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Abstract The rotational dynamics of a small solar system body subject to solar radiation
torques is investigated. A set of averaged evolutionary equations are derived as an analytic
function of a set of spherical harmonic coefficients that describe the torque acting on the body
due to solar radiation. The analysis also includes the effect of thermal inertia. The resulting
equations are studied and a set of possible dynamical outcomes for the rotation rate and
obliquity of a small body are found and characterized.
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Solar radiation torques

1 Introduction

Solar radiation has a significant role in the dynamical evolution of small solar system bodies
such as asteroids. When operating on the orbital dynamics of such a body the effect is called
the Yarkovsky effect. When operating on the rotational dynamics of a body this effect is called
the YORP (Yarkovsky-O’Keefe-Raszievskii-Paddack) effect (Bottke et al. 2002). The recent
detection of this effect (Kaasalainen et al. 2007, Lowry et al. 2007, Taylor et al. 2007) could
possibly clarify many unexplained aspects about asteroids. For example, the YORP effect
may be a possible contributor to the creation of binary asteroids, a reason for the presence
of fast rotators in the NEA population, and may have a strong influence on the obliquities of
these bodies.

The dynamics of the YORP effect has been studied previously. This physical effect was
first introduced to the asteroid dynamics community by Rubincam (1995). Following this
it was studied in detail with numerical models by Čapek and Vokrouhlický (2004) and
Vokrouhlický and Čapek (2002). Recent analysis of this effect has been made by
Scheeres (2007) where the use of Fourier coefficients was introduced to capture the

D. J. Scheeres (B) · S. Mirrahimi
Aerospace Engineering Department, University of Michigan, Ann Arbor, MI, USA
e-mail: scheeres@unich.edu

123



70 D. J. Scheeres, S. Mirrahimi

functional form of the torques acting on the asteroid, and to enable a set of averaged equations
to be defined. More recently, Nesvorný and Vokrouhlický (2007) have introduced a mapping
from an object’s spherical harmonic shape coefficients to the YORP torque coefficients that
act on the rotation rate.

The current paper follows from the analysis presented in Scheeres (2007). In that paper
a model of the torque acting on an asteroid at any given instant is given where the torque is
decomposed into a Fourier series in terms of the solar longitude and is applied to an asteroid
shape described using a polyhedral model. Following this, an analysis of the effect of YORP
on the averaged rotational dynamics of a uniformly rotating asteroid was performed, suppos-
ing that the asteroid is rotating about its maximum moment of inertia. In Scheeres (2007) the
Fourier coefficients in the torque expression are not constant, but depend on the obliquity of
the asteroid and, therefore, in the dynamical equations the Fourier coefficients were averaged
numerically. In the current paper we generalize this approach and express the solar torques
using a full spherical harmonics field. This allows us to develop an explicit averaged set of
evolutionary equations for the asteroid rotation state as a function of constant coefficients
that only depend on the asteroid’s shape. We also introduce a realistic model of the thermal
inertia of an asteroid and incorporate that into the analysis. This leads us to some general
results about the rotational dynamics of asteroids subject to YORP.

This paper is separated into the following sections. In Sect. 2, we provide some funda-
mental information. Particularly, we state some notation for the orientation of the asteroid
relative to its heliocentric orbit, provide a model of the torque due to incident solar radia-
tion and define its spherical harmonic expansion, and introduce a thermal inertia model. In
Sect. 3, we give a representation of the rotational dynamics in terms of spherical harmonics
coefficients and derive the secular rotational dynamics of an asteroid using the spherical
harmonics expansion. Next, we average over one asteroid orbit to find a simple represen-
tation of the averaged dynamical system. In Sect. 4, we study the long-term dynamics of a
rotating asteroid, using the results in Sect. 3. We also analyze the dynamics in presence and
absence of thermal conductivity. Particularly, we discuss the generic dynamical evolution to
the averaged rotational dynamics equations for some generic models of an asteroid’s YORP
spherical harmonic coefficients.

2 Rotational dynamics of asteroids

2.1 Terminology and determination of frames

To compute the interaction between the Sun and an asteroid, it is important to work in coordi-
nate frames where the location of the Sun relative to the asteroid pole are stated in convenient
coordinates. Hence, to facilitate our work we specify the asteroid’s heliocentric orbit relative
to it’s rotation pole.

Let X̂ be the unit vector pointed along the asteroid orbit perihelion vector, Ẑ the unit vector
pointed along the orbit angular momentum vector, and Ŷ the unit vector that completes the
triad, and pointed along the perihelion velocity vector. This orbital coordinate system can be
expressed in terms of an inertial frame (defined by the unit vectors X̂E , ŶE , and ẐE ) using
classical orbit elements:

X̂ = [cos � cos � − sin � sin � cos i]X̂E + [cos � sin � + sin � cos � cos i]ŶE

+ sin � sin i ẐE
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Ŷ = −[sin � cos � + cos � sin � cos i]X̂E + [− sin � sin � + cos � cos � cos i]ŶE

+ cos � sin i ẐE

Ẑ = sin � sin i X̂E − cos � sin i ŶE + cos i ẐE

where i is the inclination, � is the longitude of the ascending node, and � is the argument
of perihelion.

We can also specify the asteroid-fixed frame relative to the same inertial frame. We con-
sider a body-fixed frame with unit vectors x̂, ŷ, and ẑ, where the unit vector ẑ points along
the maximum moment of inertia of the body (supposed to be the rotational axis). The x̂ and
ŷ unit vectors lie in the body’s equator and point at the minimum and intermediate moment
of inertia axis, respectively.

x̂ = −[sin α cos φ + cos α sin φ sin δ]X̂E + [cos α cos φ − sin α sin φ sin δ]ŶE

+ sin φ cos δ ẐE

ŷ = [sin α sin φ − cos α cos φ sin δ]X̂E − [cos α sin φ + sin α cos φ sin δ]ŶE

+ cos φ cos δ ẐE

ẑ = cos α cos δ X̂E + sin α cos δ ŶE + sin δ ẐE

where α is the right ascension, δ is the declination, and φ is a rotation angle about the
instantaneous rotation pole.

We use the body-fixed frame as the reference frame and determine the orbit’s inclination,
is , the longitude of the ascending node, �s , and the argument of perihelion relative to this
frame, �s :

cos is = Ẑ · ẑ = sin δ cos i + cos δ sin i sin(� − α)

Let n̂�s be the node unit vector:

n̂�s = ẑ × Ẑ

|ẑ × Ẑ| = cos �s x̂ + sin �s ŷ

Thus we can compute the longitude of the ascending node:

tan �s = ŷ · (ẑ × Ẑ)

x̂ · (ẑ × Ẑ)
= Ẑ · x̂

−Ẑ · ŷ
= tan(�s0 − φ)

tan �s0 = sin i cos(� − α)

cos δ cos i − sin δ sin i sin(� − α)

So we have �s = �s0 − φ. Finally we determine the argument of perihelion. To do this we
first compute the transverse vector n̂T = Ẑ× n̂�s , which lies in the orbit plane perpendicular
to the node vector. So the argument of perihelion can be computed as:

tan �s = X̂ · n̂T

X̂ · n̂�s

= X̂ · ẑ

Ŷ · ẑ
= tan(�0 + �)

tan �0 = cos δ cos(� − α)

sin δ sin i − cos δ cos i sin(� − α)

Thus we have specified the orbital elements in the body-fixed frame. We can now compute
the Sun’s location in this frame, denoted by the unit vector û:
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û = cos(�s + ν)n̂�s + sin(�s + ν)n̂T

where ν is the true anomaly. By defining ν′ := �s + ν:

û = cos(ν′)n̂�s + sin(ν′)n̂T

And we specify this vector in the body-fixed frame:

û = cos δs cos λs x̂ + cos δs sin λs ŷ + sin δs ẑ

We call δs the solar latitude and λs the solar longitude. They can be computed as:

sin δs = sin is sin(�s + ν)

λs = �s0 + λν − φ

where

tan λν = cos is tan(�s + ν)

From this relationship we can also find expressions

sin λν = cos is sin(�s + ν)

cos δs
(1)

cos λν = cos(�s + ν)

cos δs
(2)

The asteroid-Sun distance is assumed to vary with the true anomaly following Kepler’s law:

R = a(1 − e2)

1 + e cos ν

where a is the semi-major axis and e is the eccentricity.
Given these definitions we can specify the asteroid’s rotation state in terms of the inclina-

tion and longitude of ascending node of the asteroid’s solar orbit in the frame defined by its
rotation pole. This is equivalent to specifying the obliquity and right ascension of the aster-
oid’s rotation pole. In fact, the quantity is is precisely equal to the obliquity and the quantity
�s is precisely equal to the right ascension of the pole as measured relative to the asteroid’s
heliocentric orbit. In this study we use an asteroid-centric frame for describing the relative
orientation of the asteroid and the Sun. This is motivated by our use of the Euler equations for
describing the rotational dynamics of the body, as they are expressed in a body-fixed frame.
Thus, in this frame, evolution of the asteroid’s rotation pole can be viewed as the evolution
of its heliocentric orbit elements relative to its rotation pole.

2.2 Forces and moments due to solar radiation

We assume that the asteroid consists of N facets, each of them being a flat plane with outward
normal vector n̂i and with position vector ri to their center. The combination of these facets
defines the asteroid’s surface. Assuming a zero thermal conductivity, we can determine the
force acting on each surface element given the angular location of the Sun û and the distance
from the Sun to the asteroid R (McInnes 1999):

F(R) = P(R)fi (û)

fi (û) = −[{ρs(2n̂i n̂i − U) + U} · ûû · n̂i + a2n̂i n̂i · û]Hi (û)Ai

where U is the identity dyad, ρ is the reflectivity of the surface, s is the fraction of radiation
with specular reflection, a2 = B(1 − s)ρ + (1 − ρ)B, B being the Lambertian scattering
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coefficient of the surface, Ai is the surface area, and Hi (û) is the visibility function, which
equals 1 when the Sun is above the horizon and 0 otherwise. P(R) is the incident light
pressure as a function of distance from the Sun and equals P(R) = G1/R2 where R is the
distance between the asteroid and the Sun, G1 ∼ 1 × 108 kg km3 s−2 m−2, and represents
the light pressure at one astronomical unit. Here we assume that the surface properties are
constant across the facet. So the total force and moment would be:

F(Rû)

P(R)
=

N∑

i=1

fi (û)

M(Rû)

P(R)
=

N∑

i=1

mi (û)

where mi = ri × fi and ri is the position vector to the center of the facet.
In Scheeres (2007) the force and moment due to solar radiation were presented as a Fourier

series decomposition in terms of longitude λs . Those Fourier coefficients were not constant,
but depended on the solar latitude δs , as M

P(R)
is a function of the solar latitude as well as the

solar longitude. Thus, in that expression of the theory, to compute the average rates the Fourier
coefficients for different latitudes had to be numerically averaged. This resulted in numerical
formula for the average terms and not an analytical function. A natural idea is to write M

P(R)

in a spherical harmonics decomposition as a function of solar latitude and longitude, instead
of a Fourier decomposition just as a function of the longitude. Such a formulation can also
be generalized more easily to the case where the asteroid rotates slowly and tumbles.

We note that F(Rû)
P(R)

, and M(Rû)
P(R)

are piecewise continuous functions of δs and λs , where
0 ≤ λs ≤ 2π , and −π

2 ≤ δs ≤ π
2 . Therefore they can be represented as a series of spherical

harmonics (MacRobert 1947):

M(R, δs, λs)

P(R)
=

∞∑

l=0

l∑

m=0

Pm
l (sin(δs)){Cl,m cos(mλs) + Dl,m sin(mλs)}

where Pm
l (x) are the associated Legendre functions. We note that Cl,m and Dl,m are vectors.

Computation of these coefficients for a given asteroid shape are discussed in the Appendix.
A similar expression is available for the force.

2.3 The effect of finite thermal conductivity

A non-zero thermal conductivity delays the reemission of solar radiation and modifies the
force acting on the asteroid, specifically the component due to the (1 − ρ)B term in the a2

coefficient, which represents reemission of absorbed solar radiation (McInnes 1999). In addi-
tion to decreasing the reemission, this delay can influence the dynamics of small asteroids
by changing the inertial longitude where the photons are reradiated by an effective lag angle
φlag . To model this we can modify the solar longitude term in the torque and force expression
as λs = �s0 +λν − (φ −φlag) = λ0 −φ, where λ0 = �s0 +λν +φlag . We should expect this
thermal lag to vary from point to point on the asteroid, but here we suppose that it is uniform.

We use the approximation of the lag angle given in Rubincam (1995):

tan(φlag) = θ

1 + θ

θ =
√

�cpκω√
32εσ T 3

eq

(3)
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where � is the density, cp is the specific heat, κ the thermal conductivity, ε the emissivity,

σ the Stefan–Boltzamnn constant, and Teq is the equilibrium temperature, while
√

1
2�cpκω

is the thermal inertia. The parameter θ is called the “Thermal Parameter” in Spencer et al.

(1989). Defining µ =
√

�cpκ√
32εσ T 3

eq
we have the additional relations for φlag:

cos(φlag) = 1 + µ
√

ω√
1 + 2µ

√
ω + 2µ2ω

(4)

sin(φlag) = µ
√

ω√
1 + 2µ

√
ω + 2µ2ω

(5)

We note that this expression for thermal lag is only approximate and is based on a linear-
ized theory. It is useful, however, as it provides us with a functional relationship between
the asteroid rotation rate and the thermal reemission lag. This relation agrees with physical
intuition, as the lag angle increases with an increased rotation rate or an increased thermal
inertia. Also, we note that the lag angle using the linearized theory is capped at 45◦ for an
arbitrarily fast rotation rate. The decrease in the reemission of the radiation is represented by
a multiplicative factor 1/

√
1 + 2µ

√
ω + 2µ2ω in the linearized theory.

3 Rotational dynamics

Now, having an analytic description of the moments, we can study the dynamics of the aster-
oid. We first state the general form of the rotational dynamics equation. Under the assumption
that the asteroid is close to principal axis rotation about its largest moment of inertia, we derive
an approximate set of equations by introducing a linearization of these equations. We then
explicitly solve these equations to find the secular rate of change of the asteroid’s rotation
state at a particular value of true anomaly. Then the resulting equations are averaged over
one asteroid orbit to find the evolutionary equations for an asteroid’s rotate state subject to
the YORP effect. The derivation here completes the derivation given in Scheeres (2007) as it
finds the evolutionary equations for a uniformly rotating asteroid in closed form as a function
of its YORP torque coefficients.

3.1 General rotational dynamics equations

We use the Euler equations to describe the evolution of the asteroid angular velocity:

I · �̇ = −� × I · � + M

where I represents the inertia dyad of the asteroid, � is the angular velocity vector in the
body-fixed frame, and M is the moment vector in the body-fixed frame. Note that in this
paper we use a dyadic notation for the inertia and the transformation matrix. This allows us
to state these quantities without explicitly specifying the coordinate frame. They also allow
for left and right dot products and cross products with these quantities to be well defined.
Properties of dyads are summarized in Greenwood (2003).

The orientation of an asteroid can be represented by an axis of rotation â, and a rotation
angle about this axis, φ. To derive a system of equations of motion without singularity we
use the Euler parameters:
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ε = sin

(
φ

2

)
â

η = cos

(
φ

2

)

The equations of motion for these parameters (relative to the body fixed frame) are in the
following form (Greenwood 2003).

ε̇ = −1

2
� × ε + 1

2
η� (6)

η̇ = −1

2
� · ε (7)

Given the Euler parameters we can compute the transformation matrix T, which takes
a vector in the body fixed frame and expresses it in an inertial frame (Greenwood 2003,
Scheeres 2007).

T = U + 2ε̃ · ε̃ + 2ηε̃ (8)

Thus, if the asteroid’s initial rotation pole is ẑo, to find the asteroid’s rotate pole at a later
time in inertial space we compute T · ẑo. The quantity U is the identity dyad and the quantity
ñ can be called the cross product dyad and, given n = nx x̂ + ny ŷ + nz ẑ:

ñ = nx
(
ẑŷ − ŷẑ

)+ ny
(
x̂ẑ − ẑx̂

)+ nz
(
ŷx̂ − x̂ŷ

)
(9)

Given the cross product a×b, using the dyad formulation we note the following equivalences:
a × b = ã · b = a · b̃

3.2 Linearization of the general equations

We make an assumption that the asteroid is rotating about its maximum moment of inertia and
that the radiation torques are very small. This allows us to introduce a linearization approach
to our analysis. We assume that the angular velocity vector can be described as � = ωoẐ+ω

where |ω| << ωo. We consider only the case where the asteroid is rotating uniformly and
fast enough such that the rotation angle φ = ωot varies more rapidly than the true anomaly
ν. For an asteroid with a semi-major axis of 1AU, a rotation period of 3.5 days, which is
long compared to the average rotation period of asteroids, will still provide two orders of
magnitude difference between the rotation rate of the asteroid and the mean motion of the
asteroid.

Linearizing Euler’s equation about the nominal ωoẑ solution we have:

I · ω̇ = −ωoẑ × I · ω − ωoω × I · ẑ + M (10)

Or:
[

ω̇x

ω̇y

]
= Aσ

[
ωx

ωy

]
+
[

Mx
Ix
My
Iy

]
(11)

ω̇z = Mz

Iz
(12)
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where

Aσ =
[

0 −ωoσx

ωoσy 0

]

σx = Iz − Iy

Ix
(13)

σy = Iz − Ix

Iy
(14)

σ 2 = σxσy (15)

and Ix , Iy and Iz are the minimum, intermediate and maximum moments of inertia,
respectively.

We can rewrite the differential equation for ωx and ωy in the following form (Scheeres
2007):

ω̇⊥ = Aσ ω⊥ + I−1
⊥ M⊥(t) (16)

where ω⊥ = [ωx ;ωy], M⊥ = [Mx ; My], I⊥ is the 2 × 2 diagonal matrix containing Ix and
Iy , and the matrix Aσ is constant.

Now we investigate the dynamics of asteroid orientation by deriving the linearized evo-
lution of the Euler parameters. We define â0 to be the initial spin axis, choosing it equal to ẑ,
and we denote a⊥ to be the first order deviation from the spin axis, where â0 · a⊥ = 0. We
note that if |a⊥| � 1 then â = â0 + a⊥ will still be of unit magnitude. Thus we have the
following equation for the rotation angle:

φ̇ = â · � = (â0 + a⊥) · ((ωo + ωz)ẑ + ω⊥) = ωo + ωz + · · · (17)

Given our decomposition of � = (ωo + ωz)ẑ + ω⊥, we rewrite the differential equation for
the vector ε (Eq. 6) as:

ε̇ = −ωo + ωz

2

[ ˜̂z · ε − ηẑ
]

− 1

2
ω̃⊥ · ε + 1

2
ηω⊥ (18)

Next, we can decompose the Euler parameter vector as ε = sin(φ/2)
[
â + a⊥

] = εo + ε⊥.
We note that ω⊥ and ε⊥ are mutually orthogonal to ẑ but are not necessarily parallel to each
other, however their mutual dot product can be ignored as a second order term. Inserting and
keeping terms of the appropriate order, we find:

ε̇⊥ = −ωo

2
˜̂z · ε⊥ + 1

2
ε̃o · ω⊥ + η

2
ω⊥ (19)

where the differential equation describing the evolution of the nominal spin axis, ε̇o = 1
2ωoηẑ,

drops out. In the following we can rewrite this vector equation in a two-dimensional form as
the deviation of the spin axis along the z-direction can be ignored. In conjunction with this
we introduce the following notation: ˜̂z = −J, where

J =
[

0 1
−1 0

]
(20)
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Rewriting this equation into a two-dimensional form gives us:
[

ε̇x

ε̇y

]
= ωo

2
J
[

εx

εy

]
+ 1

2
e−Jφ/2

[
ωx

ωy

]
(21)

e−Jφ/2 =
[

cos(φ/2) − sin(φ/2)

sin(φ/2) cos(φ/2)

]
(22)

where we note that the combination [cos(φ/2)U − sin(φ/2)J] = e−Jφ/2, and U is the 2 by
2 identity matrix.

To compute the transformation matrix from the body-fixed frame to the inertial frame,
first express the Euler parameter vector as ε = εo +ε⊥. Then insert this into Eq. 8 and ignore
second order terms to find:

T = U + 2ε̃o · ε̃o + 2ηε̃o + 2
[
ε̃o · ε̃⊥ + ε̃⊥ · ε̃o + ηε̃⊥

]+ . . . (23)

Specifically, we want to find the inertial attitude of the spin pole and its deviation from the
original pole direction. To find this we compute the dot product of the body-fixed spin pole ẑo

with T. Given that ε̃o = sin(φ/2) ˜̂zo, this results in a great simplification given that z̃ · ẑ = 0.
The evolved orientation of the spin pole in inertial space is denoted as ĥ = T · ẑo and found
as:

ĥ = ẑo + 2
[
ε̃o · ε̃⊥ + ηε̃⊥

] · ẑo (24)

3.3 Solutions of the linearized equations and secular rates

As all of the equations have been reduced to a linear form, their explicit solution can be found.
We first state their general solution and then extract the non-periodic, or secular, terms of
these equations. Once these are found, we can evaluate the secular rate of change of the
parameter over one rotation period by directly differentiating the secular solution.

In all of these solutions we note the spherical harmonic series representation of M:

M(δs, λs)

P(R)
=

∞∑

l=0

l∑

m=0

Pm
l (sin(δs){Cl,m cos(mλs) + Dl,m sin(mλs)})

where λs = λ0 − ωot , and λ0 = �so + λν + φlag . Under the linearized assumption, and at a
fixed true anomaly, the only term in the moment expression that changes in time is the angle
ωot , thus it is useful to rewrite the spherical harmonic expansion explicitly as a function of
time:

M(δs, λs)

P(R)
=

∞∑

l=0

l∑

m=0

Pm
l (sin(δs){C0

l,m cos(mωot) + D0
l,m sin(mωot)})

where

C0
l,m = Cl,m cos(mλ0) + Dl,m sin(mλ0)

D0
l,m = Cl,m sin(mλ0) − Dl,m cos(mλ0)

where we specifically note that C0
l,0 = Cl,0.
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Now we state the solutions to the linear equations. It is easy to solve the equation for ωz :

ωz = ωo + 1

Iz

∫ t

0
Mzdτ (25)

We note that the variations in the rotation rate will be periodic except for the secular terms:

ωs
z = ωo + t

P(R)

Iz

∞∑

l=0

P0
l (sin(δs))Cl,0,z (26)

where the superscript “s” denotes the non-periodic, or secular, component of the solution.
We can compute the rate of change in ωs

z by taking the time derivative of this secular term to
find:

ω̇s
z = P(R)

Iz
C0,z (27)

where:

C0 =
∞∑

l=0

Cl,0 P0
l (sin(δs))

We note that the secular change in rotation rate at a given distance from the Sun is independent
of λ0 and thus is independent of the thermal lag parameter.

Next, we compute the off-axis component of angular velocity. We will see that we can
neglect this for the secular evolution of the angular velocity, however they become important
for the evolution of the asteroid rotation pole. Eq. 16 has the following solution:

ω⊥ = eAσ tω⊥,0 +
∫ t

0
eAσ (t−τ)I−1

⊥ M⊥(τ )dτ (28)

where ω⊥,0 is the initial condition for the angular velocity and eAσ t is the exponential matrix:

eAσ t =
[

cos(ωoσ t) − σx
σ

sin(ωoσ t)
− σy

σ
sin(ωoσ t) cos(ωoσ t)

]
(29)

Noting that 0 < σ < 1 and using the spherical harmonics expansion of M, we can verify that
all of the terms in the integral will be periodic and there are no small divisors. Thus there is
no secular term present and the off-axis rotational dynamics of the asteroid can be neglected
at this stage as being small and quasi-periodic with frequencies of the form (n ± σ) and n.

Next we move on to the orientation equations of the asteroid. First consider the solution
to Eq. 17. If we assume that the secular rate of change of the angular velocity keeps constant,
we can derive the following expression for φ:

φs = φ0 + ωo(t − t0) + (t − t0)2

2
ω̇s

z + · · · (30)

We note that the rate of acceleration is small enough to allow us to treat the angle as linearly
increasing in time over short time periods. Using this expression we can compute |ε| and η.

The equation for the evolution of ε⊥, Eq. 19, falls into the same canonical form as Eq. 16
for the angular velocities, but now the resulting matrix exponential is of the form:

eJφ/2 =
[

cos(φ/2) sin(φ/2)

− sin(φ/2) cos(φ/2)

]
(31)
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where we use ωot = φ. Combining terms and taking the angle φ as our independent parameter
for the angular velocity evolution we find the solution to be of the form:

ε⊥ = eJφ/2ε⊥o + eJφ/2

2ωo

∫ φ

0
e−Jφ′

ω⊥(φ′/ωo)dφ′ (32)

where we note that e−Jφ has entries cos φ and sin φ. From our previous discussion the solu-
tion for ω⊥ has combinations of frequencies of the form (n ± σ) and n and thus there is now
a resonance within the integral for n = 1, causing a secular drift in the Euler parameters.
Specifically, the cos φ and sin φ terms in the e−Jφ matrix will combine with the n = 1 terms
in the ω⊥ solution, giving rise to a linear drift in the rotation axis with time.

The first term in Eq. 32 is always periodic and hence we neglect it as small in general. In
the second term, we substitute the general solution for the angular velocity, Eq. 28. To have
a more specific focus, we consider the general nth order Fourier coefficient terms to find:

P(R)
eJφ/2

2ω2
o

∫ φ

0

∫ φ′

0
e−Jφ′

[
cos σ(φ′′ − φ′) σx

σ
sin σ(φ′′ − φ′)

− σy
σ

sin σ(φ′′ − φ′) cos σ(φ′′ − φ′)

]

×
[
cos(nφ′′)I−1

⊥ C0⊥,n + sin(nφ′′)I−1
⊥ D0⊥,n

]
dφ′′dφ′ (33)

where

Cn =
∞∑

l=1

Cl,n Pn
l (sin(δs))

Dn =
∞∑

l=1

Dl,n Pn
l (sin(δs))

and the ⊥ sub-script signifies that only the x and y components are used.
When considering all the possible contributions from terms of this type, we find that only

when n = 1 do we have a secular term. Specifically, only terms of the form
∫ φ

0

∫ φ′
0 cs(φ′′ −

φ′)scσ(φ′′ − φ′)dφ′′dφ′, yield a secular term of the form σφ/(1 − σ 2) or −φ/(1 − σ 2),
corresponding to the combination cos φ sin σφ and sin φ cos σφ, respectively. All other con-
tributions are sinusoidal in nature and will only contribute to an oscillation in the spin pole
but not a secular drift. Combining all the terms, and re-introducing the Fourier coefficients,
we have the explicit solution for the secular component of the vector ε⊥, now recast in a
3-vector form:

εs⊥ = φP(R)

4ω2
o(1 − σ 2)

eJφ/2

[− 1−σx
Iy

C0
1,y − 1−σy

Ix
D0

1,x

− 1−σx
Iy

D0
1,y + 1−σy

Ix
C0

1,x

]
(34)

Using the definitions for σx , σy and σ 2 from Eqs. 13 to 15 we note the following identities:

1 − σx

1 − σ 2

1

Iy
= 1 − σy

1 − σ 2

1

Ix
= 1

Iz
(35)

Thus we can simplify the expression further to:

εs⊥ = φP(R)

4ω2
o Iz

eJφ/2

[
−C0

1,y −D0
1,x

−D0
1,y +C0

1,x

]
(36)
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We use this result to compute the transformation matrix that defines the movement of the
asteroid’s angular momentum.

ĥs = ẑo + 2 [cos(φ/2)U − sin(φ/2)J] · ε̃s⊥ · ẑo (37)

where U is again the 2 by 2 identity matrix. Applying the cross product identities to the above
ε̃s⊥ · ẑo = −˜̂zo · εs⊥ = J · εs⊥, given our earlier definition ˜̂zo = −J. Thus we find the general
expression for the spin pole in the inertial frame at a specific value of true anomaly:

ĥs = ẑo + 2e−Jφ/2 · J · εs⊥ (38)

= ẑo + φP(R)

2ω2
o Iz

e−Jφ/2 · J · eJφ/2

[
−C0

1,y −D0
1,x

−D0
1,y +C0

1,x

]
(39)

An additional simplification can be made, noting the identity e−Jφ/2 · J · eJφ/2 = J. This
results in the final, explicit solution for the secular evolution of the rotation pole with respect
to the inertial frame:

ĥs = ẑo + φP(R)

2ω2
o Iz

J ·
[

−C0
1,y −D0

1,x
−D0

1,y +C0
1,x

]
(40)

Of particular interest is the secular time rate of change of the rotation pole. This can be
found by formally differentiating Eq. 40 with respect to time. The only time-varying quan-
tity (assuming a fixed true anomaly) is the angle φs , with φ̇s = ωo. Thus, the secular rate of
change in ĥs is:

ḣs = P(R)

2ωo Iz
J ·
[

−C0
1,y −D0

1,x
−D0

1,y +C0
1,x

]
(41)

This is linear in the Fourier coefficients, which allows us to add the different components of
radiation forces together to find the net rate of change in this quantity.

At this point we substitute for C0
n and D0

n into Eq. 41 for the current case of n = 1 to give
the secular rate of change in the rotation pole in terms of the body-fixed Fourier coefficients.
Substituting these relations yields:

ḣs = P(R)

2ωo Iz

[
(C1,x + D1,y) (D1,x − C1,y)

−(D1,x − C1,y) (C1,x + D1,y)

] [
cos λo

sin λo

]
(42)

3.4 Secular variation of the rotation state

Given the secular solutions for ĥ and ḣ (note, we will drop the “s” superscript now), we
derive how they affect the obliquity and right ascension of the asteroid rotation pole, or in
terms of our formulation how they change the solar inclination, is , and longitude, �s . To
derive equations for the secular rate of change of these quantities we can refer back to their
definitions in Sect. 2. Specifically, note that if we take the cross product of the current asteroid
rotation pole, ĥ, and the orbit pole, Ẑ, that we form the current node vector multiplied by
sin is :

ĥ × Ẑ = sin is n̂�s (43)

n̂�s = cos �s x̂ + sin �s ŷ (44)
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Now consider the time derivative of this, noting that the orbit pole Ẑ does not move relative
to inertial space:

ḣ × Ẑ = cos is n̂�s i̇s + sin is
∂n̂�s

∂�s
�̇s (45)

∂n̂�s

∂�s
= − sin �s x̂ + cos �s ŷ (46)

We can extract unique relationships for i̇s and �̇s from this equation as they are each multiplied
by a mutually orthogonal vector.

First, take the dot product of this equation with respect to n̂�s . The second term containing
�̇s will vanish and the leading term on the right-hand side just equals cos is i̇s . Remaining

to resolve is the term n̂�s ·
(

ḣ × Ẑ
)

= ḣ ·
(

Ẑ × n̂�s

)
. But the cross product of Ẑ and n̂�s

equals the transverse vector n̂T , or

Ẑ × n̂�s = − cos is sin �so x̂ + cos is cos �so ŷ + sin is ẑ (47)

The dot product of ḣ with this will not pick up the ẑ term, and can be rewritten as:

cos is i̇s = cos is n̂�so
Jḣ (48)

The cos is terms cancel each other, unless is = π/2. However, in this case an alternate
derivation finds the same secular evolution equation for is . Carrying out the multiplications
and simplifications yields:

i̇s = P(R)

2ωo Iz

[− (D1,x − C1,y
)

cos(λo − �so) + (C1,x + D1,y
)

sin(λo − �so)
]

(49)

Now, recall the general expressions for λo:

λo = �so + λν + φlag (50)

Separating the λν and φ terms we find:

i̇s = P(R)

2ωo Iz

{[− (D1,x − C1,y
)

cos(φlag) + (C1,x + D1,y
)

sin(φlag)
]

cos(λν)

+ [(C1,x + D1,y
)

cos(φlag) + (D1,x − C1,y
)

sin(φlag)
]

sin(λν)
}

(51)

A similar derivation can be made for �̇s , now taking the dot product of Eq. 45 with ∂n̂�s /∂�s

to find:

sin is�̇s = ḣ ·
(

Ẑ × ∂n̂�s

∂�s

)
(52)

= − cos is ḣ · n̂�s (53)

which leads to:

�̇s = − cot(is)
P(R)

2ωo Iz

[(
C1,x + D1,y

)
cos(λo − �so)

+ (D1,x − C1,y
)

sin(λo − �so)
]

(54)
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Making final substitutions and rewriting in terms of the longitude λν we find:

�̇s = − cot(is)
P(R)

2ωo Iz

× {[(C1,x + D1,y
)

cos(φlag) + (D1,x − C1,y
)

sin(φlag)
]

cos(λν)

− [− (D1,x − C1,y
)

cos(φlag) + (C1,x + D1,y
)

sin(φlag)
]

sin(λν)
}

(55)

We recall once more the definition of these coefficients:

C1 =
∞∑

l=1

Cl,1 P1
l (sin(δs))

D1 =
∞∑

l=1

Dl,1 P1
l (sin(δs))

We note that not all the coefficients will have the same thermal lag. In general we need to sep-
arate out the insolation and specular and diffuse reflection terms and only apply the thermal
lag to the reemission term. However, previous studies have noted that the reemission term
should dominate the YORP torques, implying that only these coefficients need be accounted
for (Rubincam 1995, Vokrouhlický and Čapek 2002).

Thus, we find the explicit evolutionary equations for the rotation rate and the rotation pole
at a fixed true anomaly relative to the Sun, represented by Eqs. 27, 51, and 55. We note that
the Fourier coefficients C1 and D1 are currently a function of solar latitude which in turn is
a function of true anomaly, and thus the next step in our analysis is to perform an averaging
of these equations over the asteroid true anomaly relative to the Sun.

3.5 Orbit averaging

To evaluate the net effect of YORP over one asteroid year we average the preceding equations
over the mean anomaly of the heliocentric orbit. This is a valid approach to derive the mean
evolutionary equations of the asteroid spin state given the small change in rotation rate and
asteroid rotation pole over a single orbit about the Sun. In this integration we consider the
changing distance of the asteroid to the Sun, as well as the changing solar latitude and lon-
gitude. The relation between solar latitude, solar longitude and true anomaly is stated again
below:

sin(δs) = sin(is) sin(�s + ν) (56)

sin(λs) = cos(is) sin(�s + ν)

cos δs
(57)

cos(λs) = cos(�s + ν)

cos δs
(58)

The time rate of change of the dynamical variables we study here are of the form, ẋ =
P(R) f (x,�s + ν), where P(R) is the solar pressure term, R is the asteroid heliocentric
orbit radius, and f (x,�s + ν) is a function of the state x , the argument of the perihelion �s

and the true anomaly ν. The magnitude of ẋ being very small we average ẋ over one year to
obtain the net rate of change in x :

˙̄x = 1

2π

∫ 2π

0

G1

R2 f (x,�s + ν)d M (59)

123



Rotational dynamics of a solar system body 83

where M is the mean anomaly of the asteroid in its orbit. We use d M = R2

a2
√

1−e2 dν to
transform the independent parameter to true anomaly.

˙̄x = 1

2π

G1

a2
√

1 − e2

∫ 2π

0
f (x, ν′)dν′ (60)

where ν′ = �s + ν. Note that this change of integration variable eliminates the varying
radius in the solar pressure term. We should note that in performing this average we ignore
any possible variation in the equilibrium temperature of the asteroid as a function of its
location in orbit, which in turn could modify the phase lag in a systematic way. However, it
should not alter the basic functional form of the phase lag we are assuming.

We consider the equations in turn, first concentrating on ω̇z .

˙̄ωz = G1

Iza2
√

1 − e2
C̄0,z (61)

where

C̄0,z = 1

2π

∫ 2π

0
C0,zdν′ = 1

2π

∫ 2π

0

∞∑

l=0

Cl,0,z P0
l (sin(δs))dν′

= 1

2π

∞∑

l=0

Cl,0,z

∫ 2π

0
P0

l (β sin(ν′))dν′

We replace the Legendre function by its polynomial representation (Kaula 2000):

P0
l (x) = 1

2l

	 l
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
xl−2k

where
(n

m

) = n!
m!(n−m)! and 	m
 is the integer part of m. So

C̄0,z = 1

2π

∞∑

l=0

Cl,0,z

⎡

⎢⎣
1

2l

	 l
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
βl−2k

∫ 2π

0
sinl−2k(ν′)dν′

⎤

⎥⎦

So we have to compute
∫ 2π

0 sinl−2k(ν′)dν′. To do this we make the following observations:
If l is odd l − 2k is odd too, and as sine is an odd function this integral is zero. If l is even,

l = 2t and we use the following formula that is a simple integration by parts:
∫ 2π

0
sinn(x)dx = − sinn−1 x cos x

n
|2π
0 + n − 1

n

∫ 2π

0
sinn−2 xdx = n − 1

n

∫ 2π

0
sinn−2 xdx

so
∫ 2π

0
sin2t−2k(ν′)dν′ = 2(t − k) − 1

2(t − k)
· 2(t − k) − 3

2(t − k) − 2
· · · 1

2
· 2π

= (2t − 2k)!
(t − k)!2 · 22(t−k)

· 2π

Substituting this we find:

C̄0,z =
∞∑

t=0

C2t,0,z

[
1

22t

t∑

k=0

(−1)k (4t − 2k)!
k!(2t − k)!(t − k)!2

(
β

2

)2t−2k
]

(62)
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To carry out the averaging for is and �s we must compute the following:

C̄1 = 1

2π

∫ 2π

0
sin λνC1dν′ = 1

2π

∫ 2π

0
sin λν

[ ∞∑

l=1

Cl,1 P1
l (sin(δs))

]
dν′

= 1

2π

∞∑

l=1

Cl,1

∫ 2π

0
sin λν P1

l (sin(δs))dν′

and similarly

¯̄C1 = 1

2π

∞∑

l=1

Cl,1

∫ 2π

0
cos λν P1

l (sin(δs))dν′

D̄1 = 1

2π

∞∑

l=1

Dl,1

∫ 2π

0
sin λν P1

l (sin(δs))dν′

¯̄D1 = 1

2π

∞∑

l=1

Dl,1

∫ 2π

0
cos λν P1

l (sin(δs))dν′

The fundamental computations to be made are:

1

2π

∫ 2π

0
P1

l (sin(δs)) sin λνdν′ (63)

1

2π

∫ 2π

0
P1

l (sin(δs)) cos λνdν′ (64)

where we have

P1
l (x) = (−1)(1 − x2)

1
2

d

dx
P0

l (x)

= −1

2l
(1 − x2)

1
2

	 l−1
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)xl−2k−1

With x = sin(δs) = β sin(ν′):

P1
l (sin(δs)) = −1

2l
cos(δs)

	 l−1
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)(β sin(ν′))l−2k−1

So

C̄1 = 1

2π

∞∑

l=1

Cl,1

∫ 2π

0
sin λν P1

l (sin(δs))dν′

= 1

2π

∞∑

l=1

Cl,1

∫ 2π

0

cos(is) sin(ν′)
cos(δs)

−1

2l
cos(δs)

×
	 l−1

2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)(β sin(ν′))l−2k−1dν′

= − cos(is)

2π

∞∑

l=1

Cl,1
1

2l

	 l−1
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)(β)l−2k−1

∫ 2π

0
sinl−2k(ν′)dν′
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Conversely:

¯̄C1 = 1

2π

∞∑

l=1

Cl,1

∫ 2π

0
cos λν P1

l (sin(δs))dν′

= 1

2π

∞∑

l=1

Cl,1

∫ 2π

0

cos(ν′)
cos(δs)

−1

2l
cos(δs)

×
	 l−1

2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)(β sin(ν′))l−2k−1dν′

= − cos(is)

2π

∞∑

l=1

Cl,1
1

2l

	 l−1
2 
∑

k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
(l − 2k)(β)l−2k−1

×
∫ 2π

0
cos(ν′) sinl−2k−1(ν′)dν′

We first note that
∫ 2π

0 cos(ν′) sinl−2k−1(ν′)dν′ = 0 for all l − 2k − 1 ≥ 0. We have already

computed
∫ 2π

0 sinl−2k(ν′)dν′ where we find it equals zero for l odd and for l even, l = 2t ,
it equals:

∫ 2π

0
sin2t−2k(ν′)dν′ = (2t − 2k)!

(t − k)!2 · 22(t−k)
· 2π

Hence we have ¯̄C1 = ¯̄D1 = 0 and:

C̄1 = − cos(is)

∞∑

t=1

C2t,1
1

22t

[
t−1∑

k=0

(−1)k (4t − 2k)!(t − k)

k!(2t − k)!(t − k)!2
(

β

2

)2t−2k−1
]

(65)

D̄1 = − cos(is)

∞∑

t=1

D2t,1
1

22t

[
t−1∑

k=0

(−1)k (4t − 2k)!(t − k)

k!(2t − k)!(t − k)!2
(

β

2

)2t−2k−1
]

(66)

Thus we find the averaged evolutionary equations for the obliquity and the right ascension
to be:

˙̄is = G1

ω0 Iza2
√

1 − e2

[(
C̄1,x + D̄1,y

)
cos(φlag) + (D̄1,x − C̄1,y

)
sin(φlag)

]
(67)

˙̄�s = − cot(is)G1

ω0 Iza2
√

1 − e2

[− (D̄1,x − C̄1,y
)

cos(φlag) + (C̄1,x + D̄1,y
)

sin(φlag)
]

(68)

Thus to completely describe the dynamical equations of 61, 67, and 68 it remains only to
compute the spherical harmonic coefficients Cl,m and Dl,m for m = 0, 1. The computation
of these harmonic coefficients is discussed in the Appendix for a given asteroid shape model.

3.6 Symmetry properties

The averaged coefficients that describe the rotational evolution of an asteroid have a number
of symmetry properties as a function of the obliquity and as a function of in which sense the
asteroid rotates.
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3.6.1 Symmetry in obliquity

The simplest symmetry to observe in the coefficients is in the obliquity, is , about a value of
π/2. We first note that the sine function is symmetric about π/2, sin(is) = sin(π − is), and
that the cosine function is odd about π/2, cos(is) = − cos(π − is). We immediately note
that the C̄0 coefficients are only a function of sin is and thus are symmetric about this line.
Next, we note that the coefficients C̄1 and D̄1 are functions of sin is and are both multiplied
by cos is . Thus, these coefficients are anti-symmetric in obliquity. Thus:

C̄0(is) = C̄0(π − is) (69)

C̄1(is) = −C̄1(π − is) (70)

D̄1(is) = −D̄1(π − is) (71)

3.6.2 Symmetry in rotation sense

The computation of these coefficients assumes that the asteroid uniformly rotates about its
maximum moment of inertia, and implicitly assumes one of two possible directions for the
asteroid to rotate. Under long-term evolution we will see in the next section that, under the
current model assumptions, it is possible for an asteroid’s rotation rate to approach zero,
and should that happen it is feasible that the body would commence rotating in the opposite
direction. The actual dynamics are more complex and may involve perturbations from solar
gravitational torques as well as non-uniform rotation. Nonetheless, it is of interest to recom-
pute the relevant coefficients under the assumption that the asteroid rotates in the opposite
sense. Doing so reveals some interesting symmetry properties of the coefficients.

To model this, we consider “flipping” the asteroid by 180 degrees about the x or y axis—
for definiteness we consider a rotation about the x axis. Upon consideration, it is clear that
the resulting moment equation should equal the original one, but with the change in spherical
coordinates δ → −δ and λ → −λ and with the coefficient vectors being subject to the change
()x → ()x , ()y → −()y , and ()z → −()z , which can be accomplished by pre-multiplication
by the rotation matrix:

Tx =
⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦ (72)

As the shape distribution of the asteroid does not change, the absolute values of the coef-
ficients should likewise be unchanged. If we denote the Fourier coefficients for the flipped
mass distribution as C′

l,m and D′
l,m , we then have the identity:

∞∑

l=0

l∑

m=0

Pm
l (sin(δs)){C′

l,m cos(mλs) + D′
l,m sin(mλs)}

=
∞∑

l=0

l∑

m=0

Pm
l (sin(−δs)){Tx Cl,m cos(−mλs) + Tx Dl,m sin(−mλs)}

The associated Legendre functions have the symmetry property Pm
l (−x) = (−1)l−m Pm

l (x)

and the sine and cosine functions have the symmetry property cos(−x) = cos x and
sin(−x) = − sin x . Thus, for a body rotating in the opposite sense the solar torque coefficients
can be defined to be:
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C′
l,m = (−1)l−m Tx Cl,m (73)

D′
l,m = −(−1)l−m Tx Dl,m (74)

For the coefficients of specific interest to us we find:

C ′
2t,0,z = −C2t,0,z (75)

C ′
2t,1,x = −C2t,1,x (76)

C ′
2t,1,y = C2t,1,y (77)

D′
2t,1,x = D2t,1,x (78)

D′
2t,1,y = −D2t,1,y (79)

In terms of the spin state, we find the following symmetry changes when the asteroid rotates
in the opposite sense. The longitude of the ascending node shifts by π , or �′

s = �s + π ,
and the solar inclination is replaced by its supplement, i ′s = π − is . We see that the value of
sin i ′s = sin is , and thus the secular equations do not change their form, just their coefficients.
In terms of the original Fourier coefficients we thus find the secular evolution equations for
the spin state of the asteroid rotating in the opposite sense to be:

˙̄ω′
z = − G1

Iza2
√

1 − e2
C̄0,z (80)

˙̄i ′s = G1

ω0 Iza2
√

1 − e2

[−(C̄1,x + D̄1,y
)

cos(φlag) + (D̄1,x − C̄1,y
)

sin(φlag)
]

(81)

˙̄�′
s = cot(is)G1

ω0 Iza2
√

1 − e2

[−(D̄1,x − C̄1,y
)

cos(φlag) − (C̄1,x + D̄1,y
)

sin(φlag)
]

(82)

Thus we note that the overall evolutionary equations for the inclination and longitude are not
symmetric, but that the effect of thermal lag can change the magnitude and direction of the
evolution. The spin rate evolution just has a change in sign, and changes from deceleration
to acceleration, or vice-versa. The obliquity change is non-symmetric if the thermal inertia
is non-zero. Thus, when an asteroid rotates in the opposite sense its obliquity dynamics may
be quite different.

4 A study of the rotational dynamics equations

From our analysis we can state the averaged dynamics equations for is and ω. In the following
we do not consider the dynamics of �s as it does not affect the other states.

4.1 Normalized form of the equations

The general form of the dynamical equations can be stated as:

ω̇ = G1

Iza2
√

1 − e2

∞∑

t=0

C2t,0,z

[
1

22t

t∑

k=0

(−1)k (4t − 2k)!
k!(2t − k)!(t − k)!2

(
sin is

2

)2t−2k
]

(83)
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i̇s = −G1 cos(is)

ωIza2
√

1 − e2

∞∑

t=1

1

22t

×[(C2t,1 x + D2t,1 y) cos(φlag) + (D2t,1 x − C2t,1 y) sin(φlag)]

×
[

t−1∑

k=0

(−1)k (4t − 2k)!(t − k)

k!(2t − k)!(t − k)!2
(

sin is

2

)2t−2k−1
]

(84)

Following the definition in Scheeres (2007), we introduce a normalization to the spherical
harmonic coefficients to define them in a dimensionless form. The normalizing factor is
r Iz/M , where r is the mean radius of the body, Iz is its maximum moment of inertia, and
M is the total mass of the body. Thus, the normalizing factor scales as r3. We divide the
coefficients by this factor and multiply the leading terms by it. We may also rearrange the
series summations to extract the term sin is to find a simple form for the equations:

ω̇ = g
∞∑

k=0

ak sin2k(is)

i̇s = g
cos(is)

ω

∞∑

k=0

sin2k+1(is)[bk cos(φlag) + ck sin(φlag)]

where

g = G1r

Ma2
√

1 − e2
(85)

and the coefficients ak , bk and ck are defined as:

ak =
∑

k≤t

C̃2t,0,z
(−1)t−k

22t+2k
· (2t + 2k)!
(t − k)!(t + k)!k!2

bk =
∑

1+k≤t

(C̃2t,1,x + D̃2t,1,y)
(−1)t−k

22t+2k+1 · (2t + 2k + 2)!(k + 1)

(t − k − 1)!(t + k + 1)!(k + 1)!2

ck =
∑

1+k≤t

(D̃2t,1,x − C̃2t,1,y)
(−1)t−k

22t+2k+1 · (2t + 2k + 2)!(k + 1)

(t − k − 1)!(t + k + 1)!(k + 1)!2

and define an additional term to be used later, dk = bk + ck ,

dk =
∑

1+k≤t

(C̃2t,1,x+D̃2t,1,y+D̃2t,1,x−C̃2t,1,y)

× (−1)t−k

22t+2k+1 · (2t + 2k + 2)!(k + 1)

(t − k − 1)!(t + k + 1)!(k + 1)!2

where C̃lm = Clm/(r Iz/M) and D̃lm = Dlm/(r Iz/M). The coefficients ak , bk , ck and dk

are pure functions of the geometry of the asteroid while g depends on its mass, size and
heliocentric orbit, and controls how fast the evolution of the system is.

If we consider rotation in the opposite sense we note the symmetry transformations:
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a′
k = −ak (86)

b′
k = −bk (87)

c′
k = ck (88)

d ′
k = −bk + ck (89)

and thus we note again the non-symmetric change in the obliquity evolution.
The thermal lag angle can be approximated using Eqs. 4 and 5:

cos(φlag) = 1 + µ
√

ω√
1 + 2µ

√
ω + 2µ2ω

sin(φlag) = µ
√

ω√
1 + 2µ

√
ω + 2µ2ω

In addition, we can apply the reemission factor if we only consider the diffuse emission term:

1√
1 + 2µ

√
ω + 2µ2ω

Then the dynamics equations have the following form:

ω̇ = g√
1 + 2µ

√
ω + 2µ2ω

∞∑

k=0

ak sin2k(is)

i̇s = g cos(is)

ω
(
1 + 2µ

√
ω + 2µ2ω

)
∞∑

k=0

sin2k+1(is)
[
bk (1 + µ

√
ω) + ck (µ

√
ω)
]

Defining dk = bk + ck we have:

i̇s = g cos(is)

ω
(
1 + 2µ

√
ω + 2µ2ω

)
∞∑

k=0

sin2k+1(is)
[
bk + dk µ

√
ω
]

For (is, ω) ∈ [0, π] × (R − {0}), these equations are regular. We see that if is = kπ
2 , for k an

integer, i̇s = 0 for any angular velocity not equal to zero.
If we define β = sin is we have the following system of equations for ω and β:

ω̇ = g√
1 + 2µ

√
ω + 2µ2ω

∞∑

k=0

ak β2k (90)

β̇ = g(1 − β2)

ω
(
1 + 2µ

√
ω + 2µ2ω

)
∞∑

k=0

β2k+1 [bk + µdk
√

ω
]

where 0 ≤ β ≤ 1. We note that the evolution of β contains in it the symmetric evolution of
is over the intervals [0, π/2] and [π, π/2]. As we have seen before β = 0, 1 are asymptotic
solutions, and if β → 0 or 1 then β̇ → 0. Thus, we also note that β is trapped to lie in the
interval [0, 1] in accordance with its definition.
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To simplify the following discussion we define the following functions:

A(β) =
∞∑

k=0

akβ
2k (91)

B(β) =
∞∑

k=0

bkβ
2k (92)

D(β) =
∞∑

k=0

dkβ
2k (93)

We note that some asteroids investigated to date have some basic characteristics in terms of the
number of zeros these functions have over the internal β ∈ [0, 1]. Namely, A(β) generally has
one zero in this interval, often at a value close to 60◦, or β ∼ √

3/2 (Nesvorný and Vokrouh-
lický 2007). Conversely, the functions B(β) and D(β) tend to have no roots in this interval, al-
though again some asteroid shapes show exceptions to this (Scheeres 2007). This is discussed
in more detail in (Vokrouhlický and Čapek 2002 and Nesvorný and Vokrouhlický 2007). In
the following we will take these results as the “generic” case and discuss the dynamical evo-
lution under these hypotheses. A more general discussion can also be made of these dynamics
for different situations Mirrahimi (2007).

More precisely, we define our generic functions Ag , Bg and Dg to have the following
properties:

Ag(βo) = 0 (94)

Ag(β) �= 0 ∀β �= βo (95)

Bg(β)Dg(β) �= 0 ∀β ∈ [0, 1] (96)

An example case for asteroid Castalia that satisfies these properties is shown in Fig. 1. An
example which does not satisfy these properties, asteroid 1998 KW4, is shown in Fig. 2.
Also of interest is asteroid 1999 KY26, Fig. 3, which exhibits the generic case for its nominal
rotation sense but has a drastically changed D(β) for rotation in the opposite sense. These
particular asteroids are used as there are precise shape models in existence for them. Shape
models for the asteroids Apollo and YORP, for which YORP has been detected, are not
known as precisely.

To characterize the dynamics for the generic form of the functions it suffices to develop a
notation to track their signs. Specifically, we use the “sign” function sgn(x) (equal to 1 for
x > 0, −1 for x < 0, and equal to zero for x = 0) to define the following:

sA = sgn(Ag(0)) (97)

sB = sgn(Bg(β)) (98)

sD = sgn(Dg(β)) (99)

Thus we note that if sA = 1 that sgn(Ag(1)) = −1. Also, from Vokrouhlický and Čapek
(2002) we note that sA > 0 is called Type I while sA < 0 is Type II . We do not assume any
correlation between the signs sA, sB and sD , although such correlations may exist (Nesvorný
and Vokrouhlický 2007).
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Fig. 1 Functions A, β(1 − β2)B and β(1 − β2)D for the asteroid Castalia (Hudson and Ostro 1994)

4.2 Dynamics with zero thermal conductivity

We first study the case where there is no thermal conductivity, or µ = 0.

ω̇ = g A(β)

β̇ = g
β(1 − β2)

ω
B(β)

Depending on the signs of A and B we will get different asymptotic solutions. There are a
total of 4 different possibilities, outlined in Table 1.
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Fig. 2 Functions A, β(1 − β2)B and β(1 − β2)D for the asteroid KW4, note that A has multiple roots
(Scheeres et al. 2006)

A generic depiction of these different solutions, both forwards and backwards in time, is
given in Fig. 4. We note that under the spin-reversal symmetry, the solutions with sAsB > 0
transform into each other as do the solutions with sAsB < 0. Thus, if an asteroid spins to
a zero rotation rate and starts to spin in the opposite direction, its path will merely retrace
the path it initially took, and eventually end up with a zero rotation rate again. Also, it is
interesting to note that shapes with sAsB > 0 have a characteristic maximum spin rate, which
occurs at βo, while shapes with sAsB < 0 have a minimum spin rate, which again occurs at βo.

If there exists a zero for B(β), called β∗, in the interval β ∈ [0, 1], we note that the
obliquity dynamics will then be trapped in one of the intervals [0, β∗) and (β∗, 1]. One of
these intervals will contain βo, and dynamics in that interval will be similar to that in Table 1.
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Fig. 3 Functions A, B and D for the asteroid 1999 KY26, showing both the nominal configuration and the
D function if spun in the opposite direction (Ostro et al. 1999)

Table 1 Asymptotic dynamics for the case with zero thermal conductivity

Type sA sB t → ∞ t → −∞
ω β ω β

I+
0 1 1 0 1 0 0

II+
0 −1 −1 0 0 0 1

I−
0 1 −1 ∞ 0 ∞ 1

II−
0 −1 1 ∞ 1 ∞ 0

The Type I/II designation is taken from Vokrouhlický and Čapek (2002), the “0” represents zero thermal
conductivity, and the ± represents the product sAsB

The other interval will have trajectories that travel from 0 to ∞ in ω, either forwards or
backwards in time, as the obliquity travels between the interval limits. An additional zero in
A(β) will cause a more complex evolution of the spin rate, with the possibility of there being
local maximum and minimum spin rates.

Regardless of the number of zeroes of the functions A and B, the solution to these differ-
ential equations can be expressed in closed form. Define an interval of β, (β1, β2), such that
B(β) �= 0 ∀β ∈ (β1, β2). Then, regardless of the number of zeros A(β) may have in this
interval, the rotation rate can be explicitly expressed as:

ω(β) = ωoeG(β) (100)

G(β) =
∫ β

β0

A(β ′)
B(β ′)β ′(1 − β ′2)

dβ ′ (101)

∀β0, β ∈ (β1, β2) (102)

Rubincam (1995) presents a similar analytical solution for an asteroid subjected to the
YORP effect.
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Fig. 4 Generic rotational dynamics phase plane possibilities for the case of zero thermal inertia. Solutions
can traverse these curves in either direction, depending on their Type

4.3 Dynamics with nonzero thermal conductivity

These previous results assume no thermal conductivity. One of the effects of thermal con-
ductivity is to modify the time between insolation and reemission of solar photons leading
to a lag angle. As derived previously, we see that this has a significant effect on the obliquity
dynamics, but does not modify the rotational acceleration.

Now we consider rotational dynamics in the general case with a nonzero thermal
conductivity:

ω̇ = g√
1 + 2µ

√
ω + 2µ2ω

A(β)

β̇ = gβ(1 − β2)

ω
(
1 + 2µ

√
ω + 2µ2ω

)
[
B(β) + µ

√
ωD(β)

]

Again, for our generic case we assume a single root for Ag(β) and no roots for the functions
Bg(β) and Dg(β). We first discuss the dynamics of this “generic” case, which can be done
in terms of the signs of A(0), B and D. We introduce the new notation sD = sgn(D(β)).
Again, we note that β̇ = 0 at β = 0 and β = 1, and thus these can serve as asymptotic
solutions. Now, however, the stability of these solutions is more complex and depends on the
signs of both B(β) and D(β).

The simplest case occurs if B and D have the same sign, either positive or negative, or if
sBsD > 0. Under our generic assumption the entire interval of β̇ will be non-zero, and we
have the equivalent situation as in the zero thermal inertia case. Specifically, we have four
different possible situations for the future and past of the asteroid rotation state as stated in
Table 1. Now, however, we note that under reversal of spin direction that D′ �= −D, and
hence the nature of the obliquity dynamics can change if a reversal in spin direction occurs.
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Table 2 Asymptotic dynamics for the generic case with non-zero thermal conductivity

Type sA sB sD t → ∞ t → −∞
ω β ω β

I+ 1 1 1 0 1 0 0
II+ −1 −1 −1 0 0 0 1
I− 1 −1 −1 ∞ 0 ∞ 1
II− −1 1 1 ∞ 1 ∞ 0
I H 1 1 −1 ∞ 0 0 0

0 1 ∞ 1
II H −1 −1 1 0 0 ∞ 0

∞ 1 0 1
I C 1 −1 1 Circulation
II C −1 1 −1 Circulation

We note that the first four cases are identical with those for zero thermal conductivity. For the more complex
cases we can now have multiple possible asymptotic solutions, depending on the starting conditions. In some
cases there can be circulation of the solution that either converges to an equilibrium or that does not. The Type
I and II definitions are again taken from Vokrouhlický and Čapek (2002), and now the H and C super-scripts
stand for the equilibrium point existing and being either hyperbolic or circulatory

A more complex situation occurs if B and D have opposite signs, or sBsD < 0, as now a
stationary value in the obliquity rate can occur other than at β = 0, 1. Specifically, we see
that β̇ = 0 if µ

√
ω = −B(β)/D(β). Thus, if the rotation rate passes through this value the

flux direction of β will change sign. We can evaluate the nature of the solutions at β = 0, 1
by considering the different cases of sA, sB , and sD again, given in Table 2.

For the last four cases in Table 2 we note that the asymptotic dynamics become more
complex, and indeed that for the last two cases there are no solutions asymptotic to β = 0, 1.
This complication arises from the presence of a equilibrium point in the dynamics, located
at βo and µ

√
ωo = −Bg(βo)/Dg(βo) for the generic system (note that this ωo is distinct

from that defined earlier). The properties of the motion can be better understood by studying
the stability properties of this equilibrium solution, as this organizes the flow of the aster-
oid’s rotation state. To analyze its stability we consider small deviations from this relative
equilibrium point, ω = ωo + δω and β = βo + δβ, and form the linearized dynamical
equations:

[
δω̇

δβ̇

]
=
[

0 ω̇β

∣∣
o

β̇ω

∣∣
o β̇β

∣∣
o

] [
δω

δβ

]
(103)

where the subscript notation denotes partial differentiation with respect to that variable and

ω̇β

∣∣
o = Aβ

∣∣
o

g√
1 + 2µ

√
ωo + 2µ2ωo

(104)

β̇β

∣∣
o = gβo(1 − β2

o )

ωo
(
1 + 2µ

√
ωo + 2µ2ωo

) (105)

β̇ω

∣∣
o = gβo(1 − β2

o )

2ω
3/2
o
(
1 + 2µ

√
ωo + 2µ2ωo

) (106)

The characteristic equation for this system is found to be:

λ2 − β̇βλ − β̇ωω̇β = 0 (107)
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with solutions

λ± = 1

2

[
β̇β ±

√
β̇2

β + 4β̇ωω̇β

]
(108)

If the real part of either λ± is positive the equilibrium point is unstable and has a well-defined
unstable manifold along which the solution would depart from the equilibrium point. If the
real part of either root is negative, there also exists a stable manifold which approaches the
equilibrium. If the roots have an imaginary term, there is also oscillatory motion as the solu-
tion follows the stable or unstable manifolds. Determining the stability of the equilibrium
can be reduced to determining the signs of the partial derivatives β̇β , β̇ω, and ω̇β .

For our generic models we find the following results, used in our discussion. First, if
sA > 0 then ω̇β < 0 and vice-versa. Next, if sD > 0 then β̇ω > 0 and vice-versa. The sign of
β̇β is more difficult to determine as it depends on the slopes of B(β) and D(β) at βo, which
are not constrained to any particular sign and magnitude.

If sAsD < 0 then ω̇β β̇ω > 0 and we note that the equilibrium point has a hyperbolic
structure independent of the sign of β̇β , with a positive real eigenvalue and a negative real
eigenvalue. The stable and unstable manifolds associated with the equilibrium point then
continue into the solutions asymptotic to β = 0, 1 forwards and backwards in time. This
corresponds to Types I H and II H in Table 2, and a generic example is shown in Fig. 5.
We note that the rotation state dynamics are isolated in their respective quadrants, which
are separated by the stable and unstable manifolds to the equilibrium point. Non-averaged
dynamics can be more complex, of course, and crossing of the manifolds may be possible
for actual rotation state evolution. The study of these more realistic evolutions are of interest
for the future. For the case of non-zero thermal inertia, if the spin direction of the asteroid is
switched the phase space of the dynamics is no longer self-similar, specifically the sign of D
may not change even though the sign of A changes, thus potentially changing the qualitative
nature of the dynamics.
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Fig. 5 Generic rotational dynamics phase plane for the case of a hyperbolic root for the equilibrium point
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Fig. 6 Generic rotational dynamics phase plane for the case of a stable equilibrium point with oscillatory
behavior

If sAsD > 0 then ω̇β β̇ω < 0 and the square root quantity is less in magnitude than β̇β .
For this case, Types I C and II C in Table 2, we note that there are no asymptotic solutions
to β = 0, 1, and the only possible asymptotic solution is the equilibrium point, if it is stable.
If β̇β < 0 then the equilibrium point is stable, and solutions will converge upon the point
forwards in time, and spiral away from it backwards in time. A generic case is shown in
Fig. 6. Conversely, if β̇β > 0 the equilibrium point is unstable and the situation is reversed.
In this case the solution has no limiting value and continues to evolve indefinitely. Practically,
the solution spends most of its time either along the β = 0 of 1 axes, but never stays there
forever. For the special case of β̇β = 0 the equilibrium point is purely oscillatory, and we see
that the dynamics have a similar oscillatory behavior for non-linear motion (see Fig. 7).

In the non-generic case the situation can become considerably more complex. However,
as the rotational dynamics have been reduced to a two-dimensional dynamical system, they
can be studied and understood using basic techniques of dynamical systems.

5 Conclusion

In this paper an analysis of the dynamics of a uniformly rotating asteroid subject to the YORP
effect is given. By solving the equations of rotational motion we have derived the secular
evolution of rotation rate and solar inclination of the asteroid. The equations derived for the
dynamics of this system have a relatively simple form which leads to a standardized discus-
sion of the dynamics. The effect of thermal conductivity and the thermal inertia is included
in the study and modify the equations. Using the theoretical results in this report, a study of
dynamical evolution of asteroid rotation states due to YORP can be performed easily. Also
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Fig. 7 Generic rotational dynamics phase plane for the special case of pure oscillatory behavior

given in this paper is an explicit model of the YORP torques acting on an asteroid in terms of
spherical harmonic coefficients. The definition of this model enables the averaging analysis
to be performed entirely analytically.
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Appendix A

Spherical harmonic coefficients

The spherical harmonics defined as below form a complete set of orthonormal functions and
thus form a vector space analogous to unit basis vectors (MacRobert 1947):

Y m
l (δ, λ) =

√
(2l + 1)(l − m)!

4π(l + m)! Pm
l (sin δ)eimλ

These functions are orthonormal, thus:
∫ 2π

0

∫ π
2

− π
2

cos(δ)Y m
l (δ, λ)Y m′

l ′
∗
(δ, λ)dδdλ = δll ′δmm′

where

δl,m =
{

1 if l = m
0 if l �= m
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So if a function f is written as a series of spherical harmonics:

f (δ, λ) =
∞∑

l=0

l∑

m=0

al,mY m
l (δ, λ)

We can compute the coefficients by following formulas:

al,m =
∫ 2π

0

∫ π
2

− π
2

cos(δ) f (δ, λ)Y m
l

∗dδdλ (A.1)

To find the real parts we have:

1

2
(Y m

l + (−1)mY −m
l ) = 1

2

√
2l + 1

4π

[√
(l − m)!
(l + m)! Pm

l (sin(δ))eimλ

+ (−1)m

√
(l + m)!
(l − m)! P−m

l (sin(δ))e−imλ

]

=
√

(2l + 1)(l − m)!
4π(l + m)! Pm

l (sin δ)

[
eimλ + (−1)2me−imλ

2

]

=
√

(2l + 1)(l − m)!
4π(l + m)! Pm

l (sin δ) cos(mλ)

So

1

2
(Y m

l + (−1)mY −m
l ) =

√
(2l + 1)(l − m)!

4π(l + m)! Pm
l (sin δ) cos(mλ) (A.2)

And

1

2i
(Y m

l − (−1)mY −m
l ) =

√
(2l + 1)(l − m)!

4π(l + m)! Pm
l (sin δ) sin(mλ) (A.3)

Using (A.1), (A.2), and (A.3) we can compute the spherical harmonic coefficients of f (δ, λ) =
M

P(R)
, i.e. Cl,m and Dl,m :

Cl,m

2Nl,m
+ Dl,m

2Nl,mi
= al,m

Cl,m

2Nl,m
− Dl,m

2Nl,mi
= (−1)mal,−m

or

Cl,m = Nl,m[al,m + (−1)mal,−m] (A.4)

Dl,m = i Nl,m[al,m − (−1)mal,−m] (A.5)

where Nl,m =
√

(2l+1)(l−m)!
4π(l+m)! . We can rewrite the values of Cl,m and Dl,m in the following

form, using A.1:

Cl,m = 2N 2
l,m

∫ 2π

0

∫ π
2

− π
2

cos(δ) f (δ, λ)Pm
l (sin(δ)) cos(mλ)dδdλ (A.6)
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Dl,m = 2N 2
l,m

∫ 2π

0

∫ π
2

− π
2

cos(δ) f (δ, λ)Pm
l (sin(δ)) sin(mλ)dδdλ (A.7)

To compute completely all the terms of the average dynamic equations of 61, 67, 68
we need to know C0,z , C1,x , C1,y , D1,x , D1,y . We have the expression of M

P(R)
, (Čapek

and Vokrouhlický 2004):

M
P(R)

=
N∑

i=1

ri × fi (û)

where fi (û) = −[{ρs(2n̂i n̂i − U) + U} · ûû · n̂i + a2n̂i n̂i · û]Hi (û)Ai .
Here we have supposed that the asteroid consists of N facets, each of them being a flat plane.
n̂i is the normal vector to the facet i . U is the identity matrix. û is the solar direction, and
Hi (û) is the visibility function for the facet i , which equals 1 when the Sun is above the
horizon and zero otherwise.
So to compute the coefficients, we have to compute the following integrals:

vi
2t,m =

∫ 2π

0

∫ π
2

− π
2

cos(δs)ûHi (û)Pm
2t (sin(δ)) cos(mλ)dδdλ

v′i
2t,m =

∫ 2π

0

∫ π
2

− π
2

cos(δs)ûHi (û)Pm
2t (sin(δ)) sin(mλ)dδdλ

wi
2t,m =

∫ 2π

0

∫ π
2

− π
2

cos(δs)ûûHi (û)Pm
2t (sin(δ)) cos(mλ)dδdλ

w′i
2t,m =

∫ 2π

0

∫ π
2

− π
2

cos(δs)ûûHi (û)Pm
2t (sin(δ)) sin(mλ)dδdλ

for m = 0, 1.
The visibility function Hi (û) equals 1 when the Sun is above the horizon and equals 0

otherwise. In general, for each facet it will be defined by two solar longitudes, the one when it
rises λri , and the one when it sets λsi . Note that these longitudes are a function of δ in general
and are computed from λr,s = λi ±arccos(− tan δs tan δi ) where δi is the solar latitude of the
surface element. Thus, in general only the integral in longitude can be computed in closed
form, the other being left in integral form (note, a closed form integration over these limits
is discussed in Scheeres (2007)). Shadowing can also be accommodated in performing this
integral, being represented in a unique way by the shadowing function Hi at each facet. A
method for incorporating this into the computation is given in Scheeres (2007).

vi
2t,m =

∫ λsi

λri

∫ π
2

− π
2

cos(δs)ûPm
2t (sin(δ)) cos(mλ)dδdλ

v′i
2t,m =

∫ λsi

λri

∫ π
2

− π
2

cos(δs)ûPm
2t (sin(δ)) sin(mλ)dδdλ

wi
2t,m =

∫ λsi

λri

∫ π
2

− π
2

cos(δs)ûûPm
2t (sin(δ)) cos(mλ)dδdλ

123



Rotational dynamics of a solar system body 101

w′i
2t,m =

∫ λsi

λri

∫ π
2

− π
2

cos(δs)ûûPm
2t (sin(δ)) sin(mλ)dδdλ

where

û =
⎛

⎝
cos(δs) cos(λs)

cos(δs) sin(λs)

sin(δs)

⎞

⎠

and

ûû =
⎛

⎝
cos2(δs) cos2(λs) cos2(δs) cos(λs) sin(λs) cos(δs) sin(δs) cos(λs)

cos2(δs) cos(λs) sin(λs) cos2(δs) sin2(λs) cos(δs) sin(δs) sin(λs)

cos(δs) sin(δs) cos(λs) cos(δs) sin(δs) sin(λs) sin2(δs)

⎞

⎠ .

Thus we find

vi
2t,m =

∫ π
2

− π
2

I1
m,i cos(δs)Pm

2t (sin(δ))Hi (δ)dδ (A.8)

v′i
2t,m =

∫ π
2

− π
2

I
′1
m,i cos(δs)Pm

2t (sin(δ))Hi (δ)dδ (A.9)

wi
2t,m =

∫ π
2

− π
2

I2
m,i cos(δs)Pm

2t (sin(δ))Hi (δ)dδ (A.10)

w′i
2t,m =

∫ π
2

− π
2

I
′2
m,i cos(δs)Pm

2t (sin(δ))Hi (δ)dδ (A.11)

where

I1
0,i =

∫ λr

λs

ûdλ (A.12)

=
⎡

⎣
cos(δs) (sin(λr ) − sin(λs))

− cos(δs) (cos(λr ) − cos(λs))

sin(δs)�λ

⎤

⎦ (A.13)

I2
0,i =

∫ λr

λs

cos(λ)ûûdλ (A.14)

Entry (1, 1) = 1

2
cos2(δs)

[
�λ + 1

2
(sin 2λr − sin 2λs)

]
(A.15)

Entry (1, 2) = −1

4
cos2(δs) [cos 2λr − cos 2λs] (A.16)

Entry (1, 3) = sin(δs) cos(δs) (sin(λr ) − sin(λs)) (A.17)

Entry (2, 2) = 1

2
cos2(δs)

[
�λ − 1

2
(sin 2λr − sin 2λs)

]
(A.18)

Entry (2, 3) = − sin(δs) cos(δs) (cos(λr ) − cos(λs)) (A.19)

Entry (3, 3) = sin2(δs)�λ (A.20)

where �λ = λr − λs .

For the case m = 1 there are two sets of integrals, for the cosine and for the sine term.
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Cosine m = 1 term

I1
1,i =

∫ λr

λs

cos(λ)ûdλ (A.21)

=
⎡

⎢⎣

1
2 cos(δs)

[
�λ + 1

2 (sin 2λr − sin 2λs)
]

− 1
4 cos(δs) [cos 2λr − cos 2λs]

sin(δs) (sin(λr ) − sin(λs))

⎤

⎥⎦ (A.22)

I2
1,i =

∫ λr

λs

cos(λ)ûûdλ (A.23)

Entry (1, 1) = 1

3
cos2(δs)

× [sin λr
(
cos2 λr + 2

)− sin λs
(
cos2 λs + 2

)]
(A.24)

Entry (1, 2) = −1

3
cos2(δs)

[
cos3 λr − cos3 λs

]
(A.25)

Entry (1, 3) = 1

2
sin(δs) cos(δs)

[
�λ + 1

2
(sin 2λr − sin 2λs)

]
(A.26)

Entry (2, 2) = 1

3
cos2(δs)

[
sin3 λr − sin3 λs

]
(A.27)

Entry (2, 3) = −1

4
sin(δs) cos(δs) [cos 2λr − cos 2λs] (A.28)

Entry (3, 3) = sin2(δs) (sin(λr ) − sin(λs)) (A.29)

Sine m = 1 term

I
′1
1,i =

∫ λr

λs

sin(λ)ûdλ (A.30)

=
⎡

⎢⎣
− 1

4 cos(δs) [cos 2λr − cos 2λs]
1
2 cos(δs)

[
�λ − 1

2 (sin 2λr − sin 2λs)
]

− sin(δs) (cos(λr ) − cos(λs))

⎤

⎥⎦ (A.31)

I
′2
1,i =

∫ λr

λs

sin(λ)ûûdλ (A.32)

Entry (1, 1) = −1

3
cos2(δs)

[
cos3 λr − cos3 λs

]
(A.33)

Entry (1, 2) = 1

3
cos2(δs)

[
sin3 λr − sin3 λs

]
(A.34)

Entry (1, 3) = −1

4
sin(δs) cos(δs) [cos 2λr − cos 2λs] (A.35)

Entry (2, 2) = −1

3
cos2(δs)

× [cos λr
(
sin2 λr + 2

)− cos λs
(
sin2 λs + 2

)]
(A.36)

Entry (2, 3) = 1

2
sin(δs) cos(δs)

[
�λ − 1

2
(sin 2λr − sin 2λs)

]
(A.37)

Entry (3, 3) = − sin2(δs) (cos(λr ) − cos(λs)) (A.38)
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Once we have computed these values we can derive the coefficients by the following formulas:

Cl,m = −2N 2
l,m

N∑

i=1

ri × [{ρs(2n̂i n̂i − U) + U} · wl,mi · n̂i + a2n̂i n̂i · vl,mi ]Ai

Dl,m = −2N 2
l,m

N∑

i=1

ri × [{ρs(2n̂i n̂i − U) + U} · wl,m
′i · n̂i + a2n̂i n̂i · vl,m

′i ]Ai

Note, we have not stated the closed form of the integrals given in Eqs. A.8–A.11, although
they are available for some special cases in terms of elliptic integrals (Scheeres 2007). For
convenience, these can be computed numerically once a shape is given.
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