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Summary. We present a table of rotational and elliptical splitting parameters 
for earth model 1066A, including all terms through second order in rotation 
and first order in ellipticity. An algorithm for calculating the second-order 
Coriolis splitting by summing over a l l  modes which are coupled to first order 
is given in detail. Coupling to secular (or zero frequency) modes, as well as 
the usual seismic modes, can provide significant contributions to these 
splitting parameters. 

Introduction 

The free oscillations of the Earth are split by rotation, ellipticity and lateral heterogeneity. 
Now that an error in the original formulation of normal mode perturbation theory has been 
corrected by Dziewonski & Sailor (1976), Woodhouse (1 976), Dahlen (1976) and Wood- 
house & Dahlen (1978), it is known that both the rotational and the elliptical splitting 
depend only weakly on the unperturbed spherical structure of the Earth. With this in mind, 
we present in this paper a tabulation of the rotational and elliptical splitting parameters for 
earth model 1066A of Gilbert & Dziewonski (1975). All terms through second order in the 
rotation and first order in the ellipticity are included. Every multiplet has been treated as 
if it were well isolated in the eigenfrequency spectrum. In at least one instance (&1 and 
,,TIz), the need for a quasi-degenerate calculation is clearly indicated, but no such 
calculations are presented here. 

For any isolated multiplet, if rotation and ellipticity are the dominant perturbations, the 
observed splitting should be fairly well predicted by the parameters listed here, since both 
the radial structure of the Earth and the two perturbations have presumably been well 
represented. Any substantial deviation of the observed from the predicted splitting can 
therefore be ascribed to the Earth’s lateral heterogeneity. It has been generally assumed that 
for the lowest frequency multiplets, rotation and ellipticity must be the dominant 
perturbations. This supposition has however never really been tested, in part because 
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observations of splitting have so far been rather crude, and in part because of the error in 
previous determinations of the elliptical splitting. New instrumental networks (Agnew 
et al. 1976) and new methods of analysis (Buland & Gilbert 1978; Stein & Geller 1978) 
now offer the hope of improving dramatically the resolution and accuracy of splitting 
measurements. It is a matter of some interest to determine which of the Earth’s low- 
frequency multiplets really are predominantly perturbed by rotation and ellipticity. If the 
splitting of one or more multiplets sensitive to lateral heterogeneity as well can be resolved, 
the results can be used to help constrain the heterogeneity. 

F. A .  Dahlen and R. V. Sailor 

Notation used in the table 

Let r, 8, 4 be a system of polar coordinates, with 8 = 0 aligned along the rotation axis of a 
hydrostatic ellipsoidal earth model. Let SZ be the rate of rotation, and let Eh denote the 
hydrostatic ellipticity of the outer surface. We consider an isolated multiplet .S, or ,,TI, 
with a degenerate eigenfrequency wo. Rotation and ellipticity remove the degeneracy 
completely. Furthermore, correct to zeroth order in both S2/wo and Eh, each eigenfunction 
depends upon a single spherical harmonic Y F .  The 21+ 1 zeroth-order eigenfunctions 
associated with a spheroidal multiplet ,,Sl are of the form 

s, = i u q m  + vq y;,, 
while those associated with a toroidal multiplet ,,TI are of the form 

s, = W[- i x v1 rl”]. (2) 

The scalars U, V and W depend only upon r, and Vl = 8 a, + 4 (sin 8)-’a,. 

frequencies w, depend quadratically upon the index m, i.e. 
Correct to second order in n/w0 and first order in Eh, the 2Z+ 1 associated eigen- 

w, = wo[  1 + a  + mb t m’c]. (3) 

The term b arises from the first-order effect of the Coriolis force, and it is customarily 
written as 

b = P ( W O O ) ,  (4) 

where p is the Coriolis splitting parameter first defined by Backus & Gilbert (1961). The 
terms a and c arise from the ellipticity and from the second-order effects of rotation. The 
first of these may be written in the form: 

a = QEh + Y3 [ 1 - I ( I  + 1 )PI (Q/o0)’ t [a’ + az] (sz/w,)’ (5) 

In equations (5) and (6), a is the ellipticity splitting parameter. As a check, we have 
computed a in two different ways, using the algorithms given by Dahlen (1 976) and Wood- 
house & Dahlen (1 978). In general, the agreement between these two separate calculations 
was excellent. The terms 1/3[1 - 1(1+ 1)p] and a‘ arise from the first-order effect of the 
rotational potential 9 = - ‘/3SZ’rZ [ 1 - Pz(cos O)]; the spherical part - ‘/3SZzr2 gives rise to 
l/3[1 - l(1 t l)p], and the aspherical part 1 /3QZrZP2(~~~  8) gives rise to a’. We have 
computed a’ using the formula given by Woodhouse & Dahlen (1978). For a toroidal 
multiplet ,,TI, both l/3[ 1 - l(1 t 1)p] and a’ are identically zero. Finally, the terms a2 and 
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Rotational and elliptical splitting parameters 61 1 
-y2 are due to the second order effect of the Coriolis force. The method we have used to cal- 
culate these quantities is described in the next section. Neither of the terms Y3 [ l - l(Z+ l)p] 
nor a2 and 7 2  satisfy the diagonal sum rule (Gilbert 1971), the former because it is due to a 
spherical perturbation and the latter because they are of second order. 

We have tabdated the quantities Q/wo, a ,  b , c ,  (Yeh, a’(f2/wo)’, a~(CZ/wo)~ and - ~ Z ( ! ~ / W O ) ~  

for all the usual seismic modes with T = 2n/oo greater than 500 s. Radau’s approximation 
(Jeffreys 1970) has been used to find the hydrostatic ellipticity as a function of depth. 
Since model 1066A has the correct mass and moment of inertia, q, = 1/299.8. All the entries 
in Table 1 are accurate to at least three figures. 

Second-order Coriolis splitting 

It is sufficient to consider the effect of the Coriolis force on the free oscillations of a 
spherical earth model. Terms of order q,Q/wO will thereby be neglected. Let V be the 
volume occupied by the earth model, and let p o  be its density. We shall say that two vector 
fields u and v in V are orthogonal (u 1 v) if 

j).. . v*dV= 0, (7) 

where * denotes the complex conjugate. 
Let H denote the Hermitian operator (with its associated natural boundary conditions) 

which characterizes the normal mode problem in the absence of rotation. We then seek to 
find eigenfrequencies w and complex eigenfunctions u which satisfy the equation (Dahlen 
1968) 

Hu + 2 i w p 0 s Z  x u = pow2u. (8) 

In equation (8), S2 is the angular velocity of rotation of the earth model. To take advantage 
of the symmetry, we have set G?= Q2, so that B = 0 along the rotation axis. Following 
Backus & Gilbert (1961), let us look for solutions to equation (8) of the form 

u = uo -t (Q/W,)Ul+ (Q/wo)2u2 + . . . 
o/wo = 1 + a1 (Q/w,) + u2(f2/w0)2 + . . . 
where S2/oo is presumed to be a small parameter. Inserting equations (9) into equation (8) 
and equating powers of R /oo  leads to a set of perturbation equations, of which we write 
only the first three: 

(If - pow;>uo = 0 

(H - pooi)ul = 2p0wi(al uo - i i  x uo) = E l  
(H - p0wi)u2 = 2pooi(olul - i i  x UI) 

+ 2p0w&7, (al uo - i i  x uo) 

+ poo;(2a2 - a:)uoq2.  

Equation (loa) simply states that wo and uo must be an eigenfrequency and associated 
eigenfunction of the unperturbed earth model. In the present problem, symmetry guarantees 
that when the degeneracy is removed (this will occur in the first order), the zeroth-order 
eigenfunctions uo must be either of the form (1) or (2). Knowing this, we can proceed to 
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employ an essentially non-degenerate version of perturbation theory. Suppose that so is 
some particular eigenfunction of the form (1) or (2) ,  with an associated eigenfrequency 
wo. To determine the effect of the Coriolis force on wo and so, we simply set uo so and use 
the remaining equations (lob), (1Oc) to find the perturbations ul, ul, az, uz, etc. Since 
the normalization of u is arbitrary, we may without loss of generality require that ullso, 
u21s0, etc. 

We know from a theorem of Fredholm (Kolmogorov & Fomine 1974) that, since 
H - p o w i  is Hermitian, equation (lob) has a unique solution ul l so  if and onlyif cl lso,  
and equation (1Oc) has a unique solution uzlso if and only if ~ z l s o .  The first of these 
conditions, rewritten as 

F. A. Dahlen and R. V. Sailor 

/ v p o s o . ( i i  x so)* dV 

0 1  = n 

J v ~ O ~ 0 . s O I  dV 

yields the first-order splitting parameter ul. Evaluation of equation (1 1) leads to the result 
u1 = mp (Backus & Gilbert 1961), so that the degeneracy is completely removed in this 
order. The second condition leads to the result 

As usual, before we can find uz, we must first find ul. In the study of Dahlen (1968), u1 was 
calculated directly by numerical integration of the scalar version of equation (lob). The 
availability (Buland 1976) of a very complete table of eigenfrequencies and eigenfunctions 
for earth model 1066A has however prompted us to use a different method here. 

We shall take it for granted that the set of all (unperturbed) eigenfunctions of the form 
( I ) ,  (2) is complete. Let us denote these eigenfunctions by so, sl, sz . .  . , and let us use 
wo, wl, 02.. . to denote their associated eigenfrequencies, so that 

Since ul l so ,  it can be written in the form 

To determine the coefficients ak,  we substitute equation (14) into equation (lob), and make 
use of equation (13) and the orthogonality relation s i i sk  i f j  # k .  The result is 
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Rotational and elliptical splitting parameters 615 
Insertion of equations (14) and (15) into equation (12) then leads to an explicit formal 
expression for 2a2 - a:, namely 

I I .  I2 

Most of the coefficients ak in equation (14) are zero, by virtue of the orthogonality of 
vector spherical harmonics. In fact, correct to this order, a toroidal mode nTl is coupled 
only to the adjacent Spheroidal modes n f $ t l ,  while a spheroidal mode .Sl is coupled to the 
adjacent toroidal modes ,*Tl,, and also to the spheroidal modes ,,61, n' # n.  The dominant 
contribution to the sums will come from those modes which are nearby in frequency. The 
factor (0% - a;)-' in equations (1 5) and (16) is clearly a rough measure of the strength 
of the coupling. The above theory supposes that all the coupling is weak, i.e. that the 
multiplet is well isolated in the spectrum. If there is a mode in the sum with wk very near 
wo, the theory is no longer valid, and quasi-degenerate perturbation theory must be 
employed. 

To insure completeness, we must be careful to incorporate into the above sums absolutely 
all the modes of the appropriate form. For an earth model like 1066A, with a solid inner 
core, a fluid outer core and a mantle, a complete catalogue of modes must include: 

(i) The usual seismic toroidal modes of the mantle, designated 'TI ,  ,,T2, etc. 
(ii) The usual seismic spheroidal modes, designated oSo, 'S1, oS2, etc. This category 

includes (Dziewonski & Gilbert 1973) Stoneley modes trapped at the boundaries of the 
inner and outer core, as well as shear-dominated modes confined largely to the solid inner 
core. 

(iii) A set of toroidal modes of the inner core. The eigenfrequencies of these will coincide 
roughly with those of the spheroidal inner core modes mentioned above. The former 
correspond to SH waves in the inner core and the latter to SV. The toroidal inner core 
modes are completely decoupled from the rest of the Earth, whereas the spheroidal are in 
principle weakly visible at the surface. 

(iv) A set of secular toroidal modes of the fluid outer core. These have c.dk = 0, and 
W =  0 in the inner core and mantle; in the fluid W may be selected completely arbitrarily. 
These degenerate solutions exist because of the inability of the fluid core to resist any shear. 

(v) A set of predominantly gravitational spheroidal modes confined largcly to the fluid 
core (Dahlen 1974). The character of these modes is a sensitive function of the fluid density 
stratification; this is in turn best described by the squared Brunt-Viisala frequency N 2 .  
Only if a core model is everywhere stable (N2 > 0) will all of these modes have 0: > 0. The 
highest frequency modes will in that case have cdk = Nmm, and there will be an accumula- 
tion point at zero frequency. This is in contrast to the first three categories of modes, which 
have accumulation points at infinity. Model 1066A, it turns out, has regions of both stable 
and unstable stratification. In that case some, if not all, of these core gravity modes must 
have < 0. The central role played by these modes in static deformation problems has 
been elucidated by Dahlen & Fels (1978). 

(vi) Finally, there are nine secular modes of degree 1 = 1 corresponding to rigid rotation 
of the mantle, rigid rotation of the inner core, and rigid translation of the Earth as a whole. 
The first three of these have W = Cr (Cis a constant) in the mantle, W =  0 elsewhere, and are 
occasionally designated T I .  The second three have W = Cr in the inner core and W = 0 
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elsewhere. The remaining three have U =  V =  C throughout the Earth, and are occasionally 
designated oS1. Since V I Y ~ = O ,  there are no toroidal modes of degree l = O ,  and the 
spheroidal modes of degree 1 = 0 are all purely radial. Since radial motion necessarily involves 
compression, there are also no core gravity modes of degree 1 = 0, i.e. the only modes of 
degree 1 = 0 are the seismic radial modes oSo, etc. We remark finally that if the earth 
model under investigation has a well (say) an ocean, then the above catalogue must be 
amended in an obvious way. To avoid any confusion, we might also point out that nowhere 
in this paper is a prime used to denote differentiation; differentiation with respect to r will 
be denoted by a, 

Without further ado, let us give an algorithm for computing u2. For both spheroidal and 
toroidal multiplets, u2 can be written in the form u2 = a2 + m 2 y , .  In what follows we shall 
use a ,  b and c to denote, respectively the radius of the Earth, the radius of the outer core 
and the radius of the inner core. 

F. A .  Dahlen and R. V. Sailor 

For a spheroidal mode nSl,  the normalization integral N is 

N =  / : p o [ U 2 t Z ( Z +  1 ) V 2 ] r 2 d r .  

We define quantities A ,  B and C by 

p o [ U t  ( I  t l)V]2r2 dr 
l l b  

NZ(1-  l ) j c  - A = - -  

n ' +  n 

The quantity A represents the contribution of all the toroidal modes of degree 1 - 1, B 
represents the contribution of the toroidal modes of degree 1 + 1 ,  and C represents the 
contribution of the spheroidal modes of degree 1. In both equations (18a) and (18b), the 
first term is the contribution from the modes of the form (iv), the second from the modes of 
the form (iii) and the third from the modes of the form (i). In equation (18c) the sum 
should include core gravity modes (v) as well as the usual seismic spheroidal modes (ii). 
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Rotational and elliptical splitting parameters 

The normalization integrals Mi, N i ,  NA and Nh are given by 

Ni = (1 + 1) (1 + 2) po W”r2 dr 1: 
N& =1(1+ 1) 

The splitting parameters a2 and rz for spheroidal modes ,,S, are now given by 

po[Uf2 +1(1+  l)Vf2]r2 dr. 1: 
P(1- 1)2 

(21 + 1) (21 - 1) 
(1 + 2)2(1 t 1)2 

(21 + 3) (21 + 1) 
f f2=  2 A t 2  B 

1 (1 - 1)2 ( I  + 2)2 .y2 = -p2 - 2 __ A - 2  B +  2C, 
2 (21 t 1) (21 - 1) (21 + 3) (21 + 1) 

where p is the first-order splitting parameter (Backus & Gilbert 

p =  - po[V2  t 2UV]r2 dr. 2: 
96 

The cases 1 = 0, 1 and 2 must be treated separately. In those cases, equations (20a) and (20b) 
remain valid if we make the substitutions 

l = O : A + O  

t I 

I = l : A + O  

por[U+3V]r2dr) l  

+ 1 
4 + A + -  l = 2 : 1 -  _ _  “1 2/:por4dr 

The additional terms in equations (22a) and (22c) represent the contribution of the inner 
core and mantle rigid rotational modes. The rigid translational modes oS1 do not make any 
additional contribution to C in the case 1 = 1 by virtue of orthogonality. 
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618 F. A. Dahlen and R. V. Sailor 

For a toroidal mode (of the mantle) nT,, the normalization integral N is 

N = l ( l +  1) poWZrzdr ,  

and we define A and B by 

1: 

where NA and Nh are given by 

Ni  = J:po[U” + l(1- l)V”]r2 dr 

p0[U” + (1 + 1) (1 + 2)V’2]rZ dr. 

In this case, A represents the contribution of all the spheroidal modes of degree I - 1 and B 
the spheroidal modes of degree 1 + 1. As with equation (18c), modes of the form (v) as 
well as (ii) must be included in the sums (24a) and (24b). The parameters aZ and yz are given 
by 

P(1+ 1)Z P ( l +  1)2 
a2 = 2 A + 2  B 

(21 + 1) (21 - 1) (21 + 3) (21 + 1) 

lZ 
A - 2 -  ~~~ B. 

(1 + 1 ) Z  yz =-  z~ 2 ___ - 
1 1  

2 1 (I+ 1)2 (21+ 1)(21- 1) (21+3)(21+ 1) 

The rigid translational modes oS1 do not make any additional contribution to A in the case 
1 = 2,  because of the fact that U = V. 

To calculate the contributions from the seismic modes (i) and (ii), we have made use of 
the compilation by Buland (1976), which is complete up to T =  45 s, including J1, Stoneley 
modes and inner core spheroidal modes. We have supplemented this with a similar compila- 
tion of inner core toroidal modes (iii). The secular modes (iv) and (vi) were summed 
analytically, as described above. Taking proper account of the core gravity modes (v) is 
somewhat problematical. Since the parameter NZ in the core is not well constrained in 
inversions, there is little reason to believe that the detailed structure of NZ for model 1066A 
represents real features of the Earth. Since only a very minor adjustment of po in the core 
suffices to  make N2 = 0 throughout, we have chosen to  handle the core modes (v) as if they 
were the case. If the core is neutrally stable the modes of class (v) are all secular (zero 
frequency) and exactly confined to the core. Their contribution to A and B in equations 
(24a) and (24b) in that case vanishes, since the integration in those equations is carried out 
only over the mantle. There is, however, a contribution to C in equation (18c). We shall 
describe our method of evaluating that contribution in the next section. 

Convergence of the sums over the modes (i), (ii) and (iii) was in all cases rapid, with the 
dominant contribution coming from a few modes nearby in frequency to w o .  In every 
instance tabulated, we found the contribution of the toroidal inner core modes (iii) to be 
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Rotational and elliptical splitting parameters 619 

thoroughly neghgible (we expected this, but decided it would not hurt to check). On the 
other hand, inclusion of the secular modes (iv) and (vi) is essential. For example, for 0S2,  
roughly one-half of the contribution to  a2 comes from the toroidal core modes of degrees 
1 = 1 and 1 = 3, and the other half comes from the 1 = 1 rigid rotational modes. Less than 
1 per cent comes from the seismic modes oT3, ,T1, ,S2, etc. This is perhaps not tow 
surprising, since w i  for 0S2 is much nearer zero than it is to oh2 for T3, ,T, or ,SZ. 

The parameters a2 and r2 are very large for the modes &, and 0T12. This is a result of 
their near degeneracy (the respective w i  differ by less than 0.15 per cent), Quasi-degenerate 
perturbation theory is clearly called for in this case. 

The contribution from core gravity modes 

Let K be the bulk modulus in the fluid core, and let go be the gravitational acceleration. The 
squared Brunt-Vaisda frequency N 2  is then given by N 2 =  -gop i 'arpo  -g$p0K-'. Let us 
denote the perturbations in fluid density, gravitational potential and fluid pressure 
associated with a spheroidal displacement of the form (1) by ply?, GlY? and ply? 
respectively. The normal mode equations in the fluid core can be written in the form 

The quantity X in equations (27c) and (27d) is the dilatation scalar, given by 

x= aru+ 2r - lu -  1 ( 1 +  i ) r - V ,  (28) 

and G is the gravitational constant. In equation (27e) and throughout this section, we have 
used the symbol .V2 to denote a: + 2r-'a, - l(1 + l )r-2.  If N 2  = 0 throughout the core, all 
the core gravity modes have wo= 0, no displacement or any other perturbation within the 
inner core and mantle, and p1  = 0, 4, = 0 andp, = 0 within the fluid core. The scalars Uand 
V must satisfy the two equivalent equations 

within the fluid core, and, in addition, U must vanish on both the inner core-outer core 
boundary and the outer core-mantle boundary. Any U and V which does satisfy those 
conditions constitutes the displacement eigenfunction of some core gravity mode, in the case 
N 2  = 0. Every such mode is secular, because every such deformation of a neutrally stable 
core leaves the elastic%ravitational potential energy of the whole earth model unchanged 
(in any core model which is not neutrally stratified, only toroidal deformations, which 
comprise the class (iv), have this property). Equations (29a) and (29b) can also be written in 
the form 

pol(l  + 1)V= r-'a,(p0r2U), (30) 

which is more useful for our purposes. A core gravity mode eigenfunction may be obtained, 
in the case N 2  = 0, by selecting U arbitrarily, subject to the constraint that U =  0 at r = c 
and r = b, and then defining V by equation (30). 
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Having established the properties of the core gravity modes in the case NZ = 0, we shall 
go on now to investigate the features of the usual seismic spheroidal modes in the same case. 
By combining equations (27a)-(27e), we may obtain the equation 

F. A.  Dahlen and R. V. Sailor 

In the case NZ = 0, this equation is satisfied automatically for a core gravity mode by virtue 
of the fact that 00 = 0. For a seismic mode, wo # 0, and in the case N 2  = 0, equation (3 1) 
reduces to 

U =  a,.(rV). (32) 

This amazingly simple relation between U and V must prevail for every non-secular 
spheroidal mode throughout a neutrally stratified core. We have verified numerically that 
equation (32) is very well satisfied for all the spheroidal modes included in our table, even 
though the core of model 1066A is not exactly neutrally stratified. As expected, the worst 
agreement is for the mode lSl, which has w i  - IN2). 

Suppose now that s is an arbitrary spheroidal field of the form s = ivy;" t VVIYr. 
Then V.s and V x s can be written in the form 

where X is given in equation (28) and where Hi s  given by 

H = ~ - ' [ u -  a , . ( r ~ ) ] .  (34) 

If s satisfies equation (32), we may write 

X = VZ(rV) (354 

H = O .  (3 Sb) 

Equation (3Sb) states that the displacement associated with a non-secular spheroidal mode 
in a neutrally stratified core is irrotational. In that case, s can be written in the simple form 
s =  V(rVYy"). 

To evaluate C in equation (18c), we break it into two parts, i.e. C= C, t C,, where C, 
is the sum over the seismic modes n t T I ,  n' # n ,  and C, is the corresponding core gravity mode 
contribution. The quantity C, has been calculated in this study by direct summation, as have 
A and B. In the case NZ = 0, since all the core gravity modes are secular, we can write C, in 
the form 

po(UV, t UgV t VVg)r2 dr, 

where sg = iV,Y;" t VgVIY;" is the projection of the vector field 

i ( V - B U ) y ; " +  [(Ut V)/il(l+l)~-PVIV1yi" (37) 

on to the space of core gravity modes of degree 1. The quantities Ug and V, satisfy equation 
(30) and, in addition, U, must vanish at the fluid core boundaries r = c and r = b. Using 
this information, together with equation (32), we can, after integrating by parts, convert 
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Rotational and elliptical splitting parameters 
equation (36) into the form 

1 b 
Po U,rX r2dr. " = - l(1 t 1)N 

62 1 

(38) 

To compute U,, we employ the identity (valid for any spheroidal field) 

Vz(rU,) = Z(Z t I)H, t 2 ~ ,  + rarXg,  (39) 

where X, and H, are defined in terms of Up and V, by equations (28) and (34) respectively. 
From equation (29b), we know that X, can be written in terms of U, alone, in the form 

xg = PogoK-'U,. (40) 

Since the field (37) is the sum of its projection on to the core gravity modes of degree 1 
and its projection on to the seismic modes of degree 1, and since in the case N2 = 0 the 
latter portion is irrotational, we know that we may also write 

H g = r - ' ( a , [ r [ ( U +  Q / { z ( z +  1)) - p V ] ] - ( V - p u ) ) = ~ / { z ( l +  1)). (41) 

Upon substituting equations (40) and (41) into equation (39) and making use of equation 
(35a), we obtain an equation for U,, namely 

V2{r(U,  - v)! = r-1a,(r2pog,K-1ug). (42) 

To find C,, we have solved equation (42) numerically for Up, subject to the boundary 
conditions that U, = 0 at r = c and r = b ,  and we have then evaluated the integral (38). 
Since pOgOK-' is generally somewhat smaller than r-' throughout the core, we have found it 
most convenient to solve equation (42) by iteration, using the solution with the right side 
equal to zero as the initial iterate. 

As expected, we have found that C, is generally insignificant compared to C, except for 
those modes which have a substantial fraction of stored compressional energy in the fluid 
core. Mode &, for example, has more than 45 per cent of its total energy content in the 
form of compressional energy in the fluid core, and for that mode C, is of the same order 
magnitude as C,. 

Conclusions 

Perturbation theory as outlined above, which treats both Sl/wo and Eh as small parameters, 
is a valid procedure for calculating the influence of rotation and ellipticity on the seismic 
modes (i) and (ii) with the possible exception of 'S1. For the mode 'Sly the calculations of 
Smith (1 976), which are first order in Eh, but which make no assumption whatsoever about 
the magnitude of Sl/oo, should be superior to ours. Perturbation theory would in addition 
be valid for the toroidal inner core modes (iii), but they are of very little intrinsic interest. 
The remaining modes (iv), (v) and (vi) are also split and coupled by rotation and ellipticity. 
For all of these, perturbation theory fails completely since Sl/oo is either very large or 
infinite. In addition, the coupling between them will be very strong, because they are all 
nearly degenerate. 

The splitting of the rigid body modes (iv) is well understood (Dahlen & Smith 1975; 
Smith 1977). All but two of the resulting split modes still have a rigid body character, 
and are secular if viewed in an appropriate frame. The other two are more interesting; they 
are the Chandler wobble of the mantle and that of the inner core. In the former, the motion 
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622 
is confined largely to the mantle; the displacements in both the solid inner core and the fluid 
outer core are small. In the latter, the wobble of the inner core induces as well a rather 
unusual motion (governed by the Taylor-Proudman theorem) in the surrounding fluid outer 
core, but the torque exerted on the mantle is weak so that it participates very little in the 
motion (Kakuta, Okamoto & Sasao 1975). 

The problem of determining the influence of rotation and ellipticity on the remaining 
fluid core modes (iv) and (v) is beginning to attract theoretical attenuation (Smith 1977; 
Johnson & Smylie 1977; Olson 1977). The implications for dynamo theory are obvious. 
In addition, if such modes could ever be observed, they would certainly shed light on the 
structure of the core. 

F. A.  Dahlen and R .  V. Sailor 
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