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Abstract

Let T ∈ B(X) be a hypercyclic operator and λ a complex number of
modulus 1. Then λT is hypercyclic and has the same set of hypercyclic
vectors as T . A version of this results gives for a wide class of supercyclic
operators that x ∈ X is supercyclic for T if and only if the set {tT nx :
t > 0, n = 0, 1, . . .} is dense in X. This gives answers to several questions
studied in literature.
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Let T be a bounded linear operator acting on a separable complex Banach
space X. A vector x ∈ X is called hypercyclic for T if the set {Tnx : n =
0, 1, . . .} is dense in X. The operator T is called hypercyclic if there exists a
vector hypercyclic for T .

By [A], if T is hypercyclic then Tn is hypercyclic for each n. Moreover, T
and Tn have the same sets of hypercyclic vectors. Consequently, if λ = e2πir

where r is a rational number, then T and λT have the same sets of hypercyclic
vectors.

Let T ∈ B(X) be a hypercyclic operator. It is easy to show that the set of
all λ ∈ C, |λ| = 1 such that λT is hypercyclic is a Gδ dense subset of the unit
circle T = {z ∈ C : |z| = 1}. Indeed, it is dense by the above mentioned result
of [A], and Gδ by the following observation:

Observation. The set of all hypercyclic operators is a Gδ subset of B(X).

Proof. Let (Uj) be a countable base of open subsets of X. By [GS], T ∈ B(X)
is hypercyclic if and only if for all j, k there is an n such that TnUj ∩ Uk 6= ∅.
Clearly, the set Mj,k of all operators T ∈ B(X) such that TnUj ∩ Uk 6= ∅ for
some n is an open subset of B(X). Thus the set of all hypercyclic operators is
Gδ, since it is equal to the intersection

⋂
j,k Mj,k.

The aim of this paper is to show that in fact λT is hypercyclic for all λ ∈ C
with |λ| = 1. This gives a positive answer to a question that has been posed
and studied simultaneously by several mathematicians. Moreover, T and λT
have the same sets of hypercyclic vectors. This gives also a positive answer to
a question of Salas posed in [S], 6.5.
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Our main result has important consequences also in the supercyclicity set-
ting. An operator T ∈ B(X) is called supercyclic if there is a vector x ∈ X
such that the set {νTnx : ν ∈ C, n = 0, 1, . . .} is dense in X; the vector x with
this property is called supercyclic for T . The concept of supercyclic vectors was
introduced by Hilden and Wallen in [HW]. They stand between hypercyclic and
cyclic vectors (a vector x is called cyclic for T ∈ B(X) if the powers Tnx span
a dense subspace of X).

In a similar way it is possible to define the (apparently different) concept of
R+-supercyclicity. A vector x is called R+-supercyclic for T if the set {tTnx :
t > 0, n = 0, 1, . . .} is dense, see [BBP].

In strong contrast with the class of hypercyclic operators, D. A. Herrero
discovered in [H] that there are two types of supercyclic operators T :

(i) operators satisfying σp(T ∗) = ∅ where σp denotes the point spectrum;

(ii) operators with σp(T ∗) = {α} for some non-zero α ∈ C; in this case we have
dimker(T ∗ − α) = 1 = dim ker(T ∗ − α)k for all k ≥ 1.

Note that operators of class (ii) have a nontrivial invariant subspace, and so
they are less interesting (at least from the point of view of invariant subspace
problem and related questions).

We show that for all operators in class (i) the concept of supercyclicity is
equivalent to the concept of R+-supercyclicity. This gives a positive answer to
a problem raised in [BBP]. Moreover, the R+ -supercyclicity is easier to handle
in practical applications than the supercyclicity, see e.g., [M].

As it was pointed out in [BBP], this equivalence is not true in general for
operators of type (ii).

Theorem 1. Let M⊂ B(X) be a semigroup of operators and let x ∈ X satisfy
that the set {µSx : S ∈ M, µ ∈ C, |µ| = 1} is dense in X. Suppose that there
is an operator T ∈ B(X) with σp(T ∗) = ∅ satisfying TS = ST for each S ∈M.
Then the set {Sx : S ∈M} is dense.

Proof. For each u ∈ X set Mu = {Su : S ∈M}−. For u, v ∈ X set

Fu,v = {µ ∈ C : |µ| = 1, µv ∈ Mu}.

Clearly Fu,v is a closed subset of the unit circle T = {µ ∈ C : |µ| = 1}. Let X0

be the set of all vectors u ∈ X such that {µSu : S ∈M, µ ∈ T}− = X.
The proof will be done in several steps:

(a) Let u ∈ X0. Then Fu,v 6= ∅ for all v ∈ X.

Proof. Since the set {µSu : S ∈ M, µ ∈ T} is dense in X, there are sequences
(Sn) ⊂ M and (µn) ⊂ T such that µnSnu → v. Passing to a subsequence if
necessary, we can assume that (µn) is convergent, µn → µ for some µ ∈ T. Then

‖Snu− µ−1v‖ ≤ ‖Snu− µ−1
n v‖+ ‖(µ−1

n − µ−1)v‖ → 0.

Thus µ−1 ∈ Fu,v.
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(b) Let u, v, w ∈ X, µ1 ∈ Fu,v and µ2 ∈ Fv,w. Then µ1µ2 ∈ Fu,w.

Proof. Let ε > 0. There exists S1 ∈ M such that ‖S1v − µ2w‖ < ε/2 and
S2 ∈M such that ‖S2u− µ1v‖ < ε

2‖S1‖ . Then

∥∥S1S2u− µ1µ2w
∥∥ ≤ ∥∥S1(S2u− µ1v)

∥∥ +
∥∥µ1(S1v − µ2w)

∥∥ < ε.

Hence µ1µ2 ∈ Fu,w.

Fix now x ∈ X0. By (a) and (b), Fx,x is a non-empty closed subsemigroup
of the unit circle T.

Suppose first that Fx,x = T. Then (a) and (b) imply that Fx,y = T for each
y ∈ X. Thus Mx = X, and so the set {Sx : S ∈M} is dense in X.

In the following we shall assume that Fx,x 6= T. We show that this assump-
tion leads to a contradiction.

(c) There exists k ∈ N such that Fx,x = {e2πij/k : j = 0, 1, . . . , k − 1}.
Proof. Let s = inf{t > 0 : e2πit ∈ Fx,x}. Clearly s > 0 since otherwise Fx,x

would be dense in T. Thus e2πis ∈ Fx,x. Let k = min{n ∈ N : ns ≥ 1}. If
ks > 1 then e2πi(ks−1) ∈ Fx,x and 0 < ks − 1 < s, a contradiction with the
definition of s. Hence ks = 1 and

Fx,x ⊃ {e2πij/k : j = 0, 1, . . . , k − 1}.

If there is an µ ∈ Fx,x \ {e2πij/k : j = 0, 1, . . . , k − 1} then µ = e2πit and
j0/k < t < (j0 + 1)/k for some j0, 0 ≤ j0 ≤ k − 1. Then µ · e−2πij0/k =
e2πi(t−j0/k) ∈ Fx,x where 0 < t− j0/k < 1/k = s, which is again a contradiction
with the definition of s.

Thus Fx,x = {e2πij/k : j = 0, 1, . . . , k − 1}.
(d) Let y ∈ X0. Then there exists µy ∈ T such that Fx,y = {µye2πij/k : j =
0, 1, . . . , k − 1}.
Proof. By (a), there are µy ∈ Fx,y and α ∈ Fy,x. By (b), we have µyFx,x ⊂ Fx,y

and αFx,y ⊂ Fx,x. In particular, card Fx,y = card Fx,x and Fx,y = µyFx,x =
{µye2πij/k : j = 0, 1, . . . , k − 1}.
(e) (T − z)x ∈ X0 for all z ∈ C.

Proof. Since σp(T ∗) = ∅, we have (T − z)X = X. Thus

{µS(T − z)x : S ∈M, µ ∈ T}− ⊃ (T − z){µSx : S ∈M, µ ∈ T}− = (T − z)X,

which is a dense subset of X.

For each non-zero vector y in the subspace generated by x and Tx define
f(y) = µk where µ is any element of Fx,y. Clearly the function f is well-defined
by (d).

(f) f is a continuous function.

Proof. Suppose on the contrary that there exist non-zero vectors un, u ∈∨{x, Tx} such that un → u and f(un) 6→ f(u). Without loss of generality
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we can assume that the sequence (f(un)) converges to some α ∈ T, α 6= f(u).
Let µn ∈ Fx,un

. Passing to a subsequence if necessary we can assume that
µn → µ for some µ ∈ T. Then µnun ∈ Mx and µnun → µu. Since Mx is closed,
we have µu ∈ Mx and µ ∈ Fx,u. Hence α = lim f(un) = lim µk

n = µk = f(u), a
contradiction. Hence f is continuous on the set

∨{x, Tx} \ {0}.
Proof of Theorem 1. We first show that the vectors x and Tx are linearly
independent. Suppose on the contrary that Tx = αx for some α ∈ C. Then
S ker(T − α) ⊂ ker(T − α) for all S ∈ M and X = {µSx : S ∈ M, µ ∈ T}− ⊂
ker(T −α). Thus T is a scalar multiple of the identity, which contradicts to the
assumption that σp(T ∗) = ∅.

Let D = {z ∈ C : |z| ≤ 1} denote the closed unit disc. Let g : D→ T be the
function defined by g(z) = f

(
zx+(1−|z|)Tx

)
. Clearly g is continuous. For all z

satisfying |z| = 1 we have Fx,zx = z−1Fx,x and g(z) = f(zx) = z−kf(x) = z−k.
It is well-known that such a function g cannot exist, see e.g. [R], Theorem 10.40.
Indeed, the function g would provide a homotopy between the constant path
γ1 : 〈0, 2π〉 → T defined by γ1(t) = g(0) and the path γ2 : 〈0, 2π〉 → T given by
γ2(t) = g(eit) = e−kit, which has the winding number −k.

Thus Fx,x = T and the set {Sx : S ∈M} is dense in X.

Corollary 2. Let T ∈ B(X). Then x ∈ X is hypercyclic for T if and only if
the set {µTnx : µ ∈ T, n = 0, 1 . . .} is dense in X.

Proof. One implication is trivial. To show the second implication, let x ∈ X
satisfy {µTnx : µ ∈ T, n = 0, 1, . . .}− = X. Let M = {Tn : n = 0, 1, . . .}. It is
sufficient to show that σp(T ∗) = ∅.

Suppose on the contrary that α ∈ σp(T ∗). Let x∗ ∈ X∗ be the corresponding
eigenvector, T ∗x∗ = αx∗. We have

C = {〈µTnx, x∗〉 : µ ∈ T, n = 0, 1, . . .}− = {〈µx, αnx∗〉 : µ ∈ T, n = 0, 1, . . .}−
= 〈x, x∗〉 · {µαn : µ ∈ T, n = 0, 1, . . .}−.

If |α| ≤ 1 or 〈x, x∗〉 = 0 then the last set is bounded and therefore non-dense in
C. If |α| > 1 and 〈x, x∗〉 6= 0 then the last set is bounded below, and therefore
non-dense in C, either. Hence σp(T ∗) = ∅.

The statement now follows from Theorem 1.

Corollary 3. Let T ∈ B(X) be hypercyclic and λ ∈ T. Then the operator λT
is hypercyclic and has the same set of hypercyclic vectors as T .

The last corollary has a reformulation for supercyclic operators.

Corollary 4. Let T ∈ B(X) satisfy σp(T ∗) = ∅ and let x ∈ X. Then x is
supercyclic for T if and only if the set {tTnx : t > 0, n = 0, 1, . . .} is dense in
X.

Proof. Let M = {t ·Tn : t > 0 : n = 0, 1, . . .}. The statement follows now from
Theorem 1.
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Concluding remarks

(i) The following problem is open (cf. [BP]).

Problem 5. Let T ∈ B(X) be a hypercyclic operator. Let (nk) be an increasing
sequence of positive integers such that supk(nk+1 − nk) < ∞. Is the sequence
(Tnk) hypercyclic, i.e., is there a vector x ∈ X such that the set {Tnkx : k ∈ N}
is dense in X?

In fact, Problem 5 is a generalization of Corollary 3. Indeed, suppose that
Problem 5 has a positive answer. Let T ∈ B(X) be hypercyclic and let λ ∈ C,
|λ| = 1. For each s ∈ N consider the set {n ∈ N : |λn−1| < 1/s}. It is easy to see
that this set forms an increasing sequence (nk) satisfying supk(nk+1−nk) < ∞.
By the assumption, the sequence (Tnk) is hypercyclic. Moreover, it is easy to
show that the set Ms of all vectors hypercyclic for the sequence (Tnk) is Gδ

dense.
By the Baire category theorem, the intersection

⋂
s Ms is also a Gδ dense

subset of X. Let x ∈ ⋂
s Ms. We show that x is hypercyclic for λT . Let y ∈ X

and ε > 0. Let s ∈ N, 1/s < ε. Then there is an n such that ‖Tnx − y‖ < ε
and |λn − 1| < s−1. Thus

‖(λT )nx− y‖ ≤ ‖λn(Tnx− y)‖+ ‖(λn − 1)y‖ < ε + ε‖y‖.
Since ε > 0 was arbitrary, we conclude that x is hypercyclic for λT .

Although Problem 5 is open, it is known that in general the set of all vectors
hypercyclic for a sequence (Tnk) where supk(nk+1 − nk) < ∞ cannot be equal
to the set of all vectors hypercyclic for T . Moreover, for each x ∈ X hypercyclic
for T there exists a sequence (nk) satisfying sup(nk+1−nk) < ∞ such that x is
not hypercyclic for the sequence (Tnk), see [MS], Proposition 2.5.

(ii) It is easy to construct a hypercyclic operator T such that λT is not hy-
percyclic whenever |λ| 6= 1. Let H be a separable Hilbert space with an or-
thonormal basis {ei} (i ∈ Z). Let T ∈ B(H) be the weighted shift defined by
Tei = wiei+1 (i ∈ Z) where wi = i+1

i+2 (i ≥ 0) and wi = i−1
i (i < 0). Then

‖Tn‖ = supi(wi · · ·wi+n−1) = n+1, and the spectral radius r(T ) = lim ‖Tn‖1/n

is equal to 1. Moreover, T is invertible and T−1 is the weighted shift given by
T−1ei = w−1

i−1ei−1; in fact T−1 is unitarily equivalent to T .
Let H0 be the dense subset of H formed by all finite linear combinations of

the vectors ei (i ∈ Z). It is easy to see that Tnx → 0 and T−nx → 0 for all
x ∈ H0. By the hypercyclicity criterion, see e.g. [K], [GS], T is hypercyclic.

If λ ∈ C, |λ| < 1 then r(λT ) < 1 and λT cannot be hypercyclic. Similarly,
if |λ| > 1 then r((λT )−1) < 1 and (λT )−1 is not hypercyclic. Hence λT is not
hypercyclic either, see [K], [GS].

(iii) An example of a supercyclic operator T ∈ B(X) with σp(T ∗) 6= ∅ that is
not R+-supercyclic was given in [BBP]. In fact, it is easy to see that if σp(T ∗) =
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{s · e2πir} where s > 0 and r is a rational number, then T cannot be R+-
supercyclic.

This leads to the following question:

Problem 6. Let T ∈ B(X) be a supercyclic operator such that σp(T ∗) =
{s · e2πim} where s > 0 and m is irrational. Is then the operator T R+-
supercyclic?

Clearly, the R+-supercyclicity does not depend on the positive number s, so
the question can be formulated only for operators T with σp(T ∗) = {e2πim},
where m is irrational.
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