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We numerically study the evolution of elastic standing waves in disordered disk systems with a focus

on the dispersion relations of rotational sound. As on a lattice, the rotational mode exhibits an optical-like

dispersion relation in the high frequency regime, representing a shoulder in the vibrational density of states

and fast oscillations of the autocorrelations of rotational velocities. If tangential stiffness between the disks

is large enough, a lattice-based model perfectly describes the dispersion relation of the rotational mode. If it is

comparable to or smaller than the normal stiffness, the model fails for short wavelengths. However, the dispersion

relation then follows the model prediction for the transverse mode, implying that the fast oscillations of disks’

rotations switch to acousticlike behavior. We evidence such a transition from rotational to transverse modes by

analyzing their respective participation of different degrees of freedom to the eigenvectors.

DOI: 10.1103/PhysRevE.99.012906

I. INTRODUCTION

Internal degrees of freedom bring about rich physical

phenomena where micropolar rotations of grains in granular

materials are one of the typical and classical examples. An

important feature of granular material is its sound character-

istics [1] as crucial to oil and gas exploration, geotechnical

investigations of soil, and understanding of seismic waves and

earthquakes [2]. To better interpret measurements, a model

which incorporates the microstructure is required. Incorpo-

rating the rotational degrees of freedom for the internal mi-

crostructure has been the basis of the continuum theory of

Cosserat and Cosserat [3]. So far, one of the most striking

aspects of Cosserat behavior is the existence of rotational

sound [4]. This has been extensively studied by experiments

[5] and numerical simulations [6–8] of granular crystals where

the characteristic “optical-like” dispersion relations, beyond

Cosserat, are well predicted by the theory of particles on a

lattice [9,10].

Despite these successes of lattice theory, granular materials

in nature are mostly disordered [11,12]. Small deviations from

the lattice display the characteristic low frequency behavior

[13]. In addition, various anomalies in acoustic sound in

disordered media, e.g., small dips in phase speeds and devi-

ations from the theory of Rayleigh scattering, have recently

been clarified by experiments on amorphous solids [14,15]

and numerical simulations of randomly arranged particles

[16–19]. Anomalies in the vibrational density of states

(vDOS), e.g., the boson peak near the glass transition temper-

ature [20–26] and a characteristic plateau near the jamming

transition [27–30], are not predicted by the classical theory

of elasticity. Moreover, shock waves [31–34] and solitary

*kuniyasu.saitoh.c6@tohoku.ac.jp

wave propagation [35,36] are interesting properties of real

disordered systems, although they are due to nonlinearity of

the interaction forces and anharmonic vibrations. Neglecting

the latter phenomena and reducing to rather simple two-

dimensional (2D) model systems, we focus on the question:

How does configurational disorder alter the characteristics of

rotational sound?

In this paper, we numerically investigate sound in two-

dimensional disordered disk systems where tangential elastic

forces between the disks enable the rotational sound. Since

we are interested mostly in elastic waves and want to apply

methods that require that the contact network does not change,

we restrict ourselves to the case of very small amplitudes

of perturbations, which has as a consequence that the fric-

tional Coulomb sliding limit is never reached by the contacts.

Molecular dynamics (MD) type simulations, for which these

are no limitations, show similar results as long as the am-

plitude of waves is not too large so that only a few sliding

and/or opening or closing events happen without larger scale

structural rearrangements. First, we analyze eigenfrequencies

of the systems and then simulate the evolution of elastic stand-

ing waves of longitudinal (L), transverse (TR), and rotational

(RT) modes. Calculating autocorrelation functions and power

spectra of these modes, we examine the dependence of their

dispersion relations on the strength of tangential forces. We

describe optical-like dispersion relations of the RT mode by

a modified lattice-based model. Interestingly, we find that the

RT mode exhibits a remarkable transition from the optical-like

branch to an acoustic branch at a characteristic wavelength.

We analyze closer these transitions by eigenvectors of the disk

system. In the following, we explain our numerical methods in

Sec. II and show our results in Sec. III. We discuss our results

in Sec. IV and conclude our findings in Sec. V. We summarize

full details of our methods in Appendices A–C and provide

additional data in Appendices D–G.
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II. METHOD

To study sound in disk systems, we introduce their dynam-

ical matrix. If the system consisting of N disks is initially in

mechanical equilibrium, small vibrations of the disks around

their initial positions {ri (0)} (i = 1, . . . , N ) are described by

the equations of motion,

Mü(t ) = −Du(t ), (1)

where t denotes time and the 3N -dimensional displacement

vector,

u(t ) ≡ [u1(t ), θ1(t ), . . . , uN (t ), θN (t )]T (2)

includes translational displacements on the xy plane, ui (t ) ≡
ri (t ) − ri (0), and angular displacements θi (t ). On the left-

hand side of Eq. (1), the 3N × 3N mass matrix M is diagonal.

On the other hand, D is the 3N × 3N Hessian which consists

of second derivatives of elastic energy (see Appendix A for

full details). In this paper, we model the elastic energy by har-

monic potentials in normal and tangential directions where the

normal (tangential) stiffness is given by kn (kt ). We prepare

initial disordered configurations {ri (0)} by MD simulations

where every disk has the same mass m (see Appendix B).

In the following analyses, we scale every length and time

by the mean disk diameter d0 and time unit t0 ≡
√

m/kn,

respectively.

III. RESULTS

In this section, we show our numerical results of the

vDOS (Sec. III A) and dispersion relations (Sec. III B). We

compare the dispersion relations with the lattice-based model

(Sec. III C) and analyze the transition behavior of the RT mode

(Sec. III D). Then, we discuss the frequency range of the RT

mode (Sec. III E).

A. Vibrational density of states

Assuming vibrational motions of the disks around initial

positions, we substitute u(t ) = ūeIωt into Eq. (1), where

ū, I , and ω are the amplitude, imaginary unit, and angular

frequency, respectively. Then, we numerically solve an eigen-

value problem M−1Dūq = ω2
q ūq to find the eigenfrequencies

ωq and eigenvectors ūq (q = 1, . . . , 3N ). Figure 1 displays

distributions of the eigenfrequencies, i.e., vDOS (solid lines)

where we averaged every vDOS over 100 different initial con-

figurations of N = 2048 disks. Here, we change the stiffness

ratio,

ρ ≡
kt

kn

, (3)

and also plot the result of frictionless disks, i.e., ρ = 0 (dotted

line). The highest peak around ωt0 ≃ 2.3 for frictionless disks

shifts to higher frequencies with increasing the stiffness ratio.

In addition, a shoulder, which does not exist in the vDOS

of frictionless disks, develops for higher frequencies (2.3 �
ωt0 � 6.6) such that the cutoff frequency ωc at the right end of

vDOS, i.e., g(ω > ωc ) = 0, greatly increases from 2.3t−1
0 to

6.6t−1
0 . Therefore, the high frequency band (the shaded region

in Fig. 1) is characteristic of disordered disk systems with

tangential elastic forces. Note that there is a secondary peak
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FIG. 1. The vDOS of disordered disk systems with tangential

elastic forces (solid lines) where the area fraction is φ = 0.9 and

the stiffness ratio ρ increases as listed in the legend. The dotted

line is the vDOS of disordered frictionless disks with the same area

fraction. The shaded region represents the high frequency band for

ρ = 2 where the vDOS ends at the cutoff frequency ωc as indicated

by the arrow. The green vertical arrow indicates a secondary peak of

vDOS for ρ = 0.4.

if the stiffness ratio is small and the overpopulation of low

frequency states for ρ = 0 vanishes and becomes linear within

the fluctuations for ρ > 0. In Appendix D, we show that the

vDOS in the high frequency regime is insensitive to the area

fraction of the disks φ. Thus, we use φ = 0.9 in the following

analyses.

B. Dispersion relations

To investigate how elastic waves evolve in the systems, we

employ a similar method as Gelin et al. [16]: We numerically

integrate the equations of motion Eq. (1) under periodic

boundary conditions. The number of disks is now increased

to N = 32 768, and initial velocities of the disks are given by

sinusoidal standing waves,

{u̇i (0), θ̇i (0)} = {A, Aθ } sin[k · ri (0)], (4)

where A and Aθ are small amplitudes and k is the wave vector.

Combining different amplitudes and wave vectors, we activate

three different elastic waves, i.e., L, TR, and RT modes as

listed in Table I [37]. The RT mode represents the evolution

of micropolar rotations [6] which do not exist in friction-

less systems. Because Eq. (1) describes purely harmonic

TABLE I. The L, TR, and RT modes excited by different combi-

nations of A = (Ax, Ay ), Aθ , and k = (kx, ky ), where A and Aθ are

scaled by d0/t0 and t−1
0 , respectively.

Ax Ay Aθ kx ky

L 10−3 0 0 k 0

0 10−3 0 0 k

TR 10−3 0 0 0 k

0 10−3 0 k 0

RT 0 0 10−3 k 0

0 0 10−3 0 k

012906-2



ROTATIONAL SOUND IN DISORDERED GRANULAR MATERIALS PHYSICAL REVIEW E 99, 012906 (2019)

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100

Frictional

Frictionless

(a)

(b)

(c)

FIG. 2. The VAFs of (a) L, (b) TR, and (c) RT velocities, where

ρ = 1 and kd0 ≃ 0.38π are used. The open circles are obtained from

numerical solutions of Eq. (1), whereas the solid lines represent

damped oscillations Eq. (5). In (a) and (b), our results of frictionless

disks ρ = 0 are also shown (green dotted lines). Note the different

horizontal scale in (c).

oscillations of the disks around initial positions, any anhar-

monic behavior, e.g., opening and closing contacts [38], is not

taken into account.

From numerical solutions of Eq. (1), we calculate normal-

ized velocity autocorrelation functions (VAFs) of L, TR, and

RT velocities as Cl (k, t ), Ct (k, t ), and Cr (k, t ), respectively,

for various wave numbers k ≡ |k| in Eq. (4) (see Appendix C).

Figure 2 shows the time development of the VAFs (open cir-

cles) where we also plot our results of frictionless disks [green

dotted lines in (a) and (b)]. As expected, the oscillations of the

L mode are faster than those of the TR mode [Figs. 2(a) and

2(b)]. The oscillations of the L and TR modes are faster in

the disk systems with tangential elastic forces that increase

the macroscopic elastic constants. We also note that the decay

of the VAFs, which is caused by scattering attenuation of

the acoustic sound, becomes weaker. On the other hand,

the oscillation of the RT mode is much faster than those of the

acoustic modes [Fig. 2(c)], indicating that eigenmodes in the

high frequency band (the shaded region in Fig. 1) are closely

related to micropolar rotations of the disks. Moreover, the

VAF of the RT mode decays much faster, implying a stronger

scattering attenuation of the rotational sound.

Dispersion relations of the L, TR, and RT modes are rep-

resented by their power spectra, i.e., Sl (k, ω), St (k, ω), and

Sr (k, ω), respectively (Appendix C). Figure 3 displays loga-

rithms of the spectra ln Sα (k, ω) (α = l, t, r ). In the disper-

sion relations of both the L and the TR modes [Figs. 3(a) and

3(b)], we observe strong ordinary acoustic branches where the

speed defined as the slope limk→0 ω/k of the L mode is higher

than that of the TR mode. On the other hand, the RT mode

exhibits a characteristic optical-like branch [Fig. 3(c)] which

exists only in a high frequency regime (2.5 � ωt0 � 4.7) as

indicated by the double-headed vertical arrow in Fig. 3(c).

Because the vDOS is given by an integral of the dispersion

relation over the whole wave number range [1], the high

frequency band in the vDOS (the shaded region in Fig. 1)

is the result of the optical-like branch. In addition, the weak

optical-like branch in Fig. 3(b) and the weak acoustic branch

in Fig. 3(c) mean that rotations are always coupled with

transverse (shear) motions [6].

C. Lattice-based model

The optical-like branch of the RT mode, which is spanning

the high frequency band, is a striking feature of the disk

systems involving rotational degrees of freedom. To quanti-

tatively analyze its properties, we extract dispersion relations

from numerical solutions of Eq. (1). For this purpose, we fit

damped oscillations to the VAFs as

Cα (k, t ) = e−γα (k)t cos ωα (k)t (5)

(α = l, t, r). The dispersion relation of each mode is given by

the dominant frequency ωα (k), whereas the scattering attenu-

ation of each mode is quantified by the attenuation coefficient

γα (k) [39]. The solid lines in Fig. 2 represent the damped

oscillations Eq. (5) where we confirm perfect agreements with

the VAFs by adjusting the parameters ωα (k) and γα (k). In

Appendix E, we summarize our results of the acoustic modes:

Small dips are observed in the phase speeds cα (k) ≡ ωα (k)/k,

whereas the attenuation coefficients obey the Rayleigh predic-

tion of scattering attenuation γα (k) ∼ k3 (α = l, t ), which is

not the case for frictionless disks [16].

Figure 4 displays dispersion relations of the optical-like

RT modes ωr (k) (symbols) where the frequency band shifts

to higher frequencies with increasing the stiffness ratio ρ. To

explain such a dependence of optical-like branches on ρ, we

modify the discrete model of granular crystals [6]. Assuming

that the long wavelength behavior of elastic waves is not

affected by the difference between microstructures (order

and disorder), we employ the same functional forms of the

dispersion relations derived for monodispersed grains on a

lattice (see also Appendix F). Here, we represent effects of

disorder by: (i) the decrease in sound speed due to dispersion

and (ii) modifying the lattice constant. Then, the dispersion

relations of the TR and RT modes are

ωt (k) = at

√

f (k, ρ) −
√

g(k, ρ), (6)

ωr (k) = ar

√

f (k, ρ) +
√

g(k, ρ), (7)

respectively, where the prefactor aα (α = t, r ) is the re-

sult of the decrease in sound speed and the functions are

012906-3
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FIG. 3. Dispersion relations of the (a) L, (b) TR, and (c) RT modes, where ρ = 1. The gray scale represents logarithms of the power spectra

ln Sα (k, ω) (α = l, t, r ) where the frequency and wave number are scaled by using t0 and d0, respectively. The frequency band of the RT mode

is indicated by the double-headed vertical arrow in (c).

introduced as

f (k, ρ) = 2 sin2(kl) + 9ρ cos2(kl) + 11ρ, (8)

g(k, ρ) = 4 sin4(kl) + ρ(300ρ − 4) cos2(kl)

− ρ

(

121

4
ρ + 21

)

sin2(2kl) + ρ(ρ + 4). (9)

In Eqs. (8) and (9), we estimate the length scale l by consid-

ering the first Brillouin zone |kl| � π/2: Equating the maxi-

mum wave number kmax ≡ π/2l, in the model with π/d0, we

obtain l ≈ d0/2, where d0 is the mean disk diameter. The lines

in Fig. 4 are the model predictions of ωr (k) [Eq. (7)], where

ar ≃ 0.73t−1
0 and l ≃ 0.446d0(≈ d0/2) are used for all ρ. In

this figure, all the dispersion relations for long wavelengths

kd0 � π/2 are consistent with the lattice-based model since

the difference in microstructures, i.e., order and disorder,

should not affect the long wave behavior (see Appendix F

for the cases of L and TR modes). Moreover, if the stiffness

ratio is fairly large ρ > 1, the dispersion relations are perfectly

described by the model for all wavelengths. However, if the

stiffness ratio is small ρ < 1, we observe deviations from the

 0

 1

 2

 3

 4

 5

 6

 7

0 π/4 π/2 3π/4 π

FIG. 4. Dispersion relations of the RT mode where the symbols

are ωr (k) in Eq. (5) and the lines are the model predictions Eq. (7).

The stiffness ratio increases as ρ = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,

1.4, 1.6, 1.8, and 2.0 (as indicated by the arrow).

model for short wavelengths k > kc where the characteristic

wave number kc monotonously decreases with decreasing

stiffness ratio.

D. Transition behavior of the RT mode

To clarify the deviations in the short wavelengths, we

closely look at the dispersion relations with small stiffness

ratios. Figure 5 shows (a) the logarithm of the power spec-

trum Sr (k, ω) and (b) dispersion relations ωt (k) and ωr (k),

obtained from the fitting to VAFs [Eq. (5)] where the stiffness

ratio is given by ρ = 0.2. In Fig. 5(a), the optical-like branch

ends at k = kc and drops to another branch in k > kc, which

makes a small gap in the frequency between 1.2 < ωt0 < 1.5.

Accordingly, in Fig. 5(b), the dispersion relation of the RT

mode (squares) suddenly drops to lower values at k = kc

[from branch (iv) to (ii)]. By contrast, that of the TR mode

(crosses) jumps from branch (i) to (iii) such that the TR

(RT) mode dominates higher (lower) frequencies in the short

wavelengths. The dispersion relation of the RT mode in k < kc

agrees with the model of ωr (k) [Eq. (7), the solid line in

Fig. 5(b)], whereas it is well explained by the model of ωt (k)

[Eq. (6), the dotted line in Fig. 5(b)] if k > kc. Therefore, it

seems that micropolar rotations exhibit a transition from the

optical-like fast oscillations to the acoustic wave behavior.

We examine the transition behavior by the eigenvectors of

the dynamical matrix ūq = {ūix, ūiy, θ̄i}, i.e., displacements

associated with each eigenfrequency. We quantify kinetic

energy for each degree of freedom by

Kν ≡
∑

i

m

2N
˙̄u2
iν, (10)

Q ≡
∑

i

Ii

2N
˙̄θ2
i , (11)

where ν = x, y and ˙̄uq ≡ ūq/t0. The translational energy

K ≡ (Kx + Ky )/2 and rotational one Q represent the inten-

sity of the acoustic (L and TR) modes and that of the RT

mode, respectively. As shown in Fig. 6(a), if the stiffness

ratio is large enough, K and Q dominate low (ωt0 � 1) and

high (ωt0 � 3) eigenfrequencies, respectively. In this case,

the acoustic branches at low frequencies are well separated

from the optical-like RT branch in the high frequency band

(Fig. 3) where the shoulder of the vDOS [the dashed line in

Fig. 6(a)] for high frequencies 3 < ωt0 < 4.6 is mostly owned

012906-4
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FIG. 5. (a) A three-dimensional (3D) plot of ln Sr (ω, k) where

the characteristic wave number kc is indicated by the arrow.

(b) Dispersion relations obtained from Eq. (5) where the crosses and

squares are ωt (k) and ωr (k), respectively. The dotted and solid lines

represent the models Eqs. (6) and (7), respectively. In both (a) and

(b), the stiffness ratio is ρ = 0.2.

by micropolar rotations Q. However, if the stiffness ratio

is small [Fig. 6(b)], there are four regions, i.e., (i) K > Q,

(ii) K < Q, (iii) K > Q, and (iv) K < Q, corresponding to

branches (i)–(iv) in Fig. 5(b). Thus, the transition from the

optical-like to acoustic behavior of micropolar rotations is

also evidenced by the eigenvectors (see also supporting data

in Appendix G). In addition, the secondary peak of vDOS

[the vertical arrow in Fig. 6(b)] represents the upper end of

(ii), i.e., the RT mode on the acoustic branch.

E. Frequency band of the RT mode

The lattice-based model Eq. (7) also predicts frequency

bands of the RT mode as

ωr (kmax) � ω � ωr (0) (ρ > 1/7),

ωr (0) � ω � ωr (kmax) (ρ < 1/7), (12)

where the limits coincide ωr (0) = ωr (kmax) at ρ = 1/7 [6].

The shaded region in Fig. 7 is the model prediction of the

frequency bands where the solid, dotted, and dashed lines
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FIG. 6. Semilogarithmic plots of intensities of K (blue dot-

ted lines), Q (red solid lines), and g(ω) multiplied by 5 × 10−3

(dashed lines) where the stiffness ratios are given by (a) ρ = 1 and

(b) ρ = 0.4. The green vertical arrow in (b) indicates the secondary

peak of vDOS (as in Fig. 1).

represent

ωr (0) = t−1
0 cr

√

40ρ, (13)

ωr (kmax) = 2t−1
0 cr

√

3ρ + 1, (14)

ωt (kmax) = t−1
0 ct

√

10ρ, (15)

respectively. Our numerical results of the limit ωr (0) (circles)

agree well with the model over the whole range of stiffness

ratios. In addition, the cutoff frequency of vDOS ωc (crosses)

shows qualitatively the same behavior as ωr (0), where ωc

is slightly higher because of the nonsharp upper limit of

the dispersion relation. If the stiffness ratio is large ρ > 1

numerical results of the limit ωr (kmax) (squares) are explained

by the model. However, if the stiffness ratio is small ρ <

1, the limit switches to the acoustic branch, resulting from

the transition of the RT mode (Fig. 5). Therefore, different

from granular crystals [6], the upper and lower limits of the

RT mode ωr (0) and ωr (kmax) do not coincide. We also note

that the limit frequency of the TR mode ωt (kmax) (triangles)

slightly accedes to the model predictions.

IV. DISCUSSION

In this paper, we have numerically investigated sound

in two-dimensional disk systems with the focus on: (i) the
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FIG. 7. Frequency bands of the RT mode where the red solid,

blue dotted, and green dashed lines are the model predictions of

ωr (0), ωr (kmax ), and ωt (kmax ), respectively [Eqs. (13)–(15)]. The

shaded region is the model prediction of the frequency bands

Eq. (12). The circles, squares, and triangles are numerical results

of limit frequencies ωr (0), ωr (kmax ), and ωt (kmax ), respectively,

whereas the crosses are the cutoff frequencies ωc estimated from

vDOS. The inset shows a double logarithmic plot where the red solid

and green dashed lines have the slope 1/2.

configurational disorder and (ii) the strength of tangential

stiffness. A high frequency band or shoulder in the vDOS,

which develops for higher frequencies with increasing the

stiffness ratio (or tangential forces), is characteristic of disk

systems involving rotational degrees of freedom. For strong

tangential coupling, we observe that the RT mode exhibits

much faster oscillations than those of the acoustic L and

TR modes with a band gap in between. The fast oscillations

of the RT mode (or micropolar rotations) are represented

by an optical-like branch in the dispersion relation, which

corresponds to the high frequency band in the vDOS. We

explain the characteristic optical-like dispersion relations by

introducing a modified lattice-based model, which perfectly

describes our numerical results in the case that tangential

forces are strong enough and in any case of small wave

numbers. It is remarkable, however, that the RT mode exhibits

a transition to the acoustic branch in the short wavelength

regime if the tangential forces are comparable with or smaller

than the normal forces. This transition is also evidenced by

our analysis of eigenvectors and is related to the secondary

peak in the vDOS.

Furthermore, even though an ideal Hertz-Mindlin contact

would feature a fixed ratio ρ = kt/kn between tangential

and normal stiffnesses, we have in mind realistic contacts

with imperfect possibly rough or inhomogeneous surfaces.

Therefore, we cover a wide range of stiffness ratios instead

of only one value also given the fact that we are in a 2D

model system anyway where ρ is different than in 3D. We also

emphasize that some results, such as the transition between

translational and rotational modes occurs for relatively small

ratios ρ.

In our numerical simulations, we model both the normal

and the tangential forces by elastic springs. Thus, the standing

waves presented are purely elastic so that total energy is

conserved throughout simulations. This means that the decay

of the VAFs is solely caused by scattering attenuation (and not

by energy dissipation). However, in reality, dissipative forces,

e.g., the Coulomb or sliding friction and viscous forces, also

exist between the disks in contact. To take into account such

dissipation of energy requires some generalizations of our

model [40,41] as left to future work. Similarly, it is interesting

to study how other interaction forces, e.g., the rolling resis-

tance [6] and the attractive interaction due to capillary bridges

in wet granular material [42–44], affect the results. Moreover,

the influence of microstructure [1], e.g., size distributions and

polydispersity, on the rotational sound requires more research.

For practical purposes, numerical studies in three dimensions

are crucial where an additional degree of freedom, i.e., the

twisting motion of spheres in contact, enables a pure rota-

tional (R) mode [6,9]. Therefore, further studies are needed to

clarify how configurational disorder affects the L, TR, RT, and

R modes in three-dimensional granular media. In addition,

wave diffusion [45] and localization phenomena [46,47] are

also important aspects of sound in granular material.

V. CONCLUSION

We conclude that rotational sound exhibits a characteristic

optical-like dispersion relation even in disordered systems. If

the tangential forces are weak, it flips to the acoustic branch

at a characteristic wavelength so that configurational disorder

enables the acousticlike behavior of micropolar rotations on

small enough scales. Although rotational waves are usually

not propagating well in most systems, this transition from

rotational to acoustic modes of wave propagation might be

useful for designing (meta) materials that do feature rotational

wave transport over long distances.
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APPENDIX A: MASS MATRIX AND DYNAMICAL MATRIX

In this appendix, we show the details of the mass matrix

and dynamical matrix in Eq. (1).

The 3N × 3N mass matrix is given by

M =

⎛

⎜

⎝

mi 0 0

0 mi 0

0 0 Ii

⎞

⎟

⎠

i=1,...,N

, (A1)

where mi and Ii = mid
2
i /8 with the disk diameter di are the

mass and moment of inertia of the disk i, respectively.
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The 3N × 3N Hessian is given by second derivatives of

the elastic energy E as

D =

⎛

⎜

⎜

⎝

∂2E
∂xi∂xj

∂2E
∂xi∂yj

∂2E
∂xi∂θj

∂2E
∂yi∂xj

∂2E
∂yi∂yj

∂2E
∂yi∂θj

∂2E
∂θi∂xj

∂2E
∂θi∂yj

∂2E
∂θi∂θj

⎞

⎟

⎟

⎠

i,j=1,...,N

. (A2)

We introduce elastic energy as the sum of pairwise potentials,

i.e., E =
∑

i>j eij . The pairwise potential is decomposed

into harmonic potentials stored in the normal and tangential

directions as

eij =
kn

2
ξ 2
ij +

kt

2
u⊥2

ij , (A3)

where kn and kt are the normal and tangential stiffnesses,

respectively. In Eq. (A3), ξij ≡ (di + dj )/2 − rij > 0 repre-

sents the overlap between the disks (i and j ) in contact,

where rij ≡ |rij | with the relative position between the disks

rij ≡ ri − rj is the interparticle distance. In addition,

u⊥
ij ≡ uij − u

‖
ij − θ ij × nij (A4)

is the relative displacement in the tangential direction where

we introduced relative displacements as

uij ≡ ui − uj , (A5)

u
‖
ij ≡ (uij · nij )nij , (A6)

θ ij ≡ 1
2
(diθi + djθj )nz, (A7)

with the normal unit vector nij ≡ rij/rij and out of the xy-

plane unit vector nz (parallel to the z axis). Then, the second

derivatives of Eq. (A3) are given by

∂2eij

∂xi∂xi

= kn − kn

(

1 +
ξij

rij

− ρ

)

n2
ijy, (A8)

∂2eij

∂xi∂yi

= kn

(

1 +
ξij

rij

− ρ

)

nijxnijy, (A9)

∂2eij

∂yi∂yi

= kn − kn

(

1 +
ξij

rij

− ρ

)

n2
ijx, (A10)

∂2eij

∂xi∂θi

=
kt

2
dinijy, (A11)

∂2eij

∂yi∂θi

= −
kt

2
dinijx, (A12)

∂2eij

∂θi∂θi

=
kt

4
d2

i , (A13)

where the x and y components are written as ri = (xi, yi ),

and nij = (nijx, nijy ). Note that the second derivatives with

different indices (i and j ) are related to Eqs. (A8)–(A13) as

∂2eij

∂αi∂βj

= −
∂2eij

∂αi∂βi

, (A14)

∂2eij

∂αi∂θj

=
dj

di

∂2eij

∂αi∂θi

, (A15)

∂2eij

∂θi∂θj

=
dj

di

∂2eij

∂θi∂θi

, (A16)

where α, β = x, y.
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FIG. 8. A double logarithmic plot of the average overlap scaled

by the mean disk diameter 〈ξij 〉/d0 (circles) where the horizontal

axis is the proximity to jamming �φ. The dotted line represents

the linear relation 〈ξij 〉/d0 = A�φ where the proportionality and

the jamming transition density are given by A ≃ 0.3715 and φJ ≃
0.8411, respectively. Here, we take sample averages of 〈ξij 〉 over 103

different configurations of N = 2048 frictionless disks.

APPENDIX B: DISORDERED CONFIGURATIONS

In this appendix, we explain how to prepare initial disor-

dered configurations by MD simulations.

To avoid crystallization, we randomly distribute a 50:50

binary mixture of N frictionless disks (kt = 0) in a periodic

box where different kinds of disks have the same mass m and

different diameters dL and dS (with ratio dL/dS = 1.4). Then,

we minimize elastic energy En =
∑

i>j knξ
2
ij/2 with the aid

of the FIRE algorithm [48] and stop the energy minimiza-

tion once the maximum of disk accelerations becomes less

than 10−6knd0/m. During the energy minimization, equations

of motion are numerically integrated by the velocity Verlet

scheme where the time increment can increase from the initial

value �tini = 10−2
√

m/kn to the maximum �tmax = 10 �tini,

according to the FIRE algorithm [48]. In addition, we use

recommended values for other parameters (Nmin = 5, finc =
1.1, fdec = 0.5, αstart = 0.1, and fα = 0.99 as in Ref. [48])

in FIRE. After the energy minimization, no potential energy

is stored in tangential direction so that the system is still

in mechanical equilibrium even if we switch on the tangen-

tial forces, i.e., E = En, even though kt > 0. Therefore, our

systems are initially unstressed in the tangential direction

[49]. Note that stressed systems can be made if we prepare

initial disordered configurations with tangential forces (kt >

0) which make the configurations history dependent. Figure 8

displays a double logarithmic plot of the average overlap

between the disks in contact 〈ξij 〉. We confirm, in our dis-

ordered (frictionless) disk packings, the well-known critical

scaling 〈ξij 〉 ∼ �φ, where �φ ≡ φ − φJ is the proximity to

the jamming transition density φJ .

APPENDIX C: THE VAFS AND POWER SPECTRA

In this appendix, we summarize the details of the VAFs and

power spectra.
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We calculate Fourier transforms of disks’ velocities as

{u̇k(t ), θ̇k(t )} =
N

∑

i=1

{u̇i (t ), θ̇i (t )}e−Ik·ri (t ), (C1)

where the position ri (t ) is also given by numerical solutions

of Eq. (1). The L and TR velocities are defined as

u̇
‖
k(t ) ≡ {u̇k(t ) · k̂}k̂, (C2)

u̇⊥
k (t ) ≡ u̇k(t ) − u̇

‖
k(t ), (C3)

respectively, where k̂ ≡ k/k is a unit vector. Then, the nor-

malized VAFs of L, TR, and RT velocities are given by

Cl (k, t ) =
〈u̇‖

k(t ) · u̇
‖
−k(0)〉

〈|u̇‖
k(0)|2〉

, (C4)

Ct (k, t ) =
〈u̇⊥

k (t ) · u̇⊥
−k(0)〉

〈|u̇⊥
k (0)|2〉

, (C5)

Cr (k, t ) =
〈θ̇k(t )θ̇−k(0)〉

〈|θ̇k(0)|2〉
, (C6)

respectively.

The power spectra of L, TR, and RT velocities are intro-

duced as

Sl (k, ω) = 〈| ˜̇u‖
k(ω)|2〉, (C7)

St (k, ω) = 〈| ˜̇u⊥
k (ω)|2〉, (C8)

Sr (k, ω) = 〈| ˜̇θk(ω)|2〉, (C9)

respectively, where the Fourier transforms are given by

˜̇u
‖
k(ω) ≡

∫ ∞

0

u̇
‖
k(t )eIωtdt, (C10)

˜̇u⊥
k (ω) ≡

∫ ∞

0

u̇⊥
k (t )eIωtdt, (C11)

˜̇θk(ω) ≡
∫ ∞

0

θ̇k(t )eIωtdt. (C12)

APPENDIX D: DEPENDENCE OF VIBRATIONAL

DENSITY OF STATES ON THE AREA FRACTION

In this appendix, we show the dependence of vDOS on the

area fraction φ.

Figure 9 displays the vDOS, where the stiffness ratio is

fixed to ρ = 1 and the area fraction increases from φ =
0.8435 to 0.9. The distance from jamming for frictionless

disks is limited to φ − φJ > 10−3, and the vDOS is quite

insensitive to the area fraction.

APPENDIX E: PHASE SPEEDS AND ATTENUATION

COEFFICIENTS OF ACOUSTIC MODES

In this appendix, we present phase speeds cα (k) ≡
ωα (k)/k and attenuation coefficients γα (k) obtained from the

fitting of damped oscillations Eq. (5) to the VAFs of the

acoustic L and TR modes (α = l, t).
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FIG. 9. The vDOS of disordered disk systems with tangential

elastic forces (solid lines) where the stiffness ratio is ρ = 1 and the

area fraction increases as listed in the legend.

Figure 10 displays the phase speeds of (a) L and (b)

TR modes where the area fraction is fixed at φ = 0.9 and

the stiffness ratio ρ increases as indicated by the arrows.

The phase speeds shift to higher values with increasing ρ

and small dips can be found around kd0 ≃ 1 as reported in

Refs. [16,17]. As shown in Fig. 11, the attenuation power

law is well explained by the Rayleigh prediction in two-

dimensional γα (k) ∼ k3 (dashed lines). However, if ρ = 0 (if

 0.4
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FIG. 10. Semilogarithmic plots of the phase speeds of (a) L and

(b) TR modes where the area fraction is φ = 0.9. The stiffness ratio

increases as ρ = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 2.0

(as indicated by the arrows).
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FIG. 11. Double logarithmic plots of the attenuation coefficients

of (a) the L and (b) the TR modes where the area fraction and

stiffness ratio are as in Fig. 10. The dashed lines represent the

Rayleigh prediction in two-dimensional γα (k) ∼ k3 (α = l, t ).

the disks are frictionless), we observe a considerable deviation

from the Rayleigh prediction as reported in Ref. [16].

The phase speeds and attenuation coefficients depend on

the stiffness ratio as cα (k, ρ) and γα (k, ρ). Here, we re-

port their dependence on the stiffness ratio by taking their
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FIG. 12. (a) Double logarithmic plots of the difference

cα (kmin, ρ ) − cα (kmin, 0) (α = l, t ) where the squares (circles) are

the results of the L (TR) mode and the lines have the same slope

0.4. (b) Semilogarithmic plots of the attenuation coefficients where

the open symbols are the results at the smallest wave number

γα (kmin, ρ ), whereas the closed symbols are γα (2kmin, ρ ).

continuum limits. Figure 12(a) displays the difference

cα (kmin, ρ) − cα (kmin, 0), where kmin ≡ 2π/L with the lin-

ear system size L represents the smallest wave number.

The results of L (squares) and TR (circles) modes weakly
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FIG. 13. Dispersion relations of the L mode (circles) where the lines are model predictions in long wavelengths [Eq. (F1) fitted to the range

between 0 < kd0 < π/4]. The area fraction is fixed at φ = 0.9, whereas the stiffness ratio changes as displayed in each panel (right bottom).
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FIG. 14. Dispersion relations of the TR (pluses) and RT (squares) modes where the area fraction and stiffness ratio are as in Fig. 13. The

blue dotted and red solid lines are the model predictions Eqs. (6) and (7), respectively, whereas the green dashed lines is Eq. (6) fitted to the

data of the TR mode in long wavelengths (0 < kd0 < π/4).

increase with increasing the stiffness ratio where the lines

cα (kmin, ρ) − cα (kmin, 0) ∼ ρ0.4 are guides to the eyes [note

that the L mode is always faster than the TR mode,

cl (kmin, ρ) > ct (kmin, ρ) for 0 � ρ � 2]. The open symbols

in Fig. 12(b) are the attenuation coefficients at the smallest

wave number γα (kmin, ρ), whereas the closed symbols are the

results at the second smallest wave number γα (2kmin, ρ).

APPENDIX F: LATTICE-BASED MODEL

AND DISPERSION RELATIONS

In this appendix, we explain the modified lattice model of

the L mode and show additional data of dispersion relations.

In Ref. [6], Merkel and Luding studied vibrations of parti-

cles on a fcc lattice. The fcc structure can be seen as a dense

stack of square layers (A and B in the sequence ABAB · · · ),

and they are considered sound propagation along the axis

perpendicular to the layers. Assuming that every particle has

the same mass and diameter, they calculated normal and

tangential forces between the particles in contact. The contact

forces were modeled by linear elastic springs, and dispersion

relations were derived for the L, TR, and RT modes. We mod-

ify their results to describe dispersion relations in disordered

disk systems where the acoustic branch for the L mode is

given by

ωl (k) = al

√

8(ρ + 1) sin(kl). (F1)

In Eqs. (6), (7), and (F1), the prefactor aα (α = l, t, r ) is intro-

duced to represent the decrease in sound speed in disordered

systems (aα ≡ t−1
0 in the case of the fcc structure [6]).

Figure 13 displays the dispersion relations of the L mode

where we change the stiffness ratio from ρ = 0 to 2 as shown

in each panel (right bottom). The circles are obtained by

fitting damped oscillations Eq. (5) to the VAFs of the L

mode [Fig. 2(a)]. The lines are model predictions in long

wavelengths where we fit Eq. (F1) to the numerical results

of ωl (k) in the range between 0 < kd0 < π/4. Note that the

prefactor al in Eq. (F1) is adjusted to the data whereas the

length scale l = 0.446d0 is independent of the stiffness ratio.

As shown in Fig. 15, al (squares) monotonously decreases,

and the factor al/
√

ρ + 1 (triangles) further decreases with

increasing the stiffness ratio.

Figure 14 shows the dispersion relations of the TR (pluses)

and RT modes (squares) obtained by fitting Eq. (5) to the

VAFs. The green dashed lines represent the model predictions

of the TR mode in long wavelengths [Eq. (6) fitted to the

data in 0 < kd0 < π/4]. The length scale l = 0.446d0 is used

for the whole stiffness ratios, whereas the prefactor at is

adjusted to the data (see the circles in Fig. 15). The dispersion

relations of the RT mode are well described by the model

Eq. (7) (red solid lines) if the stiffness ratio is large (ρ � 0.8)

or the wave number is small enough. Importantly, both the

length scale (l = 0.446d0) and the prefactor (ar = 0.73t−1
0 )

are independent of the stiffness ratio. If the stiffness ratio is

small (ρ < 0.8), the RT mode exhibits a transition from the

optical-like to the acoustic branches. Then, the RT mode in

the acoustic branch is well captured by the model prediction of

 0.2

 0.4

 0.6

 0.8
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p
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r

FIG. 15. Prefactors, al (squares) and at (circles) in Eqs. (F1) and

(6) adjusted to the data in long wavelengths (0 < kd0 < π/4). The

triangles are the factor al/
√

ρ + 1.
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FIG. 16. Semilogarithmic plots of intensities of the translational energy K (blue dotted lines) and rotational one Q (red solid lines) where

the dashed lines are the vDOS g(ω) multiplied by 5 × 10−3. The area fraction and stiffness ratio are as in Fig. 13.

the TR mode Eq. (6) (blue dotted lines) where the length scale

and prefactor are modified as l = 0.516d0 and at = 0.83t−1
0

independently of the stiffness ratio. In frictionless systems,

the RT mode does not exist, and the model prediction of the

TR mode is always zero (ρ = 0 in Fig. 14).

APPENDIX G: TRANSLATIONAL

AND ROTATIONAL ENERGIES

In this appendix, we present supporting data of the eigen-

vector analyses.

Figure 16 shows the intensities of K (blue dotted lines)

and Q (red solid lines) where we also plot the vDOS g(ω)

multiplied by 5 × 10−3 (dashed lines). The stiffness ratio ρ

changes as displayed in each panel (right top), where K (Q)

dominates lower (higher) frequencies if the stiffness ratio

is large enough ρ � 0.8. In the case of ρ = 0 (frictionless

disks), the micropolar rotations do not exist, i.e., θ̄i = 0, and

the translational energy is constant K ≃ 10−4 because the

eigenvectors are normalized as |ūq |2 =
∑N

i=1(ū2
ix + ū2

iy ) =
const.
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