
 

 

MURDOCH RESEARCH REPOSI TORY 

 

 

 

 

This is the author’s final version of the work, as accepted for publication  

following peer review but without the publisher’s layout or pagination.  

The definitive version is available at :  

 

 

 

http://dx.doi.org/10.1007/s11263-013-0627-y 

 

 

 

Guo, Y., Sohel, F., Bennamoun, M., Lu, M. and Wan, J. (2013) Rotational 

projection statistics for 3D local surface description and object recognition. 

International Journal of Computer Vision, 105 (1). pp. 63-86. 

 

 

 

http://researchrepository.murdoch.edu.au/28367/ 

 

 

 

 

 
Copyright :  ©  2013 Springer  

I t  is posted here for your personal use. No further dist r ibut ion is perm it ted. 

 

 

 

http://dx.doi.org/10.1007/s11263-013-0627-y
http://researchrepository.murdoch.edu.au/28367/


International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Rotational Projection Statistics for 3D Local Surface
Description and Object Recognition

Yulan Guo · Ferdous Sohel · Mohammed Bennamoun · Min Lu ·

Jianwei Wan

Received: date / Accepted: date

Abstract Recognizing 3D objects in the presence of
noise, varying mesh resolution, occlusion and clutter

is a very challenging task. This paper presents a novel

method named Rotational Projection Statistics (RoPS).

It has three major modules: Local Reference Frame

(LRF) definition, RoPS feature description and 3D ob-
ject recognition. We propose a novel technique to de-

fine the LRF by calculating the scatter matrix of all

points lying on the local surface. RoPS feature descrip-

tors are obtained by rotationally projecting the neigh-
boring points of a feature point onto 2D planes and

calculating a set of statistics (including low-order cen-

tral moments and entropy) of the distribution of these

projected points. Using the proposed LRF and RoPS

descriptor, we present a hierarchical 3D object recogni-
tion algorithm. The performance of the proposed LRF,

RoPS descriptor and object recognition algorithm was

rigorously tested on a number of popular and publicly

available datasets. Our proposed techniques exhibited
superior performance compared to existing techniques.

We also showed that our method is robust with re-
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spect to noise and varying mesh resolution. Our RoPS
based algorithm achieved recognition rates of 100%,

98.9%, 95.4% and 96.0% respectively when tested on

the Bologna, UWA, Queen’s and Ca’ Foscari Venezia

Datasets.

Keywords Surface descriptor · Local feature · Local

reference frame · 3D representation · Feature matching ·

3D object recognition

1 Introduction

Object recognition is an active research area in com-

puter vision with numerous applications including nav-

igation, surveillance, automation, biometrics, surgery
and education (Guo et al., 2013c; Johnson and Hebert,

1999; Lei et al., 2013; Tombari et al., 2010). The aim

of object recognition is to correctly identify the objects

that are present in a scene and recover their poses (i.e.,

position and orientation) (Mian et al., 2006b). Beyond
object recognition from 2D images (Brown and Lowe,

2003; Lowe, 2004; Mikolajczyk and Schmid, 2004), 3D

object recognition has been extensively investigated dur-

ing the last two decades due to the availability of low
cost scanners and high speed computing devices (Mamic and Bennamo

2002). However, recognizing objects from range images

in the presence of noise, varying mesh resolution, oc-

clusion and clutter is still a challenging task.

Existing algorithms for 3D object recognition can
broadly be classified into two categories, i.e., global fea-

ture based and local feature based algorithms (Bayramoglu and Alatan

2010; Castellani et al., 2008). The global feature based

algorithms construct a set of features which encode the
geometric properties of the entire 3D object. Examples

of these algorithms include the geometric 3D moments

(Paquet et al., 2000), shape distribution (Osada et al.,
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2002) and spherical harmonics (Funkhouser et al., 2003).

However, these algorithms require complete 3D mod-

els and are therefore sensitive to occlusion and clutter

(Bayramoglu and Alatan, 2010). In contrast, the local

feature based algorithms define a set of features which
encode the characteristics of the local neighborhood of

feature points. The local feature based algorithms are

robust to occlusion and clutter. They are therefore even

suitable to recognize partially visible objects in a clut-
tered scene (Petrelli and Di Stefano, 2011).

A number of local feature based 3D object recogni-

tion algorithms have been proposed in the literature, in-
cluding point signature based (Chua and Jarvis, 1997),

spin image based (Johnson and Hebert, 1999), tensor

based (Mian et al., 2006b) and Exponential Map (EM)

based (Bariya et al., 2012) algorithms. Most of these al-

gorithms follow a paradigm that has three phases, i.e.,
feature matching, hypothesis generation and verifica-

tion, and pose refinement (Taati and Greenspan, 2011).

Among these phases, feature matching plays a critical

role since it directly affects the effectiveness and effi-
ciency of the two subsequent phases (Taati and Greenspan,

2011).

Descriptiveness and robustness of a feature descrip-
tor are crucial for accurate feature matching (Bariya and Nishino,

2010). The feature descriptors should be highly descrip-

tive to ensure an accurate and efficient object recogni-

tion. That is because the accuracy of feature matching
directly influences the quality of the estimated transfor-

mation which is used to align the model to the scene,

as well as the computational time required for veri-

fication and refinement (Taati and Greenspan, 2011).

Moreover, the feature descriptors should be robust to
a set of nuisances, including noise, varying mesh res-

olution, clutter, occlusion, holes and topology changes

(Bronstein et al., 2010a; Boyer et al., 2011).

A number of local feature descriptors exist in litera-

ture (Section 2.1). These descriptors can be divided into

two broad categories based on whether they use a Lo-

cal Reference Frame (LRF) or not. Feature descriptors
without any LRF use a histogram or the statistics of the

local geometric information (e.g., normal, curvature) to

form a feature descriptor (Section 2.1.1). Examples of

this category include surface signature (Yamany and Farag,

2002), Local Surface Patch (LSP) (Chen and Bhanu,
2007) and THRIFT (Flint et al., 2007). In contrast, fea-

ture descriptors with LRF encode the spatial distribu-

tion and/or geometric information of the neighboring

points with respect to the defined LRF (Section 2.1.2).
Examples include spin image (Johnson and Hebert, 1999),

Intrinsic Shape Signatures (ISS) (Zhong, 2009) andMesh-

HOG (Zaharescu et al., 2012). However, most of the ex-

isting feature descriptors still suffer from either low de-

scriptiveness or weak robustness (Bariya et al., 2012).

In this paper we present a highly descriptive and

robust feature descriptor together with an efficient 3D

object recognition algorithm. This paper first proposes

a unique, repeatable and robust LRF for both local
feature description and object recognition (Section 3).

The LRF is constructed by performing an eigenvalue

decomposition on the scatter matrix of all the points

lying on the local surface together with a sign disam-
biguation technique. A novel feature descriptor, namely

Rotational Projection Statistics (RoPS), is then pre-

sented (Section 4). RoPS exhibits both high discrimina-

tive power and strong robustness to noise, varying mesh

resolution and a set of deformations. The RoPS feature
descriptor is generated by rotationally projecting the

neighboring points onto three local coordinate planes

and calculating several statistics (e.g, central moment

and entropy) of the distribution matrices of the pro-
jected points. Finally, this paper presents a novel hier-

archical 3D object recognition algorithm based on the

proposed LRF and RoPS feature descriptor (Section

6). Comparative experiments on four popular datasets

were performed to demonstrate the superiority of the
proposed method (Section 7).

The rest of this paper is organized as follows. Section

2 provides a brief literature review of local surface fea-

ture descriptors and 3D object recognition algorithms.

Section 3 introduces a novel technique for LRF defini-

tion. Section 4 describes our proposed RoPS method
for local surface feature description. Section 5 presents

the evaluation results of the RoPS descriptor on two

datasets. Section 6 introduces a RoPS based hierar-

chical algorithm for 3D object recognition. Section 7
presents the results and analysis of our 3D object recog-

nition experiments on four datasets. Section 8 concludes

this paper.

2 Related Work

This section presents a brief overview of the existing

main methods for local surface feature description and

local feature based 3D object recognition.

2.1 Local Surface Feature Description

2.1.1 Features without LRF

Stein and Medioni (1992) proposed a splash feature by

recording the relationship between the normals of the

geodesic neighboring points and the feature point. This
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relationship is then encoded into a 3D vector and fi-

nally transformed into curvatures and torsion angles.

Hetzel et al. (2001) constructed a set of features by gen-

erating histograms using depth values, surface normals,

shape indices and their combinations. Results show that
the surface normal and shape index exhibit high dis-

crimination capabilities. Yamany and Farag (2002) in-

troduced a surface signature by encoding the surface

curvature information into a 2D histogram. This method
can be used to estimate scaling transformations as well

as recognizing objects in 3D scenes. Chen and Bhanu

(2007) proposed a LSP feature that encodes the shape

indices and normal deviations of the neighboring points.

Flint et al. (2008) introduced a THRIFT feature by cal-
culating a weighted histogram of the deviation angles

between the normals of the neighboring points and the

feature point. Taati et al. (2007) considered the selec-

tion of a good local surface feature for 3D object recog-
nition as an optimization problem and proposed a set

of Variable-Dimensional Local Shape Descriptors (VD-

LSD). However, the process of selecting an optimized

subset of VD-LSDs for a specific object is very time con-

suming (Taati and Greenspan, 2011). Kokkinos et al.
(2012) proposed a generalization of 2D shape context

feature (Belongie et al., 2002) to curved surfaces, namely

Intrinsic Shape Context (ISC). The ISC is a meta-descriptor

which can be applied to any photometric or geometric
field defined on a surface.

Without LRF, most of these methods generate a

feature descriptor by accumulating certain geometric

attributes (e.g., normal, curvature) into a histogram.

Since most of the 3D spatial information is discarded

during the process of histogramming, the descriptive-
ness of the features without LRF is limited (Tombari et al.,

2010).

2.1.2 Features with LRF

Chua and Jarvis (1997) proposed a point signature by

using the distances from the neighboring points to their

corresponding projections on a fitted plane. One merit
of the point signature is that no surface derivative is re-

quired. One of its limitations relate to the fact that the

reference direction may not be unique. It is also sensi-

tive to mesh resolution (Mian et al., 2010). Johnson and Hebert

(1998) used the surface normal as a reference axis and
proposed a spin image representation by spinning a 2D

image about the normal of a feature point and sum-

ming up the number of points falling into the bins of

that image. The spin image is one of the most cited
methods. But its descriptiveness is relatively low and

it is also sensitive to mesh resolution (Zhong, 2009).

Frome et al. (2004) also used the normal vector as a ref-

erence axis and generated a 3D Shape Context (3DSC)

by counting the weighted number of points falling in

the neighboring 3D spherical space. However, a refer-

ence axis is not a complete reference frame and there

is an uncertainty in the rotation around the normal
(Petrelli and Di Stefano, 2011).

Sun and Abidi (2001) introduced an LRF by using

the normal of a feature point and an arbitrarily cho-

sen neighboring point. Based on the LRF, they pro-
posed a descriptor named point’s fingerprint by pro-

jecting the geodesic circles onto the tangent plane. It

was reported that their approach outperforms the 2D

histogram based methods. One major limitation of this

method is that their LRF is not unique (Tombari et al.,
2010). Mian et al. (2006b) proposed a tensor represen-

tation by defining an LRF for a pair of oriented points

and encoding the intersected surface area into a mul-

tidimensional table. This representation is robust to
noise, occlusion and clutter. However, a pair of points

are required to define an LRF, which causes a combina-

torial explosion (Zhong, 2009). Novatnack and Nishino

(2008) used the surface normal and a projected eigen-

vector on the tangent plane to define an LRF. They
proposed an EM descriptor by encoding the surface

normals of the neighboring points into a 2D domain.

The effectiveness of exploiting geometric scale variabil-

ity in the EM descriptor has been demonstrated. Zhong
(2009) introduced an LRF by calculating the eigenvec-

tors of the scatter matrix of the neighboring points

of a feature point, and proposed an ISS feature by

recording the point distribution in the spherical an-

gular space. Since the sign of the LRF is not defined
unambiguously, four feature descriptors can be gener-

ated from a single feature point. Mian et al. (2010) pro-

posed a keypoint detection method and used a simi-

lar LRF to Zhong (2009) for their feature description.
Tombari et al. (2010) analyzed the strong impact of

LRF on the performance of feature descriptors and in-

troduced a unique and unambiguous LRF by perform-

ing an eigenvalue decomposition on the scatter matrix

of the neighboring points and using a sign disambigua-
tion technique. Based on the proposed LRF, they in-

troduced a feature descriptor called Signature of His-

tograms of OrienTations (SHOT). SHOT is very ro-

bust to noise, but sensitive to mesh resolution varia-
tion. Petrelli and Di Stefano (2011) proposed a novel

LRF which aimed to estimate a repeatable LRF at the

border of a range image. Zaharescu et al. (2012) pro-

posed a MeshHOG feature by first projecting the gra-

dient vectors onto three planes defined by an LRF and
then calculating a two-level histogram of these vectors.

However, none of the existing LRF definition tech-

niques is simultaneously unique, unambiguous, and ro-
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bust to noise and mesh resolution. Besides, most of the

existing feature descriptors suffer from a number of lim-

itations, including a low robustness and discriminating

power (Bariya et al., 2012).

2.2 3D Object Recognition

Most of the existing algorithms for local feature based

3D object recognition follow a three-phase paradigm

including feature matching, hypothesis generation and
verification, and pose refinement (Taati and Greenspan,

2011).

Stein and Medioni (1992) used the splash features

to represent the objects and generated hypotheses by
using a set of triplets of feature correspondences. These

hypotheses are then grouped into clusters using geo-

metric constraints. They are finally verified through a

least square calculation. Chua and Jarvis (1997) used

point signatures of a scene to match them against those
of their models. The rigid transformation between the

scene and a candidate model was then calculated using

three pairs of corresponding points. Its ability to rec-

ognize objects in both single-object and multi-object
scenes has been demonstrated. However, verifying each

triplet of feature correspondences is very time consum-

ing. Johnson and Hebert (1999) generated point corre-

spondences by matching the spin images of the scene

with the spin images of the models. These point cor-
respondences are first grouped using geometric consis-

tency. The groups are then used to calculate rigid trans-

formations, which are finally be verified. This algorithm

is robust to clutter and occlusion, and capable to recog-
nize objects in complicated real scenes. Yamany and Farag

(2002) used surface signatures as feature descriptors

and adopted a similar strategy to Johnson and Hebert

(1999) for object recognition. Mian et al. (2006b) ob-

tained feature correspondences and model hypothesis
by matching the tensor representations of the scene

with those of the models. The hypothesis model is then

transformed to the scene and finally verified using the

Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992). Experimental results revealed that it is supe-

rior in terms of recognition rate and efficiency com-

pared to the spin image based algorithm. Mian et al.

(2010) also developed a 3D object recognition algo-

rithm based on keypoint matching. This algorithm can
be used to recognize objects at different and unknown

scales. Taati and Greenspan (2011) developed a 3D ob-

ject recognition algorithm based on their proposed VD-

LSD feature descriptors. The optimal VD-LSD descrip-
tor is selected based on the geometry of the objects and

the characteristics of the range sensors. Bariya et al.

(2012) introduced a 3D object recognition algorithm

based on the EM feature descriptor and a constrained

interpretation tree.

There are some algorithms in the literature which
do not follow the aforementioned three-phase paradigm.

For example, Frome et al. (2004) performed 3D object

recognition using the sum of the distances between the

scene features (i.e. 3DSC) and their corresponding model

features. This algorithm is efficient. However, it is not
able to segment the recognized object from a scene,

and its effectiveness on real data has not been demon-

strated. Shang and Greenspan (2010) proposed a Po-

tential Well Space Embedding (PWSE) algorithm for
real-time 3D object recognition in sparse range images.

It cannot however handle clutter and therefore requires

the objects to be segmented a priori from the scene.

None of the existing object recognition algorithms

has explicitly explored the use of LRF to boost the per-

formance of the recognition. Moreover, most of these al-

gorithms require three pairs of feature correspondences

to establish a transformation between a model and a
scene. This not only increases the run time due to the

combinatorial explosion of the matching pairs, but also

decreases the precision of the estimated transformation

(since the chance to find three correct feature corre-
spondences is much lower compared to finding only one

correct correspondence).

2.3 Paper Contributions

This paper is an extended version of (Guo et al., 2013a,b).

It has three major contributions, which are summarized

as follows.

i) We introduce a unique, unambiguous and robust
3D LRF using all the points lying on the local surface

rather than just the mesh vertices. Therefore, our pro-

posed LRF is more robust to noise and varying mesh

resolution. We also use a novel sign disambiguation
technique, our proposed LRF is therefore unique and

unambiguous. This LRF offers a solid foundation for ef-

fective and robust feature description and object recog-

nition.

ii) We introduce a highly descriptive and robust

RoPS feature descriptor. RoPS is generated by rota-

tionally projecting the neighboring points onto three

coordinate planes and encoding the rich information
of the point distribution into a set of statistics. The

proposed RoPS descriptor has been evaluated on two

datasets. Experimental results show that RoPS achieved

a high power of descriptiveness. It is shown to be robust
to a number of deformations including noise, varying

mesh resolution, rotation, holes and topology changes.

(see Section 5 for details) .
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iii) We introduce an efficient hierarchical 3D object

recognition algorithm based on the LRF and RoPS fea-

ture descriptor. One major advantage of our algorithm

is, a single correct feature correspondence is sufficient

for object recognition. Moreover, by integrating our ro-
bust LRF, the proposed object recognition algorithm

can work with any of the existing feature descriptors

(e.g., spin image) in the literature. Rigorous evaluations

of the proposed 3D object recognition algorithm were
conducted on four different popular datasets. Experi-

mental results show that our algorithm achieved high

recognition rates, good efficiency and strong robustness

to different nuisances. It consistently resulted in the

best recognition results on the four datasets.

3 Local Reference Frame

A unique, repeatable and robust LRF is important for

both effective and efficient feature description and 3D
object recognition. Advantages of such an LRF are many

fold. First, the repeatability of an LRF directly affects

the descriptiveness and robustness of the feature de-

scriptor, i.e., an LRF with a low repeatability will result

in a poor performance of feature matching (Petrelli and Di Stefano,
2011). Second, compared with the methods which asso-

ciate multiple descriptors to a single feature point (e.g.,

ISS (Zhong, 2009)), a unique LRF can help to improve

both the precision and the efficiency of feature matching
(Tombari et al., 2010). Third, a robust 3D LRF helps

to boost the performance of 3D object recognition.

We propose a novel LRF by fully employing the

point localization information of the local surface. The

three axes for the LRF are determined by performing

an eigenvalue decomposition on the scatter matrix of
all points lying on the local surface. The sign of each

axis is disambiguated by aligning the direction to the

majority of the point scatter.

3.1 Coordinate Axis Construction

Given a feature point p and a support radius r, the

local surface mesh S which contains N triangles and

M vertices, is cropped from the range image using a
sphere of radius r centered at p. For the ith triangle

with vertices pi1, pi2 and pi3, a point lying within the

triangle can be represented as:

pi (s, t) = pi1 + s(pi2 − pi1) + t (pi3 − pi1) , (1)

where 0 ≤ s, t ≤ 1, and s+ t ≤ 1, as illustrated in Fig.

1.

1ip

2ip

3ip

( , )i s tp

3 1( )i it −p p

2 1( )i is −p p

Fig. 1: An illustration of a triangle mesh and a point ly-

ing on the surface. An arbitrary point within a triangle

can be represented by the triangle’s vertices.

The scatter matrix Ci of all the points lying within

the ith triangle can be calculated as:

Ci =

´ 1

0

´ 1−s

0
(pi (s, t)− p) (pi (s, t)− p)T dtds

´ 1

0

´ 1−s

0
dtds

. (2)

Using Eq. 1, the scatter matrix Ci be can expressed

as:

Ci =
1

12

3∑

j=1

3∑

k=1

(
pij − p

)
(pik − p)

T

+
1

12

3∑

j=1

(
pij − p

) (
pij − p

)T
. (3)

The overall scatter matrix C of the local surface S is

calculated as the weighted sum of the scatter matrices

of all the triangles, that is:

C =

N∑

i=1

wi1wi2Ci, (4)

where N is the number of triangles in the local surface

S. Here, wi1 is the ratio between the area of the ith

triangle and the total area of the local surface S, that
is:

wi1 =
|(pi2 − pi1)× (pi3 − pi1)|∑N
i=1 |(pi2 − pi1)× (pi3 − pi1)|

, (5)

where × denotes the cross product.

wi2 is a weight that is related to the distance from

the feature point to the centroid of the ith triangle, that

is:

wi2 =

(
r −

∣∣∣∣p−
pi1 + pi2 + pi3

3

∣∣∣∣
)2

. (6)
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(a) Armadillo (b) Asia Dragon (c) Bunny (d) Dragon (e) Happy Buddha (f) Thai Statue

Fig. 2: The six models of the Tuning Dataset.

Note that, the first weight wi1 is expected to im-
prove the robustness of LRF to varying mesh resolu-

tions, since a compensation with respect to the triangle

area is incorporated through this weighting. The sec-

ond weight wi2 is expected to improve the robustness
of LRF to occlusion and clutter, since distant points

will contribute less to the overall scatter matrix.

We then perform an eigenvalue decomposition on

the overall scatter matrix C, that is:

CV = EV, (7)

whereE is a diagonal matrix of the eigenvalues {λ1, λ2, λ3}

of the matrixC, andV contains three orthogonal eigen-
vectors {v1,v2,v3} that are in the order of decreasing

magnitude of their associated eigenvalues. The three

eigenvectors offer a basis for LRF definition. However,

the signs of these vectors are numerical accidents and
are not repeatable between different trials even on the

same surface (Bro et al., 2008; Tombari et al., 2010).

We therefore propose a novel sign disambiguation tech-

nique which is described in the next subsection.

It is worth noting that, although some existing tech-
niques also use the idea of eigenvalue decomposition to

construct the LRF (e.g., (Mian et al., 2010; Tombari et al.,

2010; Zhong, 2009)), they calculate the scatter matrix

using just the mesh vertices. Instead, our technique em-
ploys all the points in the local surface and, is therefore

more robust compared to exiting techniques (as demon-

strated in Section 3.3).

3.2 Sign Disambiguation

In order to eliminate the sign ambiguity of the LRF,

each eigenvector should point in the major direction of

the scatter vectors (which start from the feature point

and point in the direction of the points lying on the

local surface). Therefore, the sign of each eigenvector
is determined from the sign of the inner product of the

eigenvector and the scatter vectors. Specifically, the un-

ambiguous vector ṽ1 is defined as:

ṽ1 = v1 · sign (h) , (8)

where sign (·) denotes the signum function that extracts
the sign of a real number, and h is calculated as:

h =

N∑

i=1

wi1wi2

(
ˆ 1

0

ˆ 1−s

0

(pi (s, t)− p)v1dtds

)

=

N∑

i=1

wi1wi2


1

6

3∑

j=1

(
pij − p

)
v1


 . (9)

Similarly, the unambiguous vector ṽ3 is defined as:

ṽ3 = v3 ·sign




N∑

i=1

wi1wi2


1

6

3∑

j=1

(
pij − p

)
v3




 .(10)

Given two unambiguous vectors ṽ1 and ṽ3, ṽ2 is de-

fined as ṽ3 × ṽ1. Therefore, a unique and unambiguous
3D LRF for feature point p is finally defined. Here, p

is the origin, and ṽ1, ṽ2 and ṽ3 are the x, y and z axes

respectively. With this LRF, a unique, pose invariant

and highly discriminative local feature descriptor can

now be generated.

3.3 Performance of the Proposed LRF

To evaluate the repeatability and robustness of our pro-
posed LRF, we calculated the LRF errors between the

corresponding points in the scenes and models. The

six models (i.e., “Armadillo”, “Asia Dragon”, “Bunny”,

“Dragon”, “Happy Buddha” and “Thai Statue”) used
in this experiment were taken from the Stanford 3D

Scanning Repository (Curless and Levoy, 1996). They

are shown in Fig. 2. The six scenes were created by re-

sampling the models down to 1/2 of their original mesh

resolution and then adding Gaussian noise with a stan-
dard deviation of 0.1 mesh resolution (mr) to the data.

We refer to this dataset as the “Tuning Dataset” in the

rest of this paper.

We randomly selected 1000 points in each model and
we refer to these points as feature points. We then ob-

tained the corresponding points in the scene by search-

ing the points with the smallest distances to the feature
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points in the model. For each point pair (pSi,pMi), we

calculated the LRFs for both points, denoted as LSi

and LMi, respectively. Using the similar criterion as in

(Mian et al., 2006a), the error between two LRFs of the

ith point pair can be calculated by:

ǫi = arccos

(
trace

(
LSiL

−1
Mi

)
− 1

2

)
180

π
, (11)

where ǫi represents the amount of rotation error be-

tween two LRFs and is zero in the case of no error.

Our proposed LRF technique was tested on the Tun-
ing Dataset with comparison to several existing tech-

niques, e.g., proposed by Novatnack and Nishino (2008),

Mian et al. (2010), Tombari et al. (2010), and Petrelli and Di Stefano

(2011). We tested each LRF technique five times by ran-
domly selecting 1000 different point pairs each time.

The overall LRF errors of each technique are shown in

Fig. 3 as a histogram. Ideally, all of the LRF errors

should lie around the zero value (in the first bin of the

histogram). It is clear that our proposed technique per-
formed best, with 83.5% of the point pairs having LRF

errors less than 10 degrees. Whereas the second best

one (i.e., proposed by Petrelli and Di Stefano (2011))

secured only 43.2% of the point pairs with LRF errors
less than 10 degrees. Other techniques only had around

40% point pairs with LRF errors less than 10 degrees.

These results clearly indicate that our proposed LRF

is more repeatable and more robust than the state-of-

the-art in the presence of noise and mesh resolution
variation.

In order to further assess the influence of a weight-

ing strategy, we used a distance weight wi3 = r −∣∣∣p−
p
i1
+p

i2
+p

i3

3

∣∣∣ (following the approach of (Tombari et al.,

2010)) to replace the weights wi1 and wi2 in Equations

4, 9 and 10, resulting in a modified LRF. The histogram

of LRF errors of the modified technique is shown in Fig.
3. The performance of the modified LRF decreased sig-

nificantly compared to the original proposed LRF. This

observation reveals that the weighting strategy using

both quadratic distance weight wi2 and area weight wi1

produced more robust results compared to those using
only a linear distance weight wi3.

Fig. 3 shows that part of the LRF errors of each

technique are larger than 80 degrees. This is mainly

due to the presence of local symmetrical surfaces (e.g.,
flat or spherical surfaces) in the scenes. For a local sym-

metrical surface, there is an inherent sign ambiguity of

its LRF because the distribution of points is almost the

same in all directions. In order to deal with this case, we
adopt a feature point selection technique which uses the

ratio of eigenvalues to avoid local symmetrical surfaces

(see Section 6.2).
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Fig. 3: Histogram of the LRF errors for the six scenes
and models of the Tuning Dataset. Our proposed tech-

nique outperformed the existing techniques by a large

margin. (Figure best seen in color.)

Once an LRF is determined, the next step is to de-
fine a local surface descriptor. In the next section, we

propose a novel RoPS descriptor.

4 Local Surface Description

A local surface descriptor needs to be invariant to rota-

tion and robust to noise, varying mesh resolution, oc-
clusion, clutter and other nuisances. In this section, we

propose a novel local surface feature descriptor namely

RoPS by performing local surface rotation, neighboring

points projection and statistics calculation.

4.1 RoPS Feature Descriptor

An illustrative example of the overall RoPS method is
given in Fig. 4. From a range image/model, a local sur-

face is selected for a feature point p given a support ra-

dius r. Figures 4(a) and (b) respectively show a model

and a local surface. We already have defined the LRF
for p and the vertices of the triangles in the local sur-

face S constitute a pointcloud Q = {q1, q2, . . . , qM}.

The pointcloud Q = {q1, q2, . . . , qM} is then trans-

formed with respect to the LRF in order to achieve

rotation invariance, resulting in a transformed point-
cloud Q′ = {q′

1, q
′

2, . . . , q
′

M}. We then follow a number

of steps which are described as follows.

First, the pointcloud is rotated around the x axis by

an angle θk, resulting in a rotated pointcloud Q′ (θk),
as shown in Fig. 4(c). This pointcloud Q′ (θk) is then

projected onto three coordinate planes (i.e., the xy, xz

and yz planes) to obtain three projected pointclouds
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Fig. 4: An illustration of the generation of a RoPS feature descriptor for one rotation. (a) The Armadillo model

and the local surface around a feature point. (b) The local surface is cropped and transformed in the LRF. (c) The

local surface is rotated around a coordinate axis. (d) The neighboring points are projected onto three 2D planes.
(e) A distribution matrix is obtained for each plane by partitioning the 2D plane into bins and counting up the

number of points falling into each bin. The dark color indicates a large number. (f) Each distribution matrix is

then encoded into several statistics. (g) The statistics from three distribution matrices are concatenated to form

a sub-feature descriptor for one rotation. (Figure best seen in color.)

Q̃′

i (θk) , i = 1, 2, 3. Note that, the projection offers a

means to describe the 3D local surface in a concise and

efficient manner. That is because 2D projections clearly

preserve a certain amount of unique 3D geometric infor-

mation of the local surface from that particular view-
point.

Next, for each projected pointcloud Q̃′

i (θk), a 2D

bounding rectangle is obtained, which is subsequently

divided into L × L bins, as shown in Fig. 4(d). The

number of points falling into each bin is then counted to

yield an L×Lmatrix D, as shown in Fig. 4(e). We refer
to the matrix D as a “distribution matrix” since it rep-

resents the 2D distribution of the neighboring points.

The distribution matrix D is further normalized such

that the sum of all bins is equal to one in order to
achieve invariance to variations in mesh resolution.

The information in the distribution matrix D is fur-
ther condensed in order to achieve computational and

storage efficiency. In this paper, a set of statistics is ex-

tracted from the distribution matrix D, including cen-

tral moments (Demi et al., 2000; Hu, 1962) and Shan-
non entropy (Shannon, 1948). The central moments are

utilized for their mathematical simplicity and rich de-

scriptiveness (Hu, 1962), while Shannon entropy is se-

lected for its strong power to measure the information

contained in a probability distribution (Shannon, 1948).
The central moment µmn of order m+ n of matrix

D is defined as:

µmn =
L∑

i=1

L∑

j=1

(i− ī)
m
(j − j̄)

n
D (i, j) , (12)

where

ī =

L∑

i=1

L∑

j=1

iD (i, j) , (13)

and

j̄ =

L∑

i=1

L∑

j=1

jD (i, j) . (14)

The Shannon entropy e is calculated as:

e = −

L∑

i=1

L∑

j=1

D (i, j) log (D (i, j)) . (15)

Theoretically, a complete set of central moments can

be used to uniquely describe the information contained

in a matrix (Hu, 1962). However in practice, only a
small subset of the central moments can sufficiently rep-

resent the distribution matrix D. These selected cen-

tral moments together with the Shannon entropy are
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then used to form a statistics vector, as shown in Fig.

4(f). The three statistics vectors from the xy, xz and

yz planes are then concatenated to form a sub-feature

fx (θk). Note that fx (θk) denotes the total statistics

for the kth rotation around the x axis, as shown in Fig.
4(g).

In order to encode the “complete” information of

the local surface, the pointcloud Q′ is rotated around

the x axis by a set of angles {θk} , k = 1, 2, . . . , T , result-
ing in a set of sub-features {fx (θk)} , k = 1, 2, . . . , T .

Further, Q′ is rotated by a set of angles around the y

axis and a set of sub-features
{
fy (θk)

}
, k = 1, 2, . . . , T

is calculated. Finally, Q′ is rotated by a set of angles

around the z axis and a set of sub-features {f z (θk)} , k =
1, 2, . . . , T is calculated. The overall feature descriptor

is then generated by concatenating the sub-features of

all the rotations into a vector, that is:

f =
{
fx (θk) ,fy (θk) ,fz (θk)

}
, k = 1, 2, . . . , T. (16)

It is expected that the RoPS descriptor would be
highly discriminative (as demonstrated in Section 5)

since it encodes the geometric information of a local

surface from a set of viewpoints. Note that, some exist-

ing view-based methods can be found in the literature,

such as (Yamauchi et al., 2006), (Ohbuchi et al., 2008)
and (Atmosukarto and Shapiro, 2010). However, these

methods are based on global features and originate from

the 3D shape retrieval area. They are, however, not suit-

able for 3D object recognition due to their sensitivity
to occlusion and clutter.

Other related methods, however, include the spin

image (Johnson and Hebert, 1999) and snapshot (Malassiotis and Strintzis,

2007) descriptors. A spin image is generated by project-

ing a local surface onto a 2D plane using a cylindrical
parametrization. Similarly, a snapshot is obtained by

rendering a local surface from the viewpoint which is

perpendicular to the surface. Our RoPS differs from

these methods in several aspects. First, RoPS repre-
sents a local surface from a set of viewpoints rather than

just one view (as in the case of spin image and snap-

shot). Second, RoPS is associated with a unique and

unambiguous LRF, and it is invariant to rotation. In

contrast, spin image discards cylindrical angular infor-
mation and snapshot is prone to rotation. Third, RoPS

is more compact than spin image and snapshot since

RoPS further encodes 2D matrices with a set of statis-

tics. The typical lengths of RoPS, spin image and snap-
shot are 135, 225 and 1600, respectively (see Table 2,

(Johnson and Hebert, 1999) and (Malassiotis and Strintzis,

2007)).

4.2 RoPS Generation Parameters

The RoPS feature descriptor has four parameters: i)

the combination of statistics, ii) the number of parti-

tion bins L, iii) the number of rotations T around each

coordinate axis, and iv) the support radius r. The per-

formance of RoPS descriptor against different settings
of these parameters was tested on the Tuning Dataset

using the criterion of Recall vs 1-Precision Curve (RP

Curve).

RP Curve is one of the most popular criteria used
for the assessment of a feature descriptor (Flint et al.,

2008; Hou and Qin, 2010; Ke and Sukthankar, 2004; Mikolajczyk and

2005). It is calculated as follows: given a scene, a model

and the ground truth transformation, a scene feature

is matched against all model features to find the clos-
est feature. If the ratio between the smallest distance

and the second smallest one is less than a threshold,

then the scene feature and the closest model feature

are considered a match. Further, a match is considered
a true positive only if the distance between the physical

locations of the two features is sufficiently small, oth-

erwise it is considered a false positive. Therefore, recall

is defined as:

recall =
the number of true positives

total number of positives
. (17)

1-precision is defined as:

1-precision =
the number of false positives

total number of matches
. (18)

By varying the threshold, a RP Curve can be gen-

erated. Ideally, a RP Curve would fall in the top left

corner of the plot, which means that the feature ob-

tains both high recall and precision.

4.2.1 The Combination of Statistics

The selection of the subset of statistics plays an impor-

tant role in the generation of a RoPS feature descrip-

tor. It determines not only the capability for encap-

sulating the information in a distribution matrix but
also the size of a feature vector. We considered eight

combinations of statistics (a number of low-order mo-

ments and entropy), as listed in Table 1, and tested the

performance for each combination in the terms of RP

Curve. The other three parameters were set constant
as L = 5, T = 3 and r = 15mr. It is worth noting that

the zeroth-order central moment µ00 and the first-order

central moments µ01 and µ10 were excluded from the

combinations of the statistics. Because these moments
are constant (i.e., µ00 = 1, µ01 = 0 and µ10 = 0) and

therefore contain no information of the local surface.

Our experimental results are shown in Fig. 5(a).
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(a) (b)

(c) (d)

Fig. 5: Effect of the RoPS generation parameters. (a) Different combinations of statistics. (b) The number of

partition bins L. There is a twin plot in (b), where the right plot is a magnified version of the region indicated by

the rectangle in the left plot. (c) The number of rotations T . There is a twin plot in (c), where the right plot is

a magnified version of the region indicated by the rectangle in the left plot. (d) The support radius r. (We chose
the No.6 combination of the statistics and set L = 5, T = 3 and r = 15mr in this paper as a tradeoff between

effectiveness and efficiency. Figure best seen in color.)

Table 1: Different combinations of the statistics.

No. Combination of the statistics

1 µ02, µ11, µ20

2 µ02, µ11, µ20,µ03, µ12, µ21, µ30

3 µ02, µ11, µ20,µ03, µ12, µ21, µ30,µ04, µ13, µ22, µ31, µ40

4 µ02, µ11, µ20,µ03, µ12, µ21, µ30,µ04, µ13, µ22, µ31, µ40, e

5 µ11, µ21, µ12, µ22

6 µ11, µ21, µ12, µ22, e

7 µ11, µ21, µ12, µ22, µ31, µ13

8 µ11, µ21, µ12, µ22, µ31, µ13, e

It is clear that the No.6 combination achieved the

best performance, followed by the No.5 combination.

While the No.3, No.4 and No.8 combinations obtained

comparable performance, with recall being a little lower
than the No.6 combination. The superior performance

of the No.6 combination is due to the facts that, first,

the low-order moments µ11, µ21, µ12, µ22 and entropy e

contain the most meaningful and significant informa-

tion of the distribution matrix. Consequently, the de-

scriptiveness of these statistics is sufficiently high. Sec-

ond, the low-order moments are more robust to noise

and varying mesh resolution compared to the high-order
moments. Beyond the high precision and recall, the size

of the No.6 combination is also small, which means that

the calculation and matching of feature descriptors can

be performed efficiently. Therefore, the No.6 combina-
tion, i.e., {µ11, µ21, µ12, µ22, e}, was selected to repre-

sent the information in a distribution matrix and to

form the RoPS descriptor.

4.2.2 The Number of Partition Bins

The number of partition bins L is another important

parameter in the RoPS generation. It determines both

the descriptiveness and robustness of a descriptor. That
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is, a dense partition of the projected points offers more

details about the point distribution, it however increases

the sensitivity to noise and varying mesh resolution. We

tested the performance of RoPS descriptor on the Tun-

ing Dataset with respect to a number of partition bin,
while the two other parameters were set to T = 3 and

r = 15mr. The experimental results are shown in Fig.

5(b) as a twin plot, where the right plot is a magnified

version of the region indicated by the rectangle in the
left plot.

The plot shows that the performance of RoPS de-

scriptor improved as the number of partition bins in-

creased from 3 to 5. This is because more details about
the point distribution were encoded into the feature de-

scriptor. However, for a number of partition bins larger

than 5, the performance degraded as the number of

partition bins increased. This is due to the reason that

a dense partition makes the distribution matrix more
susceptible to the variation of spatial position of the

neighboring points. It can therefore be inferred that 5

is the most suitable number of partitions as a tradeoff

between the descriptiveness and the robustness to noise
and varying mesh resolution. We therefore used L = 5

in this paper.

4.2.3 The Numbers of Rotations

The number of rotations T determines the “complete-
ness” when describing the local surface using a RoPS

feature descriptor. That is, increasing the number of

rotations means that more information of the local sur-

face are encoded into the overall feature descriptor. We

tested the performance of the RoPS feature descriptor
with respect to a varying number of rotations while

keeping the other parameters constant (i.e., r = 15mr).

The results are given in Fig. 5(c) as a twin plot, where

the right plot is a magnified version of the region indi-
cated by the rectangle in the left plot.

It was found that as the number of rotations in-

creased, the descriptiveness of the RoPS increased, re-

sulting in an improvement of the matching performance
(which confirmed our assumption). Specifically, the per-

formance of the RoPS descriptor improved significantly

as the number of rotations increased from 1 to 2, as

shown in the left plot of Fig. 5(c). The performance then

improved slightly as the number of rotations increased
from 2 to 6, as indicated in the magnified version shown

in the right plot of Fig. 5(c). In fact, there was no no-

table difference between the performance with respect

to the number of rotations of 3 and 6. That is because
almost all the information of the local surface is encoded

in the feature descriptor by rotating the neighboring

points 3 times around each axis. Therefore, increasing

the number of rotations any further will not necessarily

add any significant information to the feature descrip-

tor. Moreover, increasing the number of rotations will

cost more computational and memory resources. We

therefore, set the number of rotations to be 3 in this
paper.

4.2.4 The Support Radius

The support radius r determines the amount of surface

that is encoded by the RoPS feature descriptor. The
value of r can be chosen depending on how local the

feature should be, and a tradeoff lies between the fea-

ture’s descriptiveness and robustness to occlusion. That

is, a large support radius enables the RoPS descriptor to
encapsulate more information of the object and there-

fore provides more descriptiveness. On the other hand,

a large support radius increases the sensitivity to oc-

clusion and clutter. We tested the performance of the
RoPS feature descriptor with respect to varying sup-

port radius while keeping the other parameters fixed.

The results are given in Fig. 5(d).

The results show that the recall and precision per-

formance of the RoPS feature descriptor improved steadily
as the support radius increased from 5mr (mr = mesh

resolution) to 25mr. Specifically, there was a significant

improvement of the matching performance as the sup-

port radius increased from 5mr to 10mr, this is because
a radius of 5mr is too small to contain sufficient dis-

criminating information of the underlying surface. The

RoPS feature descriptor achieved good results with a

support radius of 15mr, achieving a high precision of

about 0.9 and a high recall of about 0.9. Although
the performance of RoPS feature descriptor further im-

proved slightly as the support radius was increased to

25mr, the performance deteriorated sharply when the

support radius was set to 30mr. We choose to set the
support radius to 15mr in the paper to maintain a

strong robustness to occlusion and clutter. An illustra-

tion is shown in Fig. 6. The range image contains two

objects in the presence of occlusion and clutter, and a

feature point is selected near the tail of the chicken.
The red, green and blue spheres, respectively represent

the support regions with radius of 25 mr, 15mr and 5mr

for the feature point. As the radius increases from 5mr

to 25 mr, points on the surface within the support re-
gion are more likely to be missing due to occlusion, and

points from other objects (e.g., T-rex on the right) are

more likely to be included in the support region due

to clutter. Therefore, the resulting feature descriptor is

more likely to be affected by occlusion and clutter.

Note that, several adaptive-scale keypoint detection

methods have been proposed for the purpose of de-
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Fig. 6: An illustration of the descriptor’s robustness to

occlusion and clutter with respect to varying support
radius. The red, green and blue spheres respectively

represent the support regions with radius of 25 mr,

15mr and 5mr for a feature point. (Figure best seen

in color.)

termining the support radius based on the inherent

scale of a feature point (Tombari et al., 2013). How-
ever, we simply adopt a fixed support radius since our

focus is on feature description and object recognition

rather than keypoint detection. Moreover, our proposed

RoPS descriptor has been demonstrated to achieve an
even better performance compared to the methods with

adaptive-scale keypoint detection (e.g., EM matching

and keypoint matching), as analyzed in Section 7.

5 Performance of the RoPS Descriptor

The descriptiveness and robustness of our proposed RoPS

feature descriptor was first evaluated on the Bologna

Dataset (Tombari et al., 2010) with respect to different

levels of noise, varying mesh resolution and their com-
binations. It was also evaluated on the PHOTOMESH

Dataset (Zaharescu et al., 2012) with respect to 13 trans-

formations. In these experiments, the RoPS was com-

pared to several state-of-the-art feature descriptors.

5.1 Performance on The Bologna Dataset

5.1.1 Dataset and Parameter Setting

The Bologna Dataset used in this paper comprises six

models and 45 scenes. The six models (i.e., “Armadillo”,

“Asia Dragon”, “Bunny”, “Dragon”, “Happy Buddha”
and “Thai Statue”) were taken from the Stanford 3D

Scanning Repository. They are shown in Fig. 2. Each

scene was synthetically generated by randomly rotating

Fig. 7: A scene on the Bologna Dataset.

and translating three to five models in order to create

clutter and pose variances. As a result, the ground truth

rotations and translations between each model and its
instances in the scenes were known a priori during the

process of construction. An example scene is shown in

Fig. 7.

The performance of each feature descriptor was as-

sessed using the criterion of RP Curve (as detailed in

Section 4.2). We compared our RoPS feature descrip-

tor with five state-of-the-art feature descriptors, includ-
ing spin image (Johnson and Hebert, 1999), normal his-

togram (NormHist) (Hetzel et al., 2001), LSP (Chen and Bhanu,

2007), THRIFT (Flint et al., 2007) and SHOT (Tombari et al.,

2010). The support radius r for all methods was set to
be 15mr as a compromise between the descriptiveness

and the robustness to occlusion. The parameters for

generating all these feature descriptors were tuned by

optimizing the performance in terms of RP Curve on

the Tuning Dataset. The tuned parameter settings for
all feature descriptors are presented in Table 2.

Table 2: Tuned parameter settings for six feature de-

scriptors.

Support Radius Dimensionality Length
Spin image 15mr 15*15 225
NormHist 15mr 15*15 225

LSP 15mr 15*15 225
THRIFT 15mr 32*1 32
SHOT 15mr 8*2*2*10 320
RoPS 15mr 3*3*3*5 135

In order to avoid the impact of the keypoint detec-
tion method on feature’s descriptiveness, we randomly

selected 1000 feature points from each model, and ex-

tracted their corresponding points from the scene. We

then employed the methods listed in Table 2 to extract
feature descriptors for these feature points. Finally, we

calculated a RP Curve for each feature descriptor to

evaluate the performance.
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(b) Noise with a standard deviation of 0.1mr
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(c) Noise with a standard deviation of 0.2mr
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(d) Noise with a standard deviation of 0.3mr
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(e) Noise with a standard deviation of 0.4mr
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(f) Noise with a standard deviation of 0.5mr

Fig. 8: Recall vs 1-Precision curves in the presence of noise. (Figure best seen in color.)

5.1.2 Robustness to Noise

In order to evaluate the robustness of these feature

descriptors to noise, we added a Gaussian noise with
increasing standard deviation of 0.1mr, 0.2mr, 0.3mr,

0.4mr and 0.5mr to the scene data. The RP Curves

under different levels of noise are presented in Fig. 8.

We made a number of observations. i) These feature

descriptors achieved comparable performance on noise

free data, with high recall together with high precision,
as shown in Fig. 8(a).

ii) With noise, our proposed RoPS feature descrip-
tor achieved the best performance in most cases, and

is followed by SHOT. Specifically, the performance of

RoPS is better than SHOT under a low-level noise with
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(b) 1/4 mesh decimation
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(c) 1/8 mesh decimation
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(d) 1/2 mesh decimation and 0.1mr Gaussian
noise

Fig. 9: Recall vs 1-Precision curves with respect to mesh resolution. (Figure best seen in color.)

a standard deviation of 0.1mr, as shown in Fig. 8(b). As

the standard deviation of the noise increased to 0.2mr
and 0.3mr, SHOT performed slightly better than RoPS,

as indicated in Figures 8(c) and (d). However, the per-

formance of our proposed RoPS was significantly better

than SHOT under high levels of noise, e.g., with a noise
deviation larger than 0.3mr, as shown in Figures 8(e)

and (f). It can be inferred that RoPS is very robust to

noise, particularly in the case of scenes with a high level

of noise.

iii) As the noise level increased, the performance of

LSP and THRIFT deteriorated sharply, as shown in

Figures 8(b-e). THRIFT failed to work even under a

low-level of noise with a standard deviation of 0.1mr.
This result is also consistent with the conclusion given

in (Flint et al., 2008). Although NormHist and spin im-

age worked relatively well under low- and medium-level

noise with a standard deviation less than 0.2mr, they
failed completely under noise with a large standard de-

viation. The sensitivity of spin image, NormHist, THR-

IFT and LSP to noise is due to the fact that, they rely

on surface normals to generate their feature descrip-

tors. Since the calculation of surface normal includes a
process of differentiation, it is very susceptible to noise.

iv) The strong robustness of our RoPS feature de-

scriptor to noise can be explained by at least three facts.

First, RoPS encodes the “complete” information of the
local surface from various viewpoints through rotation

and therefore, encodes more information than the ex-

isting methods. Second, RoPS only uses the low-order

moments of the distribution matrices to form its feature

descriptor and is therefore less affected by noise. Third,
our proposed unique, unambiguous and stable LRF also

helps to increase the descriptiveness and robustness of

the RoPS feature descriptor.

5.1.3 Robustness to Varying Mesh Resolution

In order to evaluate the robustness of these feature de-

scriptors to varying mesh resolution, we resampled the
noise free scene meshes to 1/2, 1/4 and 1/8 of their original

mesh resolution. The RP Curves under different levels

of mesh decimation are presented in Figures 9(a-c).
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It was found that our proposed RoPS feature de-

scriptor outperformed all the other descriptors by a

large margin under all levels of mesh decimation. It is

also notable that the performance of our RoPS feature

descriptor with 1/8 of original mesh resolution was even
comparable to the best results given by the existing

feature descriptors with 1/2 of original mesh resolution.

Specifically, RoPS obtained a precision more than 0.7

and a recall more than 0.7 with 1/8 of original mesh reso-
lution, whereas spin image obtained a precision around

0.8 and a recall around 0.8 with 1/2 of original mesh

resolution, as shown in Figures 9(a) and (c). This indi-

cated that our RoPS feature descriptor is very robust

to varying mesh resolution.

The strong robustness of RoPS to varying mesh res-

olution is due to at least two factors. First, the LRF of
RoPS is derived by calculating the scatter matrix of

all the points lying on the local surface rather than

just the vertices, which makes RoPS robust to different

mesh resolution. Second, the 2D projection planes are

sparsely partitioned and only the low-order moments
are used to form the feature descriptor, which further

improves the robustness of our method to mesh resolu-

tion.

5.1.4 Robustness to Combined Noise and Mesh

Decimation

In order to further test the robustness of these feature

descriptors to combined noise and mesh decimation, we

resampled the scene meshes down to 1/2 of their original

mesh resolution and added a Gaussian random noise
with a standard deviation of 0.1mr to the scenes. The

resulting RP Curves are presented in Fig. 9(d).

As shown in Fig. 9(d), RoPS significantly outper-
formed the other methods in the scenes with both noise

and mesh decimation, obtaining a high precision of about

0.9 and a high recall of about 0.9. It is followed by

NormHist, SHOT, spin image and LSP, while THRIFT
failed to work.

As summarized in Table 2, the RoPS feature de-

scriptor length is 135, while the others such as spin
image, NormHist, LSP and SHOT are 225, 225, 225

and 320, respectively. So RoPS is more compact and

therefore more efficient for feature matching compared

to these methods. Note that, although the length of
THRIFT is smaller than RoPS, THRIFT’s performance

in terms of recall and precision results is surpassed by

our RoPS feature descriptor by a large margin.

5.2 Performance on The PHOTOMESH Dataset

The PHOTOMESH Dataset contains three null shapes.

Two of the null shapes were obtained with multi-view

stereo reconstruction algorithms, and the other one was

generated with a modeling program. 13 transformations

were applied to each shape. The transformations in-
clude color noise, color shot noise, geometry noise, ge-

ometry shot noise, rotation, scale, local scale, sampling,

hole, micro-hole, topology changes and isometry. Each

transformation has five different levels of strength.
To make a rigorous comparison with (Zaharescu et al.,

2012), we set the support radius r to
√

αrAM/π, where

AM is the total area of a mesh, and αr is 2%. RoPS

feature descriptors were calculated at all points of the

shapes, without any feature detection. We used the av-
erage normalized L2 distance between the feature de-

scriptors of corresponding points to measure the quality

of a feature descriptor, as in (Zaharescu et al., 2012).

The experimental results of the RoPS descriptor are
shown in Table 3. For comparison, the results of the

MeshHOG descriptor (Gaussian curvature) without and

with MeshDOG are also reported in Tables 4 and 5, re-

spectively.

The RoPS descriptor was clearly invariant to color
noise and color shot noise. Because the geometric in-

formation used in RoPS cannot be affected by color

deformations. RoPS was also invariant to rotation and

scale, which means that it was invariant to rigid trans-
formations.

The RoPS descriptor turned out to be very robust to

geometry noise, geometry shot noise, local scale, holes,

micro-holes, topology and isometry with noise. The av-

erage normalized L2 distances for all these transforma-
tions were no more than 0.06, even under the high-

est level of transformations. The biggest challenge for

RoPS descriptor was sampling. The average normalized

L2 distance increased from 0.01 to 0.06 as the strength
level changed from 1 to 5. However, RoPS was more ro-

bust to sampling than MeshHOG. As shown in Tables

3 and 4, the average normalized L2 distance of RoPS

with a strength level of 5 was even smaller than that

of MeshHOG with a strength level of 1, i.e., 0.02 and
0.04, respectively. Overall, the average normalized L2

distances of RoPS descriptor were much smaller under

all strength levels of all transformations compared to

MeshHOG.

6 3D Object Recognition Algorithm

So far we have developed a novel LRF and a RoPS

feature descriptor. In this section, we propose a new hi-

erarchical 3D object recognition algorithm based on the
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Table 3: Robustness of RoPS descriptor.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5
Color Noise 0.00 0.00 0.00 0.00 0.00

Color Shot Noise 0.00 0.00 0.00 0.00 0.00
Geometry Noise 0.01 0.01 0.01 0.02 0.02

Geometry Shot Noise 0.01 0.01 0.02 0.03 0.05
Rotation 0.00 0.00 0.00 0.00 0.00
Scale 0.00 0.00 0.00 0.00 0.00

Local Scale 0.01 0.01 0.02 0.02 0.02
Sampling 0.01 0.02 0.04 0.05 0.06
Holes 0.01 0.01 0.01 0.01 0.02

Marco-Holes 0.00 0.01 0.01 0.01 0.01
Topology 0.01 0.01 0.02 0.02 0.03

Isometry + Noise 0.02 0.02 0.01 0.02 0.02
Average 0.00 0.01 0.01 0.02 0.02

Table 4: Robustness of MeshHOG (Gaussian curvature)
without MeshDOG detector.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5
Color Noise 0.00 0.00 0.00 0.00 0.00

Color Shot Noise 0.00 0.00 0.00 0.00 0.00
Geometry Noise 0.07 0.08 0.09 0.10 0.11

Geometry Shot Noise 0.02 0.03 0.05 0.06 0.09
Rotation 0.00 0.00 0.00 0.00 0.00
Scale 0.00 0.00 0.00 0.00 0.00

Local Scale 0.06 0.07 0.08 0.09 0.10
Sampling 0.10 0.12 0.13 0.13 0.13
Holes 0.01 0.02 0.04 0.03 0.05

Marco-Holes 0.01 0.01 0.03 0.04 0.04
Topology 0.07 0.10 0.11 0.11 0.12

Isometry + Noise 0.08 0.08 0.08 0.09 0.09
Average 0.04 0.04 0.05 0.06 0.06

Table 5: Robustness of MeshHOG (Gaussian curvature)

with MeshDOG detector.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5
Color Noise 0.00 0.00 0.00 0.00 0.00

Color Shot Noise 0.00 0.00 0.00 0.00 0.00
Geometry Noise 0.26 0.29 0.31 0.33 0.34

Geometry Shot Noise 0.04 0.09 0.14 0.21 0.29
Rotation 0.01 0.01 0.01 0.01 0.01
Scale 0.01 0.01 0.01 0.01 0.00

Local Scale 0.21 0.25 0.28 0.30 0.31
Sampling 0.31 0.34 0.34 0.36 0.36
Holes 0.02 0.02 0.07 0.07 0.07

Marco-Holes 0.01 0.01 0.07 0.07 0.08
Topology 0.13 0.20 0.22 0.25 0.28

Isometry + Noise 0.23 0.24 0.22 0.25 0.25
Average 0.10 0.12 0.14 0.15 0.17

LRF and RoPS descriptor. Our 3D object recognition

algorithm consists of four major modules, i.e., model

representation, candidate model generation, transfor-
mation hypothesis generation, verification and segmen-

tation. A flow chart illustration of the algorithm is given

in Fig. 10.

6.1 Model Representation

We first construct a model library for the 3D objects

that we are interested in. Given a model M, Nm seed

points are evenly selected from the model pointcloud.

Since the feature descriptors of closely located feature

points may be similar (since they represent more or less
the same local surface), a resolution control strategy

(Zhong, 2009) is further enforced on these seed points to

extract the final feature points. For each feature point

pm, the LRF Fm and the feature descriptor (e.g., our
RoPS descriptor) fm are calculated. The point posi-

tion pm, LRF Fm and feature descriptor fm of all the

feature points are then stored in a library for object

recognition.

In order to speed up the process of feature matching
during online recognition, the local feature descriptors

from all models are indexed using a k-d tree method

(Bentley, 1975). Note that, the model feature calcula-

tion and indexing can be performed offline, while the
following modules are operated online.

6.2 Candidate Model Generation

The input scene S is first decimated, which results in

a low resolution mesh S ′. The vertices of S which are

nearest to the vertices of S ′ are selected as seed points

(following a similar approach of (Mian et al., 2006b)).
Next, a resolution control strategy (Zhong, 2009) is en-

forced on these seed points to prune out redundant

seed points. A boundary checking strategy (Mian et al.,

2010) is also applied to the seed points to eliminate the
boundary points of the range image. Further, since the

LRF of a point can be ambiguous when two eigenval-

ues of the overall scatter matrix of the underlying local

surface (see Eq. 4) are equal, we impose a constraint on

the ratios of the eigenvalues λ1/λ2 > τλ to exclude seed
points with symmetrical local surfaces, as in (Zhong,

2009; Mian et al., 2010). The remaining seed points are

considered feature points. It is worth noting that, the

feature point detection and LRF calculation procedures
can be performed simultaneously. Given the LRF Fs of

a feature point ps, its feature descriptor fs is subse-

quently calculated.

The scene features are exactly matched against all

model features in the library using the previously con-
structed k-d tree. If the ratio between the smallest dis-

tance and the second smallest one is less than a thresh-

old τf , the scene feature and its closest model fea-

ture are considered a feature correspondence. Each fea-
ture correspondence votes for a model. These models

which have received votes from feature correspondences

are considered candidate models. They are then ranked
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Fig. 10: Flow chart of the 3D object recognition algorithm. The module of model representation is performed

offline, and the other modules are operated online.

according to the number of votes received. With this

ranked models, the subsequent steps (Sections 6.3 and

6.4) can be performed from the most likely candidate
model.

6.3 Transformation hypothesis Generation

For a feature correspondence which votes for the model
M, a rigid transformation is calculated by aligning the

LRF of the model feature to the LRF of the scene fea-

ture. Specifically, given the LRF Fs and the point po-

sition ps of a scene feature, the LRF Fm and the point
position pm of a corresponding model feature, the rigid

transformation can be estimated by:

R = FT
s Fm, (19)

t = ps − pmR, (20)

where R is the rotation matrix and t is the translation

vector of the rigid transformation. It is worth noting
that a transformation can be estimated from a single

feature correspondence using our RoPS feature descrip-

tor. This is a major advantage of our algorithm com-

pared with most of the existing algorithms (e.g., splash,

point signatures and spin image based methods) which
require at least three correspondences to calculate a

transformation (Johnson and Hebert, 1999). Our algo-

rithm not only eliminates the combinatorial explosion

of feature correspondences but also improves the relia-
bility of the estimated transformation.

As all the plausible transformations (Ri, ti) , i =

1, 2, · · · , Nt between the scene S and the model M are

calculated, these transformations are then grouped into

several clusters. Specifically, for each plausible transfor-

mation, its rotation matrix Ri is first converted into
three Euler angles which form a vector ui. In this man-

ner, the difference between any two rotation matrices

can be measured by the Euclidean distance between

their corresponding Euler angles. These transformations
whose Euler angles are around ui (with distances less

than τa) and translations are around ti (with distances

less than τt) are grouped into a cluster Ci. Therefore,

each plausible transformation (Ri, ti) results in a clus-

ter Ci. The cluster center (Rc, tc) of Ci is calculated
as the average rotation and translation in that cluster.

Next, a confidence score sc for each cluster is calculated

as:

sc =
nf

d
, (21)

where nf is the number of feature correspondences in

the cluster, and d is the average distance between the
scene features and their corresponding model features

which fall within the cluster. These clusters are sorted

according to their confidence scores, the ones with con-

fidence scores smaller than half of the maximum score

are first pruned out. We then select the valid clusters
from these remaining clusters, starting from the high-

est scored one and discarding the nearby clusters whose

distances to these selected clusters are small (using τa
and τt). τa and τt are empirically set to 0.2 and 30mr
throughout this paper. These selected clusters are then

allowed to proceed to the final verification and segmen-

tation stage (Section 6.4).
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6.4 Verification and Segmentation

Given a scene S, a candidate model M and a transfor-

mation hypothesis (Rc, tc), the model M is first trans-

formed to the scene S by using the transformation hy-

pothesis (Rc, tc). This transformation is further refined
using the ICP algorithm (Besl and McKay, 1992), re-

sulting in a residual error ε. After ICP refinement, the

visible proportion α is calculated as:

α =
nc

ns

, (22)

where nc is the number of corresponding points between

the scene S and the model M, ns is the total number

of points in the scene S. Here, a scene point and a

transformed model point are considered corresponding
if their distance is less than twice the model resolution

(Mian et al., 2006b).

The candidate model M and the transformation hy-

pothesis (Rc, tc) are accepted as being correct only if
the residual error ε is smaller than a threshold τε and

the proportion α is larger than a threshold τα. However,

it is hard to determine the thresholds. Because selecting

strict thresholds will reject correct hypotheses which
are highly occluded in the scene, while selecting loose

thresholds will produce many false positives. In this pa-

per, a flexible thresholding scheme is developed. To deal

with a highly occluded but well aligned object, we se-

lect a small error threshold τε1 together with a small
proportion threshold τα1. Meanwhile, in order to in-

crease the tolerance to the residual error which resulted

from an inaccurate estimation of the transformation,

we select a relatively larger error threshold τε2 together
with a larger proportion threshold τα2. We chose these

thresholds empirically and set them as τε1 = 0.75mr,

τε2 = 1.5mr, τα1 = 0.04 and τα2 = 0.2 throughout the

paper.

Therefore, once ε < τε1 but α > τα1, or ε < τε2 but

α > τα2, the candidate model M and the transforma-

tion hypothesis (Rc, tc) are accepted, the scene points

which correspond to this model are removed from the

scene. Otherwise, this transformation hypothesis is re-
jected and the next transformation hypothesis is veri-

fied by turn. If no transformation hypothesis results in

an accurate alignment, we conclude that the model M

is not present in the scene S. While if more than one
transformation hypotheses are accepted, it means that

multiple instances of the model M are present in the

scene S.

Once all the transformation hypotheses for a candi-
date model M are tested, the object recognition algo-

rithm then proceeds to the next candidate model. This

process continues until either all the candidate models

have been verified or there are too few points left in the

scene for recognition.

7 Performance of 3D Object Recognition

The effectiveness of our proposed RoPS based 3D object

recognition algorithm was evaluated by a set of experi-
ments on four datasets, including the Bologna Dataset

(Tombari et al., 2010), the UWA Dataset (Mian et al.,

2006b), the Queen’s Dataset (Taati and Greenspan, 2011)

and the Ca’ Foscari Venezia Dataset (Rodolà et al., 2012).
These four datasets are amongst the most popular datasets

publicly available, containing multiple objects in each

scene in the presence of occlusion and clutter.

7.1 Recognition Results on The Bologna Dataset

We used the Bologna Dataset to evaluate the effective-
ness of our proposed RoPS based 3D object recognition

algorithm. We specifically focused on the performance

with respect to noise and varying mesh resolution. We

also aimed to demonstrate the capability of our 3D ob-
ject recognition algorithm to integrate the existing fea-

ture descriptors without LRF.

We used our RoPS together with the five feature

descriptors (as detailed in Section 5.1.1) to perform

object recognition. For feature descriptors that do not

have a dedicated LRF, e.g., spin image, NormHist, LSP
and THRIFT, the LRFs were defined using our pro-

posed technique. The average number of detected fea-

ture points in an unsampled scene and a model were

985 and 1000, respectively.

In order to evaluate the performance of the 3D ob-

ject recognition algorithms on noisy data, we added a
Gaussian noise with increasing standard deviation of

0.1mr, 0.2mr, 0.3mr, 0.4mr and 0.5mr to each scene

data, the average recognition rates of the six algorithms

on the 45 scenes are shown in Fig. 11(a). It can be seen

that both RoPS and SHOT based algorithms achieved
the best results, with recognition rates of 100% under

all levels of noise. Spin image and NormHist based al-

gorithms achieved recognition rates higher than 97%

under low-level noise with deviations less than 0.1mr.
However, their performance deteriorated sharply as the

noise increased. While LSP and THRIFT based algo-

rithms were very sensitive to noise.

In order to evaluate the effectiveness of the 3D ob-

ject recognition algorithms with respect to varying mesh

resolution, the 45 noise free scenes were resampled to
1/2, 1/4 and 1/8 of their original mesh resolution. The

average recognition rates on the 45 scenes with respect

to different mesh resolutions are given in Fig. 11(b).
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Fig. 11: Recognition rates on the Bologna Dataset. (Figure best seen in color.)

(a) Chef (b) Chicken (c) Parasaurolophus (d) Rhino (e) T-Rex

Fig. 12: The five models of the UWA Dataset.

(a) The first sample scene (b) Our recognition result (c) The second sample scene (d) Our recognition result

Fig. 13: Two sample scenes and our recognition results on the UWA Dataset. The correctly recognized objects have

been superimposed by their 3D complete models from the library. All objects were correctly recognized except for
the T-Rex in (d). (Figure best seen in color.)

It is shown that RoPS based algorithm achieved the
best performance, obtaining 100% recognition rate un-

der all levels of mesh decimation. It was followed by

NormHist and spin image based algorithms. That is,

they obtained recognition rates of 97.8% and 91.1% re-
spectively in scenes with 1/8 of original mesh resolution.

7.2 Recognition Results on The UWA Dataset

The UWA Dataset contains five 3D models and 50 real

scenes. The scenes were generated by randomly placing
four or five real objects together in a scene and scanned

from a single viewpoint using a Minolta Vivid 910 scan-

ner. An illustration of the five models is given in Fig.
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12, and two sample scenes are shown in Figures 13(a)

and (c).

For the sake of consistency in comparison, RoPS

based 3D object recognition experiments were performed

on the same data as Mian et al. (2006b) and Bariya et al.
(2012). Besides, the Rhino model was excluded from the

recognition results, since it contained large holes and

cannot be recognized by the spin image based algorithm

in any of the scenes. Comparison was performed with
a number of state-of-the-art algorithms, such as tensor

(Mian et al., 2006b), spin image (Mian et al., 2006b),

keypoint (Mian et al., 2010), VD-LSD (Taati and Greenspan,

2011) and EM based (Bariya et al., 2012) algorithms.

Comparison results are shown in Fig. 14 with respect
to varying levels of occlusion. The average number of

detected feature points in a scene and a model were

2259 and 4247, respectively.

Occlusion is defined according to Johnson and Hebert
(1999) as:

occlusion =
model surface patch area in scene

total model surface area
. (23)

The ground truth occlusion values were automati-
cally calculated for the correctly recognized objects and

manually calculated for the objects which were not cor-

rectly recognized. As shown in Fig. 14, our RoPS based

algorithm outperformed all the existing algorithms. It

achieved a recognition rate of 100% with up to 80% oc-
clusion, and a recognition rate of 93.1% even under 85%

occlusion. The average recognition rate of our RoPS

based algorithm was 98.8%, while the average recogni-

tion rate of spin image, tensor and EM based algorithms
were 87.8%, 96.6% and 97.5% respectively, with up to

84% occlusion. The overall average recognition rate of

our RoPS based algorithm was 98.9%. Moreover, no

false positive occurred in the experiments when using

our RoPS based algorithm, and only two out of the to-
tal 188 objects in the 50 scenes was not correctly recog-

nized. These results confirm that our RoPS based algo-

rithm is able to recognize objects in complex scenes in

the presence of significant clutter, occlusion and mesh
resolution variation.

Two sample scenes and their corresponding recogni-

tion results are shown in Fig. 13. All objects were cor-

rectly recognized and their poses were accurately recov-

ered except for the T-Rex in Fig. 13(d). The reason for
the failure in Fig. 13(d) relates to the excessive occlu-

sion of the T-Rex. It is highly occluded and the visible

surface is sparsely distributed in several parts of the

body rather than in a single area. Therefore, almost no
reliable feature could be extracted from the object.

Note that, although we used a fixed support ra-

dius (i.e., r = 15mr) for feature description throughout
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Fig. 14: Recognition rates on the UWA Dataset. (Figure

best seen in color.)

this paper, the proposed algorithm is generic, and dif-
ferent adaptive-scale keypoint detection methods can

be seamlessly integrated within our RoPS descriptor.

In order to further demonstrate the generic nature of

our algorithm, we generated RoPS descriptors using the
support radii estimated by the adaptive-scale method in

(Mian et al., 2010). The recognition result is shown in

Fig. 14. The recognition performance of the adaptive-

scale RoPS based algorithm was better than that re-

ported in (Mian et al., 2010), which means that our
RoPS descriptor was more descriptive than the descrip-

tor used in (Mian et al., 2010). It is also observed that

the performance of adaptive-scale RoPS was marginally

worse than the fixed-scale counterpart. This is because
the errors of scale estimation adversely affected the per-

formance of feature matching, and ultimately object

recognition. That is, the corresponding points in a scene

and model may have different estimated scales due to

the estimation errors. As reported in (Tombari et al.,
2013), the scale repeatability of the adaptive-scale de-

tector in (Mian et al., 2010) were less than 85% and

60% on the Retrieval dataset and Random Views dataset,

respectively.

7.3 Recognition Results on The Queen’s Dataset

The Queen’s Dataset contains five models and 80 real

scenes. The 80 scenes were generated by randomly plac-
ing one, three, four or five of the models in a scene and

scanned from a single viewpoint using a LIDAR sen-

sor. The five models were generated by merging several

range images of a single object. Since all scenes and
models were represented in the form of pointclouds,

we first converted them into triangular meshes in or-

der to calculate the LRFs using our proposed tech-
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(a) Angle (b) Big Bird (c) Gnome (d) Kid (e) Zoe

Fig. 15: The five models in the Queen’s Dataset.

(a) The first sample scene (b) Our recognition result (c) The second sample scene (d) Our recognition result

Fig. 16: Two sample scenes and our recognition results on the Queen’s dataset. The correctly recognized objects

have been superimposed by their 3D complete models from the library. All objects were correctly recognized except

for the Angle in (d). (Figure best seen in color.)

nique. A scene pointcloud was converted by mapping

the 3D pointcloud onto the 2D retina plane of the sen-

sor and performing a 2D Delaunay triangulation over
the mapped points. The 2D points and triangles were

then mapped back to the 3D space, resulting in a tri-

angular mesh. A model pointcloud was converted into

a triangular mesh using the Marching Cubes algorithm

(Guennebaud and Gross, 2007). An illustration of the
five models is given in Fig. 15, and two sample scenes

are shown in Figures 16(a) and (c).

First, we performed object recognition using our

RoPS based algorithm on the full dataset which con-

tains 80 real scenes. The average number of detected

feature points in a scene and a model were 3296 and
4993, respectively. The results are shown in parenthe-

ses in Table 6, with a comparison to the results given

by Bariya et al. (2012). It can be seen that the average

recognition rate of our algorithm is 95.4%, in contrast,

the average recognition rate of the EM based algorithm
is 82.4%. These results indicate that our algorithm is

superior to the EM based algorithm although a com-

plicated keypoint detection and scale selection strategy

has been adopted by the EM based algorithm.

To make a direct comparison with the results given

by Taati and Greenspan (2011), we performed our RoPS
based 3D object recognition on the same subset dataset

which contains 55 scenes. The results are given in Ta-

ble 6, with comparisons to the results provided by two

variants of VD-LSD, 3DSC and four variants of spin

image. As shown in Table. 6, our average recognition

rate was 95.4%, while the second best result achieved
by VD-LSD (SQ) was 83.8%. The RoPS based algo-

rithm achieved the best recognition rates for all the five

models. More than 97% of the instances of Angle, Big

Bird and Gnome were correctly recognized. Although

RoPS’s recognition rate for Zoe was relatively low (i.e.,
87.2%), it still outperformed the existing algorithms by

a large margin, since the second best result achieved

by VD-LSD (SQ) was 71.8%. Fig. 16 shows two sam-

ple scenes and our recognition results on the Queen’s
Dataset. It can be seen that our RoPS based algorithm

was able to recognize objects with large amounts of oc-

clusion and clutter.

Note that, the Queen’s Dataset is more challenging
than the UWA Dataset since the former is more noisy

and the points are not uniformly distributed. That is

the reason why the spin image based algorithm had a

significant drop in the recognition performance when

tested on the two datasets. Specifically, the average
recognition rate of spin image based algorithm on the

UWA Dataset was 87.8% while the best result on the

Queen’s Dataset was only 54.4%. Similarly, a notable

decrease of performance can also be found for the EM
based algorithm, with 97.5% recognition rate for the

UWADataset and 81.9% recognition rate for the Queen’s

Dataset. However, our RoPS based algorithm was con-
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Table 6: Recognition rates (%) on the Queen’s Dataset. The results of the tests on the full dataset containing

80 scenes are shown in parentheses. The others were tested on a subset dataset which contains 55 scenes. ‘NA’

indicates that the corresponding item is not available. The best results are in bold fonts.

Method Angel Big Bird Gnome Kid Zoe Average
RoPS 97.4 (97.9) 100.0 (100.0) 97.4 (97.9) 94.9 (95.8) 87.2 (85.4) 95.4 (95.4)
EM NA (77.1) NA (87.5) NA (87.5) NA (83.3) NA (76.6) 81.9 (82.4)

VD-LSD(SQ) 89.7 100.0 70.5 84.6 71.8 83.8
VD-LSD(VQ) 56.4 97.4 69.2 51.3 64.1 67.7

3DSC 53.8 84.6 61.5 53.8 56.4 62.1
Spin image (impr.) 53.8 84.6 38.5 51.3 41.0 53.8
Spin image (orig.) 15.4 64.1 25.6 43.6 28.2 35.4

Spin image spherical (impr.) 53.8 74.4 38.5 61.5 43.6 54.4
Spin image spherical (orig.) 12.8 61.5 30.8 43.6 30.8 35.9

sistently effective and robust to different kinds of varia-

tions (including noise, varying mesh resolution and oc-

clusion), it outperformed the existing algorithms and
achieved comparable results in both datasets, obtain-

ing a recognition rate of 98.9% on the UWA Dataset

and 95.4% on the Queen’s Dataset.

We also performed a timing experiment to measure

the average processing time to recognize each object

in the scene. The experiment was conducted on a com-
puter with a 3.16 GHz Intel Core2 Duo CPU and a 4GB

RAM. The code was implemented in MATLAB without

using any program optimization or parallel computing

technique. The average computational time to detect
feature points and calculate LRFs was 42.6s. The aver-

age computational time to generate RoPS descriptors

was 7.2s. Feature matching consumed 46.6s, while the

computational time for the transformation hypothesis

generation was negligible. Finally, verification and seg-
mentation cost 57.4s in average.

7.4 Recognition Results on The Ca’ Foscari Venezia

Dataset

This dataset is composed of 20 models and 150 scenes.

Each scene contains 3 to 5 objects in the presence of

occlusion and clutter. Totally, there are 497 object in-
stances in all scenes. This dataset has been released

just recently. It is the largest available 3D object recog-

nition dataset. It is also more challenging than many

other datasets, containing several models with large flat
and featureless areas, and several models which are very

similar in shape (Rodolà et al., 2012).

The precision and recall values of RoPS based algo-

rithm on this dataset is shown in Table 7, the results as

reported in (Rodolà et al., 2012) are also reported for

comparison. As in (Rodolà et al., 2012), two out of the
20 models were left out from the recognition tests and

used as clutter. The average number of detected feature

points in a scene and a model were 2210 and 5000, re-

spectively. The RoPS based algorithm achieved better

precision results compared to (Rodolà et al., 2012). The

average precision of RoPS based algorithm was 99%,
which was higher than (Rodolà et al., 2012) by a mar-

gin of 6%. Besides, the precision values of 14 individual

models were as high as 100%.

The average recall of RoPS based algorithm was

96%, in contrast, the average recall of (Rodolà et al.,

2012) was 95%.Moreover, RoPS based algorithm achieved
equal or better recall values on 17 individual models

out of the 18 models. Note that, SHOT descriptors and

a game-theoretic framework is used in (Rodolà et al.,

2012) for 3D object recognition. It is observed that our
RoPS based algorithm performed better than SHOT

based algorithm on this Dataset.

In summary, the superior performance of our RoPS

based 3D object recognition algorithm is due to several

reasons. First, the highly descriptiveness and strong ro-

bustness of our RoPS feature descriptor improve the ac-
curacy of feature matching and therefore boost the per-

formance of 3D object recognition. Second, the unique,

repeatable and robust LRF enables the estimation of

a rigid transformation from a single feature correspon-

dence, which therefore reduces the errors of transforma-
tion hypotheses. This is because the probability of se-

lecting only one correct feature correspondence is much

higher than the probability of selecting three correct

feature correspondences. Moreover, our proposed hi-
erarchical object recognition algorithm enables object

recognition to be performed in an effective and efficient

manner.

8 Conclusion

In this paper, we proposed a novel RoPS feature de-

scriptor for 3D local surface description, and a new hi-
erarchical RoPS based algorithm for 3D object recog-

nition. The RoPS feature descriptor is generated by ro-

tationally projecting the neighboring points around a
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Table 7: Precision and recall values on the Ca’ Foscari Venezia Dataset. The best results are in bold fonts.

Armadillo Bunny Cat1 Centaur1 Chef Chicken Dog7 Dragon Face

Precision
RoPS 97 100 100 100 100 97 100 100 100

Game-theoretic 100 100 78 96 93 93 95 100 91

Recall
RoPS 100 100 44 100 100 100 91 100 100

Game-theoretic 97 97 82 100 100 100 86 89 95

Ganesha Gorilla0 Horse7 Lioness13 Para Rhino T-Rex Victoria3 Wolf2

Precision
RoPS 100 100 100 100 97 96 100 100 100

Game-theoretic 89 95 97 88 97 91 97 83 82

Recall
RoPS 100 100 100 100 97 100 100 95 100

Game-theoretic 100 91 100 100 94 91 97 83 95

feature point onto three coordinate planes and calcu-
lating the statistics of the distribution of the projected

points. We also proposed a novel LRF by calculating

the scatter matrix of all points lying on the local sur-

face rather than just mesh vertices. The unique and

highly repeatable LRF facilitates the effectiveness and
robustness of the RoPS descriptor.

We performed a set of experiments to assess our

RoPS feature descriptor with respect to a set of differ-

ent nuisances including noise, varying mesh resolution

and holes. Comparative experimental results show that

our RoPS descriptor outperforms the state-of-the-art
methods, obtaining high descriptiveness and strong ro-

bustness to noise, varying mesh resolution and other

deformations.

Moreover, we performed extensive experiments for

3D object recognition in complex scenes in the presence

of noise, varying mesh resolution, clutter and occlusion.
Experimental results on the Bologna Dataset show that

our RoPS based algorithm is very effective and robust

to noise and mesh resolution variation. Experimental

results on the UWA Dataset show that RoPS based
algorithm is very robust to occlusion and outperforms

existing algorithms. The recognition results achieved on

the Queen’s Dataset show that our algorithm outper-

forms the state-of-the-art algorithms by a large mar-

gin. The RoPS based algorithm was further tested on
the largest available 3D object recognition dataset (i.e.,

the Ca’ Foscari Venezia Dataset), reporting superior

results. Overall, our algorithm has achieved significant

improvements over the existing 3D object recognition
algorithms when tested on the same dataset.

Interesting future research directions include the ex-
tension of the proposed RoPS feature to encode both

geometric and photometric information. Integrating ge-

ometric and photometric cues would be beneficial for

the recognition of 3D objects with poor geometric but
rich photometric features (e.g., a flat or spherical sur-

face). Another direction is to adopt our RoPS descrip-

tors to perform 3D shape retrieval on a large scale 3D

shape corpus, e.g., the SHRECDatasets (Bronstein et al.,
2010b).
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lik, J. (2004). Recognizing objects in range data using
regional point descriptors. In 8th European Confer-

ence on Computer Vision, pages 224–237.

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Hal-

derman, A., Dobkin, D., and Jacobs, D. (2003). A

search engine for 3D models. ACM Transactions on

Graphics, 22(1):83–105.

Guennebaud, G. and Gross, M. (2007). Algebraic
point set surfaces. ACM Transactions on Graphics,

26(3):23.

Guo, Y., Bennamoun, M., Sohel, F., Wan, J., and Lu,

M. (2013a). 3D free form object recognition using
rotational projection statistics. In IEEE 14th Work-

shop on the Applications of Computer Vision, pages

1–8.

Guo, Y., Sohel, F., Bennamoun, M., Wan, J., and Lu,

M. (2013b). RoPS: A local feature descriptor for 3D
rigid objects based on rotational projection statistics.

In 1st International Conference on Communications,

Signal Processing, and their Applications. In press.

Guo, Y., Wan, J., Lu, M., and Niu, W. (2013c).
A parts-based method for articulated tar-

get recognition in laser radar data. Optik.

http://dx.doi.org/10.1016/j.ijleo.2012.08.035.

Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001).

3D object recognition from range images using lo-
cal feature histograms. In IEEE Conference on

Computer Vision and Pattern Recognition, volume 2,

pages II–394.

Hou, T. and Qin, H. (2010). Efficient computation of
scale-space features for deformable shape correspon-

dences. In European Conference on Computer Vision,

pages 384–397.

Hu, M. (1962). Visual pattern recognition by moment

invariants. IRE Transactions on Information Theory,
8(2):179–187.

Johnson, A. and Hebert, M. (1998). Surface matching

for object recognition in complex three-dimensional

scenes. Image and Vision Computing, 16(9-10):635–
651.

Johnson, A. E. and Hebert, M. (1999). Using spin im-

ages for efficient object recognition in cluttered 3D

scenes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(5):433–449.
Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A more

distinctive representation for local image descriptors.

In IEEE Conference on Computer Vision and Pat-

tern Recognition, volume 2, pages 498–506.
Kokkinos, I., Bronstein, M., Litman, R., and Bronstein,

A. (2012). Intrinsic shape context descriptors for de-

formable shapes. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 159–166.

Lei, Y., Bennamoun, M., and El-Sallam, A. (2013). An
efficient 3D face recognition approach based on the

fusion of novel local low-level features. Pattern Recog-

nition, 46(1):24–37.



Rotational Projection Statistics for 3D Local Surface Description and Object Recognition 25

Lowe, D. (2004). Distinctive image features from scale-

invariant keypoints. International Journal of Com-

puter Vision, 60(2):91–110.

Malassiotis, S. and Strintzis, M. (2007). Snapshots: A

novel local surface descriptor and matching algorithm
for robust 3D surface alignment. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

29(7):1285–1290.

Mamic, G. and Bennamoun, M. (2002). Representa-
tion and recognition of 3D free-form objects. Digital

Signal Processing, 12(1):47–76.

Mian, A., Bennamoun, M., and Owens, R. (2006a). A

novel representation and feature matching algorithm

for automatic pairwise registration of range images.
International Journal of Computer Vision, 66(1):19–

40.

Mian, A., Bennamoun, M., and Owens, R. (2006b).

Three-dimensional model-based object recognition
and segmentation in cluttered scenes. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

28(10):1584–1601.

Mian, A., Bennamoun, M., and Owens, R. (2010). On

the repeatability and quality of keypoints for lo-
cal feature-based 3D object retrieval from cluttered

scenes. International Journal of Computer Vision,

89(2):348–361.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine
invariant interest point detectors. International Jour-

nal of Computer Vision, 60(1):63–86.

Mikolajczyk, K. and Schmid, C. (2005). A perfor-

mance evaluation of local descriptors. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,
27(10):1615–1630.

Novatnack, J. and Nishino, K. (2008). Scale-dependent/

invariant local 3D shape descriptors for fully auto-

matic registration of multiple sets of range images.
In 10th European Conference on Computer Vision,

pages 440–453.

Ohbuchi, R., Osada, K., Furuya, T., and Banno, T.

(2008). Salient local visual features for shape-based

3D model retrieval. In IEEE International Confer-
ence on Shape Modeling and Applications, pages 93–

102.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin,

D. (2002). Shape distributions. ACM Transactions
on Graphics, 21(4):807–832.

Paquet, E., Rioux, M., Murching, A., Naveen, T., and

Tabatabai, A. (2000). Description of shape informa-

tion for 2-D and 3-D objects. Signal Processing: Im-

age Communication, 16(1):103–122.
Petrelli, A. and Di Stefano, L. (2011). On the re-

peatability of the local reference frame for partial

shape matching. In IEEE International Conference

on Computer Vision, pages 2244–2251.
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