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Figure 1: Our proposed method combines novel multi-view supervision and rotational consistency losses for high-quality hu-

mannovel view synthesis. Compared to the baselineOlszewski et al. [14], our results are rotationally consistent across adjacent

views (e.g., arms/legs in (0)). Our method is also able to synthesize �ne-grained details (e.g., hat/jacket in (1)) and views with

challenging poses as in (2). GT indicates ground truth views. Models are used in training, and tested with unseen poses.

ABSTRACT

Human novel view synthesis aims to synthesize target views of a

human subject given input images taken from one or more refer-

ence viewpoints. Despite signi�cant advances in model-free novel

view synthesis, existing methods present two major limitations

when applied to complex shapes like humans. First, these meth-

ods mainly focus on simple and symmetric objects, e.g., cars and

chairs, limiting their performances to �ne-grained and asymmetric
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shapes. Second, existing methods cannot guarantee visual consis-

tency across di�erent adjacent views of the same object. To solve

these problems, we present in this paper a learning framework

for the novel view synthesis of human subjects, which explicitly

enforces consistency across di�erent generated views of the subject.

Speci�cally, we introduce a novel multi-view supervision and an ex-

plicit rotational loss during the learning process, enabling the model

to preserve detailed body parts and to achieve consistency between

adjacent synthesized views. To show the superior performance of

our approach, we present qualitative and quantitative results on the

Multi-View Human Action (MVHA) dataset we collected (consist-

ing of 3D human models animated with di�erent Mocap sequences

and captured from 54 di�erent viewpoints), the Pose-Varying Hu-

man Model (PVHM) dataset, and ShapeNet. The qualitative and

quantitative results demonstrate that our approach outperforms

the state-of-the-art baselines in both per-view synthesis quality,

and in preserving rotational consistency and complex shapes (e.g.

�ne-grained details, challenging poses) across multiple adjacent

views in a variety of scenarios, for both humans and rigid objects.

Poster Session H1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2308

https://doi.org/10.1145/3394171.3413754


CCS CONCEPTS

• Computing methodologies → Computer vision; Novel view

synthesis.

KEYWORDS

Human novel view synthesis

ACM Reference Format:

Youngjoong Kwon, Stefano Petrangeli, Dahun Kim, Haoliang Wang, Henry

Fuchs, and Viswanathan Swaminathan. 2020. Rotationally-Consistent Novel

View Synthesis for Humans. In Proceedings of the 28th ACM International

Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394171.3413754

1 INTRODUCTION

Novel View Synthesis (NVS) aims to synthesize new views of an

object given di�erent known viewpoints. Recently, several Deep

Neural Network-based NVS approaches have enabled view syn-

thesis by direct image generation without the need for explicit 3D

reconstruction or supervision [14, 15, 25, 34]. Despite its rapid devel-

opment, it is still challenging to apply existing NVS approaches to

synthesize complex shapes like the human body. Human novel view

synthesis could indeed have a variety of applications in the area

of virtual and augmented reality, telepresence, volumetric video

reconstruction, virtual try-on systems, and so on.

Existing NVSmethods commonly focus on simple and symmetric

objects, and perform quite poorly on irregular and asymmetric

shapes like a human body, as shown in Figure 1(0). Moreover,

visual results are often inconsistent between di�erent generated

viewpoints (see Figures 1 and 5). This happens because current NVS

works mainly focus on the accurate synthesis of a single target view

at a time, without considering spatial and rotational consistency,

which in turn can cause body parts (or other �ne-grained details)

to disappear across adjacent views. Moreover, current methods

usually focus on simple and symmetric objects, like those available

in the ShapeNet dataset [1], and can therefore fail to reconstruct

the complex details of a human subject.

In order to capture the complexity of the human body and over-

come the aforementioned limitations, we propose a novel end-to-

end learning model that explicitly leverages multi-view constraints

for superior reconstruction results. We �rst introduce the concept

ofMulti-View Supervision, in contrast to classical NVS methods that

only compute losses for a single target viewpoint. In our multi-view

supervision, the NVS network generates not only the target view,

but also additional views adjacent to the target one, during a single

forward pass. By generating these additional views, the network

has more opportunities to observe the �ne-grained details that

should not be omitted from the target view, leading to a better re-

construction of the human body shape, even for highly asymmetric

poses. Additionally, we propose a new Rotational Consistency Loss

to explicitly enforce consistency among generated views, an aspect

that is often overlooked in previous works. This loss is computed by

comparing�′, the generated view, with the ground-truth � warped

according to the optical �ow between ground-truth views � and

�. Intuitively, this allows the network to share features between

adjacent synthesized views. Consequently, this encourages the net-

work to generate views that are consistent with each other. It is

worth noting that our approach is applicable to non-human cases

as well. Indeed, our approach evaluated on the ShapeNet cars and

chairs categories achieves state-of-the-art performance.

We evaluate the performance on the proposed approach on the

Multi-View Human Action (MVHA) dataset we collected [10], com-

posed of diverse 3D human models animated in various poses -

each captured from 54 di�erent viewpoints, the Pose-Varying Hu-

man Model (PVHM) dataset [35], and ShapeNet [1]. Our method

is based on recent NVS works using latent volumetric representa-

tions [14, 23], and it consistently outperforms the state-of-the-art

baselines on the three aforementioned datasets, both quantitatively

and qualitatively.

In summary, our contribution is three-fold. First, we propose

the concept of multi-view supervision in the loss formulation of

the human novel view synthesis task, which allows the network to

learn from multiple views at the same time when generating a spe-

ci�c target view. This allows our approach to generate and retain

�ne-grained details of the target subject. Second, we introduce the

concept of rotational consistency in the loss formulation, to guar-

antee visual consistency across adjacent generated views. Together

with multi-view supervision, this approach results in improved

quality of human NVS results. Third, we experiment on our MVHA

dataset, PVHM and ShapeNet datasets, and demonstrate that our

approach consistently outperforms state-of-the-art baselines on all

datasets, both qualitatively and quantitatively.

The rest of this paper is organized as follows. Section 2 reports

related works in the area of novel view synthesis. Sections 3 and

4 detail the proposed framework and loss formulation, and the

characteristics of our synthetic human dataset, respectively. Com-

prehensive qualitative and quantitative results are presented in

Section 5, while Section 6 concludes the paper.

2 RELATEDWORKS

In this section, we review prior works in the area of novel view

synthesis. In particular, we review the Convolutional Neural Net-

works (CNNs)-based methods that have shown promising results

on NVS and are therefore widely used in NVS research.

2.1 2D-based novel view synthesis

A large number of works focus on transforming 2D view features

to decode a novel view. Tatarchenko et al. [26] and Yang et al. [33]

propose to synthesize novel views by regressing the pixel colors

of the target view directly from the input image using CNNs. Sev-

eral other previous works leverage pixel-�ow [15, 25, 34, 35] to

generate high-quality, sharp results. These works would usually

use �ow prediction to directly sample input pixels to construct the

output view. Speci�cally, instead of starting from an empty state,

Zhou et al. [34] suggest to move pixels from an input to a target

view leveraging bilinear sampling kernels [8]. The approach pro-

posed by Park et al. [15] achieves high-quality synthesis result by

moving only the pixels that can be seen in the novel view, and by

hallucinating the empty parts using a completion network. It takes

advantage of the symmetry of objects from ShapeNet by producing

a symmetry-aware visibility map, facilitating the synthesis with

large viewpoint changes. Sun et al. [25] further improve the results

by aggregating an arbitrary number of input images. Zhu et al. [35]

presents a human NVS dataset (Pose-Varying Human Model) and

method leveraging the depth and optical �ow information, but it

shows artifacts in the region that is not visible in the source views.
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Eslami et al. [3] develop a latent representation that can aggregate

multiple input views, which shows good results on synthetic geo-

metric scenes. Unlike the previous NVS works that move or regress

pixels, Shysheya et al. [22] regress texture coordinates correspond-

ing to a pre-de�ned texture map. Our human novel view synthesis

task cannot fully take advantage of these approaches since humans

can present highly asymmetric poses that are hardly modeled by

the 2D-based synthesis methods that lack 3D understanding.

2.2 3D-structure aware novel view synthesis

There have been promising results from works embedding implicit

spatial consistency in the NVS task using volumetric representa-

tions. Several recent methods reconstruct an explicit occupancy

volume from a single image, and render it using traditional render-

ing techniques[2, 5, 9, 19, 27, 30–32]. Methods leveraging signed-

distance-�eld-encoded volume [16, 21] or RGBU-encoded volume

[12], which can be rendered by ray-marching algorithms, have

achieved excellent quality while overcoming the memory limita-

tions of voxel-based representations. However, it cannot support

generalization to unseen models and poses. Saito et al. [21] predict

the continuous inside/outside probability of a clothed human, and

also infers an RGB value at given 3D positions of the surface geome-

try, resulting in a successful recovery of intricate details of garments.

Instead, it requires ground-truth 3D supervision. Rather than gen-

erating explicit occupancy volumes, several methods [9, 14, 19, 23]

generate latent volumetric representations that can be rendered by

a learnable decoder. Sitzmann et al. introduce latent 3D [23] and im-

plicit feature embeddings [24] to address the inconsistency between

views synthesized by generative networks, which can occur due to

a lack of 3D understanding. The DeepVoxel method [23], however,

requires scene-speci�c optimizations. Olszewski et al. [14] generate

a latent voxel representation that allows transformations including

scaling, rotation, and combination of di�erent input view images.

Moreover, their so-called Transformable Bottleneck Network (TBN)

does not require any 3D supervision and is therefore easy to train.

This approach has produced state-of-the-art results for the NVS

task on the ShapeNet dataset. However, it presents only implicit

3D consistency at an intermediate feature level.

Our approach is based on latent volumetric representation ap-

proaches, which we further improve by introducing spatial consis-

tency across generated view using explicit rotational consistency

constraint. Our proposed method better copes with the human

novel view synthesis task, and is able to generalize to new models

and poses that are unseen during training.

3 HUMAN NOVEL VIEW SYNTHESIS

In this section, we �rst introduce the baseline network architec-

ture used in our approach [14], and the extensions we propose for

the human novel view synthesis task. We then detail the novel

loss function designed to, a) learn complex asymmetric shapes via

multi-view supervision, and b) enforce rotational consistency across

generated views via rotational loss.

3.1 Network architecture

Our proposed approach is built on top of the Transformable Bottle-

neck Network (TBN) architecture proposed by Olszewski et al. [14].

A TBN consists of three blocks: an encoder, a bottleneck resampling

layer, and a decoder. An overview of the original TBN architecture

is given in Figure 2(0). The encoder network � takes an RGB image

�: (taken from input view :) as input, and generates a volumetric

representation +: of �: through a series of 2D convolutions, re-

shaping and 3D convolutions. The bottleneck resampling layer (

transforms the input volumetric representation +: into the target

view +C via trilinear interpolation ):⇒C (where : and C are the in-

put and target views, respectively). This resampling operation is

purely computational, i.e., it is not learned but instead provided

as an input to the network. This approach allows the network to

learn complex transformations between input and target views.

Multiple input views can be used by averaging the intermediate

volumetric representations before decoding. The decoder � , whose

architecture mirrors that of the encoder �, takes the aggregated

volumetric representation and generates the output image � ′C . TBN

requires only the RGB image of the input and target views, without

any form of 3D supervision, which makes it easy to train.

In light of the above, we extend the TBN architecture by incor-

porating the proposed novel loss functions for the human NVS task.

The extended TBN architecture used in this work is presented in

Figure 2(1). In addition to the target view C , our network generates

a set of additional views, ; , starting from the same intermediate

volumetric representation. These additional views are combined

with the proposed loss system to guarantee both high-quality recon-

struction of the target view and visual consistency across adjacent

views of the same target, as described in Sections 3.2 and 3.3.

3.2 Multi-view supervision

The goal of our network is to reconstruct the complex and asymmet-

ric shape of a human subject. We therefore propose the concept of

multi-view supervision, where the network is trained by generating

not only the desired target view, but also a set of additional views.

These additional views help the network to synthesize complex

shapes, by providing additional information during the training

process of the target view C on the actual global shape of the human

subject. Multi-view supervision is performed by generating both

views immediately adjacent to the target one and views which are

farther away with respect to the target. We denote these two sets

of additional views as !0 and !5 . As an example, !0 can indicate

the two views immediately adjacent to the target one, and !5 can

indicate two views that are a certain degree apart from the target.

To obtain the additional views, we resample the volumetric rep-

resentation +C to +; , with ; ∈ {!0, !5 }, and decode it into image � ′
;
,

which is compared to ground-truth image �; . For the multi-view

supervision, we use a similar loss system in the image space as that

proposed by Olszewski et al. [14], given by the following equations:

+; = ( (+C ,)C⇒; ) (1)

� ′
;
= � (+; ) (2)

L' =





� ′
;
− �;







1
(3)

L% =

∑

8





+��8 (�
′
;
) −+��8 (�; )







2

2
(4)

L"D;C8 =
1

|!0 | +
�

�!5

�

�

∑

; ∈{!0,!5 }

(_'L' + _%L%+

_(L( + _�L�)

(5)
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Figure 2: Overview. Our network is built upon the 3D-structure aware NVS network (0) [14]. In multi-view supervision (upper

part - (1)), additional target views are generated starting from the same latent volumetric representation, and the loss is com-

puted between ground-truth and synthesized images. In rotational consistency supervision (bottom part - (1)), the backward

optical �ow between two adjacent ground-truth views �; and �;−1 is �rst obtained. Next, the loss is computed by comparing the

warped ground-truth image �; and the synthesized view � ′
;−1

. Both images are applied with a binary occupancymask computed

starting from �; and �;−1.

L' is the the pixel-wise !1 reconstruction loss between ground-

truth and reconstructed image, whileL% is the !2 loss in the feature

space of the VGG-19 network. +��8 indicates the output of the

8Cℎ layer of the VGG-19 network. L( and L� are the structural

similarity and adversarial loss, respectively [14, 20, 29].

3.3 Rotational consistency supervision

Besides being able to reconstruct high-quality complex shapes given

a target view C , we also want our network to generate spatially con-

sistent results across di�erent views. Our rotational loss is therefore

designed to minimize inconsistencies between synthesized views,

and is formulated as the warping error computed between the

additional views introduced in the previous section.

Particularly, we consider two adjacent views ; − 1 and ; both

belonging to !0 ∪ {C}, with C being the actual target view. We

�rst compute,;⇒;−1, the function warping an image according

to the ground-truth backward �ow �;⇒;−1 between the ground-

truth images �; and �;−1 [6]. Next, we compute";⇒;−1, the binary

occlusion mask between the �; and,;⇒;−1 (�;−1) [11]:

";⇒;−1 = 4−U ∥�;−,;⇒;−1 (�;−1) ∥
2

2 (6)

We use a bi-linear sampling layer to warp images and set U =

50 (with pixel range between [0, 1]) [8]. We apply this occlusion

mask to both the generated image � ′
;
and the warped ground-truth

,;⇒;−1 (�;−1) to get . ′
;
and .;⇒;−1, and compute the loss between

; and ; − 1 as in the following equations:

. ′
;
= ";⇒;−1 · �

′
;

(7)

.;⇒;−1 = ";⇒;−1 ·,;⇒;−1 (�;−1) (8)

L'1
=





. ′
;
− .;⇒;−1







1
+




. ′
;−1

− .;−1⇒;







1
(9)

L'2
= [1 − ((�" (. ′

;
, .;⇒;−1)]

+ [1 − ((�" (. ′
;−1

, .;−1⇒; )]
(10)

Applying the occlusion mask on � ′
;
and,;⇒;−1 (�;−1) allows to

calculate the loss only on those pixels that are visible given the

backward �ow. L'1
and L'2

represent the !1 reconstruction loss

and the structural similarity loss (((�" is considered normalized)

between the warped ground-truth and the generated image. We

consider in this case both backward �ows ; ⇒ ; − 1 and ; − 1 ⇒ ; .

By comparing the synthesized image with the warped ground-

truth, we encourage the network to learn the inherent rotational

consistency of the ground-truth images. The �nal rotational loss is

given by:

L'>C =
1

|!0 |

∑

(;−1,;) ∈!0∪{C }

_'1
L'1

+ _'2
L'2

(11)

3.4 Overall loss

We train our network to minimize the following loss function:

L)>C0; = _�0B4L�0B4 + _"D;C8L"D;C8 + _'>CL'>C , (12)

where L�0B4 is original the loss presented in [14], L"D;C8 is the

multi-view supervision loss, and L'>C is the rotational loss. The
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Figure 3: Overview of our MVHA dataset.

balancing weights _�0B4 , _"D;C8 , _'>C are all set to 1 throughout the

experiments.

4 MULTI-VIEW HUMAN ACTION (MVHA)
DATASET

In this section, we introduce theMulti-ViewHumanAction (MVHA)

dataset we collected to support the development of novel human-

speci�c NVS approaches [10] (Figure 3). Compared with previous

similar datasets that only provide 4 captured viewpoints [7], ours

provide 54 di�erent viewpoints for each unique model (18 azimuth

and 3 elevations).

Body and clothingmodels.We generate fully textured meshes

for 30 human characters using Adobe Fuse [4]. The distribution of

the subjects’ physical characteristics covers a broad spectrum of

body shapes, skin tones and hair geometry. Each subject is dressed

with a di�erent out�ts including a variety of garments with multi-

ple colors and textures, ranging from casuals, sports, to uniforms,

and shoes. Also, each subject features diverse �ne-grained details

including the makeup, mustache, beard, hats, glasses and mask (see

Figure 3 (0)). Compared to existing human datasets [7, 18, 28, 35]

with relatively simple out�ts and details (see a sample from the

PVHM dataset in Figure3 (2)), our synthetic human dataset (Fig-

ure3 (1)) allows to train/test on more di�cult NVS task applied to

humans.

Mocap sequences.We gather 40 diverse Mocap sequences from

Adobe Mixamo [13]. The sequences range from static everyday

motions (e.g. answering phone, searching pockets, clapping) to

very complex and dynamic motion patterns including dancing,

sports, �ghting (e.g. YMCA dance, aerial, bouncing a basketball,

kicking, punching) as in Figure 3 (0) and (1).

Camera, lights and background. A 3D rendering software

is used to apply the 40 Mocap animation sequences to the 30 3D

models. The illumination is composed of an ambient light plus a

directional light source. We use a projective camera with 512 × 512

pixel resolution. The distance to the subject is �xed to ensures the

whole body is always in view. Every sequence is rendered from 54

Figure 4: Ablation study (seen model / unseen pose). The

proposed multi-view supervision (third row) allows the net-

work to generate higher quality results than TBN (second

row), both in terms of reconstructed shape and color (e.g.,

the blue stripe). With the rotational loss (fourth row), the

network can generate �ner details across the adjacent views

(e.g., right arm).

Methods !1 ↓ SSIM↑ RL-!1 ↓ RL-SSIM↑

TBN (Baseline) .111 .705 .054 .685

Ours (MV) .096 .742 .050 .707

Ours (MV+RC) .087 .752 .042 .722

Table 1: Ablation study (seen model / unseen pose). We re-

port !1 (lower is better) and SSIM (higher is better), and

the corresponding components for the rotational loss (Equa-

tions 9 and 10).

camera views - 18 azimuth at 20 degree intervals, and 3 elevations

with 10 degree intervals. For every rendered view, we provide the

�nal RGB image and associated binary segmentation mask.

5 EXPERIMENTS

In this section, we thoroughly evaluate the e�ectiveness of our

method on our MVHA dataset [10], as well as the PVHM [35] and

ShapeNet [1] datasets. First, we compare with the baseline method

TBN [14] on our MVHA dataset to show the ablative contribu-

tions of each proposed component. Also, we present benchmarking

results on the PVHM dataset to provide a comparison with state-

of-the-art NVS methods for human models. Finally, experiments

on the ShapeNet dataset con�rm that our method performs well

for rigid and symmetric objects like cars and chairs. On all datasets,

our approach consistently outperforms other competing methods,

both quantitatively and qualitatively.

For evaluation, we use the !1 and SSIM losses to measure the

quality of the synthesized view with respect to the ground-truth,

and the !1 and SSIM components of the Rotational Loss (RL) in

Equations 9 and 10 to measure the rotational consistency between
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Figure 5: Comparison with TBN on generalization (4 input views). (0) and (1) are results generated from models seen during

training with unseen poses. (2) reports 360-degree rotation results from an unseenmodel with an unseen pose. Independently

of the testing scenario, our method is able to generate �ne-grained details and better consistency between adjacent views. In

both (0), (1) and (2), the arm/leg of themodel appears and disappears across views for TBN. Our network is able to successfully

generalize even for an unseen model with a challenging unseen pose as in (2).

the adjacent views. We use the acronyms MV and MV+RC for our

network with multi-view supervision only (Equation 5) and multi-

view supervision in combination with rotational consistency (Equa-

tion 11), respectively. We use ourMV+RC model for all experiments

unless speci�ed otherwise. The proposed approach has been im-

plemented and trained using the PyTorch framework [17]. Each

network was trained on 8 NVIDIA Tesla V100s, with each batch dis-

tributed across the GPUs. We trained each model until convergence

on the test set, which took approximately 8 days.

5.1 Results on the MVHA dataset

Ablation Study. Our MVHA dataset exhibits highly asymmetric

and complex poses, which allows to clearly show the limitations of

previous methods. We investigate the ablative impact of the pro-

posed multi-view supervision (MV) and rotational consistency (RC)

losses over the baseline TBN method, both quantitatively (Table 2)

and qualitatively (Figure 4). Both MV and RC improve the baseline

performance on the per-frame synthesis quality (!1, ((�") and

rotational consistency ('!-!1, '!-((�"). Visual results con�rm the

gains brought by the proposed supervisions. As seen in Figure 4,

views generated by TBN fail to reconstruct body parts and details

Testing Scenario Method L1↓ SSIM↑ RL-L1↓ RL-SSIM↑

1. Seen model TBN .111 .705 .054 .685

+ Unseen pose Ours .087 .752 .042 .722

2. Unseen model TBN .109 .708 .050 .692

+ Seen pose Ours .094 .721 .045 .705

3. Unseen model TBN .117 .683 .056 .678

+ Unseen pose Ours .097 .715 .046 .697

Table 2: Quantitative comparisonwith TBN on our synthetic

human dataset on a variety of scenarios in terms of models

and poses.

such as the right arm, shoes and trousers of the human model. Us-

ing our proposed multi-view supervision loss, our network is able

to generate better details (such as the blue stripe of the trousers).

It is worth noting that multi-view supervision enforces stronger

constraints on the asymmetric and complex shape of the target

subject during training, which in turn leads to a better learned volu-

metric representation. Adding the rotational consistency produces

better reconstruction of body parts, e.g., the right arm in Figure 4,
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Figure 6: Qualitative results on the PVHM dataset, for our approach and di�erent baselines [14, 15, 26, 34, 35].

by enforcing explicit consistency across multiple adjacent views.

The representations learned in one view are shared to the adjacent

views, which allows our method to produce higher quality results.

Both quantitatively and qualitatively, the best results are achieved

when both MV and RC are used together.

ComparisonwithTBNand generalization capabilities.The

ability to generalize to unseen models and poses is essential in the

human NVS problem. We consider three generalization scenarios

with di�erent levels of complexity: 1) models seen during training

and new unseen poses, 2) unseen models with seen poses, and 3)

both unseen models and unseen poses. We use the same volume res-

olution ratio as in TBN for fair comparison. Table 2 shows that our

method can generalize not only for unseen poses (Scenario 1), but

also for new human models (Scenario 2 and 3). The per-view quality

scores (!1, ((�") drop only slightly even in the most di�cult gener-

alization scenario, and are consistently better than TBN. It is worth

noting that our method tested on unseen models/unseen poses (!1:

0.097, '!-!1: 0.046) outperforms TBN tested on the simplest case

of seen models/unseen poses (!1: 0.111, '!-!1: 0.054).

Qualitative results con�rm the quantitative ones, as shown in Fig-

ures 1 and 5. Results for Scenario 1 (seen models/unseen poses) are

shown in Figure 1 and Figure 5(0)-(1). Our approach successfully

generates �ne details (e.g., arms/legs) in a multi-view consistent

manner. In contrast, TBN results in missing body parts (such as

arms and hands), and the generated views are inconsistent among

each other, e.g., some body parts appear in one view, but disap-

pear in another. Even for the most challenging Scenario 3 (unseen

models/unseen poses), shown in Figure 5(2), our method is able to

successfully generalize to complex and asymmetric human shapes,

despite the presence of heavy occlusions, e.g., between arms and

legs. On the other hand, TBN shows incomplete reconstruction of

the hands and inconsistent generation of the legs.

5.2 Results on PVHM and ShapeNet datasets

To conclude the analysis, we also report quantitative and qualitative

results on the PVHM and ShapeNet datasets. These results allows

us to show that the proposed approach can work also beyond the

MVHA dataset we collected and for rigid objects as well.

Quantitative and qualitative results for the PVHM dataset are

reported in Table 3 and Figure 6, respectively. We show the e�etive-

ness of our approach by comparing our view generation quality

with diverse well-know NVS approaches. Speci�cally, we perform

comparisons with pixel regression method (Tatarchenko et al. [26]),

�ow-based approach (Zhou et al. [34], Park et al. [15], and Zhu et

al. [35]), and TBN.

Method MSE↓ SSIM↑

Tatarchenko et al. [26] 96.83 .9488

Zhou et al. [34] 131.6 .9527

Park et al. [15] 85.35 .9519

Zhu et al. [35] 72.86 .9670

Olszewski et al. [14] 70.34 .9695

Ours 66.85 .9749

Table 3: Quantitative results on the PVHM dataset [35], for

our method and several baseline methods.

For numerical comparison, we use the MSE and SSIM to quanti-

tatively compare the di�erent approaches, as proposed by Zhu et

al. [35]. Our approach results in consistent better performance, by

a large margin, compared to the other baseline methods (Table 3),

providing state-of-the-art results on PVHM.

In terms of qualitative results (Figure 6), Tatarchenko et al. [26]

show blurry results and incomplete reconstruction of human struc-

ture due to the challenging nature of pixel regression out of empty

state. Flow-based methods [15, 34, 35] present artifacts on the re-

gions that are not visible from the source view. Speci�cally, Zhou

et al. [34] and Park et al. [15] show clear artifacts on the arms and

legs in both examples (0) and (1). Park et al. [15] present artifacts

around the face region in (0) due to the hallucination failure of

invisible areas from the source view, while Zhu et al. [35] show

artifacts on the legs in (0), and foot and left arm in (1). Similar

inconsistencies can be noted for Olszewski et al. [14]. Our method

generates views that are much closer to the ground-truth both in

terms of pose and �ne-grained details (e.g, arms, legs, hands), for

both examples (0) and (1).

Results for the chair and car category of ShapeNet are reported

in Table 4 and Figure 7. Numerical results (Table 4) show that

our approach provide state-of-the-art results on the chair and car

category, and outperform all other baselines by a consistent margin.

This result clearly shows that, even though the proposed method

was designed with the human novel view synthesis in mind, it

can be applied to other rigid object categories as well. Qualitative

results (Figure 7) indicate that, compared with TBN, our approach

can generate higher-quality and �ner-grained details, with better

consistency across adjacent views.

Overall, the results on PVHM and ShapeNet con�rm the superior

performance of the proposed approach with respect to state-of-the-

art methods on the NVS task.

Poster Session H1: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2314



Figure 7: Qualitative results on ShapeNet for 360-degree rotations. Our method generates �ne-grained details and better con-

sistency between adjacent views.

Methods Car Chair

!1 ↓ SSIM↑ RL-!1 ↓ RL-SSIM↑ !1 ↓ SSIM↑ RL-!1 ↓ RL-SSIM↑

Tatarchenko et al. [26] .112 .890 - - .192 .900 - -

Zhou et al. [34] .081 .924 - - .165 .891 - -

Sun et al. [25] .062 .946 - - .111 .925 - -

Olszewski et al. [14] .059 .946 .076 .729 .107 .939 .073 .735

Ours .054 .954 .068 .748 .099 .948 .067 .740

Table 4: Quantitative results on the ShapeNet dataset [1], for ourmethod and several baselinemethods (4 input views), on both

car and chair categories. We additionally report the rotational loss for our approach and Olszewski et al. [14].

6 CONCLUSIONS

We presented in this paper a novel approach for novel view syn-

thesis for humans, which often present complex and asymmetri-

cal poses and rich details. We introduced a novel approach that

leverages the concepts of multi-view supervision and rotationally

consistency to generate high-quality results. Using our method in

combination with a leading NVS approach [14], we showed that we

outperform it both quantitatively and qualitatively in the human

novel view synthesis task, for a variety of scenarios and datasets.

Our solution is indeed able to produce higher-quality images that

can retain �ne-grained details with respect to the ground-truth, for

complex and asymmetric body shapes. Moreover, results on the

MVHA dataset we collected, PVHM and ShapeNet con�rm that

our approach can produce state-of-the-art results for both human

subjects and rigid objects, when compared with several baseline

solutions.
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