

Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R. and
Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats.
Science 319, 1250-1253.

Norberg, U. M., Brooke, A. P. and Trewhella, W. J. (2000). Soaring and non-soaring
bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and
flight performance. J. Exp. Biol. 203, 651-664.

Poelma, C., Dickson, W. B. and Dickinson, M. H. (2006). Time-resolved
reconstruction of the full velocity field around a dynamically-scaled flapping wing.
Exp. Fluids 41, 213-225.

Ringuette, M., Milano, M. and Gharib, M. (2007). Role of the tip vortex in the force
generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453-468.

Rossby, C. G. (1936). On the momentum transfer at the sea surface. Part I Papers
Phys. Oceanogr. Meteorol. 3 no 3.

Ruijgrok, G. J. J. (1994). Elements of Airplane Performance. Delft, The Netherlands:
Delft University Press.

Sane, S. P. and Dickinson, M. H. (2001). The control of flight force by a flapping
wing: lift and drag production. J. Exp. Biol. 204, 2607-2626.

Schlichting, H. (1979). Boundary-Layer Theory, 7th edn. New York: McGraw-Hill.
Schmitz, F. W. (1942). Aerodynamik des flugmodells, C.J.E. Volckmann Nachf. E.

Wette, Berlin.
Simonich, J., McCormick, D. and Haas, R. (1992). Flow visualization of a prop-fan

leading edge vortex at takeoff. AIAA 0386.
Srygley, R. B. and Thomas, A. L. R. (2002). Unconventional lift-generating

mechanisms in free-flying butterflies. Nature 420, 660-664.
Stepniewski, W. Z. and Keys, C. N. (1984). Rotary-Wing Aerodynamics. Mineola, NY:

Dover Publications.
Stiles, F. G., Altshuler, D. L. and Dudley, R. (2005). Wing morphology and flight

behaviour of some North American hummingbird species. Auk 122, 872-886.

Sun, M. and WU, J. (2004). Large aerodynamic forces on a sweeping wing at low
Reynolds number. Acta Mechanica Sinica 20, 24-31.

Tangler, J. L. (2004). Insight into wind turbine stall and post-stall aerodynamics. Wind
Energy 7, 247-260.

Tennekes H. (1997). The Simple Science of Flight. Cambridge, MA: The MIT Press.
Usherwood, J. R. and Ellington, C. P. (2002). The aerodynamics of revolving wings

I-II. J. Exp. Biol. 205, 1547-1576.
Van Den Berg, C. and Ellington, C. P. (1997). The three-dimensional leading-edge

vortex of a ‘hovering’ model hawkmoth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352,
329-340.

Vanyo, J. P. (1993). Rotating Fluids in Engineering and Science. Mineola, NY: Dover
Publications.

Vaughan, N., Parsons, S., Barlow, K. E. and Gannon, M. R. (2004). Echolocation
calls and wing morphology of bats from the west indies. Acta Chiropter. 6, 75-90.

Videler, J. J., Stamhuis, E. J. and Povel, G. D. E. (2004). Leading-edge vortex lifts
swifts. Science 306, 1960-1962.

Walker, J. A. (2004). Dynamics of pectoral fin rowing in a fish with an extreme rowing
stroke: the threespine stickleback (Gasterosteus aculeatus) J. Exp. Biol. 207, 1925-
1939.

Walker, J. A. and Westneat, M. W. (2002). Performance limits of labriform propulsion
and correlates with fin shape and motion. J. Exp. Biol. 205, 177-187.

Wang, Z. J. (2008). Aerodynamic efficiency of flapping flight: analysis of a two-stroke
model J. Exp. Biol. 211, 234-238.

Wang, Z. J., Birch, J. M. and Dickinson, M. H. (2004). Unsteady forces and flows in
low Reynolds number hovering flight: two-dimensional computations vs robotic wing
experiments J. Exp. Biol. 207, 449-460.

Warrick, D. R., Tobalske, B. W. and Powers, D. R. (2005). Aerodynamics of the
hovering hummingbird. Nature 435, 1094-1097.

Winter, H. (1936). Flow phenomena on plates and airfoils of short span. NACA Report
798.

Yamada, T. and Suzuki, E. (1999). Comparative morphology and allometry of winged
diaspores among the Asian Sterculiaceae. J. Trop. Ecol. 15, 619-635.

THEJOURNALOFEXPERIMENTALBIOLOGY


