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Abstract. The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due
to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications.
Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a
simple propulsion mechanism —an up-down asymmetric dumbbell rotating about its axis of symmetry—
unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion
for all finite values of the Reynolds number. We study computationally its propulsive characteristics as
well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry.
The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

1 Introduction

In the microscopic world, the physical forces we are used
to experience on large scales come out in different propor-
tions. In a fluid in particular, inertial forces tend to be-
come smaller than viscous forces. This is why microfluidic
devices, which enable fluid manipulations at length scales
less than a millimeter, are dominated by the physics of
viscous flows [1]. This affects, for example, the design of
protocols for mixing liquids [2, 3].

In the biological realm, the Reynolds numbers, Re, re-
lated to swimming microorganisms, such as bacteria and
spermatozoa, lie in the range ∼ 10−2–10−5 [4, 5]. For
these organisms, the absence of inertia leads to stringent
constraints on the types of effective locomotion strate-
gies, posing a fundamental challenge in the design of self-
propelled micro- and nano-machines [5–8].

Most past studies in small-scale locomotion focused
on the ideal limit of strictly zero Reynolds numbers,
typically ignoring also the inertia of the swimmer. The
governing equations in this limit are Stokes’s equations,
which are both linear and time-independent. These prop-
erties lead to so-called kinematic reversibility: an instan-
taneous reversing of the forcing does not modify the
flow patterns, but only instantaneously reverses the di-
rection of the flow [5]. A consequence of kinematic re-
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versibility on locomotion in the Re = 0 limit is the
so-called Purcell’s scallop theorem [4], which rules out
any reciprocal motion —deformations that are sym-
metrical under time reversal, such as simple flapping
motions— for propulsion and fluid transport. Different
strategies have since been proposed to escape from the
constraints of the scallop theorem, including generating
non-reciprocal deformation (such as the propagation of
flagellar waves), exploiting non-Newtonian stresses, or in-
ertial forces [9].

For any swimming cell or synthetic device, the Reyn-
olds number is small but never strictly zero. It is therefore
of fundamental physical interest to investigate the effects
of small but finite inertia on small-scale locomotion. In
particular, does inertia enhance or degrade propulsion of
small objects, and can it be exploited? More fundamen-
tally, how does the scallop theorem break down with iner-
tia? The question was first posed by Childress and Dud-
ley [10], who postulated that a finite amount of inertia
was required to enable locomotion. Further investigations
suggested that the breakdown of the scallop theorem with
inertia depends on geometrical symmetries in the recipro-
cal actuation. Specifically, the breakdown is discontinuous
for symmetric shapes [11–14], and continuous [15–17] for
asymmetric shapes. In the context of cell motility, first in-
ertial corrections to Taylor’s swimming sheet model [18]
were considered by Tuck [19] with an approach later sim-
plified by Brennen [20]. Recently, two groups extended the
classical squirmer model for ciliary propulsion for small
values of Re [8, 21].
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In this paper, instead of quantifying the role of iner-
tia on swimmers effective in the Stokes limit, we consider
a simple steady mechanism unable to propel at Re = 0
in order to illustrate the first effect of inertia on propul-
sion. The system is an up-down asymmetric dumbbell,
consisting of two spheres of different radii, made to rotate
in a Newtonian fluid. Despite the geometrical asymmetry,
such a dumbbell is unable to propel upon rotation about
its axis of symmetry in a Newtonian fluid in the absence
of inertia. This result can be shown by assuming with-
out loss of generality that the dumbbell propels upward
upon a clockwise rotation. By the kinematic reversibility
of Stokes flows mentioned above, a counterclockwise rota-
tion should then lead to a downward propulsion. However,
the mirror image of the original configuration indicates
that a dumbbell rotating in the counterclockwise direc-
tion should still propel upward. This contradiction leads to
the conclusion that no propulsion is possible. The preced-
ing argument requires the Reynolds number to be exactly
zero, and here we show how inertia can enable propulsion
at finite Reynolds number.

In classical work, Cox [22] showed that a rotating body
lacking up-down symmetry, such as the asymmetric dumb-
bell considered in this paper, experiences a O(Re) force
along its symmetry axis. The asymmetric dumbbell ge-
ometry was recently proposed as a micro-propeller and
microrheometer in viscoelastic fluids in the absence of
inertia [23], and as will be discussed below, inertia and
viscoelastic fluids lead to effects acting in opposite direc-
tions. Note that magnetically actuated asymmetric micro-
dumbbells have been shown to propel in a purely Stoke-
sian framework by Tierno et al. [24–26]. In this case, the
propulsion, which is impossible to achieve in an isotropic
medium, is enabled by the presence of a wall which breaks
the symmetry of the nearby environment.

Our paper is organized as follows. Section 2 describes
the geometric and kinematic setup of the problem. The
results of numerical computations at moderate Reynolds
numbers are presented in sect. 3. In sect. 4, we perform
a linear perturbative analysis of the problem for small
Reynolds number and obtain an integral expression for the
propulsion speed. The propulsive characteristics of the ro-
tating dumbbell are then investigated in sect. 5, where the
optimal geometry is identified. The difference in nature be-
tween locomotion enabled by inertia and that caused by
non-Newtonian effects is discussed in sect. 6. We conclude
in sect. 7. Technical details about the different coordinate
systems used to address the problem are given in appen-
dices A and B.

2 Setup

The asymmetric dumbbell considered in this paper con-
sists of two spheres of different sizes (radii R1, R2),
whose centers lie on the z-axis at a distance H from
each other (H ≥ R1 + R2), as illustrated in fig. 1. In
this work, we use capital letters for dimensional vari-
ables, and the corresponding dimensionless variables are

Fig. 1. Sketch of the geometry. The small sphere (radius R1)
is located on the positive z-axis and the large one (radius R2)
lies on the negative z-axis. The distance between the centers
of the spheres is denoted H. The whole solid body (sphere 1 +
sphere 2) rotates at the same angular velocity Ω, and H is kept
constant. In the case of touching spheres we have H = R1+R2.

denoted by small letters (this rule does not apply for con-
stants). The two-sphere system is considered as a rigid
body and both spheres rotate at the same steady angu-
lar velocity Ω about the z-axis. We thus suppose that a
constant torque is applied to the body in order to ensure
the constant rotation rate, but the net force on the body
is assumed to be zero (force-free swimming). Except in
sect. 7 where viscoelastic effects are also considered, the
surrounding medium is a Newtonian fluid of density ρ0

and dynamic viscosity µ. The kinematic viscosity is de-
noted as ν = µ/ρ0. The surface of the sphere i (i = 1, 2) is
referred to as Si and S = S1∪S2, with S2 representing the
large sphere. The entire volume of fluid is denoted by V.
By symmetry, the yet unknown translational propulsion
velocity V induced by the rotation of the dumbbell can
only be in the z-direction, V = V ez. We aim at solving
the problem in a particle-fixed frame of reference.

The velocity and stress fields, {U ,Σ}, satisfy the mo-
mentum and continuity equations

∇ · Σ = ρ0(U · ∇)U , (1)

∇ · U = 0, (2)

with the Newtonian constitutive equation

Σ = −P δ + µ[∇U + ∇UT ], (3)

where P is the pressure field and δ is the unit tensor. In
eq. (1), the time-dependent term has been omitted as we
are interested in the steady limit only. Equations (1), (2)
and (3) can be made dimensionless by using Ω−1, R2,
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Ω R2, and µΩ as typical time, length, velocity, and stress
respectively, and one obtains

∇ · σ = Re (u · ∇)u, (4)

∇ · u = 0 (5)

and
σ = −p δ + [∇u + ∇uT ]. (6)

In eq. (4), the Reynolds number is given by

Re = ΩR2
2/ν. (7)

Using the above non-dimensionalization, the dimension-
less radius of the large sphere is unity and that of the small
sphere is therefore given by the ratio r = R1/R2. The di-
mensionless distance between the centers of the spheres
is denoted by h = H/R2. The dimensionless translational
propulsion velocity is denoted v = V /ΩR2 = v ez, with
amplitude v.

Observing the motion in a reference frame moving with
the dumbbell at v = v ez along the z-axis, the boundary
conditions are given by

u = ρeφ on S,

u → −v at infinity, (8)

where eφ is the (cylindrical) azimuthal unit vector and

ρ = (x2 + y2)1/2 is the distance to the z-axis.
In the following sections, we first consider numerical

simulations at moderate Reynolds numbers (sect. 3), fol-
lowed by a perturbative analysis in the small-Reynolds-
number regime (sect. 4).

3 Inertial effects at moderate Reynolds

numbers: Simulations

We first investigate the effect of inertia on the locomo-
tion of the rotating dumbbell for a specific geometry.
We consider two touching spheres (so h = 1 + r) of
radii ratio r = 0.5. The numerical solution to eqs. (4)
and (5) is implemented in COMSOL c©, as it was in previ-
ous work studying locomotion and rheology at microscopic
scales [23,27]. A two-dimensional rectangular domain with
axisymmetric boundary conditions is considered. We have
Dirichlet velocity boundary condition for the inlet, and
pressure boundary condition for the outlet. The no-slip
boundary condition is imposed on the rotating dumbbell.
The bulk is discretized using triangle elements. Mesh res-
olution near the object is refined to properly capture the
secondary flow, which is weaker than the main (rotational)
flow by several orders. For validation, we computed the hy-
drodynamic force and torque exerted on a translating and
rotating sphere respectively. In both cases, the agreement
between numerical and analytical results was excellent.
As the flows addressed here occur at small or moderate
values of the Reynolds number, they are long-ranged and
devoid of any boundary layers, and therefore numerical

Fig. 2. Norm of the dimensionless propulsion speed, |v|, as
a function of the Reynolds number, Re, for a dumbbell con-
sisting of touching spheres with a radii ratio r = 0.5. Inset:
|V |R2/ν = |v|Re is plotted as a function of the Reynolds num-
ber (alternative choice for the non-dimensionalization). The
dashed line is a guide for the eye. The propulsion speed ob-
tained analytically at small Reynolds number using a pertur-
bative approach in sect. 4 is plotted as a solid line.

accuracy is more sensitive to the size of domain than to
the mesh resolution. With careful tuning, a domain of size
1200 × 1200 (in units of the large sphere radius) is em-
ployed.

The simulations were performed in a reference frame
translating with the dumbbell thus aims at determining
the unknown inlet velocity, opposite to the propulsion ve-
locity of the dumbbell in the laboratory frame. Numer-
ically, we compute the force on the body as a function
of the inlet velocity and then determine the inlet velocity
satisfying the force-free condition via interpolation.

The computational results are displayed in figs. 2
and 3. We find that the propulsion velocity, v, is always
negative indicating that the dumbbell is moving with the
large sphere ahead, independently of the rotational direc-
tion. The norm of the propulsion velocity, |v|, is plotted as
a function of the Reynolds number in fig. 2. On the same
figure, the solid line shows the results obtained with our
perturbative analysis detailed in sect. 4. The agreement
between the analysis and the computations is good for
Re � 1. Our computations show that the dimensionless
propulsion speed displays a maximum around Re = 4.2.

Since the value of the angular velocity, Ω, appears in
both the Reynolds number and the non-dimensionaliza-
tion for v, it is not obvious if the existence of this dimen-
sionless maximum propulsion also leads to a dimensional
maximum. Instead of ΩR2 we non-dimensionalize v by
ν/R2, the magnitude of which is plotted in the inset of
fig. 2. For a given geometry and fluid, we therefore see
that a maximum still exists. The optimal Reynolds num-
ber with this new non-dimensionalization occurs around
Re = 7.



Page 4 of 14 Eur. Phys. J. E (2014) 37: 60

Fig. 3. Streamlines, velocity field, and magnitude in the labo-
ratory frame of the dimensionless secondary flow (equal to the
total flow minus the Stokes component), in the case of touching
spheres, for Re = 0.1 and a radii ratio r = 0.5.

In fig. 3 we plot the streamlines and velocity field in
the laboratory frame of the inertial secondary flow, i.e. the
difference between the total flow and the primary Stokes
flow, for Re = 0.1 and r = 0.5. The colormap quantifies
the local fluid speed. In contrast to the secondary flow
in the viscoelastic case [23], the fluid is drawn from in-
finity along the z-axis and then radially expelled around
the dumbbell. A ring vortex is detected close to the large
sphere, which breaks the top-down symmetry of the flow.
At a Reynolds number of 0.1, the maximum speed of the
secondary flow is around 0.02% of the typical speed ΩR2.

4 Inertial effects at small Reynolds number

In this section, we derive an analytical expression for the
propulsion speed, v, valid in the limit of small Reynolds
numbers. We consider the disturbance velocity field u′ =
u− (−v) relative to the undisturbed uniform background
flow −v, due to the motion of the reference frame. The
governing equations for the disturbance flow are

∇ · σ′ = Re [(u′ · ∇)u′ + (u′ · ∇)v + (v · ∇)u′] , (9)

∇ · u′ = 0, (10)

where the disturbance stress field is equal to σ′ = σ,
since the undisturbed background flow contributes no ad-
ditional stress. The boundary conditions for the distur-
bance flow are given by

u′ = ρeφ − (−v) on S,

u′ → 0 at infinity. (11)

In eq. (9), the term (u′ ·∇)v is identically zero since v is
uniform. Hereafter, we drop the primes for notation con-
venience; all field variables below correspond to the dis-
turbance flow unless otherwise stated.

We are interested in computing the first inertial effects
in Reynolds number for a rotating dumbbell. In the case of
uniform flow past a sphere, the inclusion of inertial effects
leads to Whitehead’s paradox [28], where the advective
terms cannot be uniformly neglected and an Oseen anal-
ysis is necessary in the far field [29]. Whitehead’s paradox
does not however extend to a rotating sphere as the Stokes
velocity field decays sufficiently fast [30], and a the flow
can be addressed using regular perturbations [22, 31, 32].
We thus choose to expand the disturbance velocity and
stress fields and the propulsion velocity of the rotating
dumbbell as regular perturbation series in powers of the
Reynolds number

u = u(0) + Re u(1) + O(Re2), (12)

σ = σ(0) + Re σ(1) + O(Re2), (13)

v = v(0) + Re v(1) + O(Re2). (14)

Introducing the expansions (12) and (13) in the Navier
Stokes equations leads to governing equations and bound-
ary conditions at different orders. We analyze the problem
order by order in the following sections.

4.1 Zeroth-order solution

The zeroth-order flow field satifies the Stokes equation

∇ · σ(0) = 0, (15)

∇ · u(0) = 0, (16)

with the following boundary conditions

u(0) = ρeφ + v(0) on S, (17)

u(0) → 0 at infinity. (18)

The angular velocity of the dumbbell is of O(1) and is
entirely taken into account in the zeroth-order boundary
conditions. It will thus not contribute to the boundary
conditions at higher orders.

The Stokes flow problem posed by the equation at or-
der zero was analyzed for separated [33] and touching [34]
rotating spheres. No translational propulsion speed is ob-
tained at the zeroth-order, v(0) = 0. This was to be
expected by considering the time-reversal transformation
and the mirror image of the original kinematics; they have
identical kinematics but give opposite predictions on the
direction of propulsion, hence no propulsion can occur.
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4.2 First-order solution

The third nonlinear term on the right-hand side of eq. (9)
has no contribution to the governing equation at O(Re),
since the propulsion velocity v is expected to be of O(Re)
at best. At first order, the governing equations become

∇ · σ(1) = (u(0) · ∇)u(0), (19)

∇ · u(1) = 0, (20)

with boundary conditions

u(1) = v(1) on S, (21)

u(1) → 0 at infinity. (22)

In theory, one could solve successively eqs. (15–16)
and (19)–(20), integrate the stress at the surface of each
sphere, and deduce the value of the propulsion velocity,
v(1), leading to zero net force. Alternatively, in order to
bypass the detailed calculations, we use a modified ver-
sion of Lorentz’s reciprocal theorem in order to derive an
expression for the propulsion velocity [35]. This approach
was initially used by to compute the effect of inertia on the
Stokes resistance of rigid particles [22,36], their migration
in Poiseuille flows [37] and in arbitrary two-dimensional
unidirectional flows [38] (Segré-Silbreberg effect).

4.3 Propulsion speed and external force

In order to apply the reciprocal theorem, we consider an
auxiliary Newtonian Stokes problems with the same ge-
ometry but different boundary conditions satisfying the
incompressible equations of mechanical equilibrium

∇ · σ̂ = 0, (23)

∇ · û = 0. (24)

Subtracting the inner product of eq. (19) with û and the
inner product of eq. (23) with u(1), and integrating over
the volume of fluid V leads to the statement of equality of
virtual powers

∫

V

[

û · (∇ · σ(1)) − u(1) · (∇ · σ̂)
]

dV =

∫

V

û ·
[

(u(0) · ∇)u(0)
]

dV. (25)

Then, using the general vector identity

û · (∇ · σ(1)) − u(1) · (∇ · σ̂) =

∇ · (û · σ(1) − u(1) · σ̂)

+(∇u(1) : σ̂ − ∇û : σ(1)), (26)

and realizing that the second term on the right-hand side
of eq. (26) vanishes if the Newtonian flows are assumed

to have the same viscosity, we can re-write eq. (25) in the
form

∫

V

∇ · (û · σ(1) − u(1) · σ̂)dV =

∫

V

û ·
[

(u(0) · ∇)u(0)
]

dV. (27)

Use of the divergence theorem yields
∫

S

n ·
(

û · σ(1) − u(1) · σ̂
)

dS =

−

∫

V

û ·
[

(u(0) · ∇)u(0)
]

dV. (28)

In order to make further progress, we then assume that
the auxiliary problem corresponds to a solid-body motion
with translational velocity denoted v̂ and no rotation. Its
boundary conditions on S are thus written

û = v̂, (29)

where r is the position vector relative to the origin. Re-
minding that v(1) is the first-order propulsion speed and
introducing eqs. (21) and (29) in eq. (28), one gets

v̂ ·

∫

S

n · σ(1) dS − v(1) ·

∫

S

n · σ̂ dS =

−

∫

V

û ·
[

(u(0) · ∇)u(0)
]

dV. (30)

In eq. (30), the first term of the left-hand side is the inner
product of the auxiliary translational velocity of the solid
body, with the force f (1) =

∫

S
n · σ(1) dS applied by the

first-order flow in the main problem while the second term
is similar with the role of the flows reversed. Denoting by

f̂ the force applied by the auxiliary flow on the solid body,
we obtain a convenient form of eq. (30) as

v̂ · f (1) − v(1) · f̂ = −

∫

V

û ·
[

(u(0) · ∇)u(0)
]

dV. (31)

Equation (31) can be used to compute two different
quantities of interest. For a force-free dumbbell, we can
use it to compute the propulsion speed, v(1). Alternatively
it can be exploited to compute the force applied by the
fluid f (1) on a non-translating dumbbell (which is equal to
minus the external force required to prevent the dumbbell
from moving). In both cases, the most appropriate can-
didate for the auxiliary problem is the flow induced by a
translation along the dumbbell axis. In the free-swimming
case we have f (1) = 0, and eq. (31) becomes

v(1) · f̂ =

∫

V

û · [(u(0) · ∇)u(0)]dV. (32)

For a non-translating dumbbell we have v(1) = 0, and
therefore the fluid force can be computed using

v̂ · f (1) = −

∫

V

û · [(u(0) · ∇)u(0)]dV. (33)
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In the following, we focus on the case of force-free pro-

pulsion. Both vectors v(1) and f̂ are aligned with the z-
direction. If we assume, without loss of generality, that v̂
is positively oriented on the z-axis, then

f̂ = −|f̂ |ez, (34)

and from eq. (32) we obtain explicitly the first-order
propulsion speed as

v(1) = −|f̂ |−1

[
∫

V

û · [(u(0) · ∇)u(0)]dV

]

ez. (35)

In this final equation, it should be noted that the
propulsion velocity of the dumbbell, v(1), does not de-
pend on the magnitude of the translational velocity in
the auxiliary problem, v̂, since both the auxiliary force,

f̂ , and the velocity field, û, scale linearly with v̂. Sim-
ilarly, the force experienced by the solid body from the
fluid, in eq. (33), does not depend on the magnitude of
the auxiliary translational velocity. In fig. 2, the results
given by this perturbative analysis are shown in solid line
and compared to the computational results (symbols) for
a dumbbell consisting of a touching sphere with a radii
ratio r = 0.5. We observe good agreement in the small-
Reynolds-number regime (Re � 1).

5 Geometric optimization

We now turn to the calculation of the optimal geometry for
a dumbbell. Specifically, we use our analytical calculation
and eq. (35) to determine the radii ratio and the distance
between the centers for which the propulsion speed is the
highest. The problems of a dumbbell consisting of touch-
ing spheres (sect. 5.1) and separated spheres (sect. 5.2) are
considered separately. For separated spheres, the solution
to the auxiliary problem was given by Stimson and Jef-
frey [39] in form of a series, which converges slowly as the
spheres get closer to each other. For touching spheres, we
adopt the solution given by Takagi [34] for the auxiliary
problem.

5.1 Touching spheres

To address the problem of the touching-sphere configu-
ration, it is convenient to use tangent-sphere coordinates
system (see appendix A.1). Considering the expression of
the integrand involved in the right-hand side of eq. (35),
we have to derive the expression of the auxiliary Stokes
flow û induced by a simple translation along the center
line of the spheres and the convective term (u(0) ·∇)u(0),
where u(0) is the Stokes flow induced by a simple ro-
tation of the dumbbell about the center line of spheres.
The expression of the auxiliary stream function for trans-
lational touching spheres has been given by Cooley and
O’Neil [33]. The expression of the velocity field û in terms
of tangent-sphere coordinates is derived in appendix A.2,

where the drag in the auxiliary problem f̂ is also included.

Fig. 4. Norm of the first-order propulsion speed, |v(1)|, as
a function of the ratio of radii, r, for two rotating touching
spheres. Numerical results computed for Re = 0.1 and analyti-
cal results are plotted with circles and a solid line, respectively.

The Stokes flow induced by two rotating touching spheres
was found by Takagi [34]. The expression of the convective
term as a function of tangent-sphere coordinates is then
given in appendix A.3.

With eqs. (A.4), and (A.20)–(A.23), we perform the
numerical integration in eq. (35) and obtain the ampli-
tude of the first-order propulsion speed v(1) (see details in
appendix A.4). For all geometries considered, we find that
v(1) < 0, and locomotion occurs with the larger sphere
ahead. The optimization of the touching-spheres geome-
try is presented in fig. 4. In the latter is plotted the norm
of the first-order propulsion speed, |v(1)|, as a function
of the radii ratio. The results given by linear perturbative
analysis are in good agreement with the numerical simula-
tions computed for Re = 0.1. The presence of an optimum
(around r = 0.63) can be understood since the propulsion
speed vanishes for a symmetric dumbbell (r → 1) and for
a single sphere (r → 0) by symmetry.

5.2 Separated spheres

We now let the spheres separate from each other at a
distance h > 1 + r, while still assuming they both ro-
tate with the same angular velocity. The approach is sim-
ilar to the case of touching spheres. We need two Stokes
flows. For the zeroth-order problem we need the solution
for two separated spheres rotating at the same angular
velocity about their centerline given by Jeffery [40]. For
the auxiliary problem we need the solution for two sepa-
rated spheres translating at the same velocity along their
centerline, whose solution is given by Stimson and Jef-
fery [39]. Using eqs. (B.6), (B.15)–(B.16), and (B.21)–
(B.22), we evaluate the integral in eq. (35) numerically
and obtain the first-order propulsion speed, v(1), for the
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Fig. 5. Norm of first-order propulsion speed, |v(1)|, as a func-
tion of the separation distance, h, for three different ratios of
radii. Analytical results are plotted with lines and numerical
results with Re = 0.1 in circles. Results are for r = 0.3 (solid
line and black solid circles), r = 0.5 (dotted line and grey solid
circles), and r = 0.7 (dashed line and open circles).

case of separated spheres (see appendix B.4 for details of
the numerical integration).

In fig. 5, the dimensionless velocity is plotted as a
function of the separation distance, h, for three ratios
r = 0.3, 0.5 and 0.7. As expected, the propulsion speed
decays at large separation distances h ≫ 1, since each
sphere is then isolated and does not experience the flow
induced by the rotation of the other. We observe, surpris-
ingly, a non-monotonic variation of the propulsion veloc-
ity with the separation distance. This dependence may
be rationalized by considering the secondary inertial flow
generated by a single rotating sphere in the absence of
the other sphere. Such an inertial secondary flow expels
fluid along the direction of the equator and by continu-
ity draws in fluids along the vertical direction (z-axis).
When two rotating spheres are aligned vertically, the sec-
ondary flows due to their rotation act to attract the two
spheres. The direction of propulsion is a result of the com-
petition between the attractive force on each sphere. The
secondary flow of a single rotating sphere has to vanish
at infinity as well as on the surface of the sphere. An ex-
tremum in the flow velocity along the z-axis is therefore
expected. As a consequence, the propulsion velocity could
be optimal when the second sphere stands around the ex-
tremum, experiencing a strong attractive force. Note that
the precise optimal separation distance also depends on
the sizes of the two spheres, and two equal spheres lead to
no propulsion.

The dimensionless propulsion velocity is shown in fig. 6
as a function of the radii ratio, r, for three different sepa-
ration distances, h = 2, 3 and 4. We observe qualitatively
the same behavior as in the case of touching spheres. As
expected, the propulsion speed vanishes for a single sphere
(r = 0) and a symmetric dumbbell (r = 1) by symmetry.

Fig. 6. Norm of the first-order propulsion speed, |v(1)|, as a
function of the radii ratio, r, for three different separation dis-
tances. Analytical results are plotted with lines and numerical
results for Re = 0.1 using circles. Results are for h = 2 (solid
line and black solid circles), h = 3 (dotted line and grey solid
circles), and h = 4 (dashed line and open circles).

However, it can be noticed that the propulsion velocity
goes linearly to zero as r decreases to zero, whereas the
decay is faster for touching spheres.

Since non-monotonic variations of the propulsion ve-
locity are observed in both the radii ratio, r, and sep-
aration distance, h, we can expect the existence of a
global optimal geometry (r⋆, h⋆) for the maximal propul-
sion speed. Iso-contours of the norm of the first-order
propulsion speed are plotted in the (r, h) plane in fig. 7 for
Re = 0.1. The extremum located at (r⋆, h⋆) = (0.53, 2.94)
corresponds to the geometry with maximum propulsion
speed per unit angular velocity. Note that in the linear
regime, the value of each contour scales linearly with Re.
The geometry of the contours, including the extremum,
is therefore independent of the Reynolds number in the
Re ≪ 1 regime.

6 Propulsion in a viscoelastic fluid with inertia

As shown by Pak et al. [23], the rotating dumbbell geom-
etry is also able to swim in a viscoelastic fluid in the ab-
sence of inertia. Interestingly, the direction of propulsion
in that case is opposite to the case of inertial propulsion
in a Newtonian fluid, and swimming occurs there with the
small sphere ahead. In an actual viscoelastic fluid, both ef-
fects are present, potentially counteracting each other. We
analyze the combined effects of inertia and viscoelasticity
in this section.

The retarded-motion expansion for non-Newtonian
flows is an expansion about the Newtonian behavior,
where successive terms in the expansion systematically ac-
count for the departures from Newtonian behavior due to
elastic effects [41]. The second-order relationship between
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Fig. 7. Isovalues of the norm of the first-order propulsion
speed, |v(1)|, in the (r, h) plane. The optimal geometry is ob-
tained for (r⋆, h⋆) = (0.53, 2.94).

stresses and rate-of-strain is the result of truncating the
expansion after the second-order terms, and is valid when
the velocity gradients are small. Since that expansion rig-
orously quantifies the first deviation from Newtonian fluid
behavior, it has been extensively employed to solve a va-
riety of flow problems [41].

The relationship between the total deviatoric stress,
T , and the the rate of strain, Γ̇ , is given for a so-called
second-order fluid by

T = ηΓ̇ −
1

2
Ψ1

▽

Γ̇ + Ψ2 Γ̇ · Γ̇ , (36)

where Ψ1 and Ψ2 are the first and second normal-stress co-
efficients respectively, and the upper-convected derivative
of a tensor A is defined as

▽

A =
∂A

∂t
+ U · ∇A −

[

∇UT · A + A · ∇U
]

. (37)

The normal-stress coefficients, Ψ1 and Ψ2, quantify the
extra normal stress generically arising in polymeric flows
and responsible for many well-known phenomena such as
rob-climbing and die-swelling of polymer melts [41,42]. In
a Newtonian flow, there are no normal-stress differences
(Ψ1 = Ψ2 = 0), whereas for polymeric fluids typically we
have Ψ1 > 0 and Ψ2 < 0. The second normal-stress coef-
ficient is usually much smaller in magnitude than that of
the first normal-stress coefficient, i.e. |Ψ2| ≪ Ψ1 [41].

Equation (36) can be made dimensionless by choosing
the same typical quantities as in the Newtonian case (i.e.
R2, Ω−1, R2Ω, Ω and ηΩ for typical length, time, velocity,
shear and stress respectively), and one gets

τ = γ̇ − De

(

▽

γ̇ + B γ̇ · γ̇

)

, (38)

Fig. 8. Isovalues of the first-order propulsion speed ampli-

tude, v
(1)
De , in the case of a second-order viscoelastic fluid with-

out inertia (B = 0). The optimal geometry is located at
(r⋆, h⋆) = (0.46, 2.5), and leads to swimming along the pos-
itive z direction.

where De = Ψ1Ω/2η is the Deborah number and B =
−2Ψ2/Ψ1 is the normal-stress coefficient ratio. Since the
second normal-stress coefficient is typically much smaller
than the first normal-stress coefficient, B ≪ 1 [41], we
consider here the case B = 0 for simplicity.

After expanding the total stress, velocity and shear
fields, and the propulsion velocity in powers of the Debo-
rah number, and using again the reciprocal Lorentz theo-
rem [23], one obtains the expression of the first-order vis-
coelastic propulsion speed in the absence of inertia, which
is the viscoelastic equivalent of eq. (35) as

v
(1)
De = −|f̂ |−1

[

∫

V

▽

γ̇(0) : ∇ûdV

]

ez. (39)

The zeroth-order and auxiliary solutions in eq. (39) are
the same as in the Newtonian cases. A map of isovalues

of v
(1)
De , magnitude of v

(1)
De , is reproduced in fig. 8.

Due to the linear nature of the perturbation analy-
sis performed in both the viscoelastic and inertial cases,
the dimensionless propulsion speed taking into account
both effects can be obtained by summing up eq. (35) and
eq. (39), leading to

v = Dev
(1)
De + Re v

(1)
Re . (40)

A subscript Re has been added to the inertial first-order
speed previously referred to as v(1) to avoid any confusion
between the inertial and viscoelastic speeds.

For a given fluid with fixed density, viscosity, normal-
stress coefficient, and a typical size R2, what is then the
most efficient overall geometry? In other words, for which
values of (r, h) does the dimensionless speed v, which in-
cludes both physical effects, have the largest amplitude?
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Fig. 9. Isovalues of the signed propulsion speed amplitude
divided by the Deborah number, v/De, for a ratio χ = 3.5.
Viscoelasticity dominates and the optimal geometry is now lo-
cated at (r⋆, h⋆) = (0.41, 2.2), with swimming along the +z
direction. The optimal geometry in the absence of inertia from
fig. 8 is shown using the symbol ×.

Denoting the fluid density ρ0, the viscosity η, and normal-
stress coefficient Ψ1, and a dumbbell of given typical size
R2, then the ratio χ = Re/De = 2ρ0R

2
2/Ψ1 has a fixed

value. Rewriting eq. (40) in the form

v

De
= v

(1)
De + χv

(1)
Re , (41)

we see that the optimal geometry depends on χ, as v
(1)
De

and v
(1)
Re are not proportional to each other. This depen-

dence is illustrated in figs. 9 and 10, which result from a
linear combination of figs. 7 and 8. In fig. 9, isovalues of
the amplitude of v on the z-axis are plotted in the (r, h)
plane for χ = 3.5. In this limit the viscoelastic effects are
dominant as v > 0 but the optimal geometry is shifted rel-
ative to its position of (0.46, 2.5) in the pure viscoelastic
case. Conversely, for the value χ = 6.5 shown in fig. 10,
the inertial effects are dominant and v < 0, but the op-
timal geometry is also shifted relative to its position of
(0.53, 2.94) for the pure inertial Newtonian case.

Note that the optimization above ensues from our lin-
ear perturbation analysis in Reynolds and Deborah num-
bers, and therefore the results presented in figs. 9 and 10
are only valid in this asymptotic limit. In other words, we
have only optimized the initial slope in fig. 2 and its vis-
coelastic equivalent. In order to derive the global optima,
full numerical simulations should be employed.

7 Discussion and conclusion

For reciprocal motion at Reynolds number exactly equal
to zero, Purcell’s scallop theorem dictates that propulsion

Fig. 10. Isovalues of the propulsion speed amplitude divided
by the Deborah number, v/De, for a ratio χ = 6.5. Inertial
effects now dominate and optimal geometry is now located at
(r⋆, h⋆) = (0.69, 4.1), with swimming along the −z direction.
The optimal geometry in the absence of viscoelasticity from
fig. 7 is shown by the symbol ×.

is impossible. With the inclusion of inertia, the transition
from a non-swimmer to swimmer can occur either contin-
uously or discontinuously with Reynolds number, depend-
ing on geometrical symmetries (see Introduction). In this
paper we provide an example where the non-reciprocal
motion (rotating dumbbell) is unable to produce propul-
sion in the absence of inertia due to mirror reflection sym-
metry. The geometry considered here is asymmetric (un-
equal spheres), and inertia in this case enables the loco-
motion continuously with the Reynolds number, consis-
tently with past work. Interestingly, inertial forces enable
locomotion for a non-chiral shape, whereas Stokesian lo-
comotion of rigid bodies is typically associated with rigid,
helical shapes.

A second result of interest is the contrast between in-
ertial and viscoelastic effects. As a rule of thumb [41], the
two effects seem to systematically give secondary flows
of opposite directions, at least in the case of steady mo-
tion. Our results are consistent with this observation and
a rotating dumbbell propels with the large (respectively,
small) sphere ahead in a pure inertial (respectively, vis-
coelastic) fluid. In an experimental, both the inertial and
viscoelastic effects are expected to be present. We per-
formed a linear perturbative analysis for small Reynolds
and Deborah numbers, and we showed how the optimal
geometry of the dumbbell depends on the ratio of the
Reynolds to the Deborah numbers (χ).

One question posed by the study is that of perfor-
mance. How effective is inertia at propelling asymmet-
ric objects? For the sake of comparison, let us contrast
it here with a known propulsion mechanism in the ab-
sence of inertia, namely the rotation of helical flagella.
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A swimming bacterium such as E. coli, which is near op-
timal in its geometrical design [43], swims at a speed of
about U ∼ 30µms−1. With a total cell length L ≈ 10µm
and a flagellar rotational frequency of about Ω = 2πf ,
with f ≈ 100Hz, this leads to the dimensionless speed
per unit length U/LΩ ≈ 1/200. In the current paper, con-
sidering the optimal geometry obtained in fig. 7 (r ≈ 0.5,
h ≈ 2.9) and assuming that the linear scaling seen in fig. 2
remains valid up to Re = 1, we get v(1) ≈ 2×10−3, which,
at Re = 1, leads to a dimensionless velocity v ≈ 1/500.
Inertial propulsion leads therefore to performance of the
same order as that seen in the biological realm.

The results presented here may be useful for the design
of small-scale inertial propellers and pumps in Newtonian
and complex fluids. The first correction of the propulsion
speed due to inertia in a viscoelastic effect may also im-
prove the accuracy of the measurement of the normal-
stress coefficients of a complex fluid when the rotating
dumbbell is used as a micro-rheometer [23].

The authors thank the Department of Mechanical and Aero-
space Engineering at the University of California San Diego
where this research was initiated. This work was funded in part
by the Croucher Foundation through a Croucher Fellowship
to OSP, the Seventh Framework Programme of the European
Union through a Marie Curie grant to EL (Grant PCIG13-
GA-2013-618323) and the Direction Générale de l’Armement
(Grant 2012600091-Project ERE 12C0020).

Appendix A. Mathematics of touching

spheres

In this section we present the technical details of the
touching-spheres computations. We first recall the main
characteristics of this particular coordinate system (ex-
pressions of the basis vectors etc.). We then give the ex-
pression of the auxiliary flow and drag in terms of tangent-
sphere coordinates, followed by the derivation of the ex-
pression of the nonlinear advective term (u(0) · ∇)u(0)

involved in eq. (35).

Appendix A.1. Tangent-sphere coordinates

The tangent-sphere coordinate system is defined by the
transformation

x=
2η cos φ

ξ2 + η2
, y=

2η sin φ

ξ2 + η2
, z=

2ξ

ξ2 + η2
, (A.1)

which implies

ρ =
2η

ξ2 + η2
, (A.2)

since ρ = (x2 + y2)1/2.
The scale factors hq = |∂r/∂q| (q = η, ξ, φ) involved

in the expression of the gradient [44] are

hη =
2

ξ2 + η2
, hξ =

2

ξ2 + η2
, hφ =

2η

ξ2 + η2
,

(A.3)

such that the Jacobian of the transformation (ξ, η, φ) 	→
(x, y, z) is

J = hηhξhφ =
8η

(ξ2 + η2)3
. (A.4)

The basis unit vectors eq = h−1
q ∂r/∂q (q = η, ξ, φ) are

related to the Cartesian basis vector by the linear system

eη =
ξ2 − η2

ξ2 + η2
cos φex +

ξ2 − η2

ξ2 + η2
sin φey −

2ηξ

ξ2 + η2
ez,

(A.5)

eξ = −
2ηξ

ξ2 + η2
cos φex −

2ηξ

ξ2 + η2
sin φey +

η2 − ξ2

ξ2 + η2
ez,

(A.6)

eφ = − sin φex + cos φey. (A.7)

As the problem is axisymmetric, we also need the ex-
pressions of the Jacobian matrix of the transformation
(ρ, φ, z) 	→ (η, ξ, φ) and the relationship linking the basis
unit vectors. Since eρ = cos φex + sin φey, one can see
from eqs. (A.5) and (A.6) that

eρ =
ξ2 − η2

ξ2 + η2
eη −

2ηξ

ξ2 + η2
eξ, (A.8)

ez = −
2ηξ

ξ2 + η2
eη +

η2 − ξ2

ξ2 + η2
eξ. (A.9)

Note that the derivative of the azimutal unit vector eφ

with respect to φ can be immediately expressed as a func-
tion of the touching-sphere coordinates and unit vectors,
since deφ/dφ = −eρ.

Finally, from the third equation of (A.1) and eq. (A.2),
one gets the Jacobian matrix of the transformation
(η, ξ, φ) 	→ (ρ, φ, z) and its inverse

∂(ρ, z)

∂(ξ, η)
= 2

(ξ2+η2)2

(

−2ηξ ξ2 − η2

η2 − ξ2 −2ηξ

)

, (A.10)

∂(ξ, η)

∂(ρ, z)
= 1

2

(

−2ηξ η2 − ξ2

ξ2 − η2 −2ηξ

)

. (A.11)

Appendix A.2. Auxiliary translational flow and viscous
drag

The Stokes streamfunction ψ for the translational motion
of two unequal touching spheres along their centerline was
derived by Cooley and O’Neil [33]. In terms of tangent-
sphere coordinates its expression is given by

ψ̂ =
η

ξ2 + η2
I(ξ, η), (A.12)

with

I(ξ, η) =

∫ ∞

0

[(A + ξC) sinh sξ

+(B + ξD) cosh sξ] J1(sη)ds, (A.13)
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where A, B, C, D are functions of s and the geometry (i.e.
of r only). We do not give the expressions of these con-
stants since they are extremely cumbersome, but we give
below the system to solve for them. Due to the choice we
made for the non-dimensionalization, this system is differ-
ent from the Cooley and O’Neil’s one (eqs. (3.7)–(3.10) of
ref. [33])1. Indeed, we chose the radius of the lower sphere
(located in the z < 0 space) as the typical lengthscale so
that the surface of the lower sphere is defined by ξ = −1
and the surface of the upper sphere by ξ = α = r−1. So
A, B, C and D are solutions of the system

A sinh sα + B cosh sα + αC sinh sα + βD cosh sα =

−2e−sα(α + s−1), (A.14)

A sinh s − B cosh s − C sinh s + D cosh s =

2e−s(1 + s−1), (A.15)

A cosh sα + B sinh sα + C[s−1 sinh sα + α cosh sα]

+D[s−1 cosh sα + α sinh sα] = 2αe−sα, (A.16)

A cosh s − B sinh s − C[s−1 sinh s + cosh s]

+D[s−1 cosh s + sinh s] = −2e−s. (A.17)

The velocity components are obtained by applying the
differential operator

D =
1

r

[

∂

∂z
eρ −

∂

∂ρ
ez

]

, (A.18)

to the streamfuction ψ̂. The expression of D in terms
of tangent-sphere coordinates can be derived using
eqs. (A.8), (A.9) and (A.11), and one gets

D =
(ξ2 + η2)2

4η

[

∂

∂η
eξ −

∂

∂ξ
eη

]

. (A.19)

Finally, velocity coordinates for the auxiliary flow û = Dψ̂
are given by

ûξ =
(ξ2 + η2)1/2

4

∂I(ξ, η)

∂η
+

ξ2 − 2η2

4η(ξ2 + η2)1/2
I(ξ, η),

(A.20)

ûη = −
(ξ2 + η2)1/2

4

∂I(ξ, η)

∂ξ
+

3ξη

4η(ξ2 + η2)1/2
I(ξ, η).

(A.21)

The drag coefficient for each sphere is also given in
eq. (4.3) of Cooley and O’Neil’s original paper. After the
summation of the two versions of eq. (4.3), the drag coef-
ficient for the two spheres as a rigid body has the form

|f̂ | = 2π

∫ ∞

0

sB ds. (A.22)

1 Note that there is a typo in the sign of the fourth term on
the right-hand side of eq. (3.8) in Cooley and O’Neil’s original
article.

Appendix A.3. Zeroth-order solution and advective
term

The advective term can be easily derived since the only
(azimutal) component of the viscous zeroth-order velocity
is a function of ρ and z only. The Stokes solution u(0) =

u
(0)
φ eφ to the problem of two rotating touching spheres has

been given by Takagi [34]. Considering the expression of
the gradient in tangent-sphere coordinates2 and knowing
that deφ/dφ = −eρ, we can write

(u(0) · ∇)u(0) =
u

(0)
φ

2

hφ

[

η2 − ξ2

ξ2 + η2
eη +

2ηξ

ξ2 + η2
eξ

]

, (A.23)

where

u
(0)
φ = 2(ξ2 + η2)

∫ ∞

0

[

sinh s(ξ + 1)

sinh s(α + 1)
e−sα

+
sinh s(α − ξ)

sinh s(α + 1)
e−s

]

sJ1(sη)ds. (A.24)

Appendix A.4. Numerical integration

The numerical integration of expression (35) in the case
of touching spheres is performed in the (ξ, η) space us-
ing eqs. (A.4), (A.20), (A.21), (A.22) and (A.23). The
space occupied by the fluid corresponds to the interval
[−1, α]× [0,+∞]× [0, 2π]. We discretized the range [−1, α]
into 102 intervals. We also limited the interval of integra-
tion in the η-direction to the range [10−5, 10] (and di-
vided it into 102 intervals as well) since i) the numerical
integration could not be achieved for small values of η,
ii) no difference was noticed in the result for upper bound-
aries greater than 10. The computation itself was done by
means of the Legendre-Gauss Quadrature method [45].

Appendix B. Mathematics of separated

spheres

Although the use of bispherical coordinates is more classi-
cal, we give in the following the same technical information
as the one given for touching spheres for consistency.

Appendix B.1. Bispherical coordinates

The bispherical coordinate system (ξ, η, φ) is defined by
the transformation

x =
c sin η cos φ

cosh ξ − cos η
, y =

c sin η sin φ

cosh ξ − cos η
,

z =
c sinh ξ

cosh ξ − cos η
, (B.1)

2 The general expression of the gradient operator in curvi-
linear coordinates is ∇ =

P

q
h−1

q ∂q eq.
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which implies

ρ =
c sin η cos φ

cosh ξ − cos η
, (B.2)

since ρ = (x2 + y2)1/2. The prefactor c depends on the
geometry. So, for radii ratio r and distance h, the dimen-
sionless constant c is given by

c =

[

h4 + (r2 − 1)2 − 2h2(r2 + 1)

4h2

]1/2

. (B.3)

The surface of the upper (small) and lower (large) spheres
are then given by ξ = α and ξ = β, with

α = sinh−1
( c

r

)

and β = − sinh−1 c. (B.4)

The scale factors hq = |∂r/∂q| (q = η, ξ, φ) for the
bispherical coordinate system are

hξ =
c

cosh ξ − cos η
, hη =

c

cosh ξ − cos η
,

hφ =
c sin η

cosh ξ − cos η
, (B.5)

such that the Jacobian of the transformation (ξ, η, φ) 	→
(x, y, z) is

J = hηhξhφ =
c3 sin η

(cosh ξ − cos η)3
. (B.6)

Similar to the case of touching spheres, we need the
expressions of the unit basis vectors for the cylindrical
system and the Jacobian matrices of the transformation
(η, ξ, φ) 	→ (ρ, φ, z) and its inverse. Knowing the expres-
sions of the basis unit vectors for the bispherical coordi-
nate system, one straightforwardly obtains the basis unit
vector for the cylindrical coordinates system

eρ = −
sinh ξ sin η

cosh ξ − cos η
eξ +

cosh ξ cos η − 1

cosh ξ − cos η
eη, (B.7)

ez =
1 − cosh ξ cos η

cosh ξ − cos η
eξ −

sinh ξ sin η

cosh ξ − cos η
eη. (B.8)

Finally, from the third term in eq. (B.1) and eq. (B.2),
one gets the Jacobian matrix of the transformation
(η, ξ, φ) 	→ (ρ, φ, z), which we can invert to obtain

∂(ξ, η)

∂(ρ, z)
=

1

c

(

− sinh ξ sin η cosh ξ cos η − 1

1 − cosh ξ cos η − sinh ξ sin η

)

. (B.9)

Appendix B.2. Auxiliary translational flow and viscous
drag

The solution for separated spheres translating along their
centerline was given by Stimson and Jeffrey [39] in the
form of a discrete series

ψ̂ = (cosh ξ − cos η)S(ξ, η), (B.10)

where

S(ξ, η) =

∞
∑

n=1

Un(ξ)Vn(η), (B.11)

with

Un(ξ) = An cosh(n − 1/2)ξ + Bn sinh(n − 1/2)ξ

+Cn cosh(n + 3/2)ξ + Dn sinh(n + 3/2)ξ,(B.12)

Vn(η) = Pn−1(cos η) − Pn+1(cos η). (B.13)

In the expression of Un, the constants An, Bn, Cn and
Dn depend on the geometry of the system i.e. α and β
as defined by (B.4). Their expression are given in Stimson
and Jeffery’s original article and are not reproduced here3.

The expression of D (cf. sect. A.2) in terms of bi-
spherical coordinates can be derived using (B.7), (B.8)
and (B.9), and one gets

D =
(cosh ξ − cos η)2

c2 sin η

[

∂

∂η
eξ −

∂

∂ξ
eη

]

. (B.14)

Finally, velocity components for the auxiliary flow are
given by

ûξ =
(cosh ξ − cos η)2

c2 sin η

∂ψ̂

∂η
, (B.15)

ûη = −
(cosh ξ − cos η)2

c2 sin η

∂ψ̂

∂ξ
, (B.16)

where

∂ψ̂

∂η
= −

3

2

sin η

(cosh ξ − cos η)5/2

∞
∑

n=1

UnVn

+(cosh ξ − cos η)3/2
∞
∑

n=1

Un
dVn

dη
, (B.17)

∂ψ̂

∂ξ
= −

3

2

sinh ξ

(cosh ξ − cos η)5/2

∞
∑

n=1

UnVn

+(cosh ξ − cos η)3/2
∞
∑

n=1

Vn
dUn

dη
, (B.18)

with

dUn

dξ
= An(n − 1/2) sinh(n − 1/2)ξ

+Bn(n − 1/2) sinh(n − 1/2)ξ

+Cn(n + 3/2) sinh(n + 3/2)ξ

+Dn(n + 3/2) cosh(n + 3/2)ξ, (B.19)

dVn

dη
= (2n + 1) sin ηPn(cos η). (B.20)

3 Note that the constant c is referred to as a in Stimson’s
original article [39].
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The drag coefficient for each sphere is also given in Stim-
son and Jeffrey’s paper (eqs. (34) and (35)). After the
summation of these two equations, the drag coefficient for
the two spheres as a rigid body has the form

|f̂ | = −
25/2

c

∞
∑

n=1

(2n + 1)(An + Cn). (B.21)

Appendix B.3. Zeroth-order solution and advective
term

As in the case of the touching spheres, the advective term
in the integrand of eq. (35) has to be expressed in terms of

bispherical coordinates. The Stokes solution u(0) = u
(0)
φ eφ

to the problem of two rotating separated spheres was cal-
culated by Jeffery [40]. Considering the expression of the
gradient in tangent-sphere coordinates and knowing that
(as in the previous case) deφ/dφ = −eρ, we have

(u(0) · ∇)u(0) =
u

(0)
φ

2

hφ

[

sinh ξ sin η

cosh ξ − cos η
eξ

+
1 − cosh ξ cos η

cosh ξ − cos η
eη

]

, (B.22)

where

u
(0)
φ = (cosh ξ − cos η)1/2

∞
∑

n=1

[Hn cosh(n + 1/2)ξ

+Gn sinh(n + 1/2)ξ]P 1
n(cos η), (B.23)

with

Hn =
23/2c

sinh(n + 1/2)(α + β)

[

e−(n+1/2)α sinh(n + 1/2)β

+e−(n+1/2)β sinh(n + 1/2)α
]

, (B.24)

Gn = −
23/2c

sinh(n + 1/2)(α + β)

[

e−(n+1/2)α cosh(n + 1/2)β

+e−(n+1/2)α cosh(n + 1/2)β
]

, (B.25)

and where P 1
n is the associated Legendre polynomial of

order 1 and degree n.

Appendix B.4. Numerical integration

The numerical integration of eq. (35) in the case of sep-
arated spheres is performed in the (ξ, η, φ) space us-
ing eqs. (B.6), (B.15), (B.16), (B.21) and (B.22). The
space occupied by the fluid corrsponds to the interval
[β, α]× [0, π]× [0, 2π]. We discretized the range [β, α] into
102 intervals. We also limited the interval of integration in
the η-direction to the range [10−5, π] since the numerical
integration could not be achieved for a lower boundary
strictly equal to zero. The computation itself was done by
mean of the Legendre-Gauss Quadrature method [45].
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