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Starting with an sm-diffusion model a matrix description is given of the rotational motion of a dipole
molecule undergoing frequent collisions. This treatment gives rise to an analytical expression for the
dipole correlation function and for the angular momentum correlation function in which a limited number
of parameters from the model appear. It is argued that the collision distribution which determines the rota-
tional diffusion process need not necessarily be a Poisson distribution. In liquids with strong interactions
the distribution is governed by the frequency distribution of the medium. This leads to the inclusion of
a librational motion in the rotational diffusion model. A comparison of simulations with different collision

distributions and experimental data is given.

INTRODUCTION

Information about molecular motions in liquids and
dense gases is contained in dipolar absorption spectra,
which extend from the far infrared down into the
microwave region. The absorption spectra are conven-
iently expressed as time correlation functions, which
in this case reflect the molecular dynamics in the re-
orientation process of the dipole moment vector,

In order to obtain quantitative information about
molecular motions in dense media several models have
been developed.!—® All these models give the possibility
of simulation of time correlation functions via compu-
tational techniques. Assuming that the dynamical vari-
ables obey a classical equation of motion in which the
friction coefficient is frequency dependent, one can cal-
culate ensemble averaged correlation functions. Agree-
ment of the thus obtained correlation functions with
the experimental ones is used as a justification of the
particular model. The approach of simulation and
subsequent comparison with experiment is prompted
by the fact that the molecular motions extend con-
tinuously over such a wide frequency range. The com-
plexity of molecular motion and the wide frequency
range in which they occur, makes it virtually impossible
to determine the frequency dependence of the frictional
forces directly from experiment.

If we confine ourselves to dielectric relaxation at low
frequencies only, we can describe the molecular motions
by a simple Debye diffusion model.® Then the rate of
randomization of the direction of the dipole moment
vector is determined by a single diffusion coefficient,
which is directly related to the experiment. Inclusion
of higher frequency modes of motion necessitates the
introduction of frequency dependent friction coeffi-
cients. The inadequacy of the Debye model for the
description of higher frequency modes has been recog-
nized before, since Gordon! showed how to include the
possibility of free rotation over large angles in the
description of the diffusion process. Two limiting cases
can be recognized in the model that he suggested. At
every interruption of the rotational motion by a colli-
sion both the direction and magnitude of the vector of
angular momentum are randomized in the j-diffusion
limit. In the m-diffusion limit just the direction of the

vector of angular momentum is reoriented upon colli-
sion. The extent to which both effects come into play
depend on the assumed interactions, the collision dis-
tribution and the molecular parameters of the system
under consideration. In the earlier versions of this
theory there are many implicit assumptions and ap-
proximations. Recently McClung® has given some thor-
ough considerations on the limitations of the theory
and made some progress to a wider applicability.

When experimental data on a greater variety of
liquid systems™? came to our disposition we felt the
need for a more flexible presentation of the theory and
in particular for a better way to compare theoretical
assumptions with the experimental results, In this
paper we give the result of our effort to modify the
rotation diffusion model in such a way that fewer
assumptions and restrictions are made implicity and
at an early stage. The possibility then remains to
adjust the model parameters to fit the simulations with
the experiments in a more conspicuous fashion. We
shall also derive an analytical expression for the corre-
lation functions. Both assets are important for a wider
applicability of the rotation diffusion model, because
they both tend to diminish the needed computer times
and make possible a qualitative comparison between
calculations and experimental results,

Starting with an m-diffusion model we give a matrix
description of the rotational motion. This allows us to
derive a reorientation matrix for the motion of one
single molecule. This matrix contains explicitly the
probability that the molecule has undergone an #-colli-
sion process. Taking the ensemble average we arrive
at an analytical expression for the correlation function
for the dipole moment and the angular momentum
supposing the collisions are Poisson distributed.

FORMALISM

We start with a consideration of the effect of molecu-
lar collisions on the orientation of the dipole moment
vector and the vector of angular momentum of a linear
dipole molecule.

At the time =4 the x axis of the Cartesian frame
coincides with the dipole moment vector and the 2z axis
with the angular momentum vector. The rotation of

2691

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2692 FRENKEL, WEGDAM,
the dipole moment vector can now be described by a
rotation of the coordinate system in the xz plane with
respect to the original position over an angle 6, Like-
wise the reorientation of the angular momentum vector
which is the effect of one collision or interaction corre-
sponds to a rotation of the coordinate system in the
¥’z plane, over an angle v (see Fig. 1). We consider an
n-collision process in which the molecule rotates freely
over angles #=wr in which w is the rotation frequency
and 7 the time between collisions. The free rotation
steps are terminated by collisions of short duration
which reorient the vector of angular momentum over
an angle v. These two events are in the following repre-
sented by a matrix R for the rotation and a matrix O
for the orientation. The total effect of an #-collision
process on the frame of axes can now be described by
a matrix M, (#) which is a product of » reorientation
matrices and #-+1 rotation matrices. Considering one
reorientation denoted by O’ following one rotation
given by R we can write O’=ROR and hence the
combined effect O'R=ROR'R=RO, For a succession
of » collisions we write

M. (1) =R(4—15)O(4)R(L—1)O(t) « -+

XO(t)R(t~1,). (1)

To obtain the contribution of this #n-collison matrix
to the ensemble averaged matrix at time ¢ it should be
multiplied by the probability that this particular colli-
sion process occurs. The probability that collisions occur
at times between # and fh+dh, &y, and h+df; etc,, is de-
noted by P,(t, ts, =« *ts; ) dhidls«  «dt,. This probability
is to be muitiplied by P{v1, s,
the probability that the reorientation angle resulting
from a collision lies between v, and vi+dy1, ve+dvye
etc. We now make two assumptions. First of all we
assume the probability of any collision to depend only
on the time of the preceding collision. Secondly the
reorientation effect is assumed to be uncorrelated for
successive collisions, moreover P(y)=P{—+v). The re-
orientation angle v depends only on the frequency of
the rotator.

Pn(ll, tz, .- 'l,,)dtldtz' M '(ltn=Q,(t1—t0)P1(l‘2—t1) e

X P1(te—tna) Q' (t—tn) dtrdly- + - dty.  (2)

Here Pi(ta—1)dh is the probability that a collision
occurs between £ and &+d#,; after a preceeding collision
at 4 etc. It is to be noted that the probability for the
first collision Q' (f—1t)d4 differs from the probabilities
for the other collisions inasmuch as the molecule does
not necessarily collide at {=14y. It is the probability for
any molecule that after time t=4fy, at which time the
observation started, it will collide for the first time
between # and #,-+df. This probability is

Q' (h—to)dt= %(1— /HP(tl—t’)dt'>, (3)
T 0

.o aﬁyn) (i’yld'y2- . t(l’yn’ ’
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where 7 is the average time interval between collisions.
Q" (t—t,)dt is the probability that no collision will take
place after the time of the nth collision. The molecule
then rotates freely. This probability is

0" (t—1,) = <1— /OLP(t)dt>. (4)

One also has to include the probability that no collision
takes place at all. This probability is denoted by Q(#),
and can be obtained by integration over the collision
probability for all times between 4 and ¢. The ensemble
averaged collision matrix for one single rotation fre-
quency w; can now be expressed as follows:

M, () =Q(O)R()+ g Jeee O/ (h— )R (1= 1) O (1)

XP(ta—1h) - O(tL)R(U—=1,)Q" (t—t,)dby~++dt,. (5)

In order to obtain a closed analytic expression for the
dipolar correlation function C(¢) = (M (0) M {(¢) ) and for
the directional correlation function D(f) = {(J(0)J () )"
we solve Eq. (5) by Laplace transformation. Making
use of the definitions

L4 f(8) coswt} =3 (f(s—iw) +f(s+iw)) =fs,
L{f(0) sinwt} = (1/20) ( f(s—iw) —f(s+iw) ) =1,

we can write for the Laplace transformed collision ma-
trix for a single rotator with frequency w; as follows:

O+ —0- O
Mi(s)=1 0- O+ O
0 0 Q(s)
P, —P_ 0 1 0 0
+ iﬂ P_ P, 0 0 cosy; O
. 0 0 P(s) 0 0 cosy;
P, —P_ 0O 1 0 0 n
X P_ P, 0 0 cosy; 0
0 0 P(s) 0 0 cosy;
0"~ 0
X1 0- O 0 ], (6
0 0 Q)

where siny; is put equal to zero because of the assump-
tion that the sense of reorientation of successive colli-
sions is uncorrelated and evenly likely to be right
handed or left handed. Because of the choice of the
coordinate system with respect to the direction of the
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dipole and its sense of rotation, the (1, 1) element
of this matrix is just the Laplace transform of
(M(0)M(t)); and the (3, 3) element the Laplace

Straightforward calculation gives

C(s)=s/(s24w?)

Fw?(1—a) [1—p(s+1w) T1—p(s—iw) 1/ (r(s2Fw?)2{1—

and
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transform of D;(f). As before the subscript § denotes
that the correlation functions reflect the relaxation
process for just one single rotator with frequency w;.

3(14a) [p(s+iw) +p(s—iw) +ap(stin) p(s—iw) )
(7

Dj(s) = {rs[1—ap(s) ]—= (1=} [1=p(s) I}/ {rs*[1~ap(s) ]}, (8)

where

p(s) = /QP(t) exp(—st)dt and a=-cosy;.
0

By integration of C;(s) and D;(s) over the thermal
distribution of rotation frequencies one obtains the
spectral distributions A (w). Successively Fourier trans-
formation yields the ensemble averaged correlation
functions (M (0)M (¢)) and {(J(0)J()).

COLLISION DISTRIBUTIONS

Since in the expressions (7) and (8), P(f) appears,
it allows us to use a collision distribution at choice in
the calculation of the correlation function. This is one
of the main advantages of the above described formal-
ism. For a dilute gas in which all collisions take place
independently of each other, the collision probabilities
P(t) can be taken to be Poisson distributed. For
liquids specific characteristics of the dynamics can give
rise to deviations of the Poisson distribution. By ad-
justment of the collision distribution one can now de-
scribe these systems without modification of the model
itself. Then the physical interpretation of certain colli-

o)

Fic. 1. Rotation of the molecular frame in the xy plane over
an angle §=wt is followed by a reorientation of J over an angle
v due to a collision at time ¢. If m diffusion is assumed, | J(0)| =
| 7(#)] for linear molecules. J is perpendicular to the dipole
moment vector.

sion distributions can be given afterwards within the
limits set by the m-diffusion model.

To begin with we will describe rotational diffusion
in a system in which the collisions exerted on the
rotating dipole are supposed to be Poisson distributed.
The collision probability P(f) then becomes:

P(t)y=r,"! CXP(‘t/Tp),

where 7, is the Poisson relaxation time. This relaxation
time gives an average time between collisions.

For a dipole having a single rotation frequency w;
the expressions (7) and (8) now become:

(Ci(s) = (s+R;y) / (s*+ 2R+ w?) (9)

for the Laplace transformed correlation function
C;(¢) and
D;(s) =1/(s+2R;) (10)

for the Laplace transformed orientational correlation
function D;(?), where the parameter R;= (1—cosy;) /27,
and s= —iw. 7, is the Poisson relaxation time. Laplace
transformation of C;(s) and D;(s) leads straightfor-
wardly to analytical expressions for the correlations
functions C;(f) and D;(¢):

Ci(t) =exp{ —Rjt}[cosw/t+ (R;/w;) sinwt], (11)
where w/2=w2—R? and w;2>0.
If w;2< 0 the expression becomes
Cji(t) = exp{ —R;t}[coshw;'t— (R;/w;) sinhwt]. (12)
The analytical expression for D;(f) becomes:
D;(t) =exp{—2Rjt}. (13)

For an ensemble of rotators with a set of frequencies
{w;} the correlation functions C;(s) have to be summed:

C(s)= X A (w)Cils).

The time correlation functions are then summations
over terms as in Formulas (11) and (13) in which each
term is characterized by the variables w;/ and R;. In
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Fic. 2. If collisions are Poisson distributed, D;(f) =w2K;(#)
for a single rotation frequency. This relation does not hold if
both functions are calculated for a thermal distribution of
classical rotators. Shown in the figure are the normalized func-
tions K(#) (solid line) and D(¢) (dotted line) drawn to the
same scale as calculated for CH,CN (/=91.3X10% g.cm?,
T=314°K) with a Poisson collision distribution; 7,=1.0X
1078 sec, the maximum amount of angular momentum AJ
transferred in one collision is 6.2)X 10726 g-cm? sec™!.

the actual calculations of the correlation functions we
sum over an ensemble of classical rotators. In that
case the frequency dependence of the friction coeffi-
clent R; is derived by considering a classical rotator
under the influence of an applied torque. Using the
symbols defined above the frequency dependence of R;
is given by the relation

Rj=(1—cosy;) /2mp= (1/41,) (AT /1) (14)

The dipole correlation function C;(#) shows the cor-
rect behavior at £=0. The first and second derivatives
with respect to the time at /=0 are

(8C;(1)/8t) = 0,  (8C;(1)/68) = —wi
1=0

t=0

(15a)

The derivatives of the directional correlation function
D;(t) are not defined at t=0. However, if { approaches
zero from the positive time direction

lim (d/dt) D;(t) = — (1—cosv;) /Tp.
10+
The relations (15a) and (15b) hold for any collision
distribution.

At this point we want to make the remark that
starting from the obtained analytical expression it is
easy to show that a direct relation exists between D;(t)
and the memory function of the dipole correlation
function K;(t) which is defined by the equation

(15b)

6 ‘ / 14 73
5C(t)~—/0 AR (—1)C (). (16)
From formulas (15a) and (16) one finds that
Ki(8) ={w)D;(1). (17)

AND van peEr ELSKEN

Berne and Harpe' have already indicated that in
general this same relationship holds for an ensemble
of rotators, though under certain conditions. Under
the condition that large torques are exerted on the
dipole in short during collisions, the first few coeffi-
cients in the time development of both functions are
approximately equal. Hence for short times this rela-
tion holds. Moreover, Berne and Harpe found from
their molecular dynamics calculations of the correlation
functions of liquid CO that even at long times both
functions showed the same behaviour,

In the model which we are discussing here K;(t)
and D;(t) are identical for a Poisson collision distribu-
tion. This is not true for an ensemble of rotators and
an arbitrary collision distribution, then K (¢) and D(f)
will be different. However, in accordance with the
observation made by Berne and Harp, we find that for
large torques the resemblance between K(¢) and D(#)
is maintained.

A difficulty is that in the m-diffusion model, the
fourth moment of the power spectrum of C(¢) is not
defined. Hence no finite value of the mean squared
torque can be calculated. This is a consequence of the
assumption that a finite amount of angular momentum
AJ is transferred in infinitely short collisions, We can,
however, obtain a rough estimate for the mean squared
torque if we make a guess about the actual collision
time. As AJ is a parameter in the model the mean
squared torque (N2?) can be calculated according to
the relation

(d(AT)/dt) = (N*). (18)
For large values of AJ we have simulated K () and
D(t). A typical example is shown in Fig. 2 for the
normalized correlation function. The time in which
they decav to zero is practically the same. Only for
larger times K (£) deviates and goes negative.

Another important feature of the m-diffusion model
in which the collisions are Poisson distributed is the
limiting case of R large in comparison with w;, the
rotation frequency. It can easily be deduced from
Formula (12) that in the limit of large R the analytical
expression for the correlation function reduces to

Ci(t) =exp(—w*/2R))t.

In this limit the rotational motion as simulated by the
m-diffusion model is essentially a Debye type of rota-
tional diffusion. Since for low frequencies R; is pro-
portional to «? the relaxation time 7.=2R;/w;* is even
a constant, independent of w. The correlation function
of the low frequency part of the spectrum then has
the same form as predicted by the Debye model. Since
the limit is only valid for low frequencies the dipole
rotates freely over small angles interrupted by colli-
sions, which reorient the angular momentum vector
over quite large angles. In this limit the relaxation
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time for D(¢) is 7r=(2R;)7. Consequently rsr.=
(w?)~", known as Hubbard’s rule.’®

Apart from the possibility of inserting a conventienal
Poisson distribution the formalism gives also the pos-
sibility to work with a different distribution of col-
lisions. The model is therefore also suited for the
description of a dense medium, in which a strong
correlation exists between successive collisions. This
strong correlation may arise from collective motions
of strongly interacting molecules in the medium. If in
a liquid, one thinks the dipole molecule enclosed by a
cage of solvent molecules one should reconsider the
choice of the distribution of collisions. A stationary
cage will give rise to a very specific distribution de-
pending on the shape of the cage. It has been suggested
that large random fluctuations of the cage walls results
again in a Poisson collision process.’® However, it should
be realized that by an effective coupling between the
motion of the dipole and a restricted number of phonon
modes of the medium the dipole molecules experience
a less random motion of the cage wall. It is for instance
to be expected, that the rotational diffusion process
will be influenced strongly by the longitudinal modes
of short wave vector. Especially in media consisting
of organic molecules having high polarizabilities and
low lying phonon modes coupling between these modes
and the rotation will certainly occur. This effect has
already been discussed by Morawitz and Eisenthal.”
In their treatment of the near infrared vibration-
rotation bands it results into a value of the second
moment deviating from the average classical rotation

Pew
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Frc. 3. Simulated correlation functions for CH,CN (I=
91.3X10~% g.cm?, T=314°K) with a Poisson collision distribu-
tion; the amount of angular momentum transferred in one col-
lision is 6.2)X1072%6 g.cm?® sec™’. The simulations differ in the
average time between collisions: (1) 7,=1.0X1071% sec, (2) 7=
2.8X 10" sec, (3) 7,=5.6X1071% sec.
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F16. 4. Simulated correlation functions for CH;CN (I=
91.30X 104 g.cm?, T'=314°K) with a Poisson collision distribu-
tion; 7,=1.0X 1018 sec. The simulations differ only in the amount
of angular momentum transferred in one collision: (1) AJ=
91X 1078 g-cm?sec™), (2) AJ=2.4X 10728 g-cm?sec?, (3) AT =
0.85X 1072 g.cm? sec™.

energy. In our model these effects can be translated
into deviations in the Poisson distribution of collisions.

It is elucidating to consider a dipole molecule on a
site in a crystal lattice at very low temperatures. Then,
the collisions suffered by the dipole are governed by
the phonon density of states multiplied by the appro-
priate weight factors which are determined by the
specific interactions and the extent to which the dipole
participates in the different phonon modes. This results
in a collision distribution, which shows a limited num-
ber of peaks and is zero between t=0 and the time
!=1/wmax, where wmax is the highest frequency in the
corrected phonon density of states. For larger values of
¢, it will roughly follow the phonon density of states,
With increasing temperature a broadening of the colli-
sion distribution towards shorter times will arise as a
consequence of the higher population of phonon states.
Evidently this population depends on the value of the
frequency with respect to the temperature. In a liquid
the phonon distribution will in general be very much
the same as the distribution in the corresponding solid
apart from some minor differences in the low fre-
quency part of the acoustical branches. The collision
distribution in the liquid therefore is determined in
exactly the same way by the frequency distribution
and the temperature. At a given temperature liquids
with low molecular interactions and hence low frequen-
cies will have higher phonon states densely populated.
This situation leads to a collision distribution resem-
bling a Poisson distribution. Liquids with high molecu-
lar interactions and comparatively high frequencies will
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Fic, 5. Simulated absorption spectra for CH;CN (I=91.3X
1079 g.cm?, T=314°K) with a Poisson collision distribution.
The amount of angular momentum transferred in one collision is
6.2X107% g.cm? sec™! for all simulations. The Poisson relaxation
times are 7,=5.6X10"8 sec (—), 7,=2.8X10™8 sec (---),
and r,=1.0X 107 sec (----).

have on the contrary a collision distribution that is
mainly determined by the phonon density of states.
In this case the collision distribution might exhibit a
peak at a time later than zero.

An interesting feature emerging from the above con-
siderations is the introduction of a librational motion
which follows quite naturally from the model and need
not be introduced as a separate possibility.’®4 For
those rotators, which have a frequency such that the
average reorientation angle ¥ equals wr a peak in the
collision distribution causes the dipole to have an in-
creased probability to turn the sense of rotation a
number of times in succession. This event clearly mani-
fests a librational motion.

RESULTS

In order to test the above described formalism and
to examine the influence of the parameters and the
shape of the collision distribution we compare the cal-
culations with experimental data.

First of all we have calculated the absorption spectra
and correlation functions for systems in which the
collisions are supposed to be Poisson distributed. From
Formulas (11) and (14) it can be seen that given the
moment of inertia of the dipole molecule, the shape of
the correlation function will be determined by two
parameters, AJ, the reorientation vector, and by the
Poisson relaxation time 7,. The influence of these two
parameters is shown in Figs. 3 and 4. The Poisson
relaxation time determines mainly the rate at which
the correlation function goes over in an exponential
function, whereas the reorientation vector determines
the more characteristics features such as the steepness
of the descent and the appearance of periodic maxima

AND vanx per ELSKEN

and minima. This last effect is caused by the frequency
dependence of the reorientation angle. The simulations
are carried out for a dipole having a moment of inertia
of 90X 10~ g-cm? which equals the moment of inertia
of CH;CN.,

The relaxation time 7, is a parameter characteristic
for the medium, while the reorientation vector AJ
describes the collision process and the torques acting
on the dipole. Arguments for the separation of proper-
ties of the medium from interactions of the dipole
with the medium can be found in experimental ob-
servations that have been made on solutions of HCI
in some liquids. The far-infrared absorption spectrum
of HCl in liquid krypton does show considerable rota-
tional fine structure, whereas in the spectrum of HCl
in liquid argon the rotational fine structure is barely
observable.!® This observation is in contradiction with
the expectation based on a consideration of the inter-
actions. It has therefore been concluded that charac-
teristic motions in the medium must come into play.
Similar considerations hold for systems like HCI in
SFe ! and CCl,.2

It is clear that in the proposed formalism the influ-
ence of such characteristic motions of the medium on
the motion of the dipole should be reflected in deviations
from the Poisson collisions distribution., An even
stronger motive to consider nonrandom collisions on
the dipole is that simulations with a Poisson distribu-
tion show that the frequency of maximum absorption
is solely determined by the temperature and the mo-
ment of inertia and is practically independent of the
value of the parameters AJ and 7,. This can be seen
in Fig. 5. However, a great many cases have been
reported in the literature where the frequency of max-
imum absorption is shifted towards much higher values
than one should expect from the temperature and the
moment of inertia. This has been noted for dilute
solutions of dipole molecules as well as for neat liquids
with dipolar or ionic species.®?® An example is aceto-

~log T ?
06 Pit}
04
/
/ t in picosec.
a2
0 100 200 o incm=!__,

Fi1c. 6. Simulated (---) and exgerimental (—) spectrum of a
dilute solution of CH;CN at 314°K. The collision distribution
used in the simulation is shown in the insert. The amount of
angular momentum transferred in one collision is 7.5X10728
g-cm? sec™L,
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nitrile. If one compares the simulated absorption spec-
tra in Fig. 5 with the experimental absorption spectrum
of acetonitrile in Fig, 6, the maximum of absorption
in the experimental spectrum is situated at 60 cm™,
whereas the spectra simulated with a Poisson distribu-
tion have a maximum at 25 cm™.

To examine the influence of a collision distribution
which reflects the characteristic motions of the medium
we tried a collision distribution as shown in the insert
of Fig. 6. This distribution should be considered as
arising from the effect of a mean phonon frequency
together with a more gaslike Poisson distribution, The
resulting simulated absorption spectrum and the ex-
perimentally determined spectrum are also shown in
this figure, Apart from minor differences in the high
frequency wing both spectra coincide within experi-
mental error.

From the relaxation time of the underlying Poisson
distribution and the maximum at 22.8X 107 sec one
can estimate an average time between collisions r5¢ of
about 25X 107" sec. This value is orders of magnitude
higher than the value obtained by Litovitz et al.,° but
then a jump diffusion model is not comparable with an
m-diffusion model. In the first model it is the dipole
moment vector, while in the last one it is essentially
the angular momentum vector which is considered as
the primary random variable,

The time of the peak in the collision distribution
corresponds to a frequency of approximately 200 cm™.
The high value of this frequency seems to indicate that
internal vibrations couple to a considerable extent
with the rotational motions. In view of the number
of parameters involved in the characterization of the
shape of the collision distribution one should not draw
any quantitative conclusions about the details of this
vibration-rotation interaction. Nevertheless, the influ-
ence of high frequency modes on the rotational motion
of CH,CN is unmistakeable. Moreover, the effect of
the temperature on the maximum of absorption® can
now be attributed to the temperature dependence of
the collective modes of the medium. The need to imply
the properties of the medium to account for this effect
has been recognized before.'®

As a last point, from the amount of angular mo-
mentum AJ transferred during a collision we can esti-
mate a value of the mean squared torque exerted on a
CH;CN molecule by the n-heptane molecules. For a
gas the mean squared torque is (AJ/7.)?, where 7. is
the time of a collision. For a system like CH;CN in
n-heptane some CH3;CN molecules can execute a libra-
tional motion. Then the torque acts on the dipole
during the librational period and the amount of angular
momentum transferred in two successive hard collisions
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is 2/. Hence we may write for the mean squared torque
(VB)==2(AJ)*/ (5c)?,

where 7p¢ is the time between collisions. This expression
sets a lower limit to the value of the torque. For the
simulation shown in Fig. 6 we then calculate a value
for the mean squared torque of approximately 12 10-%
(dyn cm)2, As far as we know no experimental values
are known for CH;CN. However, for liquid CO Gordon®®
calculated a value of 21X107% (dyn cm)? for the mean
squared torque at 77.5°K. It is not surprising that the
mean squared torque seems to be at least a factor 100
larger as it has been pointed out' that this quantity is
very strongly dependent on the noncentral parts of the
intermolecular potential,
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