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High resolution laser excitation was combined with the technique of mass-selected two-photon 

ionization via aresonant intermediate state to measure rotationally resolved UV spectra of 

benzene-Ar van der Waals clusters. When the second laser pulse in the two color experiment is 

delayed by 7 ns no line broadening due to the second ionizing absorption step is observed. 

Spectra of three vibronic bands in the SI +-So transition ofbenzene (h6 )-Ar and benzene 

(d6 )-Ar were measured yielding a line spectrum with a linewidth of 130 MHz. Resolution is 

sufficient to demonstrate that no asymmetry splitting of the rotationallines occurs and the 

spectrum is to a high precision that of a symmetrie rotor. A detailed analysis ofthe rotational 

structure yields an accurate set ofrotational constants. We find that the Ar is located on the C6 

rotational axis. Its distance from the benzene ring plane is 3.582 A in the electronic ground 

state and decreases by 59 ± 3 mA in the electronically excited state due to the increased 

polarizability of the benzene moleeule after electronic excitation. 

I. INTRODUCTION 

Rotationally resolved electronic spectroscopy of large 

polyatomic moleeules has become feasible by high resolution 

laser techniques in the past few years. To resolve individual 

rovibronic transitions the Doppler-broadening has to be 

eliminated, since the rotationalline spacing is so small that 

individuallines are hidden under the Doppler width. One of 

the techniques, Doppler-free two-photon excitation, allows 

the elimination ofthe large Doppler-broadening present in a 

room temperature sampIe. It has been successfully applied 

to room temperature benzene with thermal velocity distribu­

tion. Completely resolved rotationalline spectra consisting 

of several thousands oflines were the result of these measure­

ments. I On the other hand, in a skimmed supersonic molecu­

lar beam the transversal velocity distribution and conse­

quently the Doppler width is drastically reduced and 

conventional one-photon absorption yields rotationally re­

solved spectra ifnarrow bandwidth lasers are used. 2
-

7 In this 

case there is no need for particular nonlinear optical tech­

niques, such as saturation spectroscopy or Doppler-free two­

photon absorption for elimination of the Doppler-broaden­

ing. 

In addition to the narrow transversal velocity distribu­

tion the cooling process in a supersonic beam leads to a nu­

cleation process of the expanded moleeules due to van der 

Waals forces and the production of clusters. It is of great 

interest to measure rotationally resolved electronic spectra 

of these clusters in order to study their geometry and struc­

ture. This yields basic information for the understanding of 

the van der Waals interaction. 

In the past, rotationally resolved spectra of only few van 

der Waals clusters ofpolyatomic moleeules have been mea­

sured using a continuous supersonic beam and a single mode 

cw dye laser.8
,9 In these investigations the fluorescence from 

the excited clusters has been monitored and consequently 

fluorescence excitation spectra were obtained. In a super-

sonic beam it is impossible to selectively produce a single 

cluster species but rather in addition to the monomer a var­

iety of clusters is produced. The spectra of these species may 

overlap and often an assignment of fluorescence excitation 

spectra is difficult or even impossible. A powerful method to 

measure spectra of selected species in a mixture is resonance­

enhanced two-photon ionization combined with mass selec­

tive detection. 1O This technique has been successfully ap­

plied to measure electronic spectra of clusters with 

vibrational resolution. II- 13 Since this technique requires a 

pulsed excitation it is not apriori clear whether its spectral 

resolution can be improved to render rotationally resolved 

spectra. 

In this work it will be shown that aresolution of 130 

MHz is achieved in a resonance-enhanced two-photon ioni­

zation experiment with mass selective detection ofbenzene­

Ar clusters. This resolution is possible in a two laser experi­

ment consisting of a pulsed amplified cw laser with a band­

width of about 100 MHz after frequency doubling and a time 

delayed broadband dye laser. 

In recent years, it has been shown that benzene can form 

van der Waals clusters with various molecules and noble gas 

atoms. 14 So far, rotational spectra have been obtained by 

microwave spectroscopy for the benzene-HCl l5 and the ben­

zene-HF complex. 16 In both cases the spectrum is charac­

teristic of a symmetrie top indicating that the HF or HCI 

moleeules are placed above the center of the benzene ring 

and the average displacement of the H, Cl or F atoms from 

the benzene C6 axis is zero. 

Due to their small dipole moments microwave spectra 

for benzene-noble gas complexes are not available and deter­

mination of their structure might be possible from UV spec­

troscopy if the rotational structure is resol ved. Beck et al., 17 

were able to resolve 9 rotationallines in the 6~ band of the 

benzene-He complex even though the frequency-width of 

their laser was as large as 1.3 GHz in the UV. This was 

possible by extreme cooling down to TRot = 0.3 Kin a con-
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tinuous supersonic beam. From the analysis oflines with J" 

up to 3 a distance of 3.2 A ofthe He atom from the benzene 

plane was found. A spectrum of the benzene-Ar C'omplex 

was published for the first time by Fung et al. 18 The spectral 

resolution of 5 GHz and the relatively high temperature of 

TRo! = 3 K did not allow to resolve single rotationallines 

but gross rotational features in the rotational envelope of the 

vibronic band were observed and were reproduced by a band 

contour calculation yielding an Ar-benzene distance of 

3.4±0.2A. 

In this work rotational resolution is demonstrated for 

the 66 and the 66 n bands of benzene (h6 )-Ar (C6H6 ' Ar) 

and benzene (d6 )-Ar (C6D6 'Ar) clusters. The analysis of 

the line spectra yields rotational constants with high preci­

sion and an accurate value for the distance ofthe Ar from the 

benzene ring plane in the ground and excited electronic 

state. 

11. EXPERIMENTAL SETUP 

The scheme ofthe experimental setup is shown in Fig. 1. 

Benzene-Ar clusters are produced in a supersonic molecular 

beam. Ar under a backing pressure of 2.6 atm is used as a 

carrier gas. Liquid benzene is kept at a temperature of285 K 

yielding a vapor pressure of 50 Torr. The benzene-Ar gas 

mixture is expanded through a pulsed nozzle into a vacuum 

chamber, which is evacuated by a turbomolecular pump. 

Thus a supersonic beam ofbenzene, benzene-Ar heteroclus­

ters, and benzene homoclusters is produced as described in 

our previous work.7 Under the above mentioned pressure 

conditions the benzene-Ar cluster concentration was found 

to be sufficient for the recording of spectra. The central part 

of the molecular jet is selected by a skimmer and enters a 

FIG. 1. Experimental setup for the 

recording of rotationally resolved 

UV spectra of cluster molecules by 

mass-selected resonance-enhanced 

two-photon ionization. A high spec­

tral resolution of the excitation laser 

of 100 MHz is obtained by pulsed 

amplification of a single-mode cw 

dye laser and consequent frequency 

doubling. The excited molecules are 

ionized by the UV light generated in 

a second dye laser. The second laser 

pulse is delayed by 7 ns to avoid 

broadening of spectral lines in the 

resonance enhanced two-photon 

ionization spectrum. To select spec­

tral features of a particular cluster 

molecule, the different ions pro­

duced are mass-analyzed in a simple 

time-of-flight mass-spectrometer 

and only the signal of the channel 

plates in the appropriate timing win­

dow is integrated. 

second vacuum chamber evacuated by a second turbomo­

lecular pump. 7.5 cm downstream the skimmer aperture 

benzene molecules and/or clusters interact with the frequen­

cy-doubled light of a pulsed amplified cw single mode dye 

laser. Amplification takes place in a three-stage amplifier set 

up pumped by one beam ofan EMG 150 (Lambda Physik) 

excimer laser. The cw laser can be operated in the wave­

length range between 5190 and 4800 A (Coumarin 102), 

and Coumarin 307 is used in the amplifier. The frequency 

width ofthe pulsed UV light of about 100 MHz is close to the 

Fourier transformation of the pulse length of 7 ns and the 

geometry ofthe molecular beam-light interaction region has 

been chosen so that the Doppler-width is reduced to about 

45 MHz. This part ofthe experiment was described in detail 

in our previous work.7 The laser beam is not focused and the 

pulse energy is kept as low as 1 jlJ in order to avoid satura­

tion of the observed one-photon transitions and further ab­

sorption to the ionization continuum. These processes 

would shorten the lifetime of the excited state and cause 

additional line broadening. The second absorption step to 

the ionization continuum is induced with a delay of 7 ns by 

the frequency doubled light of a dye laser (FL 2002; Lambda 

Physik) which is pumped by the second beam ofthe EMG 

150 excimer laser and operates at a fixed wavelength of 547.7 

nm and a frequency width of 0.2 cm - I. The delay of 7 ns 

guarantees that the excited molecular states have lived suffi­

ciently long before further excitation to the ionization con­

tinuum takes place. In this way any broadening due to rapid 

excited state absorption is avoided. 

The ions are mass selected and detected in a simple 

home-built time-of-ftight mass spectrometer with a field-free 

drifi\length of 20 cm and a resulting mass resolution of 

J. ehem. Phys., Vol. 92, No. 1, 1 January 1990 
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mh~m::::: 100. The mass resolution is sufficient to separate 

C6H6 (78 a.u.), C6D6 (84 a.u.), C6H6 'Ar (118 a.u.), and 

C6D6 'Ar (124 a.u.) from each other. However, the mass 

peaks ofbenzene and benzene clusters containing one heavy 

13C atom with natural isotopic abundance cannot be distin­

guished from the corresponding mass peaks of the normal 

light isotopic moleeules. No perturbance of the measured 

spectra by isotopic components is found due to their small 

abundance and the spectral shifts in the isotopes. The ions 

are detected with two channel plates (Galileo MCP-25) in 

series. A problem arises iffor a chosen excitation wavelength 

of the first narrow bandwidth laser, the benzene monomer 

and a cluster oflarger mass are excited at the same time. This 

situation is present ifthe SI +--So spectra ofboth species over­

lap. As the concentration of the monomers is at least one 

order of magnitude larger in the molecular beam, the pro­

duction ofbenzene monomer cations leads to a saturation of 

the channel plates if the first photon is in resonance with a 

monomer transition. An ion with larger mass arriving sever­

al f./,s after the monomer at the channel plates is no Ion ger 

detected. To solve this problem an additional grid is placed 

in front ofthe channel plates. A potential slightly larger than 

the kinetic energy of the ions is applied to this grid, so that 

the benzene cations are reftected and do not arrive at the 

detector. Shortly before the arrival ofthe clusters under in­

vestigation the potential is turned off and the desired signal is 

monitored with high sensitivity. 

The output signal is either fed into a 7912HB Tektronix 

transient recorder or integrated with agated integrator (SR 

250) the gate ofwhich is set on the selected mass peak. For 

wavelength calibration an iodine absorption spectrum is 

measured simultaneously with the benzene-Ar spectrum. A 

highly precise relative frequency scale is obtained from the 

transmission pattern of a Fabry-Perot-Interferometer (Bur­

leigh; CFT 500) with a precisely known free spectral range 

ofl50MHz. 

111. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Rotational analysis 

In Fig. 2 the 6b band of the C6H6 ' Ar cluster is shown 

measured by two-color resonance-enhanced two-photon 

ionization as described in the preceding section. It has been 

carefully checked that no saturation of the first absorption 

step occurs. Thus the line intensities reftect the expected 

transition strength given by the statistical weights, the 

Hönl-London factors, and the Boltzmann factor. It is seen 

that particularly in the P- and R -branch of the band the 

individual rotational transitions are completely resolved. 

The experimentallinewidth of about 130 MHz agrees with 

the value given by the convolution ofthe frequency width of 

the UV light and the residual Doppler width. Hence it is 

clear that no additional broadening of the lines due to fast 

intramolecular dynamic processes occurs at the low excess 

energy of 520 cm - I of the 61 state. 

The gross ordering ofthe band is quite obvious. There is 

a P- and an R-branch with widely spaced lines and in the 

center a congested Q-branch with a striking structure of 6 

blue-shaded subbands. These subbands consist oflines with 

CsH6'Ar 66 p- Branch Itd =-11 

v 00= 38 585.071(8) K"=I, toK=-l 
i i i i i I i 

J"=8 toK=-l J" .11 10 9 8 7 6 5 
i i I I I 

K"= 8 7 6 5 I, 

-80 -70 -60 -50 

Q- Branch ltoJ=OI 

K"= 3 K"=2 K"=l K'!,O K"=l K"=2 K"=3 

toK= -1 toK=-l toK=-l toK=.l toK=.l toK=.l toK=.l 

R- Branch I toJ =.11 

i I i i i i 

J" = 5 8 9 10 11 12 

30 40 50 60 70 tov [GHz] 

FIG. 2. Mass-se1ected resonance-enhanced two-photon ionization spec­

trum ofthe 6i, band ofCoHo·Ar. Most ofthe spectral features seen in the 

spectrum are single rovibronic transitions. For illustration, the subbands of 

the Q-branch (!1J = 0) are labelIed with the appropriate values of K" and 

!1K. In the P- and R-branch the arrangement oflines in typical subbands is 

indicated. 

constant K" and tJ( but varying J" with a displacement of 

äB·J"· (J" + 1) from theoriginofthesubband. Itisimpor­

tant to emphasize that the subbands are blue shaded. This is 

a direct indication for an increase of the rotational constant 

B ofbenzene-Ar in the excited electronic state in contrast to 

the decrease of the rotational constants of benzene in the 

electronically excited state. It may be interpreted as a de­

crease of the Ar-benzene bond length in the electronically 

excited state (see below). 

For a precise determination of the rotational constants a 

detailed assignment ofthe rotationallines and a computer fit 

ofthe measured spectrum was performed. Starting with the 

rotational constants ofFung et a/. 18 for a prolate symmetrie 

top a theoretical stick spectrum was calculated according to 
the energy formula 

E rot = B·J· (J + 1) + (A - B) 'K 2 
- 2'A';eff '/'K 

(1) 

and the selection rule äK = ± 1 for the observed perpendic­

ular transition and convoluted with a Gaussian linewidth of 

130 MHz FWHM in order to simulate the spectral resolu­

tion in the experiment. It was assumed that the distance of 

J. ehern. Phys., Val. 92, No. 1, 1 January 1990 
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T ABLE I. Spectroscopie constants derived from the analysis of the rotationally resolved electronie spectra of the 6~ and 6~ 1~ bands of the C6H6 (C6D6) 

monomers and C6H6' Ar (C6D6' Ar) complexes. Voo is the frequeney ofthe rotationless origin of eaeh band. A, Band C are the rotational constants and teK is 

the Coriolis coupling constant for the degenerate 1'6 vibronie mode. N is the number of assigned rovibronie Iines and u the standard deviation of the fit. 

Voo B" C;;'-A;; 8 B' C;\A; 8 td.- N u 
0 

" u 
[em-I] [em-l] [em-I] [em-I] [em-I] [MHz] 

C6~d 38606.089 (8) 0.1897618 (14)b 0.0948809" 0.181 778 (2) 0.090 865 (3) - 0.5785 (5) 353 13.9 

C6H6'Ar 38585.071 (8) 0.039371 (8) 0.09488098 0.040 060 (8) 0.090862 (5) - 0.5853 (6) 226 26.8 

C6D6 38 785.935 (10) 0.1570190 (17)< 0.078509 58 0.151 112 (2) 0.075413 (3) -0.3912 (5) 287 12.0 

C6D6'Ar 38765.164 (8) 0.037082 (13) 0.Q78 509 58 0.037683 (13) 0.075425 (8) - 0.3951 (7) 117 21.2 

C6~d 39529.630 (8) 0.1897618 (14)b 0.09488098 0.181648 (2) 0.090 855 (3) - 0.5519 (5) 252 19.0 

C6H6 'Ar 39 509.202 (10) 0.039363 (15) 0.09488098 0.040 Oll (16) 0.090 998 (10) - 0.5547 (7) 118 30.4 

8 The C rotational constant of the oblate C6H6 (C6D6) monomer corresponds to the A rotational constant of the prolate C6H6' Ar (C6D6 . Ar) eomplex. For 

the electronie ground state of the monomer the value was set equal to B ;;/2 (taken from Refs. 19 and 26) and (A;;) oomplex was set equal to (C;;) monom .. ' For 

details see text. 
bTaken from Ref. 19. 

cTaken from Ref. 26. 

dTaken from Ref. 7. 

the carbon and hydrogen atoms from the C6 axis are not 

changed by the addition of the Ar atom in a position above 

the center of the the benzene ring and therefore the A rota­

tional constant of the prolate C6H 6 ' Ar cluster is equal to the 

C rotational constant of C6H 6 as given by Pliva and Pine l9 

for the So electronic ground state and by our recent work 7 

for the SI excited state. By stepwise alteration of the rota­

tional constant ilB = B~ - B;; a fairly good simulation of 

the rotational structure, particularly ofthe blue-shaded sub­

bands in the Q-branch was achieved. With this value of ilB 

separate values for B~ and r;;tr were found which rendered 

spectra in sufficient agreement with either the measured P-

experimental 
Q-Branch (6J=01 

K"=2 toK=-l 
111111111 i i i I 

J"=2 7 10 13 K" =, toK=-' 
imi'I" , i i f 

J"='58'0 13 K"=O toK=+' 
1111111 i I I I i 

J"=, 5 810 13 

calculated 

-20 -15 -10 -5 o 5 

or R-branch to allow the assignment of 20 lines in each 

branch. A fit of the rotational constants to this initial set of 

assigned lines yielded constants which permitted the assign­

ment of all observed lines. As a result ofthe final fit to all 227 

unblended assigned lines the rotational constants B;;, B~, 
A ~, and the Coriolis coupling constant r;;tr listed in Table I 

were obtained. The standard deviation ofthe fit is 26.8 MHz. 

The rotational state population is not Boltzmann like and 

two temperatures of 2.3 and 4.1 Kare needed to fit the line 

intensities in the spectrum for low and high J values, respec­

tively. The experimental accuracy of line positions in the 

spectrum of Fig. 2 was not sufficient to find a reliable set of 

10 flv[GHzl 20 

FIG. 3. Central part ofthe rotationally 

resolved spectrum of the 6~ band of 

C6H .. Ar. Upper part: experimental 

spectrum. Lower part: spectrum caleu­

lated from the rotational eonstants ob­

tained by the analysis ofthe experimen­

tal spectrum (constants given in Table 

1). The strueture of same of the sub­

bands is indieated above the experimen­

talspeetrum. Some rovibronie lines with 

either K' = 1 or K' = 1 are marked by 
arrows. These lines should be split for a 

deviation from a symmetrie top strue­

ture. For details see text. 

J. ehem. Phys., VoL 92, No. 1, 1 January 1990 
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centrifugal distortion eonstants. It is interesting to note that 

the fitted value of A~ ofthe prolate symmetrie top C6H6 ' Ar 

agrees weIl with the eorresponding value C~ of the oblate 

symmetrie top C6H6
7 and the value of the Coriolis eoupling 

eonstant t;tr is nearly unehanged upon the addition ofthe Ar 

atom. This is a eorroboration of the assumption that the Aö 
value of C6H6 ' Ar is identieal with the eorresponding Cö 
value of C6H6• Indeed, of the three eonstants A ö, A~, and 

t;tr only two ean be determined from the observed speetrum 

and one has to be held fixed. The appropriate values for the 

C6H6 monomer band7 are included in Table I for eompari­

son. 
For illustration, part of the Q-braneh of the theoretieal 

speetrum is shown in the lower traee ofFig. 3. It represents 

the periodie subband strueture due to transitions with differ­

ent J " but eommon K " and t::.K. In the upper traee of Fig. 3 

the eorresponding part of the experimental speetrum is 

shown for eomparison. A nearly eomplete agreement of line 

intensities and line positions in the experimental and theo­

retieal speetrum is found and demonstrates the aeeuraey of 

the rotational eonstants given in Table I. 

From the good agreement ofboth speetra it may be eon­

cluded that the benzene-Ar van der Waals eomplex is a sym­

metrie top. An additional test of an asymmetry is possible by 

investigation of the asymmetry splitting /JE. This splitting 

oeeurs when the K degeneraey ofthe j(2 term in the energy of 

the symmetrie top is lifted. It is largest for K = 1 and in­

ereases quadratieally with J aeeording t020 

/JE=!(B-C)·J·(J+1). (2) 

Due to the high resolution several lines with high J and 

K = 1 are observed in the speetrum. They are marked by 

arrows in Fig. 3. No splitting ofthese lines is observed under 

the experimental resolution of 130 MHz. From Bq. (2) we 

find that B - C..;;2.2 X 10 - 5 em - I. Henee there is no indiea­

tion that the benzene-Ar eomplex deviates from aperfeet 

symmetrie top eonfiguration in the ground So and the SI 

excited eleetronie state. 

The proeedures described in this section have been also 

appIied to the measured speetra ofthe 6~ 1~ band of C6H6 ' Ar 

and the 6~ band of C6D6 ·Ar. The rotational strueture of 

these spectra is very similar to that of the 6~ band of 

C6H6 ' Ar shown in Fig. 2. The spaeing of the rotationallines 

is somewhat redueed in the 6~ band of C6D6 ' Ar as the rota­

tional constants deerease upon deuteration. The resulting 

speetroseopic eonstants are summarized in Table I together 

with the number of assigned lines and the standard deviation 

of each fit. For eomparison, also the speetrum ofthe 6~ band 

of C6D6 was measured with the present experimental set up 

and the speetrum was analyzed analogous1y to the one of the 

C6H6 monomer.7 The results are included in Table I. No 

broadening of the rotational 1ines ean be observed for our 

experimental resolution in the 6~ 1~ band of the C6H6 ' Ar 

and the signal strength is similar to the one of the 6~ band. 

From this result it ean be eoncluded that no dissoeiation or 

energy randomization occurs on the time seale ofthe experi­

ment at the exeess energy of 1444 em - I. This agrees weIl 

with the results of Stephenson and Riee21 who did not find 

any evidenee for these dynamie processes in the dispersed 

emission speetrum from the 6111 state. In order to eheek 

these proeesses for even higher exeess energies an attempt 

was made to measure a rotationally resolved spectrum ofthe 

6~ 1~ band. No signal at all was observed at the respeetive 

excitation energy.1t is eoncluded that the 6112 state ofthe 

C6H6 ' Ar cluster undergoes a fast nonradiative proeess at an 

exeess energy of 2366 em - I. 

B. Vlbrational analysis 

The rotational analysis deseribed above yields aeeurate 

positions for the rotationless transitions in the various inves­

tigated vibronie bands. The absolute frequeney ';00 of the 

rotationless transition is found from the published transition 

frequeneies22 of the simultaneously measured iodine spee­

trum. The values of Voo for the three investigated transitions 

ofbenzene-Ar are listed in Table I. For eomparison the eor­

responding Voo values ofthe benzene monomers are also in­

cluded. The red shift of the 6~ band in the C6H6 ' Ar 

(C6D6 ' Ar) cluster is 21.018 em - I (20.771 em - \) whereas 

the red shift of the 6~ 1~ band of C6H6 ' Ar is somewhat 

smaller (20.428 em - I). These values are in good agreement 

with the less aeeurate values found from non-rotationally 
resolved bands.21.23-25 If we assurne that anharmonie eou­

pling does not eontribute to the frequeney shift in the 6111 

state the slight deerease ofthe red shift is indueed by a small 

inerease ofO.59 em - I ofthe frequeney ofthe totally symmet­

rie CC streteh vibration VI in the C6H6 ' Ar cluster. 

C. Structure of the benzene-Ar complex 

In See. 111 A we have shown that there is no evidenee for 

an asymmetry splitting ofthe rotationallines even under the 

high resolution of our experiment. The speetrum ean be un­

derstood by the assumption of a symmetrie top similar to the 

results for benzene-He. 17 Thus it is clear that the sixfold 

rotational axis ofbenzene is preserved in the cluster and that 

the Ar nucleus has to be located on this axis at some distance 

rAr from the center of the benzene ring. 

From the fitted values Bö, B~, and A ~ and the assumed 

Aö value the Ar-benzene distanee rAr was ealculated for the 

eleetronic ground and the exeited state. The rcc and rCH 

distance in the benzene part of the benzene-Ar cluster ean be 

found either from the values of Bor C of C6H6 and C6D6 or 

from the values of A of C6H6 • Ar and C6D6 ' Ar. For the So 

state the three sets of values are identical, as benzene has to 

be assumed to be planar in the electronic ground state 7.19 and 

Aö of the cluster was set equal to Cö of the monomer (see 

above). For the S\ state all three possibilities discussed 

above have been cheeked and yield very similar results since 

neither a large deviation from C~ = B~ /27 nor a large differ­

enee between the value of A~ of the cluster and C~ of the 

monomer is found (see above). The resulting averaged dis­

tances (r cc ) and (r CH ) for the respeetive vibronie states are 

summarized in Table 11. The errors given in Table 11 include 

the variation due to the diseussed different possible choices 

ofthe determination. It has to be emphasized that the (rcc ) 

and (rCH ) values do not represent the exact equilibrium dis­

tances. 

For different benzene-Ar distanees rAr the eorrespond­

ing rotational eonstant B was ealculated until good agree-
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T ABLE 11. Averaged bond lengths in the C6H6 ' Ar (C6D6 ' Ar) complex. The values (r = >, (r CH > and (r Ac > 
(distance ofthe Ar atom from the plane ofthe benzene molecule) were determined from the rotational con­

stants obtained from the analysis ofthe rotationally resolved electronic spectra (compare Table I). They do not 

represent equilibrium distances but rather averaged distances for the particular vibronic states. The errors only 

represent the uncertainty of the various values according to the uncertainty of the rotational constants. For 

details see text. 

(rCC> 

[Al 

(rCH ) 

[Al 

(rAc }(C6H6 'Ar) 

[Al 

(rAc }(C6D6 'Ar) 

[Al 

s, 
6' o 

1.39723 (2) 

1.4313 (13) 

1.08007 (13) 

1.0767 (30) 

3.5831 (5) 

3.5836 (10) 

3.5230 (5) 

3.5258 (9) 

ment of calculated and measured B values was achieved. The 

resulting values for all analyzed bands are given in Table 11. 

The error of (rAr) merely represents the uncertainty of the 

fitted rotational constants. It does not take into account the 

uncertainties eventually caused by small changes of r cc and 

r CH bond lengths in the benzene ring after adding the Ar. We 

have shown above that this effect should be extremely small 

since we found nearly unchanged values of the respective 

rotational constant A~ in the SI state. Furthermore the cal­

culated rAr distance does not represent the bond length in the 

equilibrium structure. This is due to the fact that instead of 

A;q' B;~, A~, and B;q equilibrium rotational constants the 

measured Af{, Bf{, A ~, and B~ rotational constants were used. 

They contain harmonic, anharmonic and rotation-vibration 

coupling contributions from the zero-point vibrations (Af{, 

Bf{) and in addition ofthe V6 or the V6 plus VI vibration (A~, 

B~) that are excited in the SI state. Comparison of the var­

ious values of (rAr) shown in Table 11 shows that indeed 

they do not depend significantly on the particular band used 

for determination nor on the isotopic substitution. (rAr) 

purely depends on the electronic structure ofthe cluster mol­

ecule. The maximum deviation of ( rAr) for the various de­

terminations is 6 mA.. This value gives us a good estimate for 

the deviation of ( rAr) from ( rAr) eq which we estimate to be 

SO: (rAr)eq = 3.582 (5) A., (3) 

(4) 

Electronic excitation results in a decrease ofthe bond length 

of 59 ± 3 mA.. We can thus safely assume that we have found 

a value for the bond length change which is accurate to 5 per 

cent. Our values of rAr are in fair agreement with the results 

of recent semiempirical calculations.27 Due to their high pre­

cision the experimental values could weIl serve as test for 

more refined calculations. 

IV. SUMMARY AND CONCLUSION 

In this work we presented rotationally resolved UV 

spectra of vibronic bands in C6H6 ' Ar and C6D6 • Ar van der 

Waals complexes. The spectra were measured by mass-se­

lected two-photon ionization. In this way pure spectra ofthe 

benzene-Ar complex were obtained without contaminations 

from contributions of the monomer and cluster species of 

3.5803 (9) 

3.5198 (9) 

different mass. In order to avoid broadening by excited state 

absorption the first absorption step to the intermediate state 
and the second absorption step to the ionization continuum 

are performed with two different laser pulses with a small 

time delay. The high resolution originates from a frequency 

doubled pulsed amplified cw laser providing the first photon 

whereas the second photon is from a conventional broad 

band dye laser. 
Due to the high resolution of 130 MHz and a precise 

frequency calibration a set of rotational constants was re­

ceived for the So and the SI electronic states. On the basis of 

these rotational constants and a lacking asymmetry splitting 

even of K = 1 rotationallines the structure of the benzene­

Ar complex was evaluated with high precision. The Ar is 

located on the C6 rotational axis of the benzene ring at a 

distance of 3.582 A. from the plane in the ground electronic 

state. This distance decreases by 59 ± 3 mA. in the SI elec­

tronically excited state. Effects like this have not yet been 

detected by rotationally unresolved spectroscopy.18 On the 

other hand in the rotationally resolved spectrum of the ben­

zene-He complex ofBeck etal., 17 a slight increase of80 mA. 

ofthe bond length was found. This change ofthe bond length 

is much smaller than the error of 300 mA. in these experi­

ments. Thus we conclude that this result is probably due to 

the uncertainty of the experiment and not in contradiction 

with the result of our work. Results from rotationally re­

solved spectroscopy with higher precision were found for the 

s-tetrazine-Ar complex.8 Here the Ar distance decreases in 

the excited state as observed in the present work even though 

the decrease is one order of magnitude smaller than in ben­

zene-Ar. 

The decrease of the rAr distance of the Ar atom from the 

benzene ring plane can be weIl understood if one takes into 

account the higher polarizability of the electronically excit­

ed benzene molecule and its somewhat increased ring size. 

The relatively small decrease of the Ar-benzene distance is 

probably due to only a slight change of the 11' electron config­

uration after excitation of the 11'11'* transition. This is consis­

tent with the relatively small increase of the CC bond length 

of 34 mA. upon electronic excitation. This slight enlargement 

ofthe benzene ring permits the Ar atom to come closer to the 

ring. Further information on the van der Waals potential 

would be available from centrifugal distortion constants. 

J. ehern. Phys., Vol. 92, No. 1, 1 January 1990 



Downloaded 19 Sep 2008 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

96 Weber et al.: Spectrurn of benzene-Ar cornplex 

For this an improvement of the spectral resolution and the 

observation of higher rotationallevels will be the subject of 

forthcoming investigations. 
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