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Rotational stability of dynamic planets with
elastic lithospheres
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[11 We revisit the classic problem of the secular rotational stability of planets in response
to loading using the fluid limit of viscoelastic Love number theory. Gold (1955) and
Goldreich and Toomre (1969) considered the stability of a hydrostatic planet subject to an
uncompensated surface mass load and concluded that a mass of any size would drive true
polar wander (TPW) that ultimately reorients the load to the equator. Willemann

(1984) treated the more self-consistent problem where the presence of a lithosphere leads
to both imperfect load compensation and a remnant rotational bulge. Willemann
considered axisymmetric loads and concluded that the equilibrium pole location was
governed by a balance, independent of elastic lithospheric thickness, between the load-
induced TPW and stabilization by the remnant bulge. Our new analysis demonstrates that
the equilibrium pole position is a function of the lithospheric strength, with a convergence

to Willemann’s results evident at high values of elastic thickness (>400 km for an
application to Mars), and significantly larger predicted TPW for planets with thin
lithospheres. Furthermore, we demonstrate that nonaxisymmetric surface mass loads and
internal (convective) heterogeneity, even when these are small relative to axisymmetric
contributions, can profoundly influence the rotational stability. Indeed, we derive the
relatively permissive conditions under which nonaxisymmetric forcing initiates an inertial
interchange TPW event (i.e., a 90° pole shift). Finally, Willemann’s analysis is often
cited to argue for a small (<18°) TPW of Mars driven by the development of a Tharsis-
sized load. We show that even in the absence of the destabilizing effects of load
asymmetry, the equations governing rotational stability permit higher excursions of the
Martian rotation vector than has previously been appreciated.

Citation: Matsuyama, 1., J. X. Mitrovica, M. Manga, J. T. Perron, and M. A. Richards (2006), Rotational stability of dynamic planets
with elastic lithospheres, J. Geophys. Res., 111, E02003, doi:10.1029/2005JE002447.

1. Introduction

[2] The long-term (secular) rotational stability of terres-
trial planets subject to surface mass loading and internal
convective dynamics is a long-standing problem in geo-
physics framed by a series of seminal studies [e.g., Gold,
1955; Goldreich and Toomre, 1969]. Figure 1 provides a
schematic illustration of the basic physical elements that
have defined this classic discussion.

[3] Gold [1955], for example, discussed the stability of a
hydrostatic planet subject to an anomalous (i.e., nonhydro-
static or imperfectly compensated) load (Figures la—1Ic)
[see also Steinberger and O’Connell, 2002, Figure 1]. The
uncompensated load would act to push the rotation pole
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away (green arrow, Figure 1b) in a reference frame fixed to
the load. In the short term, the hydrostatic bulge would act
to stabilize the pole (i.e., retard polar motion). However,
since the hydrostatic rotational bulge of the planet would, in
time, relax to any new orientation of the rotation pole (e.g.,
Figure 1b), all memory of this previous orientation would
ultimately vanish (Figures 1b and 1c). That is, a hydrostatic
bulge provides no long-term rotational stability and the
reorientation of the pole, or so-called true polar wander
(TPW), would be governed solely by the location of the
uncompensated surface mass load. In particular, a mass
excess of any size (indeed, as small as Gold’s beetle) would
drive a TPW that would eventually reorient the load to the
equator (Figure 1c). Mathematically, the new (final) pole
position would be governed by the principal axis of the
nonhydrostatic components of the inertia tensor introduced
by the uncompensated load. Gold’s [1955] arguments were
extended by Goldreich and Toomre [1969], who demon-
strated that a group of anomalous masses moving randomly
on the surface (e.g., a set of scurrying beetles) could drive
rapid (relative to the speed of the masses) reorientation of
the rotation pole.

[4] The Gold [1955] analysis, while providing significant
insight into the secular rotational stability of planets, in-
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volved an underlying inconsistency that was highlighted,
and addressed, by Willemann [1984]. The hydrostatic figure
is the form achieved by a rotating planet with no elastic (i.e.,
long-term) strength. Such a form would presumably have
been established very early in the planet’s history (Figure 1d).
Subsequent cooling of the planet and development of a
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Figure 1. Schematic highlighting some basic physical principles governing, and common approxima-
tions applied to, the study of the secular stability of planetary rotation. Figures 1a—1c illustrate arguments
described by Gold [1955]. An otherwise hydrostatic planet is subject to a surface mass load (the green
“beetle”) that is at least partially uncompensated. The load pushes the rotation axis away (green arrow)
leading to TPW (black arrow) and, after a time period that is long relative to the relaxation of the
hydrostatic flattening, the bulge is assumed to perfectly relax to the new pole location (Figures 1b and
1c); there is no memory of the initial pole location. The process continues until the load reaches the
planetary equator and TPW ceases. Figures 1d—1f illustrate the extension to Gold’s [1955] analysis
described by Willemann [1984]. In this case, the (uncompensated) load-induced push on the rotation pole
is retarded (blue arrow) by the incomplete relaxation of the rotational bulge in the presence of an elastic
lithosphere (blue shell). The presence of a remnant rotational bulge is evident in the lack of symmetry of
the bulge relative to the rotation axis. The final position of the rotation axis (Figure 1f) is defined by a
balance between the load-induced push and the nonhydrostatic remnant bulge stabilization (green and
blue arrows, respectively); the load does not, in general, reach the equator (as it does in Figure 1c, where
the latter stabilizing effect is absent). Figures 1g—1i extend Figures 1d—1f to consider the potential
influence of internal convective dynamics on the rotational state. This impact will depend on the
amplitude and (principal axis) orientation of convection-induced perturbations to the inertia tensor (hence
the question marks attached to the red arrows in Figures 1h and 1i). The cartoon shows the specific case
where convection acts to increase the ellipticity of the rotating planet (compare Figures 1d and 1g); in this
case, the “excess” ellipticity will act to stabilize the rotation pole relative to the imposition of the load.
The net effect (Figure 1i) is a more subdued TPW relative to the case shown in Figure 1f.
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lithosphere would not alter the flattening of this hydrostatic
form (Figure le); however, the presence of such a litho-
sphere is the reason why surface mass loads or beetles
would not be perfectly compensated. The shortcoming in
Gold’s [1955] analysis is that the growth of a lithosphere
would also ensure that the initial hydrostatic figure of the
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planet could not entirely relax to any new orientation
associated with TPW (Figures le and 1f). Simply put, one
cannot have an uncompensated surface mass load and a
completely relaxed hydrostatic bulge. This was the central
point underlying Willemann’s [1984] analysis. In this case,
all memory of the original rotation does not vanish, and the
“remnant of the rotational flattening” [Willemann, 1984]
will act to stabilize the rotation vector.

[s] What would the final, equilibrium position of the
rotation vector be? The final, equilibrium position of the
rotation vector is governed by a balance between the TPW
driven by the uncompensated component of the load (which
acts to move the load to the equator; green line, Figure 1f)
and the nonhydrostatic remnant rotational effect (which acts
to resist any reorientation of the pole; blue line, Figure 1f).
Willemann [1984] concluded that the TPW angle will
depend on the initial position of the load and its uncom-
pensated size (measured in terms of the degree two geo-
potential perturbation) relative to the rotational bulge. He
furthermore came to the surprising conclusion that the
reorientation was independent of the thickness of the
lithosphere.

[6] In this paper we revisit the general problem addressed
by Willemann [1984] using a fluid Love number formula-
tion for the response of the planetary model to surface mass
and rotational loading. The analysis makes use of simple,
well-documented relationships involving viscoelastic Love
number theory [e.g., Peltier, 1974; Mitrovica and Peltier,
1989], and provides a relatively succinct derivation of
the various contributions to the nonhydrostatic inertia
tensor. We use our expressions to generalize (and correct)
Willemann’s [1984] results, to explore a series of important
special cases (e.g., the Gold [1955] assumption that the
hydrostatic bulge relaxes completely in response to a new
pole position), and to comment on some more recent
analyses of rotational stability which do not appear to have
incorporated a remnant rotational bulge [Bills and James,
1999].

[7] We complete our analysis by including a separate
section that incorporates nonhydrostatic contributions to
the inertia tensor driven by internal convective dynamics
(Figures 1g—1i). Since the amplitude and orientation of
such contributions are unknown for all planets with the
possible exception of the Earth, this section is by necessity
general (note the question marks in Figure 11); nevertheless,
the expressions we derive will be useful for those interested
in the sensitivity of traditional predictions of planetary
rotational stability (which focus on external loading) to
the presence of potential convective regimes. That such
regimes are unconstrained for other planets does not dimin-
ish their potential relevance; indeed, it would be difficult to
argue that the massive Tharsis rise on Mars, the subject of
significant interest in the field of Martian rotation stability
[e.g., Willemann, 1984; Bills and James, 1999], does not
reflect the action of both external and internal processes.
The existence of the latter will alter the TPW that would be
inferred by considering a purely external forcing (compare
Figures 1f and 1i).

[8] Following Willemann [1984], the analysis described
below involves two principal assumptions. First, we adopt
spherically symmetric planetary models, and thus any
elastic lithospheric lid is treated as uniform (and hence
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unbroken). Second, we ignore any time history of polar
wander and consider only the final, equilibrium position
of the pole subsequent to an episode of loading. In
practice, the latter, which we will term the “secular
rotational stability,” implies that the pole position is
governed by the principal axis of the nonhydrostatic
inertia tensor; thus we circumvent the solution of the
time-dependent Liouville equation [e.g., Ricard et al.,
1993]. (Another way to interpret this is that we assume
that the timescale over which the load acts is very long
relative to the bulge and boundary deformation relaxation
timescales; this simplifying assumption permits greater
clarity in discussing “before and after,” or end-member
scenarios.) The time required to achieve the final pole
position will depend on both the decay times of the
planetary modes of viscous relaxation and on the size of
the load; in the absence of Willemann’s remnant rota-
tional bulge, Gold’s beetle will reach the equator, but it
may take many billions of years to do so.

2. External Loading

[¢] The secular rotational state of the planet is governed
by nonhydrostatic variations in the planetary form. In this
section we consider perturbations in the inertia tensor,
which we denote by /;;, arising from the external loading
of the planet. We specify three classes of perturbation
associated with: (1) the direct effect of any external surface
mass load; (2) the deformation of the planet driven by this
surface loading; and (3) incomplete relaxation of the rota-
tional (hydrostatic) flattening due to the presence of a
lithosphere.

2.1. Theory

[10] In the following sections we derive expressions for
each of these three contributions, making use of Love
number theory [Peltier, 1974] as well as simple relation-
ships between perturbations in the inertia tensor and the
gravitational potential. We will assume that our spherical
coordinate system is oriented such that the z axis is fixed to
the initial rotation axis of the planet (i.e., prior to loading);
in this case, the initial angular velocity vector is given by (0,
0, ).

2.1.1. A Mapping Between Gravitational Potential and
Inertia Perturbations

[11] Let us assume that a redistribution of mass, either
on the surface of the planet or within its interior, gives
rise to a perturbation in the gravitational potential, G.
We can represent G in terms of a spherical harmonic
decomposition

00 4
g(e7 d), t) = Z Eygfm(t)ylfm(ev d))? (1)

where 0 and ¢ are the colatitude and east longitude, # is time,
and the Y,,, are (complex) surface spherical harmonics. In
our derivations, we will normalize these spherical harmonic
basis functions such that

/ Y[T’m’ (97 ¢)Ykn1(e7 d))dS = 47(6/41:" 6mm/u (2)
N
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where S represents the surface of the unit sphere and Oy 18
the Kronecker delta. Note that ¥, _,, = (—1)" Y},,, where T
represents the complex conjugate.

[12] With this normalization, one can show (e.g., with
suitable normalization [Lambeck, 1980]) that perturbations
to the components of the inertia tensor are related to
perturbations in the geopotential by

100 =212 G0+ 2 G- 13—°Re<gzz<t)>],

1) =22 (2t + L )+ 13—°Re<gzz<z>>}
m(z):]‘ﬁ 26wl -2 Gu )} ®
In(0) g 13OIm oo (1)

() :%\E S Re(Gar (1)
QWF?J§¢¥M%WW

where M and a are the mass and radius of the planet,
respectively, g is the surface gravitational acceleration,
and the symbols Re and Im refer to the real and
imaginary parts.

2.1.2. Inertia Perturbations: The Surface Mass Load

[13] In this section we focus on predictions of perturba-
tions in the inertia tensor associated with the direct and
deformational effects of the surface mass load. As in treat-
ments of post-glacial load-induced variations in the Earth’s
rotational state (for a new analysis, see Mitrovica et al.
[2005]), we make the assumption that the planet may be
modeled as a spherically symmetric, linear (Maxwell)
viscoelastic body and make use of viscoelastic Love number
theory.

[14] We begin by denoting an arbitrary surface mass load
as L(B, ¢, £), with spherical harmonic coefficients given by
Ly, (2). If the mass of the planet is conserved in creating the
surface mass load, then Lyy() = 0

[15] Next, we introduce the nondimensional surface load
k Love number. In the time domain, this Love number has
the form [Peltier, 1974, 1976]

K

= kPFo(r) + Z e, (4)

k=1

ki (2)

where () is the Dirac-delta function. The right-hand side
of this expression represents a superposition of an
immediate elastic response (note the superscript E) and
a nonelastic relaxation governed by a sum of K normal
modes of pure exponentlal decay. These modes are
defined by a decay time, 1/s, and amphtude ri. We will
consider the case where the time elapsed since loading is
much longer than the decay times associated with the
viscoelastic normal modes in equation (4). That is, all
viscous stresses are presumed to have relaxed. In this
case, our calculations require the so-called fluid load
Love number at spherical harmonic degree two, which we
denote by k,L In principle, this number may be computed
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by taking the Laplace-transform of equation (4) and
considering the fluid, s = 0 limit to obtain [Peltier, 1976]

In practice, the fluid Love number may be accurately
computed using a model in which all regions of the
planet, with the exception of a purely elastic lithospheric
plate, are treated as inviscid [Peltier et al., 1986].

[16] As shown in Appendix A, the load-induced pertur-
bations in the geopotential at degree two can then be written
as

dna’
G = 57 Lom (6)
_ 4na’
gémD = SMngmk_-fL (7)
The superscripts L and L — D represent components

associated with the direct mass attraction of the surface load
and the deformation induced by this surface load,
respectively.

[17] These equations may now be applied to the mapping
equation (3). In particular, for a surface load that conserves
mass, the total inertia tensor perturbation due to the effects
of mass loading,

L.L-D __ 4L L—-D
= " =L+ 17 (8)
is
lﬁL*D:4m4<1+k}> b Ly — iRe(Lzz) ,
35 15
13" = 4ma* (14 &) et /AR
35 15
8ma*
1P = =25 (14 k) Lao,
33 3\/5 20
8ma*
150 = ( +kL>Im L), 9)
LL D _ 87‘0 < >Re L),

87ra

LL-D __

; = 1 +kL Im(L
23 h}O( ) ( 21)

where the harmonics L,, represent the final state of the
load (and, once again, after all viscous stresses have
relaxed).

[18] When there is no elastic lithosphere, the planet
behaves as a purely inviscid material over very long time-
scales, and the fluid Love number (at spherical harmonic
degree two), kL, approaches very close to —1. Thus load-
induced perturbations in the inertia tensor vanish (1 + kf
0) since the load will be (essentially) perfectly compensated.
The existence of a nonzero elastic lithosphere introduces a
significant departure from this state since the lithosphere
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will provide some (elastic) support for the load (i.e., 1 +
ki # 0 [Wu and Peltier, 1984]).
2.1.3. Inmertia Perturbations: Rotational Effects

[19] The initial, hydrostatic rotational form of a planet
will be established during a time when the effective elastic
lithospheric thickness is close to zero. As the planet cools,
the development over time of an elastic lithosphere of
nonzero thickness guarantees that the hydrostatic rotational
flattening will never perfectly readjust to a change in the
orientation of the rotation pole. In other words, if rotation
were to cease, the planet, by virtue of the development of a
post-accretion lithosphere, would not assume a spherical
form (even in the absence of uncompensated surface loads
and internal dynamics). This “partially relaxed remnant of
the rotational flattening” [Willemann, 1984, p. 703] con-
tributes a nonhydrostatic component to the inertia tensor
that serves as the focus of this section.

[20] Following our normalization for the spherical har-
monics, the centrifugal potential at the surface of the planet
in its initial state is given by

A0, 0, 1) = Moo Yoo (0, ) + AzgY20(0, d), (10)
where the harmonic coefficients are given by
a?>?
Ao =75
aZQZ (1 1)
Ny = ——+=.
3v5

[21] The response of the planet to a potential forcing is
governed by tidal (or tidal effective) Love numbers. In
analogy with equation (4), the time domain form of the
viscoelastic tidal £ Love number is [Peltier, 1974]

K
KL (2) = kPo(0) + Y e
k=1

(12)

As in the surface load case, we will be concerned solely
with the response of the Iglanet over timescales much longer
than the decay times 1/s;; this response is governed by the
fluid tidal Love numbers at degree two,

T T.E & /[:2
kj _k[*2+zsft27 (13)
=1 Sk
and at degree zero,
T T.E £ ”;f=0
k/o _kko"‘z (=0 (14)
=1 Sk

In this case, the spherical harmonic coefficients of the
perturbation to the gravitational equipotential are given by

g§m = Azmka (15)
ggo = AOOkap' (16)
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Equations (3), (11), (15) and (16) can be combined to
yield

MQ2 3
=5~ (o).
A MY d? T T
L = T (Zkf,o - kf )a (17)
MQO*d?
1 =5 - (2o +247).

A A A
Iy =13=151;=0.

[22] The fluid Love numbers in equation (17) are func-
tions of the elastic lithospheric thickness adopted for the
planetary model. In the case where there is no long-term
elastic strength in the lithosphere, we will denote the fluid
Love numbers as k}-* (for degree two) and kf’o* (at degree
zero). Using these values in equation (17) yields the
hydrostatic form of the planet to the accuracy implied by
Love number theory. As we discussed above, the remnant
(i.e., nonhydrostatic) rotational flattening associated with
the development of an elastic lithosphere is the difference
between the rotational forms computed via equation (17)
using models with and without an elastic lithosphere. That

W= M?;“3 2(k5 ko) - (5 —#7)].
7 M (s ) - (6 ) (19)
17 M (s —47) + 25 - 47)].

[23] Note that the degree zero contribution to the inertia
tensor perturbation is constant for the diagonal elements and
zero elsewhere. Hence these degree zero components will
yield the inertia tensor of a sphere and thus will have no
effect on the orientation and ordering of the principal axes.
Accordingly, they do not impact the ultimate reorientation
of the pole. We can therefore drop these perturbations to
generate the degree-two-only expressions,

MQO*d
[ =~ 9ga (’?/‘T* - ka>
MO
]§ZOT _ 9ga (kfr* _ /T)7 (19)
MO
RO = 9ga (5" = &),
IfQZOT — I{QSOT — I§30T =0

[24] We emphasize that our mathematical treatment of
the remnant rotational flattening assumes, following the
Willemann [1984] analysis, a specific sequence of events.
In stage I, the hydrostatic form of the planet is established
during a period when there is no long-term (elastic) litho-
spheric strength. This hydrostatic form will perfectly adjust
to an arbitrary amount of TPW during stage . In stage II, an
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elastic lithospheric shell develops in response to the cooling
of the planet. The theory assumes that this development
occurs during a period of no TPW; hence the remnant bulge
aligns perfectly with the orientation of the rotational pole
within this stage. Finally, in stage III, (internal and/or
external) loading drives TPW in the presence of this
remnant bulge. The theory can easily be extended to
account for a continuous phase of both TPW and litho-
spheric development prior to loading. In this case, the
remnant rotational flattening would be determined via an
integration that incorporates slow changes in the lithospheric
thickness and any reorientation of the pole (where the
integration extends from the formation of the hydrostatic
planet to the onset of loading).
2.1.4. Total Inertia Perturbations

[25] An expression for the total inertia tensor perturba-
tion due to the effects of an external surface mass
loading,

LL-DROT _ yL | jL—D | ROT

I =L+ L+ (20)
can be derived by combining equations (9) and (19),
[LEPROT 4m4(1 +k;) e =/ ERe(Ln)

35 15
MO
_ a (ka* kT>

9g

[2LZL D.ROT 41’(&4(1 + k;) LLz() + 3Re(Lzz)
35 V15
MO (kT* B kT>,

9g A A
L,L-DROT _ 87‘04 L MV [ 7x T
4 5 (14K )L + 5 (" ~#). @
[LLDROT < +kL)Im L),
LL-DROT _
15 \/_o 1+ kL)Re L),
L,L-D,ROT __ ma* KL
I L+ K )Im(z
23 % ( (Lar).

[26] It will be convenient, for the purposes of compar-
ison with previous work (specifically, Willemann [1984]),
to consider the special case of a disk load with azimuthal
symmetry centered at an arbitrary geographic position (0,
). Let us say that this load, if centered on the North
Pole, was described by spherical harmonic coefficients
L'yo. Then it is straightforward to show that the harmonic
coefficients at degree two for the load centered at (0, ¢;)
are given by

Y2Tm (eLa (bL)

Lo =L, (22)

The size of the disk load may be conveniently normalized
by considering the ratio of the degree two gravitational
potential perturbations due to the direct effect of the load
and the hydrostatic rotational bulge. If we denote this ratio
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as O (following the symbolism adopted by Willemann
[1984]), then equations (6), (11), and (15) yield

4maPg 11
Q,:* SML

=L 20?2
554 Qk

(23)

[27] Using equations (22) and (23) in our expressions for
the total inertia perturbation (21) gives

IIL]L pror _ 1 {QO{\/_YN(GL) \/ERe<Y§2(9L,¢L)>} - 1},
22 9L7¢L)>:| - 1}

ﬁ

Ly TPROT = 2 {Q@L/—Yzo (0r) +

13L3L ~D,ROT _3 {Qoa—Yzo 0,) — }7
15T = Lo ffim (VL0 0). 2y
JLEDROT _ Qu\/7 ( n GL,d)L)
[E-DROT _ L ey \/7[m Y}, 9L7¢L
where
"=y A%zf (k" ~#) 2
NS (26)
1=K /ky

[2s] Note that the values m’ and « only involve param-
eters associated with the planetary model (fluid Love
numbers, radius, mass, rotation rate). The size of the load
is embedded in O’ and its location governs the evaluation of
the surface spherical harmonics Y5, in equation (24).

[29] As one further simplification to the equations for the
inertia tensor perturbations, we can assume, with no loss of
generality, that the load is placed along the great circle of
zero longitude (¢, = 0). In this case,

5 =Ll gl roion ] 1)

1 1
]2LZL D.ROT §m,{Qlu {on(eL) +§P22(6L)} - 1}7

L,L—D,ROT 2
1% =-=

33 = m/[QI(Xon(eL) - 1], (27)
11L3L D ROT m/Q/(xPQI (GL)
]LL D.,ROT ILL D,ROT — 0

12 -

where the P,,, refer to unnormalized Legendre polynomials
(PZO(O) =3 cos® 0 — 1)/2; Pyy = —3 sin 0 cos 0; Py =
3 sin’ 0).
2.1.5. Willemann [1984] Revisited

[30] Equation (27) can be directly compared with the
derivation by Willemann [1984] for inertia tensor perturba-
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tions due to external surface mass loading. His results (see
equations (21-24)) are

L,L—D,ROT
Ill

lm”{Q' {on(eL) —%Pzz(eL)} - 1},

[Li-bROT lm”{Q' {PN(GL) +%P22(9L)} — 1},

IR = _m//[Q/PZO(eL) - 1], (28)
11L3L DROT m//Q P21(9L)

I]LZ,L—D,ROT ILL D.ROT O7

where

and ¢ is ‘“the degree of compensation of a load”

[Willemann, 1984, p. 703] (see discussion below).

[31] There are two notable differences between our equa-
tion (27) and equation (28). First, the parameters m’ and m”
differ by a factor of 3/2. This factor arises because of an
error in Willemann’s [1984] expressions for the degree two,
order zero potential perturbations associated with both the
mass loading and the remnant of the rotational flattening.
Since the error is the same for all components of the inertia
tensor, it has no effect on the determination of the principal
axes and, thus, the orientation of the rotation axis.

[32] A second, more important difference is manifest both
in the absence of the term « in equation (28) and in a second
difference between the parameters m’ and m”. In regard to
the latter, m’ includes the factor /™ — k/, while m” has (1 —
c). These differences are a consequence of Willemann’s
[1984] assumption that at degree two the planetary response
to a surface mass load is identical to the response to a
potential forcing. While Willemann [1984] did not adopt a
Love number termmology for the load response, his value
of ¢ is identical to kf , and thus the term (1 — ¢) in equation
(29) can be replaced by (1 + k,) His assumption that the
response to a mass load and potential forcing are equivalent
is, in Love number terminology, the same as assuming that
ki = — kf (and therefore that &/* = — ™). If one notes
that k, is equal to —1 because a load on a planet with no
elastic lithosphere will ultimately be perfectly compensated,
then Willemann’s [1984] assumption applied to equation (27)
leads to =1 and k™ — kf = 1 + k7. That is, equation (28) is
obtained.

[33] The error within the term m” introduced by this
assumption is of no consequence since it impacts all the
inertia components by the same factor. However, the error
introduced by assuming that o = 1 will impact the calcu-
lated orientation of the rotation pole. This error will,
moreover, be dependent on the planetary model, specifically,
the density structure and the thickness and rigidity of the
elastic lithosphere. Willemann [1984] concluded that the
reorientation of the planetary rotation axis in response to a
surface mass load is independent of the lithospheric thick-
ness (LT). This is incorrect. The corrected theory (27), and in
particular the appearance of the term «, introduces a depen-
dence on LT, and, more generally, on the detailed internal
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structure of the planet (since the fluid Love numbers depend
on both).

2.2. Results

[34] The long-term, equilibrium, orientation of the rota-
tion vector is governed by the principal axis of the non-
hydrostatic inertia tensor. In this section we use the
expressions for the latter derived above to evaluate TPW
driven by surface mass loading under a variety of illustra-
tive cases.

2.2.1. Axisymmetric Loads

[35] We start with the special case treated by Gold [1955]
and Goldreich and Toomre [1969]: a “quasi-rigid” plane-
tary model in which the surface load (beetle) is not entirely
compensated by deformation, while the rotational bulge is
able to fully relax to any reorientation of the pole (and thus
provides no long-term resistance to TPW). If we adopt the
simplified expressions appropriate for an axisymmetric disk
load emplaced on the great circle ¢; = 0 (equation 27), and
ignore the terms associated with the fossil rotational bulge,
then the nonhydrostatic inertia tensor for this special “qua-
si-rigid” case is given by

]lLl‘LfD _ %m/Q/<1 + k;‘) |:P20(9L) — %PZZ(GL):|,

P ;mQ (1 +kL> {on(eL)Jr%Pzz(eL)}

I = —§m’Q'(1 ) Paof0), (30)

L,L—D

I3 *m o (1 +kf>P21(9L)

L.L—D LLD
5P =P —o.

If we define 0 as the TPW angle (i.e., the angle between the
initial and final rotation axis, where TPW away from the
load is taken as positive), then one can show, after some
algebra, that the diagonalization of the nonhydrostatic
inertia tensor defined by equation (30) yields

T(
§ = E*GL
-0

The final colatitude of the load, which we will denote by 6/ s
is given by & + 0,. Thus a mass excess (Q' > 0) will drive a
TPW that brlngs the load onto the equator (regardless of
the size of 0) relative to the final pole location (i.e., 8] = & +
0, = m/2). Physically, the uncompensated surface mass load
will move to the equator without any long term resistance
(in this special, “quasi-rigid” case) from a remnant
rotational bulge. (As discussed in section 1, the time
required to reach this final state will depend on the size of
the load and the decay times of the planetary modes of
relaxation.) This is, of course, a classic result in rotational
dynamics [Gold, 1955] (Figures la—1c), and it leads to a
second equally seminal result [Goldreich and Toomre,
1969], namely that a set of mass loads moving randomly on
the surface can drive large changes in the orientation of the
pole with a timescale that may be fast relative to the motion
of the surface masses. For completeness, we note that TPW
driven by a surface mass deficit (i.e., ' < 0) on a “quasi-

o>0

(31)
0 <o.
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Figure 2. TPW solutions based on equations (34) and (35). (a) Solid lines denote TPW angle, 6, versus
initial colatitude of the surface mass load, 0,, for a suite of different values of the effective load size, Q.
(as labeled). Dashed lines join (8, 0,, O.;) solutions with a common final load colatitude, 6/. These lines
begin at 6/ = 10° at bottom left and increase in increments of 10° (up to 6/ = 90°). (b) TPW angle, &,
versus final load location, 6/, for the same set of Q. values shown in Figure 2a. The shaded region at top
left masks physically impossible solutions in which the TPW angle is greater than the final load location.
(c) Relationship between Q.4 and the final load colatitude, 0], for different values of the initial load
location, 0,. The value of the latter for each of the lines on the figure can be inferred from the Q.= 0
intercept (i.e., when Q= 0 the pole does not reorient and therefore the initial and final load locations are

the same).

rigid” planet will act to bring the load onto the pole (case
two in equation (31); 67 = 0).

[36] Next, we move to the more general case where the
presence of an elastic lithospheric shell leads, in addition to
an imperfect compensation of the surface mass load, to the
incomplete relaxation of the rotational bulge. This was the
problem addressed by Willemann [1984]. For the axisym-
metric disk load applied on the great circle ¢; = 0, equation
(27) provides expressions for the nonhydrostatic inertia
elements in this case. As a first step, diagonalization of
these elements yields (again, after some algebra)

1
ILEPROT — gm’ [Q’u(3 cos? 0] — 2) —3cos?§+ 2] ,

1
I5EPROT — ol (@'~ 1), (32)
1
I PROT — gm' [Q’oa(3 cos® 6] — 1) —3cos? b+ 1} ,
1
THEDROT — [—Q/u sin(29f) + sin(Zé)],
13 2 L (33)
L.L—D,ROT LL-D.ROT __
I =1y =0,
where © is the TPW angle that diagonalizes the inertia

tensor. This diagonalization process is completed by setting
I3 = 0, which gives

L T
o= 5 aresin [Q oasm(ZGL )] , (34)
or, in terms of the initial load colatitude,
1 O asin(20;)
o= 3 arctan L ~ Dacos2y)]’ (35)

[37] As would be expected from the discussion in the last
section, equation (34) is identical to Willemann’s [1984]
result (see his equation (28)) with the exception that our Q'ac
replaces Q'. We will emphasize this connection by defining
Qe‘f/ = Q,OL.

[38] The final location of the pole in this general case is
governed by a balance (see Figures 1d—1f) between the
load-induced TPW highlighted above (which acts to move a
mass excess to the equator and a mass deficit to the pole)
and the stabilizing effect of the remnant rotational flattening
(which acts to resist any reorientation of the pole away from
its initial location). Under Willemann’s [1984] assumption
that the load and rotational forcing are subject to the same
level of compensation (o = 1), the level of TPW which
achieves this balance is independent of the lithospheric
thickness. The appearance of « in equation (34) (and 27)
alters the TPW with which this balance is achieved; since o
is a function of the thickness and rigidity of the lithosphere
as well as the planetary density structure, so too will be the
predicted TPW.

[39] Figure 2 plots various families of solutions to
equation (34) as a function of the TPW angle 6, Q.4
the initial load co-latitude (8,) and the final load colati-
tude (0}). Figure 2a (solid lines), for example, shows
calculations of & versus the initial colatitude of the
surface mass load for a suite of different values of Q.4
(since Q. > 0, we are assuming in all cases a mass
excess). The dashed lines in this frame join solutions with
the same final load colatitude. In contrast, Figure 2b
shows & as a function of final load colatitude for the
same suite of Q.4 values; note, in this case, that results
for Q. = x and 1/x are symmetrical around the Q.4 = 1
solution. Finally, Figure 2¢ plots Q.4 versus 0] for a suite
of different initial load locations (see caption). This plot
makes it simple to assess how high Q.4 must be to attain
a final load location for a specific starting location.
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Figure 3. Difference between the two largest dimensionless principal moments (I35 — I»,)/m’ for a suite
of different values of the effective load size, O (as labeled), (a) as a function of the final load colatitude,
0/, for Q.7 < 1, and (b) as a function of the TPW angle, 6, for Q.7 > 1.

[40] When Q.; = 1, the TPW angle 6 is identical to the
angle from the final equator to the load (i.e., the final
latitude of the load); that is, reorientation of the pole is
equal to the residual distance between the load and the
equator. Mathematically, § = /2 — 0/, which is clear from
the Q.7 = 1 solution on Figure 2b. As Q. — oo, the
uncompensated load dominates any remnant rotational
bulge and the final load location approaches the equator.
Conversely, when Q.5 — 0, the remnant rotational bulge
dominates and the pole is negligibly perturbed by the
surface loading. (Both limits are evident on each of the
frames on the figure.)

[41] The results for O,y = 1 and 0, = 0 are worthy of
further comment. In this case alone, the degree two compo-
nent of the compensated load ““cancels” the remnant rota-
tional bulge and all inertia perturbations in equation (33) will
be zero (note that when 6; = 0, 6/ is the same as 0). Thus the
polar motion will be undefined since there is no principal
axis orientation, and this is reflected in our vertical solid
line at 6, = 0 in Figure 2a. Since the orientation of the
remnant bulge is governed by the initial rotation axis, this
cancellation is only possible when 6, = 0.

[42] This special case provides one explanation for the
clustering of the Q. > 1 and, separately, the Q. < 1
solutions when 6; ~ 0 in Figure 2a. In particular, consider a
value of Q.= 1 + €. The first term on the RHS of this
expression may be interpreted as that portion of O, which
will cancel the inertia perturbation associated with the
remnant rotational effect (when 6; = 0). Thus the sign of €
will govern the final position of the pole: If € > 0, there will
be a mass excess at the pole (relative to the remnant
rotational bulge) and, regardless of the magnitude of this
excess (that is, the size of ¢), the load will ultimately move
to the equator (i.e., all O,;> 1 solutions cluster at & = 90°
when 0; ~ 0); alternatively, if € < 0, there will be a mass
deficit at the pole and the load will stay at the pole (i.e., all
Oy < 1 solutions cluster at 6 = 0° when 0, ~ 0).

[43] In the parlance of rotation theory, the 90° shift in the
rotation pole when Q,;> 1 and 0, = 0 is a so-called inertial
interchange true polar wander (IITPW) event [Goldreich
and Toomre, 1969]. Such instabilities occur when the

(diagonalized) maximum and intermediate nonhydrostatic
inertia elements are exchanged by any process. In our case,
we have chosen ¢; = 0, I,, > I;, and thus the IITPW
condition becomes I, > I[3;. Using equation (33), this
condition may be written as: Qeﬁvcos2 6/ > cos” 6. However,
for 0, = 0, 8/ = &, and therefore the IITPW condition is
simply Q. > 1, as we discussed above.

[44] In the absence of a remnant rotational bulge a beetle
of arbitrary size will move to the equator [Gold, 1955]. For
a planet with a lithosphere this level of rotational instability
will occur in two special cases: (1) when Q,4>> 1, and thus
the size of the load is sufficiently large that the remnant bulge
becomes inconsequential; and (2) when the (axisymmetric)
load is placed near the initial rotation pole (0, = 0) and it
has a (degree two) amplitude in excess of the bulge signal
(Qep > 1).

[45] The above discussion of rotational stability may also
be summarized, quantitatively, by considering the variation
in the individual principal moments of inertia as a function
of parameters governing load location. In Figure 3, we show
the difference (I3 — I»,)/m’ as a function of final load
colatitude 6{ for Q.7 < 1 and as a function of TPW angle §
for Q> 1. (The change in the abscissa for O, less than or
greater than 1 reflects the nature of the results in Figure 2b;
for each Q. < 1 there are two solutions for a given 6, while
for each Q. > 1 there are two solutions for a given 6/.) The
figure demonstrates that for Q. < 1, the maximum and
intermediate moments do not cross, and that the difference
L33 — I, grows (i.e., the rotational stability increases) as Q.
is reduced. In contrast, for O.;> 1, these principal moments
do cross as 6 approaches 90°, reflecting the conditions for
an [ITPW event.

[46] The family of solid lines in Figure 2a are identical to
Willemann’s [1984] curves showing & versus O (rather than
0. and the question arises as to how much Q" and O, may
differ (or, equivalently, to what extent the Love number
factor o may diverge from 1). To explore this issue we
consider, as an illustrative example, the case of Mars. Using
standard procedures [Peltier et al., 1986], we have computed
fluid load and tidal Love numbers for the simple five-
layer model of Martian structure described by Bills and
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Table 1. Effects of Lithospheric Thickness Upon the Mars Model
Parameters®

14k
LT, km i o o= i -1
l_kfr/kfr* 1_’?T/’?/T*
50 —0.91643 1.1087 1.2708 15.206
100 —0.85285 1.0373 1.1686 7.9418
200 —0.69063  0.84749 1.0822 3.4982
300 —0.57531  0.71240 1.0625 2.5019
400 —0.48769  0.60973 1.0537 2.0567

LT denotes lithospheric thickness. The tidal fluid Love number for LT =
0is & = 1.1867.

James [1999]. These values, together with the factor
« (equation (26)) are provided in Table 1 for a sequence
of elastic LT ranging from 50 km to 400 km. Note that
« diverges monotonically from 1 for progressively lower
values of lithospheric thickness, reaching a value of 1.27 for
the case LT = 50 km.

[47] Ultimately, applying the rotational stability theory
described here to a specific loading event requires some
estimate of the (' associated with the loading; that is,
following equation (23), an estimate of the size of the
uncompensated load relative to the rotational bulge of
the planet. However, the TPW angle is governed by the
parameter Q.4 (equation (34)). In the case of the model
of Mars used to generate Table 1, Willemann’s [1984]
theory underestimates Q. by (for example) 27% for the
case LT = 50 km, and 17% for LT = 100 km. To explore
the impact of this discrepancy on the predicted TPW,
consider Figure 4. The figure shows the computed TPW
angle versus the final load location (as in Figure 2b) for
the case of Q' = 1.74 and « values appropriate to the
cases of LT = 50 km, 100 km, 200 and 400 km in Table 1.
Also shown in the figure (dashed line) is the (LT-
independent) solution associated with Willemann’s [1984]
theory (0’ = 1.74 and o = 1). We adopt the value of 0’ =
1.74 because it is the upper bound value inferred by

25

—_ —_ N
o (&) o

TPW angle ¢ (deg)

(¢)]

0

80 82 84 86 88 90
Final load colatitude HLf (deg)
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Willemann [1984] for the loading of Mars by the Tharsis
volcanic province; in this regard, the figure is limited to 6/
values (80—90°) that span estimates for the central colat-
itude of Tharsis.

[48] Figure 4 raises a number of interesting issues. First,
Willemann [1984] has been cited as one argument against
significant TPW driven by Tharsis loading [e.g., Grimm and
Solomon, 1986; Banerdt et al., 1992; Ward, 1992; Zuber
and Smith, 1997]. Indeed, Willemann [1984] concluded that
the reorientation was “certainly less than 18°.” However,
on the basis of Willemann’s theory, a present location of
Tharsis at 80—90° colatitude is consistent with a TPW event
of either 6 < 18° or § > 72°. (These two solutions are also
evident within the 80° < 6 < 90° portion of Figure 2b; the
physics associated with the latter, large TPW event was
described in detail above.) Willemann [1984] dismissed the
latter range because it implies an initial load location within
8° of the rotation pole (since the 6 = 72° TPW solution
yields a final load location at 80°); he considered this to
be unlikely relative to a 6 < 18° solution that implies an
initial load location greater than 62° from the pole. This
argument (which appears to discount, a priori, any large
TPW event) is independent of the physics governing the
rotational stability (Figures 2b and 4), and we do not find it
compelling.

[49] As expected from Table 1, predictions based on our
new theory (equation (34)) converge to Willemann’s [1984]
solution for the thick lithosphere cases (LT = 300 or
400 km). In contrast, the LT = 50 km predictions are
significantly different from this solution. In this case, we
would conclude that a final Tharsis colatitude between 80°
and 90° is consistent with a reorientation of the rotation pole
of either § < 25° or § > 65°. The latter solution, which
implies an initial load location within 15° of the pole, would
be consistent with a large TPW event suggested by some
studies [e.g., Schultz and Lutz, 1988; Arkani-Hamed and
Boutin, 2004; Arkani-Hamed, 2005].

90

~ (o] o]
)] o 6]

TPW angle § (deg)

~
o

65

80 82 84 86 88 90
Final load colatitude 9Lf (deg)

Figure 4. TPW angle, 9, versus the final load colatitude, 6, for the specific load size Q' = 1.74. The
figure only shows the range 80° < 0] < 90°. In this case, two solutions are evident with TPW angles near
(left) 20° and (right) 70°. On each frame, the lines refer to solutions with lithospheric thickness (LT) of
50 km (red), 100 km (orange), 200 km (green), and 400 km (blue); the value of o for each of these
models is given in Table 1. Also shown (dashed line) is the solution based on Willemann’s [1984] theory

(which is independent of LT).
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Qz (Case 2)

Q, (Case 1) Q

Figure 5. Schematic illustration of the initial orientation of
the nonaxisymmetric surface mass load discussed within the
text. In particular, the central, axisymmetric load of size O,
and initial colatitude 6, (as in Figures 2 and 3) is augmented
to include a smaller second disk of size Q,. The latter
is positioned either on the great circle joining the central
disk to the initial pole (Case 1) or 90° from this great circle
(Case 2).

[s0] Table 1 suggests that the divergence between our
results and those derived from Willemann’s [1984] theory
will continue as the lithosphere is further thinned and
thus that there will be a marked trend toward greater
rotational instability for planets with progressively thinner
elastic shells. Applying the rotational stability theory to
the loading of Mars by Tharsis raises an important issue;
namely, the LT used in the theory refers to the thickness
of the lithosphere at the time of Tharsis development.
This thickness is uncertain, particularly given the ancient
nature of Tharsis (~4 Ga). As we discussed at the end of
section 2.1.3, the remnant rotational flattening active at
the time of Tharsis loading should actually reflect, in an
integral sense, changes in both the pole position and
lithospheric thickness across a time interval from the
formation of the hydrostatic planet to the onset of Tharsis
loading; the TPW calculations above (and those appearing
in the work of Willemann [1984]) assume that the
lithospheric thickness at the time of Tharsis loading
developed during a period of little TPW and thus the
remnant bulge is aligned with the unique orientation of
the pole during this period.

2.2.2. Bills and James [1999]

[51] In application to Mars, Bills and James [1999] also
considered the rotational stability of the planet in response
to surface mass loading. Their equation governing the
secular rotational stability was stated as (see their equation

(49))
Jy =275, (36)

where J5 and J5, represent the degree two zonal and
nonzonal components of the potential perturbation
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associated with the surface mass load. These harmonics
are renormalized versions of the coefficients appearing in
equation (1). This stability criterion is identical to

I+ 157 > 1y + 1,7, (37)

where each side of this equation represents a principal
axis. That is, Bills and James [1999] assume that the pole
location is governed by the diagonalization of a
nonhydrostatic inertia tensor whose sole contribution
arises from surface mass loading. The stabilization of
the pole due to a remnant rotational bulge is ignored.

[52] Bills and James [1999] were, in particular, interested
in the impact on the rotational state of departures from load
axial symmetry. This issue is the subject of the next section.
2.2.3. Nonaxisymmetric Loads

[53] Thus far we have only considered simple, axisym-
metric disk loads. To end this section we explore the
potential impact on the rotational stability of any departures
from axisymmetry. Specifically, we will consider TPW
driven by the spherical harmonic degree two components
of the simple set of disks shown schematically in Figure 5.
The total load is composed of two parts. The first, axisym-
metric central dome has an uncompensated, effective load
size of Q. The second, smaller disk has an uncompensated,
effective size of Q,. We will consider two cases distin-
guished on the basis of the location of this smaller disk:
either on the great circle joining the initial rotation pole and
the larger disk (Case 1) or 90° from this great circle (Case
2). To this point we have been concerned with computing
the TPW angle 6 along this great circle. The natural question
that arises is the following: How effective is the non-
axisymmetric component of the surface load in driving
TPW off this great circle? Since no real load (or set of
loads) is perfectly axisymmetric, Tharsis being a notable
example, this question has important relevance to any
general consideration of rotational stability.

[54] To consider this issue, we have performed a suite of
calculations in which we adopt a specific initial load
location 0; close to the initial rotation axis and fix Q, to
some small fraction of Q;. We then track the computed
TPW while varying the central load amplitude Q. These
solutions map out a curve on the surface of the sphere. We
have repeated the calculation for various placements of the
secondary disk.

[55] In these tests, which we summarize in Figures 6 and
7, the TPW is driven by three contributions to the planetary
inertia tensor, where each contribution has its preferred pole
location: the fossil rotational bulge acts to move the pole
toward the original pole location, while the two surface
mass loads drive the pole toward great circles perpendicular
to the respective load location vectors (these great circles
are given by the solid red and blue lines in Figures 6 and 7).
The equilibrium pole location is given by the balance of
these three contributions.

[s6] As an example, the top row of Figure 6 shows
calculations for the Case 1 orientation of the secondary
load disk when 6; = 1° and 6, = 11° (or 10° further from the
initial pole than the primary disk). As Q) is increased from
zero to values just above 1, the TPW solutions move along
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Figure 6. Predicted TPW for the nonaxisymmetric load scenario shown by Case 1 in Figure 5 (i.e., the
secondary load falls on the great circle connecting the initial pole location to the primary load). (top left)
Predicted TPW for a suite of predictions based on varying the effective size of the primary load, Q; (as
labeled). In this case 6; = 1°,0,=11°and O, =0.1 Q. The blue and red great circle arcs are perpendicular to
the axes of the primary and secondary loads, respectively. An IITPW event occurs for Q; = 1.31 and the
rotation pole moves to the intersection of the blue and red great circles (i.e., 90° from both the primary and
secondary loads; given the symmetry of the problem, the pole can move either clockwise or
counterclockwise during this event, hence the two paths shown on the figure). (top middle and right)
The effective primary load, Oy, required to produce an IITPW event, as well as the colatitude of the pole
when this event is initiated, as a function of the initial load colatitude, 0;. Each frame shows results for two
scenarios: 0, =0.1 Q7 and O, =0.2 Q. (bottom) As in the top row, except for the case where the secondary
load is displaced 70° from the primary load. In this case, the middle and right frames explore results for 6,
values up to 20°.

the path followed by the black line. For values of O; > 1.1
the pole is within a region bounded by the principal axes
associated with the primary and secondary loads, respec-
tively; in this situation, the primary load continues to push
the pole toward the equator, while the secondary load (and

remnant rotational bulge) resist this trend. At Oy ~ 1.31, the
pole experiences a major instability defined by a 90° shift
away from this great circle. This instability is an IITPW
event. In this scenario, since 6; # 0, the primary load is
unable to perfectly cancel the nonhydrostatic remnant

(A) . . (B)
6,=11°, 62 =01 +90°,Q,=0.1Q

Figure 7. Predicted TPW for the nonaxisymmetric load scenario shown by Case 2 in Figure 5 (i.c., the
great circles connecting the initial pole location to the primary and secondary loads are perpendicular). In
both frames O, = 0.1 Q; and 6; = 1°, and the black line joins results for a sequence of progressively larger
values of O, (as labeled). The frames are distinguished on the basis of the position of the secondary load:
(a) 6, = 11° or (b) 6, = 71°.
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rotational bulge; however, the additional inertia tensor
contribution from the secondary load makes such a cancel-
lation possible. Note that for values of O; > 1.31 the pole
position is stable and located at the intersection of the
equatorial great circles (red and blue lines) defined by the
two loads. As discussed above, the ‘“‘residual” effective
loads (that is, the effective loads after removal of the portion
that cancels the remnant rotational bulge), no matter their
size, will govern the location of the pole.

[57] As in the axisymmetric case, we can write expres-
sions for the inertia tensor perturbations, diagonalize the
tensor and derive conditions for both the equilibrium pole
location and IITPW. Lengthy algebra yields the following
condition for the pole location and the point at which an
equality between /5, and /33 is achieved,

0 sin (2@{ ) + Ossin (ze{) = sin(26)

(38)
0 cos? (9{) + 0, cos? <92f> = cos? (9).

Simultaneous solution of these equations can be used to
predict the effective load magnitude (Q;) and the colatitude
(measured from the original pole location) at which the
IITPW event occurs.

[s8] The remaining frames on the top row of Figure 6
show summary results for cases in which 6, is varied up to
5° and the secondary load is either 10% (as above) or 20%
of the primary load. We retain the 10° shift between load
centers. The middle frame shows the Q; value necessary for
an [ITPW event, and the right frame shows the colatitude at
which the event will occur. The main point in these results is
that as the primary load is moved away from the original
pole, the size of the load required to initiate an IITPW event
grows rapidly. Indeed, in the case of 6; =5° and 0, =0.10;,
a value O = 4.7 is required to initiate an IITPW event.

[59] In the bottom frames of Figure 6 we consider a second
Case 1 scenario in which the displacement between the
primary and secondary loads is increased to 70°. For 6, =
1° and O, = 0.10Q;, a O, value above 0.97 will bring the
rotation pole into a region within the great circles perpendic-
ular to the two load axes (left frame). Furthermore, in the
same case, a value of Q7 = 1.02 initiates an IITPW event at a
colatitude of ~30°. As 6 is increased up to 20° (middle and
right frames), the O, value necessary for the onset of ITPW
increases to just 2.4, while the colatitude at which the
instability occurs increases to ~55°. These values drop to
1.8 and 45°, respectively, when O, = 0.2 Q,. Clearly, given
some upper bound on the size of the primary load, a larger
displacement between the primary and secondary loads
yields a broader range of load locations that may yield an
IITPW event.

[60] In Figure 7 we turn our attention to the Case 2
scenario of Figure 5, and show a sequence of results (for
increasing Q) for 6; = 1° and a displacement between loads
of either 10° (Figure 7a) or 70° (Figure 7b). In this case, the
secondary load acts to deflect the pole location off the great
circle joining the initial pole and the primary load. The size
of this deflection decreases as the displacement between the
primary and secondary loads increases since the great circle
perpendicular to the secondary load axis comes into closer
alignment with the great circle joining the initial pole and
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primary load (compare the red great circles in Figures 7a
and 7b). As the size of the primary load (Q)) is increased,
the pole first moves off the latter great circle, but eventually
returns toward this great circle. The pole returns to this
longitude since it is where the great circles that are perpen-
dicular to the load axes intersect. Consider the 0, = 11°
scenario (Figure 7a), for values of Q; ~ 1.5, the equilibrium
pole position has reached close to the point of intersection
between the two great circles that are perpendicular to the
load axes. In contrast, for O; < 0.92, the pole will be
deflected ~45° from this longitude. In any event, the Case 2
scenario does not produce an IITPW instability; that is, the
positioning of the loads along perpendicular trajectories
from the initial rotation pole (Figure 5) will not lead to a
situation where the maximum and intermediate nonhydro-
static moments of inertia become equal.

[61] These scenarios are highly simplified, but they
provide significant insight into the connection between load
asymmetry and rotational stability. The main result is that
even small levels of asymmetry can profoundly influence
the rotational stability. For components of asymmetry
aligned with the great circle joining the initial pole and
the primary load, this impact includes the potential initiation
of IITPW events.

3. Impact of Internally Supported Inertia
Perturbations

[62] In this section we augment the theory outlined above
to include perturbations in the inertia tensor dynamically
supported by internal, convective motions (Figures 1g—11).
Few, if any, constraints currently exist on the amplitude and/
or orientation of internal convective motions on planets
other than Earth. Accordingly, the mathematics outlined
below is, by necessity, general.

[63] We begin by assuming the total gravitational poten-
tial perturbation associated with internal convective flow
(including the mass heterogeneity and its induced surface
deformation) is known. If we denote these harmonics by

Gim (2) then equation (3) gives

o= [y 2 e

157 (1) = % {? Go' (1) + 2\/§Re(%]¥f(f))} !

(1) = —23£ M gnr ), (9
(0 =2/ m(@T0),

() = 2[5 Re(GA (1),

170 = 2[5 (a7 (0).

where we have assumed that the degree zero potential
harmonic is zero. We remind the reader that the spherical
harmonic decomposition will be based on a reference frame
in which the north pole refers to the initial rotation axis (i.e.,
the rotation axis that defines the orientation of the remnant
rotational bulge).
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Figure 8. TPW driven by a combination of surface mass and internal loading. The internal load is fixed,
and is characterized by an excess ellipticity which is 1% of the hydrostatic bulge of the planet (9" =
0.01). The principal axis for this component is given by the dashed red line (8; = 80°); the great circle
perpendicular to this axis is given by the solid red line. (top) Predicted pole positions for the case where
the surface mass load has an initial colatitude 6, = 4° and Q' is varied (as labeled). The frames are
distinguished by the choice of lithospheric thickness: (a) 50 km or (b) 400 km. (c) The effective surface
load size (Q') required to produce an IITPW event, as well as (d) the colatitude of the pole when this event
is initiated, as a function of the initial load colatitude 6,. Figures 8c and 8d show results for LT = 50 km

and 400 km.

[64] In this case, the total inertia tensor perturbation is

I(t) (40)

=Ly + 17+ T ),
where a general expression for the first three terms on the
right hand side is given by equation (21). Note that we
retain the time dependence in the evolving contribution
from convective flow but we continue to assume that the
timescale associated with this flow is much longer than
the decay times that govern the viscous adjustment of the
rotational bulge. We also assume that the geoid/inertia
contributions from convective motions, if they were to be
computed using viscous flow calculations, would involve an
elastic lithosphere with thickness consistent with the
remaining terms in equation (40).

[65] At this point, we can consider a special case. As in
the treatment of the surface mass disk load, let us assume
that gravitational potential associated with internal flow is
axisymmetric relative to a geographic point (6, ¢,). Let us
furthermore denote the degree two zonal component of
the potential (in a reference frame in which the axis of
symmetry is at the pole) by G5 ' (). Then, in analogy with
equation (22), we have

YZTm(e]?(b[) .

g[NT( ) \/g

G (1) (41)

If we furthermore normalize this signal relative to the
potential perturbation associated with the hydrostatic
rotational bulge,

" 0
o't = _MZ(;TkT*V (42)
then equation (39) becomes
) = Lo s L. (6)—\/§R (Y*(e ))
11()*3’”Q()B\/§201 sRe( 1 i Or) ) | s
17 (1) = %m’Q”(I)B {% Voo ) + ﬁRe (Yh (0, @))} ,
B0 = 2w (08 Y20(91) (43)

(1) % 1 Ay Bflm Y), 917¢1
1
(1) = gm’Q"(t)B\/:Re Y£1(91>¢1))7

m' Q" ( B\/Vlm Y21 917(?1

I[NT( ) _
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where where equations (24) (with Q' = 0) and (39) yield
B (44) Ma [\/5 5 1
= . a !
LKk 1) =2 |2 gl () - 2 Ere(otr >)} — 3
~ ~ - ~ Ma [V5 5 1
[661 In applying equation (40), the appropriate expression IINTROT () — { GINT (1) + \[ Re(GNT (1) | — <,
for I;'" above may be combined with previous expressions g 6 3
we derived for the inertia tensor contribution from surface 2 \/— 5 Ma )
mass loading. As a simple example, Figure 8 provides a I3y "' (t) = %T(t) +§ml7 (46)
sample of the application of these governing equations. In
particular, we predict the equilibrium rotational state for the IATROT (1) = o \/7 gy (
case of a planet subject to both internal and external )
loading. In the top frames, the amplitude of the surface ... 5 Ma T
mass load (O, rather than Q,) is varied and its initial load L3 (1) =2 Re (G (7)),
colatitude is fixed to 0, = 4°. The internal load is oriented so 5 Ma
that the principal axis of this perturbatlon lies at 0, = 80° 152’”07(;) ) S ) (gINT( ),

along the same great circle joining the rotation pole and
surface mass load; the amplitude is fixed to an excess
ellipticity 1% of the hydrostatic bulge of the planet. That
is, 0" = 0.01. Figures 8a and 8b are distinguished on the
basis of the lithospheric thickness adopted in the calculations
(for the five-layer model of Martian structure described by
Bills and James [1999]). The strong dependence on LT
apparent on the figure arises because the total convection
signal is imposed, a priori, while the remnant rotational bulge
is a function of the lithospheric thickness. (We note that in
Figures 6 and 7 the LT dependence is embedded in the value
for the effective load, Q.= Q' used on the figure; as we
have discussed, since both the surface load and bulge
adjustment are subject to compensation that is a function of
LT, the balance associated with these two processes has a
weaker sensitivity to LT.) As in the case of the two surface
mass loads of Figure 6, the pole experiences an IITPW event
when the combination of the surface and internal loads
overcome the stabilizing effect of the remnant rotational
bulge.

[67] The bottom frames in Figure 8 show (Figure 8c)
the surface load size (Q') required for an IITPW event
(we remind the reader that the internal load magnitude is
fixed at Q" = 0.01 for these tests), and (Figure 8d) the
pole colatitude at which this instability occurs, as a
function of the initial surface load colatitude. As the
lithosphere thins, the remnant rotational fossil bulge and
uncompensated component of the surface mass load
diminish. The impact of the fixed convection signal on
the rotational state thus increases. The net effect is that an
ITPW event is initiated for smaller values of the surface
load and the colatitude at which the event occurs
decreases. In any event, the main conclusion for this test
is that relatively small (Q” = 0.01) convection signals
can, like the secondary surface mass loads applied in
Figures 6 and 7, exert a significant control on TPW,
including the initiation of IITPW events.

[68] To complete this section, we consider the special
case of inertia tensor perturbations induced by internal,
convective motions alone (i.e., in the absence of surface
loading effects). The governing expressions for this case are
given by

INT,ROT (y _ 7INT ROT
I (O) =L;" () +1;

(45)

where m' is defined in equation (25).

[69] These equations raise an interesting issue. In geo-
physical studies of the Earth’s history of TPW [e.g., Spada
etal., 1992, 1996; Ricard et al., 1993; Richards et al., 1997,
1999; Steinberger and O’Connell, 1997; Greff-Lefiz, 2004]
it has been assumed, following the arguments by Gold
[1955] and Goldreich and Toomre [1969], that the rotational
bulge of the Earth will ultimately respond hydrostatically to
a change in the orientation of the rotation vector. (This
hydrostatic adjustment is either imposed, a priori, or it is
embedded in the long-timescale, secular, limit of the gov-
erning stability equations.) That is, the assumption is made
that there is no remnant rotational flattening (i.e., m’ = 0).
However, the development of the Earth’s lithosphere
implies that a nonzero remnant rotational bulge may con-
tribute to the rotational stability. As discussed above, the
exact nature of this remnant bulge may be more complicated
than equation (46) implies. Since most studies of the Earth’s
long-term TPW have been concerned with the recent (last
~100 Ma) geological record, the remnant bulge would
reflect an integration of the incremental changes in some
globally averaged “effective” lithospheric strength oriented
with reference to the contemporaneous location of the
rotation pole. Moreover, the impact of plate tectonics on
this effective strength would clearly have to be considered.
Furthermore, if one found that the timescale of lithospheric
relaxation (say T) was much smaller than the age of the
Earth, then convection-induced TPW over the last 100 Ma
would be impacted by the presence of a lithosphere only for
timescales of mantle flow that are shorter than T (i.e., only
for timescales in which the lithosphere retains some effec-
tive elastic strength).

4. Final Remarks

[70] We have adopted the fluid limit of viscoelastic Love
number theory to investigate the rotational stability of
dynamic planets characterized by long-term (elastic) litho-
spheric strength. Our theoretical development treats the
compensation of surface mass loads independently of the
adjustment of the rotational bulge (through k,L and ka Love
numbers, respectively), and we conclude, in contrast to
Willemann [1984], that the equilibrium position of the
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rotation vector is a function of the lithospheric thickness
(LT). Using fluid Love numbers computed for a model of
Martian structure, we find that the TPW driven by axisym-
metric surface mass loading is progressively larger than
Willemann’s [1984] predictions as the lithosphere is thinned
(Figure 4); indeed, the predictions only converge for LT
values greater than ~400 km.

[71] Our analysis of TPW driven by axisymmetric loads,
summarized in Figures 2 and 3, bridges results from earlier,
classic studies of Gold [1955] and Willemann [1984]. As an
example, Gold [1955] argued that TPW on a hydrostatic
planet (i.e., a planet in which the rotational bulge will
eventually reorient perfectly to a change in pole position)
will ultimately move any uncompensated surface mass load
to the equator. In the case of a planet with an elastic
lithosphere, both the surface mass load and the rotational
bulge will experience incomplete compensation. For such
a planet, a reorientation of the load to the equator will
occur in two situations (see Figure 2): (1) when the surface
mass load is extremely large (i.e., Q> 1) or (2) when a
load which exceeds the size of the remnant rotational bulge
(Qq> 1) is placed at the initial pole position. In the latter
case, the remnant rotational bulge is “canceled” by the
component of the surface mass load up to Q.4 = 1 and
the residual (i.e., a load component of any size in excess of
Qepr= 1) will drive an IITPW instability.

[72] We have also extended Willemann’s [1984] analysis
to consider the impact of nonaxisymmetric surface mass
loads and arbitrary, convectively supported contributions to
the nonhydrostatic inertia tensor, on predicted TPW paths.
We find that these contributions can exert a profound
influence on the rotational stability (Figures 6—8). For
example, surface mass load asymmetry modeled by includ-
ing a secondary load along the same great circle joining the
primary (axisymmetric) load and the initial rotation pole
(Case 1 in Figure 5) is capable of inducing an IITPW event.
We have derived the stability conditions governing this
event (see equations 38); for a given upper bound on the
size of the effective surface load, a larger displacement
between the primary and secondary loads increases the range
of load locations that can give rise to IITPW (Figure 6). In
contrast, load asymmetries modeled by incorporating a
secondary load in a location perpendicular to the great circle
joining the primary load and the initial rotation pole (Case 2
in Figure 5) act to deflect the pole from this great circle. The
level of deflection depends on the size and location of the
primary and secondary loads; we note from Figure 7 that
moving the secondary load closer to the initial rotation pole
acts to increase the excursion of the rotation vector from the
great circle.

[73] The impact on the rotational dynamics of convec-
tively induced perturbations in the planetary shape
(Figure 8) can be understood in these same terms, since
such contributions can be expressed as equivalent uncom-
pensated components of the surface mass load. That is, the
divergence of the pole position from simple TPW paths
predicted on the basis of an axisymmetric surface mass load
will depend on the magnitude and orientation (relative to
the initial pole and axisymmetric surface load) of the
convection signal.

[74] We conclude that the rotational stability of planets
will be overestimated by analyses which are limited to
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simple axisymmetric loads of the type introduced by
Willemann [1984] (and treated in our Figures 2—4). The
TPW on Mars driven by Tharsis, an example discussed at
various stages through this article, warrants several com-
ments in this regard. First, our correction of Willemann’s
[1984] theory for axisymmetric loads yields a broader range
of TPW scenarios for a Tharsis-sized load (Figure 4) in the
case of a relatively thin elastic lithosphere at the time of
Tharsis formation. Second, in contrast to previous assertions,
the equations governing the rotational stability permit a large
(>65°) excursion of the Martian rotation pole in consequence
of an axisymmetric Tharsis-sized loading (Figure 4). Third,
asymmetries in the surface mass loading, either due to
Tharsis structure or the presence of secondary loads (e.g.,
Elysium) on Mars, or contributions to the nonhydrostatic
inertia tensor from convective processes, will introduce
potentially large pole excursions off the great circle joining
the initial rotation pole and the main Tharsis load. Indeed,
these excursions may include an IITPW event.

[75] Finally, we note that the Love number theory de-
scribed herein assumes a viscoelastic planetary model with a
single, uniform elastic plate. A new generation of finite
element models have been developed to consider the
response of 3-D Earth models to generalized loading [e.g.,
Wu and van der Wal, 2003; Zhong et al., 2003; Latychev et
al., 2005]. In future work, we will use such models to
investigate the impact of plate boundaries and thickness
variations on the computed rotational stability. These results
will be used to reassess predictions of TPW on Earth over
the last 100 Myr (see the discussion below equation (46))
and TPW driven by Tharsis loading in the event of tectonic
activity on early Mars.

Appendix A: Load-Induced Geopotential
Perturbations

[76] The geopotential perturbation associated with surface
loading can be written as a space-time convolution of the
viscoelastic Green’s function for the geopotential anomaly
with the surface mass load, L(0, o, f),

60,60~ [ [10.6.0)-GFni-Dasiar, (a1

where S represents the surface of the unit sphere, GF is the
Green’s function and vy is the angular distance from (6, ¢) to

(0, ') given by

cos<y = cos 0 cos ' + sinOsin @' cos (& — ¢'). (A2)
We note that on a spherically symmetric planet, the response
is dependent on the angular distance from the load and
independent of azimuth. The viscoelastic Green’s Function
associated with the geopotential is given by [Mitrovica and
Peltier, 1989]

NgE

GF(y.0) =55 D~ [60) + K ()] Pr(eosy),  (A3)
L

Il
o

where P, is the unnormalized Legendre polynomial at
degree /. In the square brackets on the right-hand-side of
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equation (A3), the delta function refers to the direct effect of
the surface mass load, while the Love number k7(7) (see
equation (4)) accounts for the planetary deformation
associated with this load.

[77] Using the normalization we have adopted (see equa-
tion (2)), the addition theorem of spherical harmonics yields

T 2 ¢
S Ly (6) Yo (6, 6).

m=—{

/SL(B',d)’)PI;(cosy)dS' =T (A4)

Next, we apply equation (A3) in equation (Al) and use
equation (A4) to perform the spatial convolution analyti-
cally. For each harmonic coefficient we obtain

dnalg

Gim(t) = m

Lew(t) 5 [8(2) + k¢ (1)], (AS)

where the asterisk denotes a time convolution. In general we
will be interested in load-induced perturbations at degree
two, and in this case we can write

dnalg
g2m(t) = sM

Lon(t) = [8(£) + &5 (1)]. (A6)

It will be instructive to separate the perturbation into
components associated with the direct mass attraction of the
surface load and the deformation induced by this surface
load (since, as we discussed in the main text, these are
commonly thought of as two of the three contributions to
changes in the inertia tensor components). If we denote
these terms by the superscript L and L — D, respectively, we
have

4na’ 4rd’
Gut) = 537 Lan(t) + 8(0) = 50 ELan(t) (A7)
P =Lk (A8)

2m 5M 2m 2 )

where G, _,(¢) = (=1)"GL,,(9). In the limit of infinite time
after the application of the surface mass load, these
equations yield the expressions (6) and (7) within the main
text.
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