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3Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane,

Vancouver, Canada V6T 1Z4

4School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.

5Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, Uni-

versity of Nottingham, Nottingham, NG7 2RD, UK.

When an incident wave scatters off of an obstacle, it is partially reflected and partially trans- 1

mitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting 2

energy from the scatterer. Here we describe in detail the first laboratory detection of this 3

phenomenon, known as superradiance 1–4. We observed that waves propagating on the sur- 4

face of water can be amplified after being scattered by a draining vortex. The maximum 5

amplification measured was 14%± 8%, obtained for 3.70 Hz waves, in a 6.25 cm deep fluid, 6

in consistency with superradiant scattering caused by rapid rotation. Our experimental find- 7

ings will shed new light not only on Black Hole Physics, since shallow water waves scattering 8
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on a draining fluid constitute an analogue of a black hole 5–10, but also on hydrodynamics, 9

due to its close relation to over-reflection instabilities 11–13. 10

In water, perturbations of the free surface manifest themselves by a small change ξ(t,x) 11

of the water height. On a flat bottom, and in the absence of flow, linear perturbations are well 12

described by superpositions of plane waves of definite frequency f (Hz) and wave-vector k (rad/m). 13

When surface waves propagate on a changing flow, the surface elevation is generally described by 14

the sum of two contributions ξ = ξI+ξS , where ξI is the incident wave produced by a source, e.g. a 15

wave generator, while ξS is the scattered wave, generated by the interaction between the incident 16

wave and the background flow. In this work, we are interested on the properties of this scattering 17

on a draining vortex flow which is assumed to be axisymmetric and stationary. At the free surface, 18

the velocity field is given in cylindrical coordinates by v = vrer + vθeθ + vzez. 19

Due to the symmetry, it is appropriate to describe ξI and ξS using polar coordinates (r, θ). 20

Any wave ξ(t, r, θ) can be decomposed into partial waves 10, 14, 21

ξ(t, r, θ) = Re

[

∑

m∈Z

∫

∞

0

ϕf,m(r)
e−2iπft+imθ

√
r

df

]

, (1)

where m ∈ Z is the azimuthal wave number and ϕf,m(r) denotes the radial part of the wave. Each 22

component of this decomposition has a fixed angular momentum proportional to m, instead of a 23

fixed wave-vector k. (To simplify notation, we drop the indices f,m in the following.) Since the 24

background is stationary and axisymmetric, waves with different f and m propagate independently. 25

Far from the centre of the vortex, the flow is very slow, and the radial part ϕ(r) becomes a sum of 26
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oscillatory solutions, 27

ϕ(r) = Aine
−ikr + Aoute

ikr, (2)

where k = ||k||2 is the wave-vector norm. This describes the superposition of an inward wave of 28

(complex) amplitude Ain propagating towards the vortex, and an outward one propagating away 29

from it with amplitude Aout. These coefficients are not independent. The Ain’s, one for each f 30

and m component, are fixed by the incident part ξI . If the incident wave is a plane wave ξ = 31

ξ0e
−2iπft+ik·x, then the partial amplitudes are given by Ain = ξ0e

imπ+iπ/4/
√
2πk. In other words, 32

a plane wave is a superposition containing all azimuthal waves, something that we have exploited 33

in our experiment. On the contrary, Aout depends on the scattered part ξS , and how precisely the 34

waves propagate in the centre and interact with the background vortex flow. In the limit of small 35

amplitudes, there is a linear relation between the Ain’s and Aout’s, and by the symmetries of the 36

flow, different f and m decouple 10, 15. 37

This allows us to define the reflection coefficient at fixed f and m as the ratio between the 38

outward (Jout) and inward (Jin) energy fluxes, 39

R =

√

Jout
Jin

. (3)

In the linear approximation, the wave energy is a quadratic quantity in wave amplitude, and R is 40

proportional to the amplitude ratio |Aout/Ain|. 41

If |R| < 1, the wave has lost energy during the scattering, and hence has undergone absorp- 42

tion. In this work we show experimentally that, under certain conditions, the reflection coefficient 43

satisfies |R| > 1. We further argue that the amplified wave has extracted rotational energy from 44
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the vortex during the process. 45

We conducted our experiment in a 3 m long and 1.5 m wide rectangular water tank. Water 46

is pumped continuously in from one end corner, and is drained through a hole (4 cm in diameter) 47

in the middle. The water flows in a closed circuit. We first establish a stationary rotating draining 48

flow by setting the flow rate of the pump to 37.5 ± 0.5 ℓ/min and waiting until the depth (away 49

from the vortex) is steady at 6.25 ± 0.05 cm. We then generate plane waves from one side of 50

the tank, with an excitation frequency varying from 2.87 Hz to 4.11 Hz. On the side of the tank 51

opposite the wave generator, we have placed an absorption beach (we have verified that the amount 52

of reflection from the beach is below 5% in all experiments). We record the free surface with a 53

high speed 3D air-fluid interface sensor. The sensor is a joint-invention16 (patent No. DE 10 2015 54

001 365 A1) between The University of Nottingham and EnShape GmbH (Jena, Germany). 55

Using this data, we apply two filters. We first perform a Fourier transform in time, in order 56

to single out the signal at the excitation frequency f0. This allows us to filter out the (stationary) 57

background height, lying at f = 0, as well as the high frequency noise. Moreover, we observe 58

that the second harmonic, at 2f0, is also excited by the wave generator. This gives us an upper 59

bound on the amount of nonlinearity of the system. In all experiments, the relative amplitude 60

of the second harmonic compared to the fundamental stays below 14%. The obtained pattern 61

shows a stationary wave of frequency f0 scattering on the vortex, which consists of the interfering 62

superposition of the incident wave ξI with the scattered one ξS . This pattern is shown on Fig. 1 for 63

various frequencies, and looks very close to what was predicted on theoretical grounds for simple 64
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bathtub flow models 10, 17. We also observe that incident waves have more wave fronts on the upper 65

half of the vortex in comparison with the lower half - see the various wave characteristics in panels 66

(A-F) in Fig. 1. This angular phase shift is analogous to the Aharonov-Bohm effect, and has been 67

observed in previous water wave experiments 18, 19. Our detection method allows for a very clear 68

visualization of this effect. 69

The second filter is the polar Fourier transform, which selects a specific azimuthal wave num- 70

ber m, and allows the radial profile ϕ(r) to be determined. To extract the reflection coefficient, we 71

use a windowed Fourier transform of the radial profile ϕ(r). The windowing is done on the inter- 72

val [rmin, rmax]. When rmin is large enough, the radial profile ϕ contains two Fourier components 73

[see Eq. (2)], one of negative k (inward wave), and one of positive k (outward wave). The ratio 74

between their two amplitudes gives us the reflection coefficient (up to the energy correction, see 75

Methods - Wave energy). In order to better resolve the two peaks, we have applied a Hamming 76

window on the radial profile over the interval [rmin, rmax]. In all experiments, rmin ≃ 0.15 m, while 77

rmax ≃ 0.39 m. We also point out that the minimum radius such that the radial profile reduces to 78

Eq. (2) increases with m. With the size of our window, and the wavelength range of the experiment, 79

we can resolve with confidence m = −2,−1, 0, 1, 2. 80

On Fig. 2 we represent, for several azimuthal numbers m, the absolute value of the reflection 81

coefficient R as a function of the frequency f . We observe two distinct behaviours, depending 82

on the sign of m. Negative m’s (waves counterrotating with the vortex) have a low reflection 83

coefficient, which means that they are essentially absorbed in the vortex hole. On the other hand, 84
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positive m’s have a reflection coefficient close to 1. In some cases this reflection is above one, 85

meaning that the corresponding mode has been amplified while scattering on the vortex. To confirm 86

this amplification we have repeated the same experiment 15 times at the frequency f = 3.8 Hz and 87

water height h0 = 6.25 ± 0.05 cm, for which the amplification was the highest. We present the 88

result on Fig. 3. On this figure we clearly observe that the modes m = 1 and m = 2 are amplified 89

by factors Rm=1 ∼ 1.09± 0.03, and Rm=2 ∼ 1.14± 0.08 respectively. On Figs. 2 and 3, we have 90

also shown the reflection coefficients obtained for a plane wave propagating on standing water 91

of the same depth. Unlike what happens in the presence of a vortex, the reflection coefficients 92

are all below 1 (within error bars). For low frequencies it is close to 1, meaning that the wave is 93

propagating without losses, while for higher frequencies it decreases due to a loss of energy during 94

the propagation, i.e. damping. 95

The origin of this amplification can be explained by the presence of negative energy waves 96

20, 21. Negative energy waves are excitations that lower the energy of the whole system (i.e. back- 97

ground flow and excitation) instead of increasing it. In our case, the sign of the energy of a wave is 98

given by the angular frequency in the fluid frame ωfluid. If the fluid rotates with an angular velocity 99

Ω(r), in rad/s, we have ωfluid = 2πf − mΩ(r). At fixed frequency, when the fluid rotates fast 100

enough, the energy becomes negative. If part of the wave is absorbed in the hole, carrying negative 101

energy, the reflected part must come out with a higher positive energy to ensure conservation of the 102

total energy 2. Using Particle Imaging Velocimetry (PIV), we have measured the velocity field of 103

the vortex flow of our experiment. As we see on Fig. 4A, close to the centre, the angular velocity 104

is quite high, and the superradiant condition 2πf < mΩ is therefore satisfied for our frequency 105
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range. 106

Our experiment demonstrates that a wave scattering on a rotating vortex flow can carry away 107

more energy than the incident wave brings in. Our results show that the phenomenon of superradi- 108

ance is very robust and requires few ingredients to occur, namely high angular velocities, allowing 109

for negative energy waves, and a mechanism to absorb these negative energies. For about half of 110

the frequency range, our results confirm superradiant amplification despite a significant damping 111

of the waves. The present experiment does not reveal the mechanism behind the absorption of the 112

negative energies. The likely possibilities are that they are dissipated away in the vortex throat, 113

in analogy to superradiant cylinders 4, 22, that they are trapped in the hole 23 and unable to escape, 114

similarly to what happens in black holes 24, 25, or a combination of both. A possible way to dis- 115

tinguish between the two in future experiments would be to measure the amount of energy going 116

down the throat. 117
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Figure 1 | Wave characteristics of the surface perturbation ξ, filtered at a single frequency, for six 119

different frequencies. The frequencies are 2.87 Hz (A), 3.04 Hz (B), 3.27 Hz (C), 3.45 Hz (D), 120

3.70 Hz (E), and 4.11 Hz (F). The horizontal and vertical axis are in metres (m), while the color 121

scale is in millimetres (mm). The patterns show the interfering sum of the incident wave with the 122

scattered one. The waves are generated on the left side and propagate to the right across the vortex 123

centred at the origin. 124
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Figure 2 | Reflection coefficients for various frequencies and various m’s. For the vortex experi- 126

ments the statistical average is taken over 6 repetitions, except for f = 3.70 Hz where we have 15 127

repetitions. The purple line (star points) shows the reflection coefficients of a plane wave in stand- 128

ing water of the same height. We observe a significant damping for the frequencies above 3Hz (see 129

Fig. 2). In future experiments, we hope to reduce this damping by working with purer water 26. 130

Each point of a plane wave on standing water (i.e. without vortex) is averaged over 5 repetitions 131
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instead of 6, and over m = −2 . . . 2 (the reflection coefficient of a plane wave on standing water is 132

in theory independent of m, see also Fig. 3). The errors bars indicate the standard deviation over 133

these experiments, the energy uncertainty and the standard deviation over several centre choices 134

(see Methods). The main contribution comes from the variability of the value of the reflection 135

coefficient for different repetitions of the experiment. We have also extracted the signal-to-noise 136

ratio for each experiment, and its contribution to the error bars is negligible (see Method - Data 137

Analysis). 138
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Figure 3 | Reflection coefficients for different m’s, for the frequency f = 3.70 Hz (stars). We 140

have also shown the reflection coefficients for plane waves without a flow, at the same frequency 141

and water height (diamonds). We see that the plane wave reflection coefficients are identical for all 142

m’s, and all below 1 (within error bars). The statistic has been realized over 15 experiments. Error 143

bars include the same contributions as in Fig. 2. 144
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Figure 4 | PIV measurements of the velocity field averaged of 10 experiments. (A) Angular fre- 146

quency profile as a function of r. (B) Norm of the velocity field of the background flow (in m/s). 147

(C) vθ profile as function of r. (D) ṽr profile as function of r (see Methods - PIV measurements). 148

The profiles are fitted with a model of the Lamb vortex type in equation (9), dashed-green line. 149

The error bars correspond to standard deviations across the 10 measurements. 150
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Methods 209

Wave energy. To verify that the observed amplification increases the energy of the wave, we 210

compare the energy current of the inward wave with respect to the outward one. Since energy is 211

transported by the group velocity vg, the energy current is given by J = g ω−1

fluid
vg|A|2/f (up to 212

the factor 1/f , this is the wave action, an adiabatic invariant of waves 27–29). If the background 213

flow velocity is zero, then the ratio Jout/Jin is simply |Aout/Ain|2. However, in the presence of the 214

vortex, we observe from our radial profiles ϕ(r) [defined in equation (1)] that the wave number 215

of the inward and outward waves are not exactly opposite. The origin of this (small) difference is 216

that the flow velocity is not completely negligible in the observation window. It generates a small 217

Doppler shift that differs depending on whether the wave propagates against or with the flow. In 218

this case, the ratio of the energy currents picks up a small correction with respect to the ratio of the 219

amplitudes, namely, 220

Jout
Jin

=

∣

∣

∣

∣

ωin
fluidv

out
g

ωout
fluid

ving

∣

∣

∣

∣

∣

∣

∣

∣

Aout

Ain

∣

∣

∣

∣

2

. (4)

To estimate this factor, we assume that the flow varies slowly in the observation window, such 221

that ωfluid obeys the usual dispersion relation of water waves, ω2
fluid = gk tanh(h0k). (This 222

amounts to a WKB approximation, and capillarity is neglected.) Under this assumption, the 223

group velocity is the sum of the group velocity in the fluid frame, given by the dispersion rela- 224

tion, vfluidg = ∂k
√

gk tanh(h0k), and the radial velocity of the flow vr. Hence the group velocity 225
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needed for the energy ratio (4) splits into two: vg = vfluidg + vr. The first term is obtained only with 226

the values of kin and kout, extracted from the radial Fourier profiles. The second term requires the 227

value of vr, which we do not have to a sufficient accuracy. However, using the PIV data, we see 228

that the contribution of this last term amounts to less than 1% in all experiments (this uncertainty 229

is added to the error bars on Figs. 2 and 3). 230

Data analysis. We record the free surface of the water in a region of 1.33 m × 0.98 m over the 231

vortex during 13.2 s. From the sensor we obtain 248 reconstructions of the free surface. These 232

reconstructions are triplets Xij , Yij and Zij giving the coordinates of 640 × 480 points on the 233

free surface. Because of the shape of the vortex, and noise, parts of the free surface cannot be 234

seen by our sensor, resulting in black spots on the image. Isolated black spots are corrected by 235

interpolating the value of the height using their neighbours. This procedure is not possible in the 236

core of the vortex and we set these values to zero. 237

To filter the signal in frequency, we first crop the signal in time so as to keep an integer 238

number of cycles to reduce spectral leakage. We then select a single frequency corresponding to 239

the excitation frequency f0. After this filter, we are left with a 2-dimensional array of complex 240

values, encoding the fluctuations of the water height ξ(Xij, Yij) at the frequency f0. ξ(Xij, Yij) is 241

defined on the grids Xij , and Yij , whose points are not perfectly equidistant (this is due to the fact 242

that the discretization is done by the sensor software in a coordinate system that is not perfectly 243

parallel to the free surface). 244

To select specific azimuthal numbers, we convert the signal from cartesian to polar coordi- 245
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nates. For this we need to find the centre of symmetry of the background flow. We define our 246

centre to be the centre of the shadow of the vortex, averaged over time (the fluctuations in time are 247

smaller than a pixel). To verify that this choice does not affect the end result, we performed a sta- 248

tistical analysis on different centre choices around this value, and added the standard deviation to 249

the error bars. Once the centre is chosen, we perform a discrete Fourier transform on the irregular 250

grid (Xij, Yij). We create an irregular polar grid (rij, θij) and we compute 251

ϕm(rij) =

√
rij

2π

∑

j

ξ(rij, θij)e
−imθij∆θij, (5)

where ∆θij = (∆Xij∆Yij)/(rij∆rij) is the line element along a circle of radius rij . 252

To extract the inward and outward amplitudes Ain and Aout, we compute the radial Fourier 253

transform ϕ̃m(k) =
∫

ϕm(r)e
−ikrdr over the window [rmin, rmax]. Due to the size of the window 254

compared to the wavelength of the waves, we can only capture a few oscillations in the radial 255

direction, typically between 1 and 3. This results in broad peaks around the values kin and kout 256

of the inward and outward components. We assume that these peaks contain only one wavelength 257

(no superposition of nearby wavelengths), which is corroborated by the fact that we have filtered 258

in time, and the dispersion relation imposes a single wavelength at a given frequency. To reduce 259

spectral leakage, we use a Hamming window function on [rmin, rmax], defined as 260

W (n) = 0.54− 0.46 cos
(

2π
n

N

)

, (6)

where n is the pixel index running from 1 to N . This window is optimized to reduce the secondary 261

lobe, and allows us to better distinguish peaks with different amplitudes 31. In Supplementary 262

Fig. 1, we show the radial Fourier profiles for various m for a typical experiment (left column), 263
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and the raw radial profiles and how they are approximated by Eq. (2) (right column). 264

We also extracted the signal-to-noise ratio by comparing the standard deviation of the noise 265

to the value of our signal. It is sufficiently high to exclude the possibility that the amplification we 266

observed is due to a noise fluctuation, and its contribution is negligible compared to other sources 267

of error. 268

PIV measurements. Close to the vortex core, the draining bathtub vortex is cylindrically sym- 269

metric to a good approximation. An appropriate choice of coordinates is, therefore, cylindrical 270

coordinates (r, θ, z). The velocity field will be independent of the angle θ and can be expressed as 271

v(r, z) = vr(r, z)er + vθ(r, z)eθ + vz(r, z)ez. (7)

We are specifically interested in the velocity field at the free surface z = h(r). When the free 272

surface is flat, h is constant and the vertical velocity vz vanishes. When the surface is not flat, 273

the vz component can be deduced from vr using the free surface profile h(r) and the equation 274

vz(r, h(r)) = (∂rh)vr|z=h. To obtain an estimate of vz, we use a simple model for the free surface 275

shape 32, 276

h(r) = h0

(

1− r2a
r2

)

, (8)

where h0 is the water height far from the vortex and ra is the radial position at which the free 277

surface passes through the sink hole. This approximation captures the essential features of our 278

experimental data. The components vr and vθ are determined through the technique of Particle 279

Imaging Velocimetry (PIV), implemented through the Matlab extension PIVlab 33, 34. The tech- 280

nique can be summarised as follows. 281
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The flow is seeded with flat paper particles of mean diameter d = 2 mm. The particles 282

are buoyant which allows us to evaluate the velocity field exclusively at the free surface. The 283

amount by which a particle deviates from the streamlines of the flow is given by the velocity lag 284

Us = d2(ρ− ρ0)a/18µ (ref. 33), where ρ is the density of a particle, ρ0 is the density of water, µ is 285

the dynamic viscosity of water and a is the acceleration of a particle. For fluid accelerations in our 286

system this is at most of the order 10−4 m/s, an order of magnitude below the smallest velocity in 287

the flow. Thus we can safely neglect the effects of the velocity lag when considering the motions 288

of the particles in the flow. 289

The surface is illuminated using two light panels positioned at opposite sides of the tank. 290

The flow is imaged from above using a Phantom Miro Lab 340 high speed camera at a frame rate 291

of 800 fps for an exposure time of 1200 µs. The raw images are analysed using PIVlab by taking a 292

small window in one image and looking for a window within the next image which maximizes the 293

correlation between the two. By knowing the distance between these two windows and the time 294

step between two images, it is possible to give each point on the image a velocity vector. This 295

process is repeated for all subsequent images and the results are then averaged in time to give a 296

mean velocity field. 297

The resulting velocity field is decomposed onto an (r, θ)-basis centred about the vortex origin 298

to give the components vr and vθ. The centre is chosen so as to maximize the symmetry. In Fig. 4B 299

we show the norm of the velocity field on the free surface. We see that our vortex flow is symmetric 300

to a good approximation. To quantify the asymmetry of the flow, we estimate the coupling of waves 301

with m 6= m′ through asymmetry. The change of the reflection coefficient due to this coupling is of 302
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the order of |ṽl/vg|, where ṽl is the angular Fourier component of azimuthal number l = m−m′. 303

This ratio is smaller than 3% in all experiments. To obtain the radial profiles of vr and vθ, we 304

integrate them over the angle θ. In Figs. 4C and 4D we show vθ and the inward velocity tangent to 305

the free surface, ṽr = −
√

v2r + v2z , as functions of r. 306

We compare the data for vθ with the Lamb vortex 32, 307

vθ(r, h) =
Ω0 r

2
0

r

[

1− exp

(

−r2

r20

)]

, (9)

where Ω0 is the maximum angular velocity in the rotational core of characteristic radius r0. (For 308

vθ we have Ω0 = 69.4 rad/s and r0 = 1.34 cm, and for vr we have Ω0 = −4.52 rad/s and 309

r0 = 1.39 cm.) Outside the vortex core, this model reduces to the characteristic 1/r dependence 310

of an incompressible, irrotational flow depending only on r. By observing that vθ and vr exhibit 311

similar qualitative behaviour, vr is also fitted with a model of the form of equation (9). Figs. 4C 312

and 4D show that equation (9) captures the essential features of the measured velocity profiles. The 313

angular velocity of the flow is given by Ω(r) = vθ/r which is shown in Fig. 4A. From this plot it 314

is clear that Ω reaches large enough values to be consistent with the detection of superradiance. 315

The data that support the plots within this paper and other findings of this study are available 316

from the corresponding author upon reasonable request. 317

31. Prabhu, K. Window functions and their applications in signal processing (CRC Press, 2013).

32. Lautrup, B. Physics of continuous matter: exotic and everyday phenomena in the macroscopic

world (CRC press, 2011).
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Supplementary Figure 1 | Left side: Modulus of the Fourier profiles |ϕ̃m(k)|
2 for various m.

Right side: Radial profiles ϕm(r) for various m (maroon: real part, yellow: imaginary part). The

vertical axis is in arbitrary units. The horizontal axes in inverse metres (m−1) on the left side, and

metres (m) on the right side. The dots are the experimental data (for clarity, only 1 out of 3 is

represented), and the solid lines show the approximation of Eq. (2) for the extracted values of Ain

and Aout.
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