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Recently, Ashur and Liu introduced the Rotational-XOR-difference approach which is a modification of rotational cryptanalysis,
for an ARX cipher Speck (Ashur and Liu, 2016). In this paper, we apply the Rotational-XOR-difference (RXD) approach to a non-
ARX cipher Simon and evaluate its security. First, we studied how to calculate the probability of an RXD for bitwise AND
operation that the round function of Simon is based on unlike Speck is on modular addition. Next, we prove that two RXD trails
can be connected such that it becomes possible to construct a boomerang/rectangle distinguisher similar to the case using
differential characteristics. Finally, we construct related-key rectangle distinguishers for round-reduced versions of Simon with
block lengths of 32, 48, and 64, and we suggest a five- or six-round key recovery attack. To our knowledge, it is the first attempt to
apply the notion of rotational cryptanalysis for a non-ARX cipher. Although our attack does not show the best results for Simon
thus far, the attempt here to define and apply a new cryptanalytic characteristic is meaningful, and we expect further im-
provements and applications to other ciphers to be made in subsequent studies.

1. Introduction

In a cryptosystem for confidentiality, the block cipher is a
necessary building block for core functionality. So, because
the security of block ciphers affects the applicability of the
algorithm and the usability of the cryptosystem which uses
the cipher as well, the security of a block cipher should be
evaluated comprehensively and precisely. Over the last
decade, many researchers have studied various techniques
by which to design outstanding lightweight ciphers. One
notable result of such research stream is design paradigm is
omitting S-box, such as ARX. ARX is a design methodology
for secret key primitives which uses only modular Addition,
Rotation, and eXclusive OR operations. A number of out-
performing lightweight block ciphers, such as -reefish [1],
Chaskey Cipher [2], HIGHT [3], Speck [4], LEA [5], and
Sparx [6] are designed in this framework. Another design
strategy is to use the bitwise AND operation for nonlinear
part of an algorithm. Although this approach is somewhat
less popular than ARX, outstanding hardware-oriented ci-
phers such as KATAN/KTANTAN [7], Simon [4], and
Simeck [8] utilize this strategy.

Rotational cryptanalysis was initially proposed to attack
the block cipher -reefish, which is an internal permutation
of the hash function Skein [9]. It was combined with the
notion of a rebound attack considering the results of the best
attack against Skein. Subsequently, the rotational probability
was recalculated [10] considering the failure of the Markov
assumption of chained modular additions, and a new cal-
culating algorithm was applied to correct the results on
BLAKE2 and to provide valid results on simplified Skein.
Nevertheless, it appears to be difficult to apply rotational
cryptanalysis to ciphers in which constant XOR is used for
the enciphering procedure. -is problem has remained
unsolved until the following result is presented.

Recently, Ashur and Liu proposed a new type of rota-
tional cryptanalysis that can overcome the aforementioned
disadvantage by injecting constants into states [11].-is new
approach can be used to evaluate the security of ciphers with
constant XOR in their encryption scheme. -erefore, they
applied it to the block cipher Speck-32/64 and successfully
constructed a seven-round distinguisher. To do this, they
introduced the notion of the Rotational-XOR (RX) pair
(x⊕ a1, (x⋘c)⊕ a2) and the associated rotational-XOR-
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differences (RXD) ((a1, a2), c), where x is a random variable
and a1 and a2 are constants. In particular, they presented a
closed formula for calculating the RX probability occurred
upon a modular addition.

In the present paper, we attempt to apply Ashur’s
constant injecting approach to a non-ARX cipher Simon
which is based on the bitwise AND operation. While
Ashur and Liu demonstrated how to calculate the RX
probability and how to propagate an RX pair through the
modular addition, we present a closed formula for cal-
culating the probability and propagation rule of an RX
pair through a bitwise AND operation. We also find that
the propagation of the RX pair due to the operations used
in Simon is similar to those of the ordinary differential
characteristics and we show that the probability of boo-
merang/rectangle characteristics using RXD can be cal-
culated similarly to the boomerang/rectangle
characteristic using the ordinary differential character-
istics. -erefore, we can construct boomerang/rectangle
characteristics using two RXD trails. We refer to this
cryptanalysis with such characteristics as Rotational-XOR
boomerang (or rectangle) cryptanalysis. Our attack works
in the related-key model in which the attacker uses ci-
phertexts encrypted with different but related keys be-
cause rotational cryptanalysis is naturally a related-key
attack.

Based on our results, we evaluate the security of several
instances of Simon in the related-key model. Because our
approach is more effective on ciphers with smaller block
sizes, we apply it to Simon with a block length of less than or
equal to 64. As a result, for some parameters, we could obtain
results very close to the best results on Simon thus far.
Table 1 shows the results of our attacks compared to the
results of other attacks.

Although our results are not the best records for Simon,
our approach can be adopted to analyze other existing or
future ciphers based on the bitwise AND. Examples include
Simeck and KATAN/KTANTAN.

-e rest of this paper is organized as follows: in Section 2,
we define some of the notations used here and give brief
introductions of rotational cryptanalysis, the rotational-
XOR-difference, and boomerang/rectangle cryptanalysis.
-e RX probability and RX characteristics of Simon are
described in Section 3. In Section 4, we present the RX
rectangle attack on Simon, including the key recovery phase,
and calculate the computational and data complexities of the
attacks. Finally, Section 5 concludes the paper.

2. Preliminaries

2.1. Notations. In this paper, we use the following notations:

(i) wH(x): Hamming weight of bit string x

(ii) x⊞y: modular addition of bit strings x and y

(iii) x∨y: bitwise OR of bit strings x and y

(iv) x∧y: bitwise AND of bit strings x and y

(v) x≪ r: r bit left shift of a bit string x

(vi) x<r, x ⋘ r: r bit left rotation (cyclic shift) of a bit
string x

(vii) x>r: r bit right rotation (cyclic shift) of a bit string x

(viii) x
→
: left rotation (cyclic shift) of a bit string x by a

predefined c, usually c � 1

(ix) x
←
: right rotation (cyclic shift) of a bit string x by a

predefined c, usually c � 1

(x) xi: i-th bit of a bit string x

(xi) x≺ymeans that every bit in y is larger or equal to
the corresponding bit in x

2.2. Rotational Cryptanalysis. Since Khovratovich et al.
introduced rotational cryptanalysis in 2010 [9], it has been
used to evaluate symmetric key cryptographic primitives
based on the ARX design framework [10, 18, 19]. Rotational
cryptanalysis appears to be suitable for ARX ciphers be-
cause the rotational pair is preserved through rotations and
XORes between variables and transformed by modular
additions with high probability levels, unlike ciphers based
on S-boxes.

Rotational cryptanalysis exploits the nonrandom be-
havior of ciphertext pairs generated from the rotational
plaintext pairs ((p0, p1, ..., pm− 1), (p0

�→
, p1
�→
, ..., pm− 1

����→
)) where

pi
→
� pi⋘c for some integer c (c is typically selected to 1 for

a higher probability). -e probability that modular addition
of two rotational pairs (x, x

→
) and (y, y

→
) is also a rotational

pair is given by

P[x⊞y����→
� x
→ ⊞y→] � 1

4
1 + 2c− n + 2− c + 2− n( ), (1)

where n is the bit length of both x and y [20]. For a large n,
that probability goes to 2− 1.415 when c � 1 and to 2− 2 when
c � (n/2).

However, XOR or modular addition with a constant
destroys the rotational relationship of a pair when the
constant cannot transform into itself by c-bit rotation. So,
the rotational cryptanalysis cannot be widely adopted in
relation to the block cipher analysis.

2.3. Rotational-XOR-Difference. In 2016, Ashur and Liu
introduced modified rotational cryptanalysis using the ro-
tational-XOR-difference (RXD) to overcome the limitations
caused by the constants and applied it to block cipher Speck
[11].-ey defined an RX pair as (x⊕ a1, x

→⊕ a2) and its RXD
as ((a1, a2), c). It is obvious that the RX pair is preserved
even if some constant is XORed to the values of the pair. In
addition, they proved the following-eorem 1, which shows
us how to calculate the transition probability of RX pair
through modular addition. We assume that c � 1
throughout this paper; hence, we let x

→
denote x⋘1.

Theorem 1 (Theorem 1 in [11]). Let x, y ∈ F2n represent
independent uniform random variables. Let a1, a2, b1, b2, c1,
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and c2 be constants in F2n and δx, δy, and δz be the n − 1 most
significant bits of a1

→⊕ a2, b1
→

⊕ b2, and c1
→⊕ c2, respectively.�en,

P x⊕ a1( )⊞ y⊕ b1( )⊕ c1���������������������������→
� x
→⊕ a2( )⊞ y

→⊕ b2( )⊕ c2[ ] �
2− wH(T) · 2− 3, if S⊕ 1≺T,
2− wH(T) · 2− 1.415, else if S≺T,
0, otherwise,

 (2)

where T � ((δx ⊕ δz)∨(δy ⊕ δz))≪ 1 and S � ((δx ⊕ δy ⊕
δz)⊕ ((δx ⊕ δy ⊕ δz)≪ 1)).
It is clear that the rotation of an RX pair is an RX pair and

that the XOR of two RX pairs is also an RX pair.

2.4. Boomerang/Rectangle Characteristics. A boomerang
attack [21] uses two differential characteristics Δ ⟶ Δ∗ for
E0 and ∇ ⟶ ∇∗ for E1, whose probabilities are p and q,
respectively, where the target block cipher E is a composition
of subciphers E0 and E1, i.e., E � E1 ∘E0. If two plaintexts P
and P′ such that P⊕P′ � Δ satisfy

E0(P)⊕E0 P′( ) � Δ∗, (3)

with probability p and both

E1− 1(E(P))⊕E1− 1(E(P)⊕∇) � ∇∗,

E1− 1 E P′( )( )⊕E1− 1 E P′( )⊕∇( ) � ∇∗,
(4)

are satisfied with probability q2, then, clearly

E1− 1(E(P) ⊕∇)⊕E1− 1 E P′( )⊕∇( ) � Δ∗. (5)

Hence,

E− 1(E(P)⊕∇)⊕E− 1 E P′( )⊕∇( ) � Δ, (6)

with probability p.
-erefore, if we denote E− 1(E(P)⊕∇) and

E− 1(E(P′)⊕∇) as Q and Q′, we can distinguish E from the
random permutation according to the distribution ofQ⊕Q′,
where P⊕P′ � Δ and p2q2 > 2− n.

A boomerang attack is an adaptive chosen-ciphertext
attack that can be transformed into a known-plaintext attack
based on the following rectangle distinguisher [22].

Suppose that we have two pairs of plaintext (P, P′) and
(Q,Q′) such that

P⊕P′ � Q⊕Q′ � Δ. (7)

In such a case, we have

E0(P)⊕E0 P′( ) � E0(Q)⊕E0 Q′( ) � Δ∗, (8)

Table 1: Comparison of attack results on Simon.

Block/key Attacks Rounds Data Computation Reference

32/64

Differential 22/32 232 257.9 [12]
Linear hull 23/32 231.19 261.84 [13]
Impossible 20/32 232 245.5 [14]

Zero correlation 21/32 232 259.4 [15]
Correlated sequence 27/32 3 262.94 [16]
Related-key linear 23/32 246.3 246.65 [17]

Related-key RX rectangle 22/32 230.5 260.4 -is paper

48/72
Linear hull 24/36 247.92 267.89 [13]

Zero correlation 21/36 248 261.9 [15]
Related-key RX rectangle 21/36 247 269.1 -is paper

48/96

Differential 24/36 248 78.99 [12]
Linear hull 25/36 247.92 289.89 [13]

Zero correlation 22/36 248 280.5 [15]
Related-key linear 28/36 270.9 271.07 [17]

Related-key RX rectangle 24/36 246.5 292.3 -is paper

64/96

Differential 29/42 263 86.94 [12]
Linear hull 30/42 263.53 293.62 [13]

Zero correlation 23/42 264 290.4 [15]
Related-key RX rectangle 22/42 262 291.8 -is paper

64/128

Differential 30/44 263 110.99 [12]
Linear hull 31/44 263.53 2120 [13]

Zero correlation 24/44 264 2116.8 [15]
Related-key linear 34/44 295.32 295.5 [17]

Related-key RX rectangle 25/44 261.5 2123.0 -is paper
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with probability p2. Here, if we suppose that
E0(P)⊕E0(Q) � ∇∗ with probability 2− n, then we have

E0 P′( )⊕E0 Q′( ) � ∇∗, (9)

accordingly

E(P)⊕E(Q) � E P′( )⊕E Q′( ) � ∇, (10)

with probability q2.
-us, we can distinguish E from the random permu-

tation using the distributions of E(P)⊕E(Q) and
E(P′)⊕E(Q′), if P⊕P′ � Q⊕Q′ � Δ and p2q22− n > 2− 2n.

2.5. Description of Simon. Simon [4] is a family of block
ciphers which support various bit lengths of blocks and keys.
For w� 16, 24, 32, 48, and 64, Simon-n/k has a block size of
n � 2w and a key size of k �2w, 3w, or 4w. Encryption of
Simon involves iterations of the round transformations

shown in Figure 1, where ∧ and ⊕ are bitwise AND and
XOR, respectively. rki for i � 1, 2, ... denotes the i-th round
keys generated by one of the three key schedules shown in
Figure 2 depending on the number of keywords, where c is
equal to 2w − 4 and (zj)i is the i-th bit of zj, defined as
follows.

z0 � 11111010001001010110000111001101111101000100101011000011100110...,

z1 � 10001110111110010011000010110101000111011111001001100001011010...,

z2 � 10101111011100000011010010011000101000010001111110010110110011...,

z3 � 11011011101011000110010111100000010010001010011100110100001111...,

z4 � 11010001111001101011011000100000010111000011001010010011101111....

(11)

More specific descriptions for each instance of Simon
can be found in the literature [4].

3. Rotational-XOR-Differences for Simon

Unlike Speck, based on modular addition, Simon uses the
bitwise AND for its round function, though this operation
does not always preserve RX pairs. Consequently, here it is
necessary to calculate the probability that two RX pairs are
transformed into another RX pair through the bitwise AND
operation.

3.1. Calculating the Probabilities of Rotational-XOR Pairs for
the Bitwise AND Operation. Suppose (x⊕ a1, x→⊕ a2) and
(y⊕ b1, y

→⊕ b2) are two input RX pairs of a bitwise AND
operation. In such a case, the output pair is
((x⊕ a1)∧ (y⊕ b1), ( x

→⊕ a2 )∧ (y
→⊕ b2)). Let (x⊕ a1)∧

(y⊕ b1) � z⊕ c1 and ( x
→⊕ a2)∧ (y

→⊕ b2) � z̃⊕ c2 for some

constants c1 and c2. -e probability that the output pair
becomes an RX pair then becomes

P[ z
→
� z̃] � P x⊕ a1( )∧ y⊕ b1( )⊕ c1���������������������������→

� x
→⊕ a2( )∧ y

→⊕ b2( )⊕ c2[ ].
(12)

We can observe when the probability is nonzero and how
to calculate the probability by -eorem 2, under the as-
sumption that two inputs of the bitwise AND are inde-
pendent uniformly random variables.

Theorem 2 (bitwise AND of two random variables). Let
x, y ∈ F

w
2 represent independent uniformly random variables

for some positive integer w, and let a1, a2, b1, b2, c1, and c2 be

constants in F
w
2 and δx � a1

→⊕ a2, δy � b1
→

⊕ b2, and
δz � c1

→⊕ c2. �en,

P x⊕ a1( )∧ y⊕ b1( )⊕ c1���������������������������→
� x
→⊕ a2( )∧ y

→⊕ b2( )⊕ c2[ ] � 2− wH δx∨δy( ), if δx∨δy( )∧δz,
0, otherwise.

 (13)

<<<1

w w

rki
<<<8

^

<<<2

Figure 1: Round transformation of Simon.
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Proof. Let (x⊕ a1)∧ (y⊕ b1) � z⊕ c1 and ( x
→⊕ a2)∧

(y
→⊕ b2) � z̃⊕ c2. In this case, we will calculate the proba-

bility that z̃ � z
→
.

Because ⊕ and ∧ are bitwise operations, it is clear that

z
→
� x⊕ a1( )∧ y⊕ b1( )( )⊕ c1����������������������������→

� x
→⊕ a1→( )∧ y

→⊕ b1
→( )( )⊕ c1→

�( x
→∧y→)⊕ x

→∧b1
→( )⊕ a1

→∧y→( )⊕ a1
→∧b1
→( )⊕ c1→,

z̃ � x
→⊕ a2( )∧ y

→⊕ b2( )( )⊕ c2 �( x→∧y→)⊕ x
→∧b2( )⊕ a2∧y

→( )⊕ a2∧b2( )⊕ c2.
(14)

-erefore, now we calculate the probability that

z̃ � z
→⟹ x

→∧b1
→( )⊕ a1

→∧y→( )⊕ a1
→∧b1
→( )⊕ x

→∧b2( )⊕ a2∧y→( )⊕ a2∧b2( )
� x
→∧ b1

→
⊕ b2( )( )⊕ y

→∧ a1
→⊕ a2( )( )⊕ a1

→∧b1
→( )⊕ a2∧b2( ) � c1→⊕ c2.

(15)

According to the definitions of δx, δy, and δz, we have
the following equations:

x
→∧δy( )⊕ y

→∧ δx( )⊕ a1
→∧b1
→( )⊕ a2∧b2( ) � δz

⟹ x
→∧δy( )⊕ y

→∧δx( )⊕ 0 δx ⊕ a2( )∧ δy ⊕ b2( )⊕ a2∧b2( ) � δz
⟹ x

→∧δy( )⊕ y
→∧δx( )⊕ δx∧δy( )⊕ δx∧b2( )⊕ δy∧a2( )δz.

(16)

At this point, we consider equation (16) in bit by bit. For
each i ∈ 0, 1, ..., w − 1{ }, if the i-th bits of δx and δy are 0, i.e.,
δix � δ

i
y � 0, then the i-th bit of the left-hand side of equation

(16) is 0; hence, the stipulations of the i-th bit of equation (16)
are met only if δi3 � 0 with a probability of 1. Otherwise, if
δix � 0 and δiy � 1, in this case, equation (16) implies

x
→i ⊕ ai2 � δiz which is satisfied depending on x

→i
. Because we

assume x be a uniform random variable, the probability that
the requirements associated with the i-th bit of equation (16)
are satisfied is 1/2. Similarly, if δix � 1 and δiy � 0, the con-
ditions of the i-th bit of equation (16) aremet with a probability
of 1/2 depending on y

→i
regardless of the value of δiz. -e last

case is one in which δix � 1 and δiy � 1. In this case, (16) implies
that x

→i ⊕ y→i ⊕ 1⊕ ai2 ⊕ bi2 � δiz and the conditions of this

equation are also satisfied with a probability of 1/2 regardless of
the value of δiz because ai2 and bi2 are fixed values.

-us, for some fixed δx, δy, and δz, if there exists i such
that δix � δ

i
y � 0 and δiz � 1, the probability is then 0.

-erefore, the probability is nonzero only if
(δx | δy)∧ δz � δz. And for each i such that δix ∨ δiy � 1, the
conditions of the i-th bit of (16) are met with a probability of
1/2. -erefore, the probability that the conditions of (16) are
met (which we want to calculate) is 2− wH(δx∨δy).

However, as shown in Figure 1, the two inputs x and y of
the bitwise AND operation in Simon are highly dependent
on each other.-erefore, we need to calculate the probability
more precisely. -e following -eorem 3 is analogous to
-eorem 3 for covering the Simon case and the case of j � 7
is relevant to Simon-2w/k. □

<<<–1(zj)i

<<<–3

<<<–1

<<<–3

<<<–1

<<<–3

ki+1

c

ki rki ki+3 ki+2 ki+1 ki rkiki+2 ki+1 ki rki

(zj)ic (zj)icw ww

Figure 2: -ree key schedules of Simon.
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Theorem 3. (bitwise AND of two values from one random
variable). Let x ∈ F

w
2 be an uniformly random variable for a

positive integer w and j≤w be a positive integer that does not

divide w. Additionally, let a1, a2, c1, and c2 be constants in F
w
2

and δx � a1
→⊕ a2 and δz � c1→⊕ c2. In this case,

P x⊕ a1( )∧ x<j ⊕ a< j
1( )⊕ c1�������������������������������→

� x
→⊕ a2( )∧ x<j��→⊕ a< j

2( )⊕ c2[ ] �
2− n+1, if δx � 2n − 1,

2− wH δx∨δ
<j
x( )+wH(T), else if δx∨ δ < j

x( )( )∧δz � δz,
0, otherwise,

 (17)

where T � (δ < j
x )∧δx∧(δ < 2j

x ).

Proof. Similar to the proof of -eorem 3, we now calculate
the probability that the following equation holds:

x
→∧δ < j

x( )⊕ x<j��→∧δx( )⊕ δx∧δ < j
x( )⊕ δx∧a

< j
2( )⊕ δ < j

x ∧a2( ) � δz,
⇒ δx∧δ < j

x( )⊕ δ < j
x ∧ x

→⊕ a2( )( )⊕ δx∧ x
→⊕ a2( )< j( ) � δz.

(18)
Here, we consider equation (18) in bit by bit.
For each i ∈ 0, 1, ..., w − 1{ }, if (δx)

i � (δ < j
x )

i � 0, then

δz( )i � 0, (19)

with a probability of 1.
Else if (δx)

i � 0 and (δ < j
x )

i � 1, according to equation
(18),

δz( )i � x
→⊕ a2( )i. (20)

However, because ( x
→
)i would appear again when we

define (δ >j
z )

i, it is necessary to consider the subcases along
with the value of (δ > j

x )
i. If (δ > j

x )
i � 0, ( x

→
)i does not

contribute to the definition of (δ > j
z )

i. -erefore, ( x
→
)i can be

regarded as a free random variable (which means it is not
used to define other bits of δz ); therefore, (δz)

i can be 0 or 1
with a probability of 1/2. Otherwise (i.e., (δ > j

x )
i � 1), as

(δx)
i � 0, (δ > j

z )
i � ( x
→⊕ a2)i and we have the relationship of

δiz � (δ
> j
z )

i.
Otherwise, if (δx)

i � 1 and (δ <j
x )

i � 0, similar to the
above case, (δz)

i is defined as a free random variable ( x
→<j
)i

when (δ < 2j
x )i � 0. On the other hand, (δ < j

z )
i � (( x

→⊕ a2)< j)i
and then we have the relationship of (δz)

i � (δ <j
z )

i.
Otherwise, (δx)

i � 1 and (δ <j
x )

i � 1, according to
equation (18),

δz( )i � 1⊕ x
→⊕ a2( )⊕ x

→⊕ a2( )<j( )i. (21)

It is necessary to check for subcases for (δ < 2j
x )i and

(δ > j
x )

i. We already know that (δ < j
x )

i � 1 and (δx)
i � 1. If

(δ < 2j
x )i∧(δ > j

x )
i � 0, (δz)

i is defined as a free random vari-
able, ( x

→
)i, ( x
→<j
)i, or both conditions apply. Hence, (δz)

i is
0 or 1 with a probability of 1/2. Otherwise,
(δ < 2j

x )i � (δ > j
x )

i � 1; then, (δ > j
z )

i is defined as ( x
→>2j

)i and
( x
→>j
)i, and (δ < j

z )
i is defined according to ( x

→
)i and ( x

→<j
)i.

-is means that three bits of δz are defined as four inde-
pendent bits of the random variable x

→
. Such chain ends with

the bit of δz, which is independently defined except when

δx � 2n − 1 because j∤n. -us, every bit in the chain, in-
cluding (δz)

i, has a value of 0 or 1 with a probability of 1/2. If
δx � 2n − 1, every single bit of δz is defined by two bits of x

→

and they are related to each other. Hence, the probability
that δz has some value is 2− n+1. Consequently, if (δ > j

x )
i �

0, (δx)
i � 1, (δ > 2j

x )i � 1 for some i, then the freedom of (δz)
i

and (δ > j
z )

i is decreased by 1 bit and there are exactly

wH((δ
< j
x )∧δx∧(δ < 2j

x )) pairs of bits in δx. □

3.2. Searching for the Rotational-XOR-Differences
Trail of Simon

3.2.1. How to Define the Rotational-XOR-Differences Trail.
Because we let c � 1, the RXD of an RX pair (x⊕ a1, x

→⊕ a2)
can be denoted as ((a1, a2), 1). However, we use δx � a1

→⊕ a2
to calculate the probability of the occurrence of the bitwise
AND of the RX pair regardless of the actual values of a1 and
a2. -us, we can redefine the RXD of an RX pair
(x⊕ a1, x→⊕ a2) as δx � a1→⊕ a2 for the following reason.

Let there be another RX pair (y⊕ b1, y→⊕ b2) such that
y⊕ b1 � x⊕ a1 and y

→⊕ b2 � x→⊕ a2 for some random
variable y≠ x. In this case, we have

δy � b1
→

⊕ b2 � y⊕x⊕ a1( )�������������→
⊕ y→⊕ x→⊕ a2 � a1→⊕ a2 � δx. (22)

-is means that the relationship between the constants (i.e.,
δ’s) is sufficient to represent the RX pair and thus is also sufficient
to trace the transition of δ’s instead of RX pairs to search for an
RXD trail. We also refer to this δ value as RXD and we denote an
RXD trail from pair (x⊕ a1, x→⊕ a2) to pair (x⊕ b1, x→⊕ b2)
such that δa � a1

→⊕ a2 and δb � b1
→

⊕ b2 as (δa ⟶ δb). To find
a suitable RXD trail, we need to know how the RXDs are
transformed by the operations used in the target cipher.

Because Simon uses only three operations, XOR, rota-
tion, and the bitwise AND, we can discuss these operations.
An RXD is transformed by XOR as follows. Let there be two
RX pairs (x⊕ a1, x

→⊕ a2) and (y⊕ b1, y
→⊕ b2), and

δx � a1 ⊕ a2 and δy � b1 ⊕ b2. If a new variable z � x⊕y is
introduced, two RX pairs (x⊕ a1, x→⊕ a2) and
(y⊕ b1, y→⊕ b2) are XORed into an RX pair (z⊕ c1, z

→⊕ c2)
such that c1 � a1 ⊕ b1 and c2 � a2 ⊕ b2. Because δx � a1→⊕ a2
and δy � b1

→
⊕ c2, we have

δz � c1
→⊕ c2 � δx ⊕ δy. (23)

If a constant c is XORed into an RXD δ, the RX pair
(x⊕ a1, x→⊕ a2) is transformed into (x⊕ a1 ⊕ c, x→⊕ a2 ⊕ c).
-en, clearly,
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δ′ � a1 ⊕ c
�����→⊕ a2 ⊕ c � δ ⊕ c

→⊕ c. (24)

For the rotation operations, similar to the above case of
XOR, if y � x<l, then δy � δ

< l
x .

-e transition of an RXD by the bitwise AND is as
follows. Let z � x∧y; then, every ω satisfying (δx∨δy)∧ω �
ω could be δz with the probability given in-eorem 2 In the
case of Simon, the random variables x and y are dependent
on each other such that the ω values that could be δz differ
lightly from the general case, as shown in -eorem 3

3.2.2. Considerations. We took the following considerations
into account during the search for the RXD trails of Simon.

(1) Round indices.-e indices of start and end round of the
characteristic should be specified because a rotational
attack is basically in the related-key model and the δ
values (RXDs) of the round keys vary according to the
round constants zi’s XORed in the key schedule.

(2) Including Rounds with an RXD Probability of 1. If
RXDs with two input words of encryption and k/w
keywords for a round are all zero, we find some
output RXD that is maximally k/(w + 2) rounds with
a probability of 1. -us, it is effective to search for
RXD trails forward and backward beginning with
such zero (or with a lower Hamming weight) states
to find trails with a high probability.

(3) Maximizing the Probability of the Next Round. -e
probability of an RXD trail of a round is determined
by the RXD of the left half of the input. Hence, if we
can control the right half of the output of the current
round, we can maximize the RX probability of the
next round. According to-eorem 3, one input RXD
can be transformed into several output RXDs
through the bitwise AND, and because their prob-
abilities are identical, we can choose one of them
with a condition identical to that of the current
round. Let δi,L and δi,R be the RXDs of the left and the
right inputs of i-th round, respectively, and δiK be the
δ value of the i-th round key. To maximize the RX
probability of the i + 1-th round, δi+1,L should have a
lower Hamming weight. Because

δi+1,L � δi,R ⊕ δi,z ⊕ δ<2i,L ⊕ δi,K, (25)

where δi,z is the RXD of the output of the bitwise AND
in the i-th round, we can choose δi,z for which min-
imizes the Hamming weight of δi+1,L. Note that
minimizing the Hamming weight of δi+1,L does not
always guarantee the best RXD trail; however, we
searched for RXD trails with such conditions in mind.

3.3. Rotational-XOR-Differences Trails of Simon. Putting the
aforementioned considerations together, we searched for
RXD trails with a high probability for Simon-32/64, 48/72,
48/96, 64/96, and 64/128. Initially, we let the pairs of both
intermediate value and key state of the starting round have
the δ values of Hamming weight 0 or 1.We then searched for
the RXD trail with the maximum probability for each

number of rounds by adding rounds forward and backward,
while varying the starting round.

As a result, we can find numerous trails with themaximum
probability for various starting round indices. -erefore, we
can construct rectangle characteristics using short trails with
high probabilities with considering the round indices.

4. Rotational Rectangle Attack on Simon

4.1. Rotational Rectangle Characteristic. In this section, we
show that rotational-XOR-differences can be used to con-
struct rectangle characteristics similar to differential char-
acteristics by proving the following -eorem 4.

Theorem 4. Le x and y be independent random variables
and a1, a2, b1, and b2 be constants in F

n
2 for some positive

integer n. In addition, let (x⊕ a1, x
→⊕ a2) and

(y⊕ b1, y→⊕ b2) be RX pairs with δa � a1
→⊕ a2 and

δb � b1
→

⊕ b2. If (x⊕ a1, y→⊕ b2) forms an RX pair with RXD
δc, then (y⊕ b1, x→⊕ a2) also forms an RX pair and its RXD is
δd � δa ⊕ δb ⊕ δc.

Proof. Because we assumed that (x⊕ a1, y→⊕ b2) is an RX
pair and that its RXD is δc, we can assume that

z⊕ c1 � x⊕ a1,
z
→⊕ c2 � y

→⊕ b2,
(26)

for a random variable z and for some constants c1 and c2
such that c1

→⊕ c2 � δc.
We will show that y⊕ b1 � z⊕ d1, x→⊕ a2 � z

→⊕ d2 and
d1
�→

⊕ d2 � δa ⊕ δb ⊕ δc.
According to this assumption, we have

y⊕ b2
←
� z⊕ c2←,

x
→⊕ a1
→
� z
→⊕ c1
→
.

(27)

-us, we have

y⊕ b1 � z⊕ c2
←⊕ b2
←

⊕ b1,
x
→⊕ a2 � z

→⊕ c1→⊕ a1→⊕ a2.
(28)

-erefore, if we let d1 � c2
←⊕ b2
←

⊕ b1 and d2 �
c1
→⊕ a1
→⊕ a2, we then have

δd � d1
�→

⊕d2 � c2 ⊕ b2 ⊕ b1
→

⊕ c1
→⊕ a1
→⊕ a2 � δa ⊕ δb ⊕ δc.

(29)
Accordingly, the proof is complete.
With -eorem 4 in mind, we introduce the rotational

rectangle distinguisher as follows. Denote an encryption
algorithm E with a key K by EK. Suppose that EK is a
composition of E0K and E1K such that EK � E1K∘E0K. We
have RXD trails (δa ⟶ δb) satisfied with probability p for
E0 and (δc ⟶ δd) with probability q for E1.

Suppose that (P0, P1) and (Q0, Q1) are plaintext pairs
whose δ values are both δa. -e probability that the pairs of
intermediate values (E0K0(P0), E0K1(P1)) and
(E0K2(Q0), E0K3(Q1)) are both RX pair and their δ values
are both δb is p

2.
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According to -eorem 4, if (E0K0(P0), E0K3(Q1)) is an
RX pair and its RXD is δc′, then (E0K2(Q0), E0K1(P1)) is also
an RX pair with RXD δc′⊕ δa ⊕ δa � δc′. If δc � δc′, it holds

E1K0 E0K0 P0( )( ), E1K3 E0K3 Q1( )( )( ),
E1K2 E0K2 Q0( )( ), E1K1 E0K1 P1( )( )( ), (30)

are both RX pairs with RXD δd with a probability of q2.
Because the probability that δc � δc′ is 2− n for block

length n, two RX pairs (P0, P1) and (Q0, Q1) with δa are
transformed into two RX pairs:

E1K0 E0K0 P0( )( ), E1K1 E0K1 P1( )( )( ),
E1K2 E0K2 Q0( )( ), E1K3 E0K3 Q1( )( )( ), (31)

according to EK0, EK1, EK2, and EK3 with a probability of
p2 · q2 · 2− n.

However, if E is a random permutation, the probability
that the resulting four values form two RX pairs both with
the expected RXDs is 2− 2n. -erefore, we can mount an RX
rectangle attack when 2− 2n <p2 · q2 · 2− n. □

4.2. Constructing RX Rectangle Distinguishers. We have
found many RXD trails for each of the Simon parameters
that correspond to the probabilities presented in Table 2.
Using these trails, we construct RX rectangle distinguishers
by joining two RXD trails with consideration of round
indices. As an example of Simon-32/64, we found that there
exist eight-round RXD trails which start at eighth and
sixteenth rounds. -erefore, we successfully combined them
for the rectangle distinguisher with the maximum proba-
bility (2− 6 · 2− 6)2 · 2− 32 � 2− 56. However, for Simon-48/72,
we did not find two eight-round trails that could be com-
bined for a rectangle distinguisher to maximize the prob-
ability. -erefore, we use a nine-round trail starting at fifth
round and a seven-round trail starting at fourteenth round
for the rectangle distinguisher with a probability of
(2− 4 · 2− 17)2 · 2− 48 � 2− 90. -e number of rounds and the
probability of the RX rectangle distinguisher for each of the
Simon parameters are given in Table 3 and examples of RXD
trails are presented in Tables 4 and 5.

4.3. Key Recovery Attack and Complexity. In this section, we
present the key recovery attack framework on Simon with
block sizes of 32, 48, and 64 using the RX rectangle
distinguishers.

We assume the following:

p and q denote the probabilities of RXD trails for E0
and E1, respectively, and p2 · q2 � 2− m for each version
of Simon. -erefore, the probabilities of RX rectangle
distinguishers are 2− (m+n).

We add rt rounds on top and three rounds at the
bottom of the distinguisher for each version of Simon.
-us, the numbers of attacked rounds are
R � rd + rt + 3, where rd is the number of rounds of
distinguishers for each version of Simon. Conse-
quently, we attack round-reduced Simon from the is-th
round to the if � is + R − 1-th round. -e actual round

indices of attacked rounds for each version of Simon
can be found in Tables 4 and 5.

We use N � 2((m+n+α)/2)+β plaintexts for adequate
positive values α and β.

δLi , δ
R
i , and δ

K
i denote the RXDs of the left half of an

input, the right half of an input, and a round key of i-th
round, respectively. δLinit||δ

R
init and δ

L
final‖δ

R
final are RXDs

of an input and an output of the characteristic,
respectively.

4.3.1. Generation of Pairs. Because we add rt rounds on top,
it is necessary to explain how to construct the quartets of the
plaintexts for each key.We need to generate more thanNq �

2m+n+α quartets to distinguish E from a random permutation
when the expected number of right quartets is 2α. To
generate more than Nq quartets, we need two sets of pairs
which contains at least Np � 2((m+n+α)/2) pairs.

We generate the first set of pairs as follows. Let Ω be set
of plaintexts. First, we select a random plaintext from Ω and
let this value be (x⊕ a1) for a fixed a1. And then, we encrypt
it for rt − 1 rounds with a guessed subkey of K0 and let this
value be (y⊕ b1). Next, we should define the intermediate
value of the opposite side of a pair. By rotating (y⊕ b1) and
adding an adequate RXD δ, the value is defined by
y
→⊕ (b1

→
⊕ δ). Finally, we could have another plaintext of the

pair by decrypting y
→⊕ (b1

→
⊕ δ) for rt − 1 rounds with

subkeys of the related K1. If the decryption result which is
considered as x

→⊕ a2 is in Ω again, then the two plaintexts
and corresponding ciphertexts by K0 and K1, respectively,
are regarded as an RX pair. Similarly, another set of pairs are
generated from the Ω and subkeys of K2 and K3. -e
numbers of elements inΩ required to obtainNp pairs will be
discussed later in terms of data complexity.

4.3.2. Attack Procedure. -e key recovery attack against
Simon-n/k proceeds as follows. Let F denote the round
function of Simon; i.e., F(x) � (x⋘2)⊕ ((x⋘1)∧(x⋘8)).
Note that we assume that rt � 2 for Simon-48/72 and Simon-
64/96; otherwise, rt � 3.

(1) Generate Ω of a sufficient size from the oracles.

(2) Guess rt − 1 n/2-bit subkeys (rk0is, . . . , rk0is+rt− 2) for
K0, and for each guessed key, do the following:

Calculate the corresponding related subkeys
(rk1is, . . . , rk1is+rt− 2), (rk2is, . . . , rk2is+rt− 2), and
(rk3is, . . . , rk3is+rt− 2), for K1, K2, and K3,
respectively.
For each element xis in Ω, do the following:

Encrypt xis for rt − 1 rounds with rk0is, . . .,
rk0is+1 to obtain xis+rt− 1 (rt − 1 round encryptions).

Calculate xis+rt− 1
′ using xis+rt− 1 and δ

L
init||δ

R
init.

Decrypt xis+rt− 1
′ for rt − 1 rounds with rk1is, . . .,

rk1is+1 to obtain xis
′ (rt − 1 round decryptions).

If xis
′ ∈ Ω, register (xis, xis

′) and their corre-
sponding ciphertexts as a RX pair.

For each element yis in Ω, do the following:
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Encrypt yis for rt − 1 rounds with rk2is, . . .,
rk2is+1 to obtain yis+rt− 1 (rt − 1 round encryptions).

Calculate yis+rt− 1
′ using yis+rt− 1 and δ

L
init||δ

R
init.

Decrypt yis+rt− 1
′ for rt − 1 rounds with rk3is, . . .,

rk3is+1 to obtain yis
′ (rt − 1 round decryptions).

If yis
′ ∈ Ω, register (yis, yis

′) and their corre-
sponding ciphertexts as a RX pair.

Using two sets of pairs, construct a set of quartets
(xis, xis

′, yis, yis′), and for each quartet, do the
following:

For ciphertext pairs (xif+1, yif+1
′ ) and

(yif+1, xif+1
′), calculate the δ values of

(F(xif+1), F(yif+1
′ )) and (F(yif+1), F(xif+1′ )). Using

these values and δKif , calculate δLif − 1. -en, first

Table 2: Maximum probability of RXD trails for each number of rounds.

Round Simon-32/64 Simon-48/72 Simon-48/96 Simon-64/96 Simon-64/128

1 ∼ 5 1 1 1 1 1
6 1 2− 4 1 2− 4 1
7 2− 3 2− 4 2− 4 2− 4 2− 4

8 2− 6 2− 10 2− 6 2− 10 2− 6

9 2− 10 2− 17 2− 10 2− 17 2− 10

10 2− 14 2− 20 2− 16 2− 24 2− 16

11 2− 18 2− 26 2− 22 2− 26 2− 22

12 2− 22 2− 32 2− 29 2− 32 2− 29

13 2− 29 2− 45 2− 36 2− 38 2− 36

14 2− 34 2− 52 2− 43 2− 45 2− 46

15 — — 2− 51 2− 53 2− 54

16 — — — — 2− 62

17 — — — — 2− 74

Table 3: Combinations of trails for constructing the RX rectangle distinguisher.

Simon- Rounds (E0 + E1 � E) Probability

32/64 8 + 8�16 (2− 6 · 2− 6)2 · 2− 32 � 2− 56

48/72 7 + 9�16 (2− 4 · 2− 17)2 · 2− 48 � 2− 90

48/96 9 + 9�18 (2− 10 · 2− 10)2 · 2− 48 � 2− 88.
64/96 8 + 9�17 (2− 10 · 2− 17)2 · 2− 64 � 2− 118

64/128 9 + 10�19 (2− 10 · 2− 16)2 · 2− 64 � 2− 116

Table 4: RXD trails for rectangle distinguishers of Simon-32/64, 48/72, and 48/96.

Simon-32/64 Simon-48/72 Simon-48/96

Round

RXDes

Round

RXDes

Round

RXDes

Round Round Round Round Round Round
States Keys States Keys States Keys

8 0005 8015 8001 5 000005 c50018 f50000 12 000042 c0011b c00003
9 0000 0005 0005 6 30000c 000005 a00007 13 000010 000042 000006
10 0000 0000 0000 7 000002 30000c 30000c 14 000004 000010 000000
11 0000 0000 0000 8 000001 000002 000006 15 000000 000004 000004
12 0000 0000 0000 9 000000 000001 000001 16 000000 000000 000000
13 0000 0000 0000 10 000000 000000 000000 17 000000 000000 000000
14 0000 0000 0005 11 000000 000000 000000 18 000000 000000 000000
15 0005 0000 f005 12 000000 000000 000004 19 000000 000000 000001
16 f011 0005 — 13 000004 000000 c00005 20 000001 000000 300005

14 c00015 000004 — 21 300001 000001 —

16 0010 0041 0005 14 000002 30000c 300005 21 c00000 900007 100004
17 0004 0010 0000 15 000001 000002 000006 22 800000 c00000 c00003
18 0000 0004 0004 16 000000 000001 000001 23 000001 800000 800004
19 0000 0000 0000 17 000000 000000 000000 24 000000 000001 000001
20 0000 0000 0000 18 000000 000000 000000 25 000000 000000 000000
21 0000 0000 0000 19 000000 000000 000004 26 000000 000000 000000
22 0000 0000 0001 20 000004 000000 c00006 27 000000 000000 000000
23 0001 0000 3006 21 c00016 000004 — 28 000000 000000 000004
24 3002 0001 — 22 — — 29 000004 000000 c00005

30 c00015 000004 —
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check that δLfinal is in the set of candidates for δRif− 1
calculated by δLif − 1, δ

L
if
, and δKif− 1. Second, check that

δRfinal is in the set of candidates calculated for δRfinal
by δLif − 1, δ

K
if − 2

, and δLfinal (filtering ratio 2− 2t0 , three

round decryptions).
Guess the n/2-bit key rk0if and calculate the

related subkeys rk1if, rk2if, and rk3if, and for each

guessed key, do the following:
For the remaining quartets, decrypt one round

for xif, xif
′, yif, yif′. Using these values and δKif − 1,

calculate δLif − 2 and check that δLif − 2 � δ
L
final. And

check that δRfinal is in the set of candidates calculated

for δRfinal by δ
L
if− 1

, δKif − 2, and δ
L
final (filtering ratio 2

− 2t1 ,

three round decryptions).
Guess the n/2-bit key rk0if − 1 and calculate the

related subkeys rk1if − 1, rk2if − 1, and rk3if − 1, and for

each guessed keys, do the following:
For the remaining quartets, decrypt one more

round for xif − 1, xif − 1
′, yif− 1, yif − 1′. Using δKif− 2, cal-

culate δRif − 2 and check δRif− 2 � δ
R
final (filtering ratio

2− 2t2 , two round decryptions).
Increase the counter of the current guessed key

by the number of remaining quartets.

(3) Sort the guessed keys by the number of remaining
quartets and exhaustively search the remaining key
bits using highly ranked guessed keys.

-e discard ratios for each filtering step are denoted by
t0, t1, and t2. -ese would be determined by the exact RXDs
of the characteristic and should satisfy t0 + t1 + t2 < n.

4.3.3. Data Complexity. -e data complexity of this attack is
estimated by the required number of elements in Ω. Using
elements inΩ, we generate two sets ofNp � 2((m+n+α)/2) pairs
so that we have Nq � 2m+n+α quartets. Let
l � ((m + n + α)/2). We define pairs by choosing a text in Ω,
encrypting it for the rt − 1 round with a guessed key, adding
some differences, and decrypting for rt − 1 rounds with the

related key. -erefore, we should assume that the processes
after choosing a text are random permutations from 0, 1{ }n

to 0, 1{ }n, for counting the required number of elements in
Ω. -e question is that if we have set Ω of random texts in
0, 1{ }n with 2l+β elements and a random permutation f of
0, 1{ }n, what is the condition of β such that we have more
than 2l pairs (x, f(x)) where f(x) ∈ Ω. Because we assume
that f is a random permutation,

Pr[f(x) ∈ Ω] � 2l+β

2n
� 2l+β− n, (32)

for an x ∈ Ω. -erefore, the expected number of pairs that
we could have is 2l+β × 2l+β− n � 22l+2β− n. Given that we
would like to have more than 2l pairs, β should satisfy

22l+2β− n > 2l. (33)

So, we could have a lower bound of the β as follows:

n − l

2
< β. (34)

As we have assumed that l � ((m + n + α)/2), a
straightforward computation gives the condition:

(n − m − α)

4
< β. (35)

-us, if we choose the minimum β, we can have the
required number of pairs on average. Table 6 shows the data
complexities of these attacks for each version of Simon.

4.3.4. Computational Complexity. At this stage, we calculate
the computational complexities of this attack. At the be-
ginning of the attack, we perform four rounds of encryption
on N texts to define the pairs for each guessed n/2-bit key.
We then filter out quartets with two rounds of decryption
without key guessing. Next, we consume one round of
encryption for each filtering step with n/2-bit key guessing.
Finally, we should exhaustively search the remaining key
bits. -erefore, we can estimate the computational com-
plexity of this attack as follows while taking the above factors
into account:

2 rt− 1( )n/2( ) ·
4N

R
+
3Np

R
+ 2n/2 · 2− 2t0 ·

3Np

R
+ 2n/2 · 2− 2t0− 2t1 ·

2Np

R
( )( )( ). (36)

We have assumed that N � 2((m+n+α)/2)+β and
Np � 2((m+n+α)/2). -erefore, if we apply these assumptions

to equation (36), then we have the following formula for
computational complexity:

1

R
2 nrt+m+α+2β+4( )/2 + 3 · 2 nrt+m+α( )/2 + 3 · 2n rt+1( )+m+α− 4t0/2 + 2 · 2 n rt+2( )+m+α− 4t0− 4t1( )/2( ). (37)

Table 6 shows the computational complexities of these
attacks as calculated using equation (37) along with the data
complexities when α � 2 and β has the minimum value. -e
filtering ratio t0, which is most crucial with regard to the

computational complexity among the ratios, is affected by
how many types of RXDs of the outputs that could be
produced by the round function where δLfinal and a random δ
value are the respective inputs. According to our
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investigation, t0 > (n/3) on average; thus, we assume that
t0 � t1 � (n/3).

4.3.5. Signal-to-Noise Ratio and Success Probabilities.
Similar to differential cryptanalysis, rotational cryptanalysis
uses randomly selected dataset so the attack works with
probability less than or equal to one. -us, we should cal-
culate the success probability of each attack to make sure the
possibility of the attack. By an earlier literature [23], the
success probability of differential cryptanalysis could be
calculated using signal-to-noise (S/N) ratio. We adopt that
methodology for calculating the success probability of our
attacks.We use the following equation for estimating success
probabilities:

PS � Φ
����
μSN

√
− Φ− 1 1 − 2− a( )������
SN + 1

√( ), (38)

where Φ is the cumulative distribution function of the
standard normal distribution, μ denotes the number of right
quartets, and we set the advantage a to 8. -e S/N ratio SN is
calculated as follows:

SN �
2k0Pchar
α0β0

. (39)

In the above equation, k0 denotes the bit length of the
target subkey, which is assumed to be equal to the bit length
of the secret key. Pchar denotes probability of characteristic,
which is 2− (m+n). α0 is the average number of subkeys
suggested by one analysed quartet. Since this attack gen-
eratesNq � 2m+n+α quartets, α0 � (2

k0 /Nq). β0 is the ratio of
filtering before key guessing but β0 is fixed to 1 for all attacks
because there is no filtering before key guessing. -erefore,
the S/N ratio SN is 2α, and thus, the success probability PS is
0.73 when α � 2.

5. Conclusion

In this paper, we study how to apply cryptanalysis based on
the rotational-XOR-difference approach to the block cipher
Simon. We present a closed formula that is used to calculate
the transition probability of an RXD trail according to the
bitwise AND operation. Moreover, we demonstrate that we
could construct the rectangle characteristic using RXD trails
in a manner similar to how ordinary differential trails are
used. Consequently, we could define a new RX rectangle
attack and mount it onto some instances of the Simon
family. Although our results are not the best for Simon to
date, it is the first result for rotational cryptanalysis applied

Table 5: RXD trails for rectangle distinguishers of Simon-64/96 and 64/128.

Simon-64/96 Simon-64/128

Round

RXDes

Round

RXDes

Round Round Round Round
States Keys States Keys

15 30000000 30000005 f0000004 7 00000042 00000118 c0000000
16 00000001 30000000 30000005 8 00000010 00000042 00000006
17 00000001 00000001 00000005 9 00000004 00000010 00000000
18 00000000 00000001 00000001 10 00000000 00000004 00000004
19 00000000 00000000 00000000 11 00000000 00000000 00000000
20 00000000 00000000 00000000 12 00000000 00000000 00000000
21 00000000 00000000 00000004 13 00000000 00000000 00000000
22 00000004 00000000 c0000005 14 00000000 00000000 00000002
23 c0000015 00000004 — 15 00000002 00000000 60000005

16 6000000d 00000002 —

23 00000006 c5000014 f5000000 16 40000014 60000012 60000002
24 3000000c 00000006 a0000004 17 00000041 40000014 40000002
25 00000002 3000000c 30000005 18 00000010 00000041 00000005
26 00000001 00000002 00000006 19 00000004 00000010 00000000
27 00000000 00000001 00000001 20 00000000 00000004 00000004
28 00000000 00000000 00000000 21 00000000 00000000 00000000
29 00000000 00000000 00000000 22 00000000 00000000 00000000
30 00000000 00000000 00000004 23 00000000 00000000 00000000
31 00000004 00000000 c0000005 24 00000000 00000000 00000002
32 c0000015 00000004 — 25 00000002 00000000 60000005

26 6000000d 00000002 —

Table 6: Data and computational complexities for each version of
Simon when β has the minimum value (α � 2).

Simon- 32/64 48/72 48/96 64/96 64/128

n 32 48 48 64 64
is 5 3 9 13 4
if 26 23 32 34 28
rt 3 2 3 2 3
m 24 42 40 54 52
R 22 21 24 22 25

Data complexity (|Ω|) 230.5 247 246.5 262 261.5

Comp. complexity 260.4 269.1 292.3 291.8 2123.0
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to a non-ARX cipher and it would be a worthwhile endeavor
to attempt to improve our approach or to apply to other
ciphers based on bitwise AND.

6. RXD Trails for Rectangle Distinguishers

Tables 4 and 5 show actual RXD trails for which establish the
rectangle distinguishers for each version of Simon, presented
in Table 3.

Data Availability

-e RXD trails used to support the findings of this study are
included within Tables 4 and 5.More trails are available from
the corresponding author upon reasonable request.
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